Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408         uint seq;
409
410         /* flush from head to tail */
411         sdma_flush_descq(sde);
412         spin_lock_irqsave(&sde->flushlist_lock, flags);
413         /* copy flush list */
414         list_splice_init(&sde->flushlist, &flushlist);
415         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
416         /* flush from flush list */
417         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
418                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
419         /* wakeup QPs orphaned on the dmawait list */
420         do {
421                 struct iowait *w, *nw;
422
423                 seq = read_seqbegin(&sde->waitlock);
424                 if (!list_empty(&sde->dmawait)) {
425                         write_seqlock(&sde->waitlock);
426                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
427                                 if (w->wakeup) {
428                                         w->wakeup(w, SDMA_AVAIL_REASON);
429                                         list_del_init(&w->list);
430                                 }
431                         }
432                         write_sequnlock(&sde->waitlock);
433                 }
434         } while (read_seqretry(&sde->waitlock, seq));
435 }
436
437 /*
438  * Fields a work request for flushing the descq ring
439  * and the flush list
440  *
441  * If the engine has been brought to running during
442  * the scheduling delay, the flush is ignored, assuming
443  * that the process of bringing the engine to running
444  * would have done this flush prior to going to running.
445  *
446  */
447 static void sdma_field_flush(struct work_struct *work)
448 {
449         unsigned long flags;
450         struct sdma_engine *sde =
451                 container_of(work, struct sdma_engine, flush_worker);
452
453         write_seqlock_irqsave(&sde->head_lock, flags);
454         if (!__sdma_running(sde))
455                 sdma_flush(sde);
456         write_sequnlock_irqrestore(&sde->head_lock, flags);
457 }
458
459 static void sdma_err_halt_wait(struct work_struct *work)
460 {
461         struct sdma_engine *sde = container_of(work, struct sdma_engine,
462                                                 err_halt_worker);
463         u64 statuscsr;
464         unsigned long timeout;
465
466         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
467         while (1) {
468                 statuscsr = read_sde_csr(sde, SD(STATUS));
469                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
470                 if (statuscsr)
471                         break;
472                 if (time_after(jiffies, timeout)) {
473                         dd_dev_err(sde->dd,
474                                    "SDMA engine %d - timeout waiting for engine to halt\n",
475                                    sde->this_idx);
476                         /*
477                          * Continue anyway.  This could happen if there was
478                          * an uncorrectable error in the wrong spot.
479                          */
480                         break;
481                 }
482                 usleep_range(80, 120);
483         }
484
485         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
486 }
487
488 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
489 {
490         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
491                 unsigned index;
492                 struct hfi1_devdata *dd = sde->dd;
493
494                 for (index = 0; index < dd->num_sdma; index++) {
495                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
496
497                         if (curr_sdma != sde)
498                                 curr_sdma->progress_check_head =
499                                                         curr_sdma->descq_head;
500                 }
501                 dd_dev_err(sde->dd,
502                            "SDMA engine %d - check scheduled\n",
503                                 sde->this_idx);
504                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
505         }
506 }
507
508 static void sdma_err_progress_check(struct timer_list *t)
509 {
510         unsigned index;
511         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
512
513         dd_dev_err(sde->dd, "SDE progress check event\n");
514         for (index = 0; index < sde->dd->num_sdma; index++) {
515                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
516                 unsigned long flags;
517
518                 /* check progress on each engine except the current one */
519                 if (curr_sde == sde)
520                         continue;
521                 /*
522                  * We must lock interrupts when acquiring sde->lock,
523                  * to avoid a deadlock if interrupt triggers and spins on
524                  * the same lock on same CPU
525                  */
526                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
527                 write_seqlock(&curr_sde->head_lock);
528
529                 /* skip non-running queues */
530                 if (curr_sde->state.current_state != sdma_state_s99_running) {
531                         write_sequnlock(&curr_sde->head_lock);
532                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
533                         continue;
534                 }
535
536                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
537                     (curr_sde->descq_head ==
538                                 curr_sde->progress_check_head))
539                         __sdma_process_event(curr_sde,
540                                              sdma_event_e90_sw_halted);
541                 write_sequnlock(&curr_sde->head_lock);
542                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
543         }
544         schedule_work(&sde->err_halt_worker);
545 }
546
547 static void sdma_hw_clean_up_task(unsigned long opaque)
548 {
549         struct sdma_engine *sde = (struct sdma_engine *)opaque;
550         u64 statuscsr;
551
552         while (1) {
553 #ifdef CONFIG_SDMA_VERBOSITY
554                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
555                            sde->this_idx, slashstrip(__FILE__), __LINE__,
556                         __func__);
557 #endif
558                 statuscsr = read_sde_csr(sde, SD(STATUS));
559                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
560                 if (statuscsr)
561                         break;
562                 udelay(10);
563         }
564
565         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
566 }
567
568 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
569 {
570         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
571 }
572
573 /*
574  * flush ring for recovery
575  */
576 static void sdma_flush_descq(struct sdma_engine *sde)
577 {
578         u16 head, tail;
579         int progress = 0;
580         struct sdma_txreq *txp = get_txhead(sde);
581
582         /* The reason for some of the complexity of this code is that
583          * not all descriptors have corresponding txps.  So, we have to
584          * be able to skip over descs until we wander into the range of
585          * the next txp on the list.
586          */
587         head = sde->descq_head & sde->sdma_mask;
588         tail = sde->descq_tail & sde->sdma_mask;
589         while (head != tail) {
590                 /* advance head, wrap if needed */
591                 head = ++sde->descq_head & sde->sdma_mask;
592                 /* if now past this txp's descs, do the callback */
593                 if (txp && txp->next_descq_idx == head) {
594                         /* remove from list */
595                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
596                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
597                         trace_hfi1_sdma_progress(sde, head, tail, txp);
598                         txp = get_txhead(sde);
599                 }
600                 progress++;
601         }
602         if (progress)
603                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
604 }
605
606 static void sdma_sw_clean_up_task(unsigned long opaque)
607 {
608         struct sdma_engine *sde = (struct sdma_engine *)opaque;
609         unsigned long flags;
610
611         spin_lock_irqsave(&sde->tail_lock, flags);
612         write_seqlock(&sde->head_lock);
613
614         /*
615          * At this point, the following should always be true:
616          * - We are halted, so no more descriptors are getting retired.
617          * - We are not running, so no one is submitting new work.
618          * - Only we can send the e40_sw_cleaned, so we can't start
619          *   running again until we say so.  So, the active list and
620          *   descq are ours to play with.
621          */
622
623         /*
624          * In the error clean up sequence, software clean must be called
625          * before the hardware clean so we can use the hardware head in
626          * the progress routine.  A hardware clean or SPC unfreeze will
627          * reset the hardware head.
628          *
629          * Process all retired requests. The progress routine will use the
630          * latest physical hardware head - we are not running so speed does
631          * not matter.
632          */
633         sdma_make_progress(sde, 0);
634
635         sdma_flush(sde);
636
637         /*
638          * Reset our notion of head and tail.
639          * Note that the HW registers have been reset via an earlier
640          * clean up.
641          */
642         sde->descq_tail = 0;
643         sde->descq_head = 0;
644         sde->desc_avail = sdma_descq_freecnt(sde);
645         *sde->head_dma = 0;
646
647         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
648
649         write_sequnlock(&sde->head_lock);
650         spin_unlock_irqrestore(&sde->tail_lock, flags);
651 }
652
653 static void sdma_sw_tear_down(struct sdma_engine *sde)
654 {
655         struct sdma_state *ss = &sde->state;
656
657         /* Releasing this reference means the state machine has stopped. */
658         sdma_put(ss);
659
660         /* stop waiting for all unfreeze events to complete */
661         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
662         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
663 }
664
665 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
666 {
667         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
668 }
669
670 static void sdma_set_state(struct sdma_engine *sde,
671                            enum sdma_states next_state)
672 {
673         struct sdma_state *ss = &sde->state;
674         const struct sdma_set_state_action *action = sdma_action_table;
675         unsigned op = 0;
676
677         trace_hfi1_sdma_state(
678                 sde,
679                 sdma_state_names[ss->current_state],
680                 sdma_state_names[next_state]);
681
682         /* debugging bookkeeping */
683         ss->previous_state = ss->current_state;
684         ss->previous_op = ss->current_op;
685         ss->current_state = next_state;
686
687         if (ss->previous_state != sdma_state_s99_running &&
688             next_state == sdma_state_s99_running)
689                 sdma_flush(sde);
690
691         if (action[next_state].op_enable)
692                 op |= SDMA_SENDCTRL_OP_ENABLE;
693
694         if (action[next_state].op_intenable)
695                 op |= SDMA_SENDCTRL_OP_INTENABLE;
696
697         if (action[next_state].op_halt)
698                 op |= SDMA_SENDCTRL_OP_HALT;
699
700         if (action[next_state].op_cleanup)
701                 op |= SDMA_SENDCTRL_OP_CLEANUP;
702
703         if (action[next_state].go_s99_running_tofalse)
704                 ss->go_s99_running = 0;
705
706         if (action[next_state].go_s99_running_totrue)
707                 ss->go_s99_running = 1;
708
709         ss->current_op = op;
710         sdma_sendctrl(sde, ss->current_op);
711 }
712
713 /**
714  * sdma_get_descq_cnt() - called when device probed
715  *
716  * Return a validated descq count.
717  *
718  * This is currently only used in the verbs initialization to build the tx
719  * list.
720  *
721  * This will probably be deleted in favor of a more scalable approach to
722  * alloc tx's.
723  *
724  */
725 u16 sdma_get_descq_cnt(void)
726 {
727         u16 count = sdma_descq_cnt;
728
729         if (!count)
730                 return SDMA_DESCQ_CNT;
731         /* count must be a power of 2 greater than 64 and less than
732          * 32768.   Otherwise return default.
733          */
734         if (!is_power_of_2(count))
735                 return SDMA_DESCQ_CNT;
736         if (count < 64 || count > 32768)
737                 return SDMA_DESCQ_CNT;
738         return count;
739 }
740
741 /**
742  * sdma_engine_get_vl() - return vl for a given sdma engine
743  * @sde: sdma engine
744  *
745  * This function returns the vl mapped to a given engine, or an error if
746  * the mapping can't be found. The mapping fields are protected by RCU.
747  */
748 int sdma_engine_get_vl(struct sdma_engine *sde)
749 {
750         struct hfi1_devdata *dd = sde->dd;
751         struct sdma_vl_map *m;
752         u8 vl;
753
754         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
755                 return -EINVAL;
756
757         rcu_read_lock();
758         m = rcu_dereference(dd->sdma_map);
759         if (unlikely(!m)) {
760                 rcu_read_unlock();
761                 return -EINVAL;
762         }
763         vl = m->engine_to_vl[sde->this_idx];
764         rcu_read_unlock();
765
766         return vl;
767 }
768
769 /**
770  * sdma_select_engine_vl() - select sdma engine
771  * @dd: devdata
772  * @selector: a spreading factor
773  * @vl: this vl
774  *
775  *
776  * This function returns an engine based on the selector and a vl.  The
777  * mapping fields are protected by RCU.
778  */
779 struct sdma_engine *sdma_select_engine_vl(
780         struct hfi1_devdata *dd,
781         u32 selector,
782         u8 vl)
783 {
784         struct sdma_vl_map *m;
785         struct sdma_map_elem *e;
786         struct sdma_engine *rval;
787
788         /* NOTE This should only happen if SC->VL changed after the initial
789          *      checks on the QP/AH
790          *      Default will return engine 0 below
791          */
792         if (vl >= num_vls) {
793                 rval = NULL;
794                 goto done;
795         }
796
797         rcu_read_lock();
798         m = rcu_dereference(dd->sdma_map);
799         if (unlikely(!m)) {
800                 rcu_read_unlock();
801                 return &dd->per_sdma[0];
802         }
803         e = m->map[vl & m->mask];
804         rval = e->sde[selector & e->mask];
805         rcu_read_unlock();
806
807 done:
808         rval =  !rval ? &dd->per_sdma[0] : rval;
809         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
810         return rval;
811 }
812
813 /**
814  * sdma_select_engine_sc() - select sdma engine
815  * @dd: devdata
816  * @selector: a spreading factor
817  * @sc5: the 5 bit sc
818  *
819  *
820  * This function returns an engine based on the selector and an sc.
821  */
822 struct sdma_engine *sdma_select_engine_sc(
823         struct hfi1_devdata *dd,
824         u32 selector,
825         u8 sc5)
826 {
827         u8 vl = sc_to_vlt(dd, sc5);
828
829         return sdma_select_engine_vl(dd, selector, vl);
830 }
831
832 struct sdma_rht_map_elem {
833         u32 mask;
834         u8 ctr;
835         struct sdma_engine *sde[0];
836 };
837
838 struct sdma_rht_node {
839         unsigned long cpu_id;
840         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
841         struct rhash_head node;
842 };
843
844 #define NR_CPUS_HINT 192
845
846 static const struct rhashtable_params sdma_rht_params = {
847         .nelem_hint = NR_CPUS_HINT,
848         .head_offset = offsetof(struct sdma_rht_node, node),
849         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
850         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
851         .max_size = NR_CPUS,
852         .min_size = 8,
853         .automatic_shrinking = true,
854 };
855
856 /*
857  * sdma_select_user_engine() - select sdma engine based on user setup
858  * @dd: devdata
859  * @selector: a spreading factor
860  * @vl: this vl
861  *
862  * This function returns an sdma engine for a user sdma request.
863  * User defined sdma engine affinity setting is honored when applicable,
864  * otherwise system default sdma engine mapping is used. To ensure correct
865  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
866  */
867 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
868                                             u32 selector, u8 vl)
869 {
870         struct sdma_rht_node *rht_node;
871         struct sdma_engine *sde = NULL;
872         unsigned long cpu_id;
873
874         /*
875          * To ensure that always the same sdma engine(s) will be
876          * selected make sure the process is pinned to this CPU only.
877          */
878         if (current->nr_cpus_allowed != 1)
879                 goto out;
880
881         cpu_id = smp_processor_id();
882         rcu_read_lock();
883         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
884                                           sdma_rht_params);
885
886         if (rht_node && rht_node->map[vl]) {
887                 struct sdma_rht_map_elem *map = rht_node->map[vl];
888
889                 sde = map->sde[selector & map->mask];
890         }
891         rcu_read_unlock();
892
893         if (sde)
894                 return sde;
895
896 out:
897         return sdma_select_engine_vl(dd, selector, vl);
898 }
899
900 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
901 {
902         int i;
903
904         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
905                 map->sde[map->ctr + i] = map->sde[i];
906 }
907
908 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
909                                  struct sdma_engine *sde)
910 {
911         unsigned int i, pow;
912
913         /* only need to check the first ctr entries for a match */
914         for (i = 0; i < map->ctr; i++) {
915                 if (map->sde[i] == sde) {
916                         memmove(&map->sde[i], &map->sde[i + 1],
917                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
918                         map->ctr--;
919                         pow = roundup_pow_of_two(map->ctr ? : 1);
920                         map->mask = pow - 1;
921                         sdma_populate_sde_map(map);
922                         break;
923                 }
924         }
925 }
926
927 /*
928  * Prevents concurrent reads and writes of the sdma engine cpu_mask
929  */
930 static DEFINE_MUTEX(process_to_sde_mutex);
931
932 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
933                                 size_t count)
934 {
935         struct hfi1_devdata *dd = sde->dd;
936         cpumask_var_t mask, new_mask;
937         unsigned long cpu;
938         int ret, vl, sz;
939         struct sdma_rht_node *rht_node;
940
941         vl = sdma_engine_get_vl(sde);
942         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
943                 return -EINVAL;
944
945         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
946         if (!ret)
947                 return -ENOMEM;
948
949         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
950         if (!ret) {
951                 free_cpumask_var(mask);
952                 return -ENOMEM;
953         }
954         ret = cpulist_parse(buf, mask);
955         if (ret)
956                 goto out_free;
957
958         if (!cpumask_subset(mask, cpu_online_mask)) {
959                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
960                 ret = -EINVAL;
961                 goto out_free;
962         }
963
964         sz = sizeof(struct sdma_rht_map_elem) +
965                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
966
967         mutex_lock(&process_to_sde_mutex);
968
969         for_each_cpu(cpu, mask) {
970                 /* Check if we have this already mapped */
971                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
972                         cpumask_set_cpu(cpu, new_mask);
973                         continue;
974                 }
975
976                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
977                                                   sdma_rht_params);
978                 if (!rht_node) {
979                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
980                         if (!rht_node) {
981                                 ret = -ENOMEM;
982                                 goto out;
983                         }
984
985                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
986                         if (!rht_node->map[vl]) {
987                                 kfree(rht_node);
988                                 ret = -ENOMEM;
989                                 goto out;
990                         }
991                         rht_node->cpu_id = cpu;
992                         rht_node->map[vl]->mask = 0;
993                         rht_node->map[vl]->ctr = 1;
994                         rht_node->map[vl]->sde[0] = sde;
995
996                         ret = rhashtable_insert_fast(dd->sdma_rht,
997                                                      &rht_node->node,
998                                                      sdma_rht_params);
999                         if (ret) {
1000                                 kfree(rht_node->map[vl]);
1001                                 kfree(rht_node);
1002                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1003                                            cpu);
1004                                 goto out;
1005                         }
1006
1007                 } else {
1008                         int ctr, pow;
1009
1010                         /* Add new user mappings */
1011                         if (!rht_node->map[vl])
1012                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1013
1014                         if (!rht_node->map[vl]) {
1015                                 ret = -ENOMEM;
1016                                 goto out;
1017                         }
1018
1019                         rht_node->map[vl]->ctr++;
1020                         ctr = rht_node->map[vl]->ctr;
1021                         rht_node->map[vl]->sde[ctr - 1] = sde;
1022                         pow = roundup_pow_of_two(ctr);
1023                         rht_node->map[vl]->mask = pow - 1;
1024
1025                         /* Populate the sde map table */
1026                         sdma_populate_sde_map(rht_node->map[vl]);
1027                 }
1028                 cpumask_set_cpu(cpu, new_mask);
1029         }
1030
1031         /* Clean up old mappings */
1032         for_each_cpu(cpu, cpu_online_mask) {
1033                 struct sdma_rht_node *rht_node;
1034
1035                 /* Don't cleanup sdes that are set in the new mask */
1036                 if (cpumask_test_cpu(cpu, mask))
1037                         continue;
1038
1039                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1040                                                   sdma_rht_params);
1041                 if (rht_node) {
1042                         bool empty = true;
1043                         int i;
1044
1045                         /* Remove mappings for old sde */
1046                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1047                                 if (rht_node->map[i])
1048                                         sdma_cleanup_sde_map(rht_node->map[i],
1049                                                              sde);
1050
1051                         /* Free empty hash table entries */
1052                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1053                                 if (!rht_node->map[i])
1054                                         continue;
1055
1056                                 if (rht_node->map[i]->ctr) {
1057                                         empty = false;
1058                                         break;
1059                                 }
1060                         }
1061
1062                         if (empty) {
1063                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1064                                                              &rht_node->node,
1065                                                              sdma_rht_params);
1066                                 WARN_ON(ret);
1067
1068                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1069                                         kfree(rht_node->map[i]);
1070
1071                                 kfree(rht_node);
1072                         }
1073                 }
1074         }
1075
1076         cpumask_copy(&sde->cpu_mask, new_mask);
1077 out:
1078         mutex_unlock(&process_to_sde_mutex);
1079 out_free:
1080         free_cpumask_var(mask);
1081         free_cpumask_var(new_mask);
1082         return ret ? : strnlen(buf, PAGE_SIZE);
1083 }
1084
1085 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1086 {
1087         mutex_lock(&process_to_sde_mutex);
1088         if (cpumask_empty(&sde->cpu_mask))
1089                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1090         else
1091                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1092         mutex_unlock(&process_to_sde_mutex);
1093         return strnlen(buf, PAGE_SIZE);
1094 }
1095
1096 static void sdma_rht_free(void *ptr, void *arg)
1097 {
1098         struct sdma_rht_node *rht_node = ptr;
1099         int i;
1100
1101         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1102                 kfree(rht_node->map[i]);
1103
1104         kfree(rht_node);
1105 }
1106
1107 /**
1108  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1109  * @s: seq file
1110  * @dd: hfi1_devdata
1111  * @cpuid: cpu id
1112  *
1113  * This routine dumps the process to sde mappings per cpu
1114  */
1115 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1116                                 struct hfi1_devdata *dd,
1117                                 unsigned long cpuid)
1118 {
1119         struct sdma_rht_node *rht_node;
1120         int i, j;
1121
1122         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1123                                           sdma_rht_params);
1124         if (!rht_node)
1125                 return;
1126
1127         seq_printf(s, "cpu%3lu: ", cpuid);
1128         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1129                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1130                         continue;
1131
1132                 seq_printf(s, " vl%d: [", i);
1133
1134                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1135                         if (!rht_node->map[i]->sde[j])
1136                                 continue;
1137
1138                         if (j > 0)
1139                                 seq_puts(s, ",");
1140
1141                         seq_printf(s, " sdma%2d",
1142                                    rht_node->map[i]->sde[j]->this_idx);
1143                 }
1144                 seq_puts(s, " ]");
1145         }
1146
1147         seq_puts(s, "\n");
1148 }
1149
1150 /*
1151  * Free the indicated map struct
1152  */
1153 static void sdma_map_free(struct sdma_vl_map *m)
1154 {
1155         int i;
1156
1157         for (i = 0; m && i < m->actual_vls; i++)
1158                 kfree(m->map[i]);
1159         kfree(m);
1160 }
1161
1162 /*
1163  * Handle RCU callback
1164  */
1165 static void sdma_map_rcu_callback(struct rcu_head *list)
1166 {
1167         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1168
1169         sdma_map_free(m);
1170 }
1171
1172 /**
1173  * sdma_map_init - called when # vls change
1174  * @dd: hfi1_devdata
1175  * @port: port number
1176  * @num_vls: number of vls
1177  * @vl_engines: per vl engine mapping (optional)
1178  *
1179  * This routine changes the mapping based on the number of vls.
1180  *
1181  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1182  * implies auto computing the loading and giving each VLs a uniform
1183  * distribution of engines per VL.
1184  *
1185  * The auto algorithm computes the sde_per_vl and the number of extra
1186  * engines.  Any extra engines are added from the last VL on down.
1187  *
1188  * rcu locking is used here to control access to the mapping fields.
1189  *
1190  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1191  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1192  * up to the next highest power of 2 and the first entry is reused
1193  * in a round robin fashion.
1194  *
1195  * If an error occurs the map change is not done and the mapping is
1196  * not changed.
1197  *
1198  */
1199 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1200 {
1201         int i, j;
1202         int extra, sde_per_vl;
1203         int engine = 0;
1204         u8 lvl_engines[OPA_MAX_VLS];
1205         struct sdma_vl_map *oldmap, *newmap;
1206
1207         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1208                 return 0;
1209
1210         if (!vl_engines) {
1211                 /* truncate divide */
1212                 sde_per_vl = dd->num_sdma / num_vls;
1213                 /* extras */
1214                 extra = dd->num_sdma % num_vls;
1215                 vl_engines = lvl_engines;
1216                 /* add extras from last vl down */
1217                 for (i = num_vls - 1; i >= 0; i--, extra--)
1218                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1219         }
1220         /* build new map */
1221         newmap = kzalloc(
1222                 sizeof(struct sdma_vl_map) +
1223                         roundup_pow_of_two(num_vls) *
1224                         sizeof(struct sdma_map_elem *),
1225                 GFP_KERNEL);
1226         if (!newmap)
1227                 goto bail;
1228         newmap->actual_vls = num_vls;
1229         newmap->vls = roundup_pow_of_two(num_vls);
1230         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1231         /* initialize back-map */
1232         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1233                 newmap->engine_to_vl[i] = -1;
1234         for (i = 0; i < newmap->vls; i++) {
1235                 /* save for wrap around */
1236                 int first_engine = engine;
1237
1238                 if (i < newmap->actual_vls) {
1239                         int sz = roundup_pow_of_two(vl_engines[i]);
1240
1241                         /* only allocate once */
1242                         newmap->map[i] = kzalloc(
1243                                 sizeof(struct sdma_map_elem) +
1244                                         sz * sizeof(struct sdma_engine *),
1245                                 GFP_KERNEL);
1246                         if (!newmap->map[i])
1247                                 goto bail;
1248                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1249                         /* assign engines */
1250                         for (j = 0; j < sz; j++) {
1251                                 newmap->map[i]->sde[j] =
1252                                         &dd->per_sdma[engine];
1253                                 if (++engine >= first_engine + vl_engines[i])
1254                                         /* wrap back to first engine */
1255                                         engine = first_engine;
1256                         }
1257                         /* assign back-map */
1258                         for (j = 0; j < vl_engines[i]; j++)
1259                                 newmap->engine_to_vl[first_engine + j] = i;
1260                 } else {
1261                         /* just re-use entry without allocating */
1262                         newmap->map[i] = newmap->map[i % num_vls];
1263                 }
1264                 engine = first_engine + vl_engines[i];
1265         }
1266         /* newmap in hand, save old map */
1267         spin_lock_irq(&dd->sde_map_lock);
1268         oldmap = rcu_dereference_protected(dd->sdma_map,
1269                                            lockdep_is_held(&dd->sde_map_lock));
1270
1271         /* publish newmap */
1272         rcu_assign_pointer(dd->sdma_map, newmap);
1273
1274         spin_unlock_irq(&dd->sde_map_lock);
1275         /* success, free any old map after grace period */
1276         if (oldmap)
1277                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1278         return 0;
1279 bail:
1280         /* free any partial allocation */
1281         sdma_map_free(newmap);
1282         return -ENOMEM;
1283 }
1284
1285 /**
1286  * sdma_clean()  Clean up allocated memory
1287  * @dd:          struct hfi1_devdata
1288  * @num_engines: num sdma engines
1289  *
1290  * This routine can be called regardless of the success of
1291  * sdma_init()
1292  */
1293 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1294 {
1295         size_t i;
1296         struct sdma_engine *sde;
1297
1298         if (dd->sdma_pad_dma) {
1299                 dma_free_coherent(&dd->pcidev->dev, 4,
1300                                   (void *)dd->sdma_pad_dma,
1301                                   dd->sdma_pad_phys);
1302                 dd->sdma_pad_dma = NULL;
1303                 dd->sdma_pad_phys = 0;
1304         }
1305         if (dd->sdma_heads_dma) {
1306                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1307                                   (void *)dd->sdma_heads_dma,
1308                                   dd->sdma_heads_phys);
1309                 dd->sdma_heads_dma = NULL;
1310                 dd->sdma_heads_phys = 0;
1311         }
1312         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1313                 sde = &dd->per_sdma[i];
1314
1315                 sde->head_dma = NULL;
1316                 sde->head_phys = 0;
1317
1318                 if (sde->descq) {
1319                         dma_free_coherent(
1320                                 &dd->pcidev->dev,
1321                                 sde->descq_cnt * sizeof(u64[2]),
1322                                 sde->descq,
1323                                 sde->descq_phys
1324                         );
1325                         sde->descq = NULL;
1326                         sde->descq_phys = 0;
1327                 }
1328                 kvfree(sde->tx_ring);
1329                 sde->tx_ring = NULL;
1330         }
1331         spin_lock_irq(&dd->sde_map_lock);
1332         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1333         RCU_INIT_POINTER(dd->sdma_map, NULL);
1334         spin_unlock_irq(&dd->sde_map_lock);
1335         synchronize_rcu();
1336         kfree(dd->per_sdma);
1337         dd->per_sdma = NULL;
1338
1339         if (dd->sdma_rht) {
1340                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1341                 kfree(dd->sdma_rht);
1342                 dd->sdma_rht = NULL;
1343         }
1344 }
1345
1346 /**
1347  * sdma_init() - called when device probed
1348  * @dd: hfi1_devdata
1349  * @port: port number (currently only zero)
1350  *
1351  * Initializes each sde and its csrs.
1352  * Interrupts are not required to be enabled.
1353  *
1354  * Returns:
1355  * 0 - success, -errno on failure
1356  */
1357 int sdma_init(struct hfi1_devdata *dd, u8 port)
1358 {
1359         unsigned this_idx;
1360         struct sdma_engine *sde;
1361         struct rhashtable *tmp_sdma_rht;
1362         u16 descq_cnt;
1363         void *curr_head;
1364         struct hfi1_pportdata *ppd = dd->pport + port;
1365         u32 per_sdma_credits;
1366         uint idle_cnt = sdma_idle_cnt;
1367         size_t num_engines = chip_sdma_engines(dd);
1368         int ret = -ENOMEM;
1369
1370         if (!HFI1_CAP_IS_KSET(SDMA)) {
1371                 HFI1_CAP_CLEAR(SDMA_AHG);
1372                 return 0;
1373         }
1374         if (mod_num_sdma &&
1375             /* can't exceed chip support */
1376             mod_num_sdma <= chip_sdma_engines(dd) &&
1377             /* count must be >= vls */
1378             mod_num_sdma >= num_vls)
1379                 num_engines = mod_num_sdma;
1380
1381         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1382         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1383         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1384                     chip_sdma_mem_size(dd));
1385
1386         per_sdma_credits =
1387                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1388
1389         /* set up freeze waitqueue */
1390         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1391         atomic_set(&dd->sdma_unfreeze_count, 0);
1392
1393         descq_cnt = sdma_get_descq_cnt();
1394         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1395                     num_engines, descq_cnt);
1396
1397         /* alloc memory for array of send engines */
1398         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1399                                     GFP_KERNEL, dd->node);
1400         if (!dd->per_sdma)
1401                 return ret;
1402
1403         idle_cnt = ns_to_cclock(dd, idle_cnt);
1404         if (idle_cnt)
1405                 dd->default_desc1 =
1406                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1407         else
1408                 dd->default_desc1 =
1409                         SDMA_DESC1_INT_REQ_FLAG;
1410
1411         if (!sdma_desct_intr)
1412                 sdma_desct_intr = SDMA_DESC_INTR;
1413
1414         /* Allocate memory for SendDMA descriptor FIFOs */
1415         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1416                 sde = &dd->per_sdma[this_idx];
1417                 sde->dd = dd;
1418                 sde->ppd = ppd;
1419                 sde->this_idx = this_idx;
1420                 sde->descq_cnt = descq_cnt;
1421                 sde->desc_avail = sdma_descq_freecnt(sde);
1422                 sde->sdma_shift = ilog2(descq_cnt);
1423                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1424
1425                 /* Create a mask specifically for each interrupt source */
1426                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1427                                            this_idx);
1428                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1429                                                 this_idx);
1430                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1431                                             this_idx);
1432                 /* Create a combined mask to cover all 3 interrupt sources */
1433                 sde->imask = sde->int_mask | sde->progress_mask |
1434                              sde->idle_mask;
1435
1436                 spin_lock_init(&sde->tail_lock);
1437                 seqlock_init(&sde->head_lock);
1438                 spin_lock_init(&sde->senddmactrl_lock);
1439                 spin_lock_init(&sde->flushlist_lock);
1440                 seqlock_init(&sde->waitlock);
1441                 /* insure there is always a zero bit */
1442                 sde->ahg_bits = 0xfffffffe00000000ULL;
1443
1444                 sdma_set_state(sde, sdma_state_s00_hw_down);
1445
1446                 /* set up reference counting */
1447                 kref_init(&sde->state.kref);
1448                 init_completion(&sde->state.comp);
1449
1450                 INIT_LIST_HEAD(&sde->flushlist);
1451                 INIT_LIST_HEAD(&sde->dmawait);
1452
1453                 sde->tail_csr =
1454                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1455
1456                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1457                              (unsigned long)sde);
1458
1459                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1460                              (unsigned long)sde);
1461                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1462                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1463
1464                 sde->progress_check_head = 0;
1465
1466                 timer_setup(&sde->err_progress_check_timer,
1467                             sdma_err_progress_check, 0);
1468
1469                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1470                                                 descq_cnt * sizeof(u64[2]),
1471                                                 &sde->descq_phys, GFP_KERNEL);
1472                 if (!sde->descq)
1473                         goto bail;
1474                 sde->tx_ring =
1475                         kvzalloc_node(array_size(descq_cnt,
1476                                                  sizeof(struct sdma_txreq *)),
1477                                       GFP_KERNEL, dd->node);
1478                 if (!sde->tx_ring)
1479                         goto bail;
1480         }
1481
1482         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1483         /* Allocate memory for DMA of head registers to memory */
1484         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1485                                                 dd->sdma_heads_size,
1486                                                 &dd->sdma_heads_phys,
1487                                                 GFP_KERNEL);
1488         if (!dd->sdma_heads_dma) {
1489                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1490                 goto bail;
1491         }
1492
1493         /* Allocate memory for pad */
1494         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1495                                               &dd->sdma_pad_phys, GFP_KERNEL);
1496         if (!dd->sdma_pad_dma) {
1497                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1498                 goto bail;
1499         }
1500
1501         /* assign each engine to different cacheline and init registers */
1502         curr_head = (void *)dd->sdma_heads_dma;
1503         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1504                 unsigned long phys_offset;
1505
1506                 sde = &dd->per_sdma[this_idx];
1507
1508                 sde->head_dma = curr_head;
1509                 curr_head += L1_CACHE_BYTES;
1510                 phys_offset = (unsigned long)sde->head_dma -
1511                               (unsigned long)dd->sdma_heads_dma;
1512                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1513                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1514         }
1515         dd->flags |= HFI1_HAS_SEND_DMA;
1516         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1517         dd->num_sdma = num_engines;
1518         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1519         if (ret < 0)
1520                 goto bail;
1521
1522         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1523         if (!tmp_sdma_rht) {
1524                 ret = -ENOMEM;
1525                 goto bail;
1526         }
1527
1528         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1529         if (ret < 0) {
1530                 kfree(tmp_sdma_rht);
1531                 goto bail;
1532         }
1533
1534         dd->sdma_rht = tmp_sdma_rht;
1535
1536         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1537         return 0;
1538
1539 bail:
1540         sdma_clean(dd, num_engines);
1541         return ret;
1542 }
1543
1544 /**
1545  * sdma_all_running() - called when the link goes up
1546  * @dd: hfi1_devdata
1547  *
1548  * This routine moves all engines to the running state.
1549  */
1550 void sdma_all_running(struct hfi1_devdata *dd)
1551 {
1552         struct sdma_engine *sde;
1553         unsigned int i;
1554
1555         /* move all engines to running */
1556         for (i = 0; i < dd->num_sdma; ++i) {
1557                 sde = &dd->per_sdma[i];
1558                 sdma_process_event(sde, sdma_event_e30_go_running);
1559         }
1560 }
1561
1562 /**
1563  * sdma_all_idle() - called when the link goes down
1564  * @dd: hfi1_devdata
1565  *
1566  * This routine moves all engines to the idle state.
1567  */
1568 void sdma_all_idle(struct hfi1_devdata *dd)
1569 {
1570         struct sdma_engine *sde;
1571         unsigned int i;
1572
1573         /* idle all engines */
1574         for (i = 0; i < dd->num_sdma; ++i) {
1575                 sde = &dd->per_sdma[i];
1576                 sdma_process_event(sde, sdma_event_e70_go_idle);
1577         }
1578 }
1579
1580 /**
1581  * sdma_start() - called to kick off state processing for all engines
1582  * @dd: hfi1_devdata
1583  *
1584  * This routine is for kicking off the state processing for all required
1585  * sdma engines.  Interrupts need to be working at this point.
1586  *
1587  */
1588 void sdma_start(struct hfi1_devdata *dd)
1589 {
1590         unsigned i;
1591         struct sdma_engine *sde;
1592
1593         /* kick off the engines state processing */
1594         for (i = 0; i < dd->num_sdma; ++i) {
1595                 sde = &dd->per_sdma[i];
1596                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1597         }
1598 }
1599
1600 /**
1601  * sdma_exit() - used when module is removed
1602  * @dd: hfi1_devdata
1603  */
1604 void sdma_exit(struct hfi1_devdata *dd)
1605 {
1606         unsigned this_idx;
1607         struct sdma_engine *sde;
1608
1609         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1610                         ++this_idx) {
1611                 sde = &dd->per_sdma[this_idx];
1612                 if (!list_empty(&sde->dmawait))
1613                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1614                                    sde->this_idx);
1615                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1616
1617                 del_timer_sync(&sde->err_progress_check_timer);
1618
1619                 /*
1620                  * This waits for the state machine to exit so it is not
1621                  * necessary to kill the sdma_sw_clean_up_task to make sure
1622                  * it is not running.
1623                  */
1624                 sdma_finalput(&sde->state);
1625         }
1626 }
1627
1628 /*
1629  * unmap the indicated descriptor
1630  */
1631 static inline void sdma_unmap_desc(
1632         struct hfi1_devdata *dd,
1633         struct sdma_desc *descp)
1634 {
1635         switch (sdma_mapping_type(descp)) {
1636         case SDMA_MAP_SINGLE:
1637                 dma_unmap_single(
1638                         &dd->pcidev->dev,
1639                         sdma_mapping_addr(descp),
1640                         sdma_mapping_len(descp),
1641                         DMA_TO_DEVICE);
1642                 break;
1643         case SDMA_MAP_PAGE:
1644                 dma_unmap_page(
1645                         &dd->pcidev->dev,
1646                         sdma_mapping_addr(descp),
1647                         sdma_mapping_len(descp),
1648                         DMA_TO_DEVICE);
1649                 break;
1650         }
1651 }
1652
1653 /*
1654  * return the mode as indicated by the first
1655  * descriptor in the tx.
1656  */
1657 static inline u8 ahg_mode(struct sdma_txreq *tx)
1658 {
1659         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1660                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1661 }
1662
1663 /**
1664  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1665  * @dd: hfi1_devdata for unmapping
1666  * @tx: tx request to clean
1667  *
1668  * This is used in the progress routine to clean the tx or
1669  * by the ULP to toss an in-process tx build.
1670  *
1671  * The code can be called multiple times without issue.
1672  *
1673  */
1674 void __sdma_txclean(
1675         struct hfi1_devdata *dd,
1676         struct sdma_txreq *tx)
1677 {
1678         u16 i;
1679
1680         if (tx->num_desc) {
1681                 u8 skip = 0, mode = ahg_mode(tx);
1682
1683                 /* unmap first */
1684                 sdma_unmap_desc(dd, &tx->descp[0]);
1685                 /* determine number of AHG descriptors to skip */
1686                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1687                         skip = mode >> 1;
1688                 for (i = 1 + skip; i < tx->num_desc; i++)
1689                         sdma_unmap_desc(dd, &tx->descp[i]);
1690                 tx->num_desc = 0;
1691         }
1692         kfree(tx->coalesce_buf);
1693         tx->coalesce_buf = NULL;
1694         /* kmalloc'ed descp */
1695         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1696                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1697                 kfree(tx->descp);
1698         }
1699 }
1700
1701 static inline u16 sdma_gethead(struct sdma_engine *sde)
1702 {
1703         struct hfi1_devdata *dd = sde->dd;
1704         int use_dmahead;
1705         u16 hwhead;
1706
1707 #ifdef CONFIG_SDMA_VERBOSITY
1708         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1709                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1710 #endif
1711
1712 retry:
1713         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1714                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1715         hwhead = use_dmahead ?
1716                 (u16)le64_to_cpu(*sde->head_dma) :
1717                 (u16)read_sde_csr(sde, SD(HEAD));
1718
1719         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1720                 u16 cnt;
1721                 u16 swtail;
1722                 u16 swhead;
1723                 int sane;
1724
1725                 swhead = sde->descq_head & sde->sdma_mask;
1726                 /* this code is really bad for cache line trading */
1727                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1728                 cnt = sde->descq_cnt;
1729
1730                 if (swhead < swtail)
1731                         /* not wrapped */
1732                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1733                 else if (swhead > swtail)
1734                         /* wrapped around */
1735                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1736                                 (hwhead <= swtail);
1737                 else
1738                         /* empty */
1739                         sane = (hwhead == swhead);
1740
1741                 if (unlikely(!sane)) {
1742                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1743                                    sde->this_idx,
1744                                    use_dmahead ? "dma" : "kreg",
1745                                    hwhead, swhead, swtail, cnt);
1746                         if (use_dmahead) {
1747                                 /* try one more time, using csr */
1748                                 use_dmahead = 0;
1749                                 goto retry;
1750                         }
1751                         /* proceed as if no progress */
1752                         hwhead = swhead;
1753                 }
1754         }
1755         return hwhead;
1756 }
1757
1758 /*
1759  * This is called when there are send DMA descriptors that might be
1760  * available.
1761  *
1762  * This is called with head_lock held.
1763  */
1764 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1765 {
1766         struct iowait *wait, *nw, *twait;
1767         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1768         uint i, n = 0, seq, tidx = 0;
1769
1770 #ifdef CONFIG_SDMA_VERBOSITY
1771         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1772                    slashstrip(__FILE__), __LINE__, __func__);
1773         dd_dev_err(sde->dd, "avail: %u\n", avail);
1774 #endif
1775
1776         do {
1777                 seq = read_seqbegin(&sde->waitlock);
1778                 if (!list_empty(&sde->dmawait)) {
1779                         /* at least one item */
1780                         write_seqlock(&sde->waitlock);
1781                         /* Harvest waiters wanting DMA descriptors */
1782                         list_for_each_entry_safe(
1783                                         wait,
1784                                         nw,
1785                                         &sde->dmawait,
1786                                         list) {
1787                                 u32 num_desc;
1788
1789                                 if (!wait->wakeup)
1790                                         continue;
1791                                 if (n == ARRAY_SIZE(waits))
1792                                         break;
1793                                 iowait_init_priority(wait);
1794                                 num_desc = iowait_get_all_desc(wait);
1795                                 if (num_desc > avail)
1796                                         break;
1797                                 avail -= num_desc;
1798                                 /* Find the top-priority wait memeber */
1799                                 if (n) {
1800                                         twait = waits[tidx];
1801                                         tidx =
1802                                             iowait_priority_update_top(wait,
1803                                                                        twait,
1804                                                                        n,
1805                                                                        tidx);
1806                                 }
1807                                 list_del_init(&wait->list);
1808                                 waits[n++] = wait;
1809                         }
1810                         write_sequnlock(&sde->waitlock);
1811                         break;
1812                 }
1813         } while (read_seqretry(&sde->waitlock, seq));
1814
1815         /* Schedule the top-priority entry first */
1816         if (n)
1817                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1818
1819         for (i = 0; i < n; i++)
1820                 if (i != tidx)
1821                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1822 }
1823
1824 /* head_lock must be held */
1825 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1826 {
1827         struct sdma_txreq *txp = NULL;
1828         int progress = 0;
1829         u16 hwhead, swhead;
1830         int idle_check_done = 0;
1831
1832         hwhead = sdma_gethead(sde);
1833
1834         /* The reason for some of the complexity of this code is that
1835          * not all descriptors have corresponding txps.  So, we have to
1836          * be able to skip over descs until we wander into the range of
1837          * the next txp on the list.
1838          */
1839
1840 retry:
1841         txp = get_txhead(sde);
1842         swhead = sde->descq_head & sde->sdma_mask;
1843         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1844         while (swhead != hwhead) {
1845                 /* advance head, wrap if needed */
1846                 swhead = ++sde->descq_head & sde->sdma_mask;
1847
1848                 /* if now past this txp's descs, do the callback */
1849                 if (txp && txp->next_descq_idx == swhead) {
1850                         /* remove from list */
1851                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1852                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1853                         /* see if there is another txp */
1854                         txp = get_txhead(sde);
1855                 }
1856                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1857                 progress++;
1858         }
1859
1860         /*
1861          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1862          * to updates to the the dma_head location in host memory. The head
1863          * value read might not be fully up to date. If there are pending
1864          * descriptors and the SDMA idle interrupt fired then read from the
1865          * CSR SDMA head instead to get the latest value from the hardware.
1866          * The hardware SDMA head should be read at most once in this invocation
1867          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1868          */
1869         if ((status & sde->idle_mask) && !idle_check_done) {
1870                 u16 swtail;
1871
1872                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1873                 if (swtail != hwhead) {
1874                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1875                         idle_check_done = 1;
1876                         goto retry;
1877                 }
1878         }
1879
1880         sde->last_status = status;
1881         if (progress)
1882                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1883 }
1884
1885 /*
1886  * sdma_engine_interrupt() - interrupt handler for engine
1887  * @sde: sdma engine
1888  * @status: sdma interrupt reason
1889  *
1890  * Status is a mask of the 3 possible interrupts for this engine.  It will
1891  * contain bits _only_ for this SDMA engine.  It will contain at least one
1892  * bit, it may contain more.
1893  */
1894 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1895 {
1896         trace_hfi1_sdma_engine_interrupt(sde, status);
1897         write_seqlock(&sde->head_lock);
1898         sdma_set_desc_cnt(sde, sdma_desct_intr);
1899         if (status & sde->idle_mask)
1900                 sde->idle_int_cnt++;
1901         else if (status & sde->progress_mask)
1902                 sde->progress_int_cnt++;
1903         else if (status & sde->int_mask)
1904                 sde->sdma_int_cnt++;
1905         sdma_make_progress(sde, status);
1906         write_sequnlock(&sde->head_lock);
1907 }
1908
1909 /**
1910  * sdma_engine_error() - error handler for engine
1911  * @sde: sdma engine
1912  * @status: sdma interrupt reason
1913  */
1914 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1915 {
1916         unsigned long flags;
1917
1918 #ifdef CONFIG_SDMA_VERBOSITY
1919         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1920                    sde->this_idx,
1921                    (unsigned long long)status,
1922                    sdma_state_names[sde->state.current_state]);
1923 #endif
1924         spin_lock_irqsave(&sde->tail_lock, flags);
1925         write_seqlock(&sde->head_lock);
1926         if (status & ALL_SDMA_ENG_HALT_ERRS)
1927                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1928         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1929                 dd_dev_err(sde->dd,
1930                            "SDMA (%u) engine error: 0x%llx state %s\n",
1931                            sde->this_idx,
1932                            (unsigned long long)status,
1933                            sdma_state_names[sde->state.current_state]);
1934                 dump_sdma_state(sde);
1935         }
1936         write_sequnlock(&sde->head_lock);
1937         spin_unlock_irqrestore(&sde->tail_lock, flags);
1938 }
1939
1940 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1941 {
1942         u64 set_senddmactrl = 0;
1943         u64 clr_senddmactrl = 0;
1944         unsigned long flags;
1945
1946 #ifdef CONFIG_SDMA_VERBOSITY
1947         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1948                    sde->this_idx,
1949                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1950                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1951                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1952                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1953 #endif
1954
1955         if (op & SDMA_SENDCTRL_OP_ENABLE)
1956                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1957         else
1958                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1959
1960         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1961                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1962         else
1963                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1964
1965         if (op & SDMA_SENDCTRL_OP_HALT)
1966                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1967         else
1968                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1969
1970         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1971
1972         sde->p_senddmactrl |= set_senddmactrl;
1973         sde->p_senddmactrl &= ~clr_senddmactrl;
1974
1975         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1976                 write_sde_csr(sde, SD(CTRL),
1977                               sde->p_senddmactrl |
1978                               SD(CTRL_SDMA_CLEANUP_SMASK));
1979         else
1980                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1981
1982         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1983
1984 #ifdef CONFIG_SDMA_VERBOSITY
1985         sdma_dumpstate(sde);
1986 #endif
1987 }
1988
1989 static void sdma_setlengen(struct sdma_engine *sde)
1990 {
1991 #ifdef CONFIG_SDMA_VERBOSITY
1992         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1993                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1994 #endif
1995
1996         /*
1997          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1998          * count to enable generation checking and load the internal
1999          * generation counter.
2000          */
2001         write_sde_csr(sde, SD(LEN_GEN),
2002                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2003         write_sde_csr(sde, SD(LEN_GEN),
2004                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2005                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2006 }
2007
2008 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2009 {
2010         /* Commit writes to memory and advance the tail on the chip */
2011         smp_wmb(); /* see get_txhead() */
2012         writeq(tail, sde->tail_csr);
2013 }
2014
2015 /*
2016  * This is called when changing to state s10_hw_start_up_halt_wait as
2017  * a result of send buffer errors or send DMA descriptor errors.
2018  */
2019 static void sdma_hw_start_up(struct sdma_engine *sde)
2020 {
2021         u64 reg;
2022
2023 #ifdef CONFIG_SDMA_VERBOSITY
2024         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2025                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2026 #endif
2027
2028         sdma_setlengen(sde);
2029         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2030         *sde->head_dma = 0;
2031
2032         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2033               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2034         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2035 }
2036
2037 /*
2038  * set_sdma_integrity
2039  *
2040  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2041  */
2042 static void set_sdma_integrity(struct sdma_engine *sde)
2043 {
2044         struct hfi1_devdata *dd = sde->dd;
2045
2046         write_sde_csr(sde, SD(CHECK_ENABLE),
2047                       hfi1_pkt_base_sdma_integrity(dd));
2048 }
2049
2050 static void init_sdma_regs(
2051         struct sdma_engine *sde,
2052         u32 credits,
2053         uint idle_cnt)
2054 {
2055         u8 opval, opmask;
2056 #ifdef CONFIG_SDMA_VERBOSITY
2057         struct hfi1_devdata *dd = sde->dd;
2058
2059         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2060                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2061 #endif
2062
2063         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2064         sdma_setlengen(sde);
2065         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2066         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2067         write_sde_csr(sde, SD(DESC_CNT), 0);
2068         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2069         write_sde_csr(sde, SD(MEMORY),
2070                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2071                       ((u64)(credits * sde->this_idx) <<
2072                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2073         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2074         set_sdma_integrity(sde);
2075         opmask = OPCODE_CHECK_MASK_DISABLED;
2076         opval = OPCODE_CHECK_VAL_DISABLED;
2077         write_sde_csr(sde, SD(CHECK_OPCODE),
2078                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2079                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2080 }
2081
2082 #ifdef CONFIG_SDMA_VERBOSITY
2083
2084 #define sdma_dumpstate_helper0(reg) do { \
2085                 csr = read_csr(sde->dd, reg); \
2086                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2087         } while (0)
2088
2089 #define sdma_dumpstate_helper(reg) do { \
2090                 csr = read_sde_csr(sde, reg); \
2091                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2092                         #reg, sde->this_idx, csr); \
2093         } while (0)
2094
2095 #define sdma_dumpstate_helper2(reg) do { \
2096                 csr = read_csr(sde->dd, reg + (8 * i)); \
2097                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2098                                 #reg, i, csr); \
2099         } while (0)
2100
2101 void sdma_dumpstate(struct sdma_engine *sde)
2102 {
2103         u64 csr;
2104         unsigned i;
2105
2106         sdma_dumpstate_helper(SD(CTRL));
2107         sdma_dumpstate_helper(SD(STATUS));
2108         sdma_dumpstate_helper0(SD(ERR_STATUS));
2109         sdma_dumpstate_helper0(SD(ERR_MASK));
2110         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2111         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2112
2113         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2114                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2115                 sdma_dumpstate_helper2(CCE_INT_MASK);
2116                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2117         }
2118
2119         sdma_dumpstate_helper(SD(TAIL));
2120         sdma_dumpstate_helper(SD(HEAD));
2121         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2122         sdma_dumpstate_helper(SD(IDLE_CNT));
2123         sdma_dumpstate_helper(SD(RELOAD_CNT));
2124         sdma_dumpstate_helper(SD(DESC_CNT));
2125         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2126         sdma_dumpstate_helper(SD(MEMORY));
2127         sdma_dumpstate_helper0(SD(ENGINES));
2128         sdma_dumpstate_helper0(SD(MEM_SIZE));
2129         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2130         sdma_dumpstate_helper(SD(BASE_ADDR));
2131         sdma_dumpstate_helper(SD(LEN_GEN));
2132         sdma_dumpstate_helper(SD(HEAD_ADDR));
2133         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2134         sdma_dumpstate_helper(SD(CHECK_VL));
2135         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2136         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2137         sdma_dumpstate_helper(SD(CHECK_SLID));
2138         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2139 }
2140 #endif
2141
2142 static void dump_sdma_state(struct sdma_engine *sde)
2143 {
2144         struct hw_sdma_desc *descqp;
2145         u64 desc[2];
2146         u64 addr;
2147         u8 gen;
2148         u16 len;
2149         u16 head, tail, cnt;
2150
2151         head = sde->descq_head & sde->sdma_mask;
2152         tail = sde->descq_tail & sde->sdma_mask;
2153         cnt = sdma_descq_freecnt(sde);
2154
2155         dd_dev_err(sde->dd,
2156                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2157                    sde->this_idx, head, tail, cnt,
2158                    !list_empty(&sde->flushlist));
2159
2160         /* print info for each entry in the descriptor queue */
2161         while (head != tail) {
2162                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2163
2164                 descqp = &sde->descq[head];
2165                 desc[0] = le64_to_cpu(descqp->qw[0]);
2166                 desc[1] = le64_to_cpu(descqp->qw[1]);
2167                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2168                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2169                                 'H' : '-';
2170                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2171                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2172                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2173                         & SDMA_DESC0_PHY_ADDR_MASK;
2174                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2175                         & SDMA_DESC1_GENERATION_MASK;
2176                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2177                         & SDMA_DESC0_BYTE_COUNT_MASK;
2178                 dd_dev_err(sde->dd,
2179                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2180                            head, flags, addr, gen, len);
2181                 dd_dev_err(sde->dd,
2182                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2183                            desc[0], desc[1]);
2184                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2185                         dd_dev_err(sde->dd,
2186                                    "\taidx: %u amode: %u alen: %u\n",
2187                                    (u8)((desc[1] &
2188                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2189                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2190                                    (u8)((desc[1] &
2191                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2192                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2193                                    (u8)((desc[1] &
2194                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2195                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2196                 head++;
2197                 head &= sde->sdma_mask;
2198         }
2199 }
2200
2201 #define SDE_FMT \
2202         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2203 /**
2204  * sdma_seqfile_dump_sde() - debugfs dump of sde
2205  * @s: seq file
2206  * @sde: send dma engine to dump
2207  *
2208  * This routine dumps the sde to the indicated seq file.
2209  */
2210 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2211 {
2212         u16 head, tail;
2213         struct hw_sdma_desc *descqp;
2214         u64 desc[2];
2215         u64 addr;
2216         u8 gen;
2217         u16 len;
2218
2219         head = sde->descq_head & sde->sdma_mask;
2220         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2221         seq_printf(s, SDE_FMT, sde->this_idx,
2222                    sde->cpu,
2223                    sdma_state_name(sde->state.current_state),
2224                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2225                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2226                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2227                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2228                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2229                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2230                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2231                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2232                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2233                    (unsigned long long)sde->last_status,
2234                    (unsigned long long)sde->ahg_bits,
2235                    sde->tx_tail,
2236                    sde->tx_head,
2237                    sde->descq_tail,
2238                    sde->descq_head,
2239                    !list_empty(&sde->flushlist),
2240                    sde->descq_full_count,
2241                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2242
2243         /* print info for each entry in the descriptor queue */
2244         while (head != tail) {
2245                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2246
2247                 descqp = &sde->descq[head];
2248                 desc[0] = le64_to_cpu(descqp->qw[0]);
2249                 desc[1] = le64_to_cpu(descqp->qw[1]);
2250                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2251                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2252                                 'H' : '-';
2253                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2254                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2255                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2256                         & SDMA_DESC0_PHY_ADDR_MASK;
2257                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2258                         & SDMA_DESC1_GENERATION_MASK;
2259                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2260                         & SDMA_DESC0_BYTE_COUNT_MASK;
2261                 seq_printf(s,
2262                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2263                            head, flags, addr, gen, len);
2264                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2265                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2266                                    (u8)((desc[1] &
2267                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2268                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2269                                    (u8)((desc[1] &
2270                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2271                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2272                 head = (head + 1) & sde->sdma_mask;
2273         }
2274 }
2275
2276 /*
2277  * add the generation number into
2278  * the qw1 and return
2279  */
2280 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2281 {
2282         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2283
2284         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2285         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2286                         << SDMA_DESC1_GENERATION_SHIFT;
2287         return qw1;
2288 }
2289
2290 /*
2291  * This routine submits the indicated tx
2292  *
2293  * Space has already been guaranteed and
2294  * tail side of ring is locked.
2295  *
2296  * The hardware tail update is done
2297  * in the caller and that is facilitated
2298  * by returning the new tail.
2299  *
2300  * There is special case logic for ahg
2301  * to not add the generation number for
2302  * up to 2 descriptors that follow the
2303  * first descriptor.
2304  *
2305  */
2306 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2307 {
2308         int i;
2309         u16 tail;
2310         struct sdma_desc *descp = tx->descp;
2311         u8 skip = 0, mode = ahg_mode(tx);
2312
2313         tail = sde->descq_tail & sde->sdma_mask;
2314         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2315         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2316         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2317                                    tail, &sde->descq[tail]);
2318         tail = ++sde->descq_tail & sde->sdma_mask;
2319         descp++;
2320         if (mode > SDMA_AHG_APPLY_UPDATE1)
2321                 skip = mode >> 1;
2322         for (i = 1; i < tx->num_desc; i++, descp++) {
2323                 u64 qw1;
2324
2325                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2326                 if (skip) {
2327                         /* edits don't have generation */
2328                         qw1 = descp->qw[1];
2329                         skip--;
2330                 } else {
2331                         /* replace generation with real one for non-edits */
2332                         qw1 = add_gen(sde, descp->qw[1]);
2333                 }
2334                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2335                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2336                                            tail, &sde->descq[tail]);
2337                 tail = ++sde->descq_tail & sde->sdma_mask;
2338         }
2339         tx->next_descq_idx = tail;
2340 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2341         tx->sn = sde->tail_sn++;
2342         trace_hfi1_sdma_in_sn(sde, tx->sn);
2343         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2344 #endif
2345         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2346         sde->desc_avail -= tx->num_desc;
2347         return tail;
2348 }
2349
2350 /*
2351  * Check for progress
2352  */
2353 static int sdma_check_progress(
2354         struct sdma_engine *sde,
2355         struct iowait_work *wait,
2356         struct sdma_txreq *tx,
2357         bool pkts_sent)
2358 {
2359         int ret;
2360
2361         sde->desc_avail = sdma_descq_freecnt(sde);
2362         if (tx->num_desc <= sde->desc_avail)
2363                 return -EAGAIN;
2364         /* pulse the head_lock */
2365         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2366                 unsigned seq;
2367
2368                 seq = raw_seqcount_begin(
2369                         (const seqcount_t *)&sde->head_lock.seqcount);
2370                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2371                 if (ret == -EAGAIN)
2372                         sde->desc_avail = sdma_descq_freecnt(sde);
2373         } else {
2374                 ret = -EBUSY;
2375         }
2376         return ret;
2377 }
2378
2379 /**
2380  * sdma_send_txreq() - submit a tx req to ring
2381  * @sde: sdma engine to use
2382  * @wait: SE wait structure to use when full (may be NULL)
2383  * @tx: sdma_txreq to submit
2384  * @pkts_sent: has any packet been sent yet?
2385  *
2386  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2387  * the packet will be queued to the list in wait.
2388  *
2389  * Return:
2390  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2391  * ring (wait == NULL)
2392  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2393  */
2394 int sdma_send_txreq(struct sdma_engine *sde,
2395                     struct iowait_work *wait,
2396                     struct sdma_txreq *tx,
2397                     bool pkts_sent)
2398 {
2399         int ret = 0;
2400         u16 tail;
2401         unsigned long flags;
2402
2403         /* user should have supplied entire packet */
2404         if (unlikely(tx->tlen))
2405                 return -EINVAL;
2406         tx->wait = iowait_ioww_to_iow(wait);
2407         spin_lock_irqsave(&sde->tail_lock, flags);
2408 retry:
2409         if (unlikely(!__sdma_running(sde)))
2410                 goto unlock_noconn;
2411         if (unlikely(tx->num_desc > sde->desc_avail))
2412                 goto nodesc;
2413         tail = submit_tx(sde, tx);
2414         if (wait)
2415                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2416         sdma_update_tail(sde, tail);
2417 unlock:
2418         spin_unlock_irqrestore(&sde->tail_lock, flags);
2419         return ret;
2420 unlock_noconn:
2421         if (wait)
2422                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2423         tx->next_descq_idx = 0;
2424 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2425         tx->sn = sde->tail_sn++;
2426         trace_hfi1_sdma_in_sn(sde, tx->sn);
2427 #endif
2428         spin_lock(&sde->flushlist_lock);
2429         list_add_tail(&tx->list, &sde->flushlist);
2430         spin_unlock(&sde->flushlist_lock);
2431         iowait_inc_wait_count(wait, tx->num_desc);
2432         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2433         ret = -ECOMM;
2434         goto unlock;
2435 nodesc:
2436         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2437         if (ret == -EAGAIN) {
2438                 ret = 0;
2439                 goto retry;
2440         }
2441         sde->descq_full_count++;
2442         goto unlock;
2443 }
2444
2445 /**
2446  * sdma_send_txlist() - submit a list of tx req to ring
2447  * @sde: sdma engine to use
2448  * @wait: SE wait structure to use when full (may be NULL)
2449  * @tx_list: list of sdma_txreqs to submit
2450  * @count: pointer to a u16 which, after return will contain the total number of
2451  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2452  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2453  *         which are added to SDMA engine flush list if the SDMA engine state is
2454  *         not running.
2455  *
2456  * The call submits the list into the ring.
2457  *
2458  * If the iowait structure is non-NULL and not equal to the iowait list
2459  * the unprocessed part of the list  will be appended to the list in wait.
2460  *
2461  * In all cases, the tx_list will be updated so the head of the tx_list is
2462  * the list of descriptors that have yet to be transmitted.
2463  *
2464  * The intent of this call is to provide a more efficient
2465  * way of submitting multiple packets to SDMA while holding the tail
2466  * side locking.
2467  *
2468  * Return:
2469  * 0 - Success,
2470  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2471  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2472  */
2473 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2474                      struct list_head *tx_list, u16 *count_out)
2475 {
2476         struct sdma_txreq *tx, *tx_next;
2477         int ret = 0;
2478         unsigned long flags;
2479         u16 tail = INVALID_TAIL;
2480         u32 submit_count = 0, flush_count = 0, total_count;
2481
2482         spin_lock_irqsave(&sde->tail_lock, flags);
2483 retry:
2484         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2485                 tx->wait = iowait_ioww_to_iow(wait);
2486                 if (unlikely(!__sdma_running(sde)))
2487                         goto unlock_noconn;
2488                 if (unlikely(tx->num_desc > sde->desc_avail))
2489                         goto nodesc;
2490                 if (unlikely(tx->tlen)) {
2491                         ret = -EINVAL;
2492                         goto update_tail;
2493                 }
2494                 list_del_init(&tx->list);
2495                 tail = submit_tx(sde, tx);
2496                 submit_count++;
2497                 if (tail != INVALID_TAIL &&
2498                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2499                         sdma_update_tail(sde, tail);
2500                         tail = INVALID_TAIL;
2501                 }
2502         }
2503 update_tail:
2504         total_count = submit_count + flush_count;
2505         if (wait) {
2506                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2507                 iowait_starve_clear(submit_count > 0,
2508                                     iowait_ioww_to_iow(wait));
2509         }
2510         if (tail != INVALID_TAIL)
2511                 sdma_update_tail(sde, tail);
2512         spin_unlock_irqrestore(&sde->tail_lock, flags);
2513         *count_out = total_count;
2514         return ret;
2515 unlock_noconn:
2516         spin_lock(&sde->flushlist_lock);
2517         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2518                 tx->wait = iowait_ioww_to_iow(wait);
2519                 list_del_init(&tx->list);
2520                 tx->next_descq_idx = 0;
2521 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2522                 tx->sn = sde->tail_sn++;
2523                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2524 #endif
2525                 list_add_tail(&tx->list, &sde->flushlist);
2526                 flush_count++;
2527                 iowait_inc_wait_count(wait, tx->num_desc);
2528         }
2529         spin_unlock(&sde->flushlist_lock);
2530         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2531         ret = -ECOMM;
2532         goto update_tail;
2533 nodesc:
2534         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2535         if (ret == -EAGAIN) {
2536                 ret = 0;
2537                 goto retry;
2538         }
2539         sde->descq_full_count++;
2540         goto update_tail;
2541 }
2542
2543 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2544 {
2545         unsigned long flags;
2546
2547         spin_lock_irqsave(&sde->tail_lock, flags);
2548         write_seqlock(&sde->head_lock);
2549
2550         __sdma_process_event(sde, event);
2551
2552         if (sde->state.current_state == sdma_state_s99_running)
2553                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2554
2555         write_sequnlock(&sde->head_lock);
2556         spin_unlock_irqrestore(&sde->tail_lock, flags);
2557 }
2558
2559 static void __sdma_process_event(struct sdma_engine *sde,
2560                                  enum sdma_events event)
2561 {
2562         struct sdma_state *ss = &sde->state;
2563         int need_progress = 0;
2564
2565         /* CONFIG SDMA temporary */
2566 #ifdef CONFIG_SDMA_VERBOSITY
2567         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2568                    sdma_state_names[ss->current_state],
2569                    sdma_event_names[event]);
2570 #endif
2571
2572         switch (ss->current_state) {
2573         case sdma_state_s00_hw_down:
2574                 switch (event) {
2575                 case sdma_event_e00_go_hw_down:
2576                         break;
2577                 case sdma_event_e30_go_running:
2578                         /*
2579                          * If down, but running requested (usually result
2580                          * of link up, then we need to start up.
2581                          * This can happen when hw down is requested while
2582                          * bringing the link up with traffic active on
2583                          * 7220, e.g.
2584                          */
2585                         ss->go_s99_running = 1;
2586                         /* fall through -- and start dma engine */
2587                 case sdma_event_e10_go_hw_start:
2588                         /* This reference means the state machine is started */
2589                         sdma_get(&sde->state);
2590                         sdma_set_state(sde,
2591                                        sdma_state_s10_hw_start_up_halt_wait);
2592                         break;
2593                 case sdma_event_e15_hw_halt_done:
2594                         break;
2595                 case sdma_event_e25_hw_clean_up_done:
2596                         break;
2597                 case sdma_event_e40_sw_cleaned:
2598                         sdma_sw_tear_down(sde);
2599                         break;
2600                 case sdma_event_e50_hw_cleaned:
2601                         break;
2602                 case sdma_event_e60_hw_halted:
2603                         break;
2604                 case sdma_event_e70_go_idle:
2605                         break;
2606                 case sdma_event_e80_hw_freeze:
2607                         break;
2608                 case sdma_event_e81_hw_frozen:
2609                         break;
2610                 case sdma_event_e82_hw_unfreeze:
2611                         break;
2612                 case sdma_event_e85_link_down:
2613                         break;
2614                 case sdma_event_e90_sw_halted:
2615                         break;
2616                 }
2617                 break;
2618
2619         case sdma_state_s10_hw_start_up_halt_wait:
2620                 switch (event) {
2621                 case sdma_event_e00_go_hw_down:
2622                         sdma_set_state(sde, sdma_state_s00_hw_down);
2623                         sdma_sw_tear_down(sde);
2624                         break;
2625                 case sdma_event_e10_go_hw_start:
2626                         break;
2627                 case sdma_event_e15_hw_halt_done:
2628                         sdma_set_state(sde,
2629                                        sdma_state_s15_hw_start_up_clean_wait);
2630                         sdma_start_hw_clean_up(sde);
2631                         break;
2632                 case sdma_event_e25_hw_clean_up_done:
2633                         break;
2634                 case sdma_event_e30_go_running:
2635                         ss->go_s99_running = 1;
2636                         break;
2637                 case sdma_event_e40_sw_cleaned:
2638                         break;
2639                 case sdma_event_e50_hw_cleaned:
2640                         break;
2641                 case sdma_event_e60_hw_halted:
2642                         schedule_work(&sde->err_halt_worker);
2643                         break;
2644                 case sdma_event_e70_go_idle:
2645                         ss->go_s99_running = 0;
2646                         break;
2647                 case sdma_event_e80_hw_freeze:
2648                         break;
2649                 case sdma_event_e81_hw_frozen:
2650                         break;
2651                 case sdma_event_e82_hw_unfreeze:
2652                         break;
2653                 case sdma_event_e85_link_down:
2654                         break;
2655                 case sdma_event_e90_sw_halted:
2656                         break;
2657                 }
2658                 break;
2659
2660         case sdma_state_s15_hw_start_up_clean_wait:
2661                 switch (event) {
2662                 case sdma_event_e00_go_hw_down:
2663                         sdma_set_state(sde, sdma_state_s00_hw_down);
2664                         sdma_sw_tear_down(sde);
2665                         break;
2666                 case sdma_event_e10_go_hw_start:
2667                         break;
2668                 case sdma_event_e15_hw_halt_done:
2669                         break;
2670                 case sdma_event_e25_hw_clean_up_done:
2671                         sdma_hw_start_up(sde);
2672                         sdma_set_state(sde, ss->go_s99_running ?
2673                                        sdma_state_s99_running :
2674                                        sdma_state_s20_idle);
2675                         break;
2676                 case sdma_event_e30_go_running:
2677                         ss->go_s99_running = 1;
2678                         break;
2679                 case sdma_event_e40_sw_cleaned:
2680                         break;
2681                 case sdma_event_e50_hw_cleaned:
2682                         break;
2683                 case sdma_event_e60_hw_halted:
2684                         break;
2685                 case sdma_event_e70_go_idle:
2686                         ss->go_s99_running = 0;
2687                         break;
2688                 case sdma_event_e80_hw_freeze:
2689                         break;
2690                 case sdma_event_e81_hw_frozen:
2691                         break;
2692                 case sdma_event_e82_hw_unfreeze:
2693                         break;
2694                 case sdma_event_e85_link_down:
2695                         break;
2696                 case sdma_event_e90_sw_halted:
2697                         break;
2698                 }
2699                 break;
2700
2701         case sdma_state_s20_idle:
2702                 switch (event) {
2703                 case sdma_event_e00_go_hw_down:
2704                         sdma_set_state(sde, sdma_state_s00_hw_down);
2705                         sdma_sw_tear_down(sde);
2706                         break;
2707                 case sdma_event_e10_go_hw_start:
2708                         break;
2709                 case sdma_event_e15_hw_halt_done:
2710                         break;
2711                 case sdma_event_e25_hw_clean_up_done:
2712                         break;
2713                 case sdma_event_e30_go_running:
2714                         sdma_set_state(sde, sdma_state_s99_running);
2715                         ss->go_s99_running = 1;
2716                         break;
2717                 case sdma_event_e40_sw_cleaned:
2718                         break;
2719                 case sdma_event_e50_hw_cleaned:
2720                         break;
2721                 case sdma_event_e60_hw_halted:
2722                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2723                         schedule_work(&sde->err_halt_worker);
2724                         break;
2725                 case sdma_event_e70_go_idle:
2726                         break;
2727                 case sdma_event_e85_link_down:
2728                         /* fall through */
2729                 case sdma_event_e80_hw_freeze:
2730                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2731                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2732                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2733                         break;
2734                 case sdma_event_e81_hw_frozen:
2735                         break;
2736                 case sdma_event_e82_hw_unfreeze:
2737                         break;
2738                 case sdma_event_e90_sw_halted:
2739                         break;
2740                 }
2741                 break;
2742
2743         case sdma_state_s30_sw_clean_up_wait:
2744                 switch (event) {
2745                 case sdma_event_e00_go_hw_down:
2746                         sdma_set_state(sde, sdma_state_s00_hw_down);
2747                         break;
2748                 case sdma_event_e10_go_hw_start:
2749                         break;
2750                 case sdma_event_e15_hw_halt_done:
2751                         break;
2752                 case sdma_event_e25_hw_clean_up_done:
2753                         break;
2754                 case sdma_event_e30_go_running:
2755                         ss->go_s99_running = 1;
2756                         break;
2757                 case sdma_event_e40_sw_cleaned:
2758                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2759                         sdma_start_hw_clean_up(sde);
2760                         break;
2761                 case sdma_event_e50_hw_cleaned:
2762                         break;
2763                 case sdma_event_e60_hw_halted:
2764                         break;
2765                 case sdma_event_e70_go_idle:
2766                         ss->go_s99_running = 0;
2767                         break;
2768                 case sdma_event_e80_hw_freeze:
2769                         break;
2770                 case sdma_event_e81_hw_frozen:
2771                         break;
2772                 case sdma_event_e82_hw_unfreeze:
2773                         break;
2774                 case sdma_event_e85_link_down:
2775                         ss->go_s99_running = 0;
2776                         break;
2777                 case sdma_event_e90_sw_halted:
2778                         break;
2779                 }
2780                 break;
2781
2782         case sdma_state_s40_hw_clean_up_wait:
2783                 switch (event) {
2784                 case sdma_event_e00_go_hw_down:
2785                         sdma_set_state(sde, sdma_state_s00_hw_down);
2786                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2787                         break;
2788                 case sdma_event_e10_go_hw_start:
2789                         break;
2790                 case sdma_event_e15_hw_halt_done:
2791                         break;
2792                 case sdma_event_e25_hw_clean_up_done:
2793                         sdma_hw_start_up(sde);
2794                         sdma_set_state(sde, ss->go_s99_running ?
2795                                        sdma_state_s99_running :
2796                                        sdma_state_s20_idle);
2797                         break;
2798                 case sdma_event_e30_go_running:
2799                         ss->go_s99_running = 1;
2800                         break;
2801                 case sdma_event_e40_sw_cleaned:
2802                         break;
2803                 case sdma_event_e50_hw_cleaned:
2804                         break;
2805                 case sdma_event_e60_hw_halted:
2806                         break;
2807                 case sdma_event_e70_go_idle:
2808                         ss->go_s99_running = 0;
2809                         break;
2810                 case sdma_event_e80_hw_freeze:
2811                         break;
2812                 case sdma_event_e81_hw_frozen:
2813                         break;
2814                 case sdma_event_e82_hw_unfreeze:
2815                         break;
2816                 case sdma_event_e85_link_down:
2817                         ss->go_s99_running = 0;
2818                         break;
2819                 case sdma_event_e90_sw_halted:
2820                         break;
2821                 }
2822                 break;
2823
2824         case sdma_state_s50_hw_halt_wait:
2825                 switch (event) {
2826                 case sdma_event_e00_go_hw_down:
2827                         sdma_set_state(sde, sdma_state_s00_hw_down);
2828                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2829                         break;
2830                 case sdma_event_e10_go_hw_start:
2831                         break;
2832                 case sdma_event_e15_hw_halt_done:
2833                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2834                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2835                         break;
2836                 case sdma_event_e25_hw_clean_up_done:
2837                         break;
2838                 case sdma_event_e30_go_running:
2839                         ss->go_s99_running = 1;
2840                         break;
2841                 case sdma_event_e40_sw_cleaned:
2842                         break;
2843                 case sdma_event_e50_hw_cleaned:
2844                         break;
2845                 case sdma_event_e60_hw_halted:
2846                         schedule_work(&sde->err_halt_worker);
2847                         break;
2848                 case sdma_event_e70_go_idle:
2849                         ss->go_s99_running = 0;
2850                         break;
2851                 case sdma_event_e80_hw_freeze:
2852                         break;
2853                 case sdma_event_e81_hw_frozen:
2854                         break;
2855                 case sdma_event_e82_hw_unfreeze:
2856                         break;
2857                 case sdma_event_e85_link_down:
2858                         ss->go_s99_running = 0;
2859                         break;
2860                 case sdma_event_e90_sw_halted:
2861                         break;
2862                 }
2863                 break;
2864
2865         case sdma_state_s60_idle_halt_wait:
2866                 switch (event) {
2867                 case sdma_event_e00_go_hw_down:
2868                         sdma_set_state(sde, sdma_state_s00_hw_down);
2869                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2870                         break;
2871                 case sdma_event_e10_go_hw_start:
2872                         break;
2873                 case sdma_event_e15_hw_halt_done:
2874                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2875                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2876                         break;
2877                 case sdma_event_e25_hw_clean_up_done:
2878                         break;
2879                 case sdma_event_e30_go_running:
2880                         ss->go_s99_running = 1;
2881                         break;
2882                 case sdma_event_e40_sw_cleaned:
2883                         break;
2884                 case sdma_event_e50_hw_cleaned:
2885                         break;
2886                 case sdma_event_e60_hw_halted:
2887                         schedule_work(&sde->err_halt_worker);
2888                         break;
2889                 case sdma_event_e70_go_idle:
2890                         ss->go_s99_running = 0;
2891                         break;
2892                 case sdma_event_e80_hw_freeze:
2893                         break;
2894                 case sdma_event_e81_hw_frozen:
2895                         break;
2896                 case sdma_event_e82_hw_unfreeze:
2897                         break;
2898                 case sdma_event_e85_link_down:
2899                         break;
2900                 case sdma_event_e90_sw_halted:
2901                         break;
2902                 }
2903                 break;
2904
2905         case sdma_state_s80_hw_freeze:
2906                 switch (event) {
2907                 case sdma_event_e00_go_hw_down:
2908                         sdma_set_state(sde, sdma_state_s00_hw_down);
2909                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2910                         break;
2911                 case sdma_event_e10_go_hw_start:
2912                         break;
2913                 case sdma_event_e15_hw_halt_done:
2914                         break;
2915                 case sdma_event_e25_hw_clean_up_done:
2916                         break;
2917                 case sdma_event_e30_go_running:
2918                         ss->go_s99_running = 1;
2919                         break;
2920                 case sdma_event_e40_sw_cleaned:
2921                         break;
2922                 case sdma_event_e50_hw_cleaned:
2923                         break;
2924                 case sdma_event_e60_hw_halted:
2925                         break;
2926                 case sdma_event_e70_go_idle:
2927                         ss->go_s99_running = 0;
2928                         break;
2929                 case sdma_event_e80_hw_freeze:
2930                         break;
2931                 case sdma_event_e81_hw_frozen:
2932                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2933                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2934                         break;
2935                 case sdma_event_e82_hw_unfreeze:
2936                         break;
2937                 case sdma_event_e85_link_down:
2938                         break;
2939                 case sdma_event_e90_sw_halted:
2940                         break;
2941                 }
2942                 break;
2943
2944         case sdma_state_s82_freeze_sw_clean:
2945                 switch (event) {
2946                 case sdma_event_e00_go_hw_down:
2947                         sdma_set_state(sde, sdma_state_s00_hw_down);
2948                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2949                         break;
2950                 case sdma_event_e10_go_hw_start:
2951                         break;
2952                 case sdma_event_e15_hw_halt_done:
2953                         break;
2954                 case sdma_event_e25_hw_clean_up_done:
2955                         break;
2956                 case sdma_event_e30_go_running:
2957                         ss->go_s99_running = 1;
2958                         break;
2959                 case sdma_event_e40_sw_cleaned:
2960                         /* notify caller this engine is done cleaning */
2961                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2962                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2963                         break;
2964                 case sdma_event_e50_hw_cleaned:
2965                         break;
2966                 case sdma_event_e60_hw_halted:
2967                         break;
2968                 case sdma_event_e70_go_idle:
2969                         ss->go_s99_running = 0;
2970                         break;
2971                 case sdma_event_e80_hw_freeze:
2972                         break;
2973                 case sdma_event_e81_hw_frozen:
2974                         break;
2975                 case sdma_event_e82_hw_unfreeze:
2976                         sdma_hw_start_up(sde);
2977                         sdma_set_state(sde, ss->go_s99_running ?
2978                                        sdma_state_s99_running :
2979                                        sdma_state_s20_idle);
2980                         break;
2981                 case sdma_event_e85_link_down:
2982                         break;
2983                 case sdma_event_e90_sw_halted:
2984                         break;
2985                 }
2986                 break;
2987
2988         case sdma_state_s99_running:
2989                 switch (event) {
2990                 case sdma_event_e00_go_hw_down:
2991                         sdma_set_state(sde, sdma_state_s00_hw_down);
2992                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2993                         break;
2994                 case sdma_event_e10_go_hw_start:
2995                         break;
2996                 case sdma_event_e15_hw_halt_done:
2997                         break;
2998                 case sdma_event_e25_hw_clean_up_done:
2999                         break;
3000                 case sdma_event_e30_go_running:
3001                         break;
3002                 case sdma_event_e40_sw_cleaned:
3003                         break;
3004                 case sdma_event_e50_hw_cleaned:
3005                         break;
3006                 case sdma_event_e60_hw_halted:
3007                         need_progress = 1;
3008                         sdma_err_progress_check_schedule(sde);
3009                         /* fall through */
3010                 case sdma_event_e90_sw_halted:
3011                         /*
3012                         * SW initiated halt does not perform engines
3013                         * progress check
3014                         */
3015                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3016                         schedule_work(&sde->err_halt_worker);
3017                         break;
3018                 case sdma_event_e70_go_idle:
3019                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3020                         break;
3021                 case sdma_event_e85_link_down:
3022                         ss->go_s99_running = 0;
3023                         /* fall through */
3024                 case sdma_event_e80_hw_freeze:
3025                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3026                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3027                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3028                         break;
3029                 case sdma_event_e81_hw_frozen:
3030                         break;
3031                 case sdma_event_e82_hw_unfreeze:
3032                         break;
3033                 }
3034                 break;
3035         }
3036
3037         ss->last_event = event;
3038         if (need_progress)
3039                 sdma_make_progress(sde, 0);
3040 }
3041
3042 /*
3043  * _extend_sdma_tx_descs() - helper to extend txreq
3044  *
3045  * This is called once the initial nominal allocation
3046  * of descriptors in the sdma_txreq is exhausted.
3047  *
3048  * The code will bump the allocation up to the max
3049  * of MAX_DESC (64) descriptors. There doesn't seem
3050  * much point in an interim step. The last descriptor
3051  * is reserved for coalesce buffer in order to support
3052  * cases where input packet has >MAX_DESC iovecs.
3053  *
3054  */
3055 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3056 {
3057         int i;
3058
3059         /* Handle last descriptor */
3060         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3061                 /* if tlen is 0, it is for padding, release last descriptor */
3062                 if (!tx->tlen) {
3063                         tx->desc_limit = MAX_DESC;
3064                 } else if (!tx->coalesce_buf) {
3065                         /* allocate coalesce buffer with space for padding */
3066                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3067                                                    GFP_ATOMIC);
3068                         if (!tx->coalesce_buf)
3069                                 goto enomem;
3070                         tx->coalesce_idx = 0;
3071                 }
3072                 return 0;
3073         }
3074
3075         if (unlikely(tx->num_desc == MAX_DESC))
3076                 goto enomem;
3077
3078         tx->descp = kmalloc_array(
3079                         MAX_DESC,
3080                         sizeof(struct sdma_desc),
3081                         GFP_ATOMIC);
3082         if (!tx->descp)
3083                 goto enomem;
3084
3085         /* reserve last descriptor for coalescing */
3086         tx->desc_limit = MAX_DESC - 1;
3087         /* copy ones already built */
3088         for (i = 0; i < tx->num_desc; i++)
3089                 tx->descp[i] = tx->descs[i];
3090         return 0;
3091 enomem:
3092         __sdma_txclean(dd, tx);
3093         return -ENOMEM;
3094 }
3095
3096 /*
3097  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3098  *
3099  * This is called once the initial nominal allocation of descriptors
3100  * in the sdma_txreq is exhausted.
3101  *
3102  * This function calls _extend_sdma_tx_descs to extend or allocate
3103  * coalesce buffer. If there is a allocated coalesce buffer, it will
3104  * copy the input packet data into the coalesce buffer. It also adds
3105  * coalesce buffer descriptor once when whole packet is received.
3106  *
3107  * Return:
3108  * <0 - error
3109  * 0 - coalescing, don't populate descriptor
3110  * 1 - continue with populating descriptor
3111  */
3112 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3113                            int type, void *kvaddr, struct page *page,
3114                            unsigned long offset, u16 len)
3115 {
3116         int pad_len, rval;
3117         dma_addr_t addr;
3118
3119         rval = _extend_sdma_tx_descs(dd, tx);
3120         if (rval) {
3121                 __sdma_txclean(dd, tx);
3122                 return rval;
3123         }
3124
3125         /* If coalesce buffer is allocated, copy data into it */
3126         if (tx->coalesce_buf) {
3127                 if (type == SDMA_MAP_NONE) {
3128                         __sdma_txclean(dd, tx);
3129                         return -EINVAL;
3130                 }
3131
3132                 if (type == SDMA_MAP_PAGE) {
3133                         kvaddr = kmap(page);
3134                         kvaddr += offset;
3135                 } else if (WARN_ON(!kvaddr)) {
3136                         __sdma_txclean(dd, tx);
3137                         return -EINVAL;
3138                 }
3139
3140                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3141                 tx->coalesce_idx += len;
3142                 if (type == SDMA_MAP_PAGE)
3143                         kunmap(page);
3144
3145                 /* If there is more data, return */
3146                 if (tx->tlen - tx->coalesce_idx)
3147                         return 0;
3148
3149                 /* Whole packet is received; add any padding */
3150                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3151                 if (pad_len) {
3152                         pad_len = sizeof(u32) - pad_len;
3153                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3154                         /* padding is taken care of for coalescing case */
3155                         tx->packet_len += pad_len;
3156                         tx->tlen += pad_len;
3157                 }
3158
3159                 /* dma map the coalesce buffer */
3160                 addr = dma_map_single(&dd->pcidev->dev,
3161                                       tx->coalesce_buf,
3162                                       tx->tlen,
3163                                       DMA_TO_DEVICE);
3164
3165                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3166                         __sdma_txclean(dd, tx);
3167                         return -ENOSPC;
3168                 }
3169
3170                 /* Add descriptor for coalesce buffer */
3171                 tx->desc_limit = MAX_DESC;
3172                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3173                                          addr, tx->tlen);
3174         }
3175
3176         return 1;
3177 }
3178
3179 /* Update sdes when the lmc changes */
3180 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3181 {
3182         struct sdma_engine *sde;
3183         int i;
3184         u64 sreg;
3185
3186         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3187                 SD(CHECK_SLID_MASK_SHIFT)) |
3188                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3189                 SD(CHECK_SLID_VALUE_SHIFT));
3190
3191         for (i = 0; i < dd->num_sdma; i++) {
3192                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3193                           i, (u32)sreg);
3194                 sde = &dd->per_sdma[i];
3195                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3196         }
3197 }
3198
3199 /* tx not dword sized - pad */
3200 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3201 {
3202         int rval = 0;
3203
3204         tx->num_desc++;
3205         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3206                 rval = _extend_sdma_tx_descs(dd, tx);
3207                 if (rval) {
3208                         __sdma_txclean(dd, tx);
3209                         return rval;
3210                 }
3211         }
3212         /* finish the one just added */
3213         make_tx_sdma_desc(
3214                 tx,
3215                 SDMA_MAP_NONE,
3216                 dd->sdma_pad_phys,
3217                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3218         _sdma_close_tx(dd, tx);
3219         return rval;
3220 }
3221
3222 /*
3223  * Add ahg to the sdma_txreq
3224  *
3225  * The logic will consume up to 3
3226  * descriptors at the beginning of
3227  * sdma_txreq.
3228  */
3229 void _sdma_txreq_ahgadd(
3230         struct sdma_txreq *tx,
3231         u8 num_ahg,
3232         u8 ahg_entry,
3233         u32 *ahg,
3234         u8 ahg_hlen)
3235 {
3236         u32 i, shift = 0, desc = 0;
3237         u8 mode;
3238
3239         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3240         /* compute mode */
3241         if (num_ahg == 1)
3242                 mode = SDMA_AHG_APPLY_UPDATE1;
3243         else if (num_ahg <= 5)
3244                 mode = SDMA_AHG_APPLY_UPDATE2;
3245         else
3246                 mode = SDMA_AHG_APPLY_UPDATE3;
3247         tx->num_desc++;
3248         /* initialize to consumed descriptors to zero */
3249         switch (mode) {
3250         case SDMA_AHG_APPLY_UPDATE3:
3251                 tx->num_desc++;
3252                 tx->descs[2].qw[0] = 0;
3253                 tx->descs[2].qw[1] = 0;
3254                 /* FALLTHROUGH */
3255         case SDMA_AHG_APPLY_UPDATE2:
3256                 tx->num_desc++;
3257                 tx->descs[1].qw[0] = 0;
3258                 tx->descs[1].qw[1] = 0;
3259                 break;
3260         }
3261         ahg_hlen >>= 2;
3262         tx->descs[0].qw[1] |=
3263                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3264                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3265                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3266                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3267                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3268                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3269                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3270                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3271         for (i = 0; i < (num_ahg - 1); i++) {
3272                 if (!shift && !(i & 2))
3273                         desc++;
3274                 tx->descs[desc].qw[!!(i & 2)] |=
3275                         (((u64)ahg[i + 1])
3276                                 << shift);
3277                 shift = (shift + 32) & 63;
3278         }
3279 }
3280
3281 /**
3282  * sdma_ahg_alloc - allocate an AHG entry
3283  * @sde: engine to allocate from
3284  *
3285  * Return:
3286  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3287  * -ENOSPC if an entry is not available
3288  */
3289 int sdma_ahg_alloc(struct sdma_engine *sde)
3290 {
3291         int nr;
3292         int oldbit;
3293
3294         if (!sde) {
3295                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3296                 return -EINVAL;
3297         }
3298         while (1) {
3299                 nr = ffz(READ_ONCE(sde->ahg_bits));
3300                 if (nr > 31) {
3301                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3302                         return -ENOSPC;
3303                 }
3304                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3305                 if (!oldbit)
3306                         break;
3307                 cpu_relax();
3308         }
3309         trace_hfi1_ahg_allocate(sde, nr);
3310         return nr;
3311 }
3312
3313 /**
3314  * sdma_ahg_free - free an AHG entry
3315  * @sde: engine to return AHG entry
3316  * @ahg_index: index to free
3317  *
3318  * This routine frees the indicate AHG entry.
3319  */
3320 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3321 {
3322         if (!sde)
3323                 return;
3324         trace_hfi1_ahg_deallocate(sde, ahg_index);
3325         if (ahg_index < 0 || ahg_index > 31)
3326                 return;
3327         clear_bit(ahg_index, &sde->ahg_bits);
3328 }
3329
3330 /*
3331  * SPC freeze handling for SDMA engines.  Called when the driver knows
3332  * the SPC is going into a freeze but before the freeze is fully
3333  * settled.  Generally an error interrupt.
3334  *
3335  * This event will pull the engine out of running so no more entries can be
3336  * added to the engine's queue.
3337  */
3338 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3339 {
3340         int i;
3341         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3342                                              sdma_event_e80_hw_freeze;
3343
3344         /* set up the wait but do not wait here */
3345         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3346
3347         /* tell all engines to stop running and wait */
3348         for (i = 0; i < dd->num_sdma; i++)
3349                 sdma_process_event(&dd->per_sdma[i], event);
3350
3351         /* sdma_freeze() will wait for all engines to have stopped */
3352 }
3353
3354 /*
3355  * SPC freeze handling for SDMA engines.  Called when the driver knows
3356  * the SPC is fully frozen.
3357  */
3358 void sdma_freeze(struct hfi1_devdata *dd)
3359 {
3360         int i;
3361         int ret;
3362
3363         /*
3364          * Make sure all engines have moved out of the running state before
3365          * continuing.
3366          */
3367         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3368                                        atomic_read(&dd->sdma_unfreeze_count) <=
3369                                        0);
3370         /* interrupted or count is negative, then unloading - just exit */
3371         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3372                 return;
3373
3374         /* set up the count for the next wait */
3375         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3376
3377         /* tell all engines that the SPC is frozen, they can start cleaning */
3378         for (i = 0; i < dd->num_sdma; i++)
3379                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3380
3381         /*
3382          * Wait for everyone to finish software clean before exiting.  The
3383          * software clean will read engine CSRs, so must be completed before
3384          * the next step, which will clear the engine CSRs.
3385          */
3386         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3387                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3388         /* no need to check results - done no matter what */
3389 }
3390
3391 /*
3392  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3393  *
3394  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3395  * that is left is a software clean.  We could do it after the SPC is fully
3396  * frozen, but then we'd have to add another state to wait for the unfreeze.
3397  * Instead, just defer the software clean until the unfreeze step.
3398  */
3399 void sdma_unfreeze(struct hfi1_devdata *dd)
3400 {
3401         int i;
3402
3403         /* tell all engines start freeze clean up */
3404         for (i = 0; i < dd->num_sdma; i++)
3405                 sdma_process_event(&dd->per_sdma[i],
3406                                    sdma_event_e82_hw_unfreeze);
3407 }
3408
3409 /**
3410  * _sdma_engine_progress_schedule() - schedule progress on engine
3411  * @sde: sdma_engine to schedule progress
3412  *
3413  */
3414 void _sdma_engine_progress_schedule(
3415         struct sdma_engine *sde)
3416 {
3417         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3418         /* assume we have selected a good cpu */
3419         write_csr(sde->dd,
3420                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3421                   sde->progress_mask);
3422 }