Merge tag 'drm-fixes-5.3-2019-07-24' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408         uint seq;
409
410         /* flush from head to tail */
411         sdma_flush_descq(sde);
412         spin_lock_irqsave(&sde->flushlist_lock, flags);
413         /* copy flush list */
414         list_splice_init(&sde->flushlist, &flushlist);
415         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
416         /* flush from flush list */
417         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
418                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
419         /* wakeup QPs orphaned on the dmawait list */
420         do {
421                 struct iowait *w, *nw;
422
423                 seq = read_seqbegin(&sde->waitlock);
424                 if (!list_empty(&sde->dmawait)) {
425                         write_seqlock(&sde->waitlock);
426                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
427                                 if (w->wakeup) {
428                                         w->wakeup(w, SDMA_AVAIL_REASON);
429                                         list_del_init(&w->list);
430                                 }
431                         }
432                         write_sequnlock(&sde->waitlock);
433                 }
434         } while (read_seqretry(&sde->waitlock, seq));
435 }
436
437 /*
438  * Fields a work request for flushing the descq ring
439  * and the flush list
440  *
441  * If the engine has been brought to running during
442  * the scheduling delay, the flush is ignored, assuming
443  * that the process of bringing the engine to running
444  * would have done this flush prior to going to running.
445  *
446  */
447 static void sdma_field_flush(struct work_struct *work)
448 {
449         unsigned long flags;
450         struct sdma_engine *sde =
451                 container_of(work, struct sdma_engine, flush_worker);
452
453         write_seqlock_irqsave(&sde->head_lock, flags);
454         if (!__sdma_running(sde))
455                 sdma_flush(sde);
456         write_sequnlock_irqrestore(&sde->head_lock, flags);
457 }
458
459 static void sdma_err_halt_wait(struct work_struct *work)
460 {
461         struct sdma_engine *sde = container_of(work, struct sdma_engine,
462                                                 err_halt_worker);
463         u64 statuscsr;
464         unsigned long timeout;
465
466         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
467         while (1) {
468                 statuscsr = read_sde_csr(sde, SD(STATUS));
469                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
470                 if (statuscsr)
471                         break;
472                 if (time_after(jiffies, timeout)) {
473                         dd_dev_err(sde->dd,
474                                    "SDMA engine %d - timeout waiting for engine to halt\n",
475                                    sde->this_idx);
476                         /*
477                          * Continue anyway.  This could happen if there was
478                          * an uncorrectable error in the wrong spot.
479                          */
480                         break;
481                 }
482                 usleep_range(80, 120);
483         }
484
485         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
486 }
487
488 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
489 {
490         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
491                 unsigned index;
492                 struct hfi1_devdata *dd = sde->dd;
493
494                 for (index = 0; index < dd->num_sdma; index++) {
495                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
496
497                         if (curr_sdma != sde)
498                                 curr_sdma->progress_check_head =
499                                                         curr_sdma->descq_head;
500                 }
501                 dd_dev_err(sde->dd,
502                            "SDMA engine %d - check scheduled\n",
503                                 sde->this_idx);
504                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
505         }
506 }
507
508 static void sdma_err_progress_check(struct timer_list *t)
509 {
510         unsigned index;
511         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
512
513         dd_dev_err(sde->dd, "SDE progress check event\n");
514         for (index = 0; index < sde->dd->num_sdma; index++) {
515                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
516                 unsigned long flags;
517
518                 /* check progress on each engine except the current one */
519                 if (curr_sde == sde)
520                         continue;
521                 /*
522                  * We must lock interrupts when acquiring sde->lock,
523                  * to avoid a deadlock if interrupt triggers and spins on
524                  * the same lock on same CPU
525                  */
526                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
527                 write_seqlock(&curr_sde->head_lock);
528
529                 /* skip non-running queues */
530                 if (curr_sde->state.current_state != sdma_state_s99_running) {
531                         write_sequnlock(&curr_sde->head_lock);
532                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
533                         continue;
534                 }
535
536                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
537                     (curr_sde->descq_head ==
538                                 curr_sde->progress_check_head))
539                         __sdma_process_event(curr_sde,
540                                              sdma_event_e90_sw_halted);
541                 write_sequnlock(&curr_sde->head_lock);
542                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
543         }
544         schedule_work(&sde->err_halt_worker);
545 }
546
547 static void sdma_hw_clean_up_task(unsigned long opaque)
548 {
549         struct sdma_engine *sde = (struct sdma_engine *)opaque;
550         u64 statuscsr;
551
552         while (1) {
553 #ifdef CONFIG_SDMA_VERBOSITY
554                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
555                            sde->this_idx, slashstrip(__FILE__), __LINE__,
556                         __func__);
557 #endif
558                 statuscsr = read_sde_csr(sde, SD(STATUS));
559                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
560                 if (statuscsr)
561                         break;
562                 udelay(10);
563         }
564
565         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
566 }
567
568 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
569 {
570         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
571 }
572
573 /*
574  * flush ring for recovery
575  */
576 static void sdma_flush_descq(struct sdma_engine *sde)
577 {
578         u16 head, tail;
579         int progress = 0;
580         struct sdma_txreq *txp = get_txhead(sde);
581
582         /* The reason for some of the complexity of this code is that
583          * not all descriptors have corresponding txps.  So, we have to
584          * be able to skip over descs until we wander into the range of
585          * the next txp on the list.
586          */
587         head = sde->descq_head & sde->sdma_mask;
588         tail = sde->descq_tail & sde->sdma_mask;
589         while (head != tail) {
590                 /* advance head, wrap if needed */
591                 head = ++sde->descq_head & sde->sdma_mask;
592                 /* if now past this txp's descs, do the callback */
593                 if (txp && txp->next_descq_idx == head) {
594                         /* remove from list */
595                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
596                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
597                         trace_hfi1_sdma_progress(sde, head, tail, txp);
598                         txp = get_txhead(sde);
599                 }
600                 progress++;
601         }
602         if (progress)
603                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
604 }
605
606 static void sdma_sw_clean_up_task(unsigned long opaque)
607 {
608         struct sdma_engine *sde = (struct sdma_engine *)opaque;
609         unsigned long flags;
610
611         spin_lock_irqsave(&sde->tail_lock, flags);
612         write_seqlock(&sde->head_lock);
613
614         /*
615          * At this point, the following should always be true:
616          * - We are halted, so no more descriptors are getting retired.
617          * - We are not running, so no one is submitting new work.
618          * - Only we can send the e40_sw_cleaned, so we can't start
619          *   running again until we say so.  So, the active list and
620          *   descq are ours to play with.
621          */
622
623         /*
624          * In the error clean up sequence, software clean must be called
625          * before the hardware clean so we can use the hardware head in
626          * the progress routine.  A hardware clean or SPC unfreeze will
627          * reset the hardware head.
628          *
629          * Process all retired requests. The progress routine will use the
630          * latest physical hardware head - we are not running so speed does
631          * not matter.
632          */
633         sdma_make_progress(sde, 0);
634
635         sdma_flush(sde);
636
637         /*
638          * Reset our notion of head and tail.
639          * Note that the HW registers have been reset via an earlier
640          * clean up.
641          */
642         sde->descq_tail = 0;
643         sde->descq_head = 0;
644         sde->desc_avail = sdma_descq_freecnt(sde);
645         *sde->head_dma = 0;
646
647         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
648
649         write_sequnlock(&sde->head_lock);
650         spin_unlock_irqrestore(&sde->tail_lock, flags);
651 }
652
653 static void sdma_sw_tear_down(struct sdma_engine *sde)
654 {
655         struct sdma_state *ss = &sde->state;
656
657         /* Releasing this reference means the state machine has stopped. */
658         sdma_put(ss);
659
660         /* stop waiting for all unfreeze events to complete */
661         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
662         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
663 }
664
665 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
666 {
667         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
668 }
669
670 static void sdma_set_state(struct sdma_engine *sde,
671                            enum sdma_states next_state)
672 {
673         struct sdma_state *ss = &sde->state;
674         const struct sdma_set_state_action *action = sdma_action_table;
675         unsigned op = 0;
676
677         trace_hfi1_sdma_state(
678                 sde,
679                 sdma_state_names[ss->current_state],
680                 sdma_state_names[next_state]);
681
682         /* debugging bookkeeping */
683         ss->previous_state = ss->current_state;
684         ss->previous_op = ss->current_op;
685         ss->current_state = next_state;
686
687         if (ss->previous_state != sdma_state_s99_running &&
688             next_state == sdma_state_s99_running)
689                 sdma_flush(sde);
690
691         if (action[next_state].op_enable)
692                 op |= SDMA_SENDCTRL_OP_ENABLE;
693
694         if (action[next_state].op_intenable)
695                 op |= SDMA_SENDCTRL_OP_INTENABLE;
696
697         if (action[next_state].op_halt)
698                 op |= SDMA_SENDCTRL_OP_HALT;
699
700         if (action[next_state].op_cleanup)
701                 op |= SDMA_SENDCTRL_OP_CLEANUP;
702
703         if (action[next_state].go_s99_running_tofalse)
704                 ss->go_s99_running = 0;
705
706         if (action[next_state].go_s99_running_totrue)
707                 ss->go_s99_running = 1;
708
709         ss->current_op = op;
710         sdma_sendctrl(sde, ss->current_op);
711 }
712
713 /**
714  * sdma_get_descq_cnt() - called when device probed
715  *
716  * Return a validated descq count.
717  *
718  * This is currently only used in the verbs initialization to build the tx
719  * list.
720  *
721  * This will probably be deleted in favor of a more scalable approach to
722  * alloc tx's.
723  *
724  */
725 u16 sdma_get_descq_cnt(void)
726 {
727         u16 count = sdma_descq_cnt;
728
729         if (!count)
730                 return SDMA_DESCQ_CNT;
731         /* count must be a power of 2 greater than 64 and less than
732          * 32768.   Otherwise return default.
733          */
734         if (!is_power_of_2(count))
735                 return SDMA_DESCQ_CNT;
736         if (count < 64 || count > 32768)
737                 return SDMA_DESCQ_CNT;
738         return count;
739 }
740
741 /**
742  * sdma_engine_get_vl() - return vl for a given sdma engine
743  * @sde: sdma engine
744  *
745  * This function returns the vl mapped to a given engine, or an error if
746  * the mapping can't be found. The mapping fields are protected by RCU.
747  */
748 int sdma_engine_get_vl(struct sdma_engine *sde)
749 {
750         struct hfi1_devdata *dd = sde->dd;
751         struct sdma_vl_map *m;
752         u8 vl;
753
754         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
755                 return -EINVAL;
756
757         rcu_read_lock();
758         m = rcu_dereference(dd->sdma_map);
759         if (unlikely(!m)) {
760                 rcu_read_unlock();
761                 return -EINVAL;
762         }
763         vl = m->engine_to_vl[sde->this_idx];
764         rcu_read_unlock();
765
766         return vl;
767 }
768
769 /**
770  * sdma_select_engine_vl() - select sdma engine
771  * @dd: devdata
772  * @selector: a spreading factor
773  * @vl: this vl
774  *
775  *
776  * This function returns an engine based on the selector and a vl.  The
777  * mapping fields are protected by RCU.
778  */
779 struct sdma_engine *sdma_select_engine_vl(
780         struct hfi1_devdata *dd,
781         u32 selector,
782         u8 vl)
783 {
784         struct sdma_vl_map *m;
785         struct sdma_map_elem *e;
786         struct sdma_engine *rval;
787
788         /* NOTE This should only happen if SC->VL changed after the initial
789          *      checks on the QP/AH
790          *      Default will return engine 0 below
791          */
792         if (vl >= num_vls) {
793                 rval = NULL;
794                 goto done;
795         }
796
797         rcu_read_lock();
798         m = rcu_dereference(dd->sdma_map);
799         if (unlikely(!m)) {
800                 rcu_read_unlock();
801                 return &dd->per_sdma[0];
802         }
803         e = m->map[vl & m->mask];
804         rval = e->sde[selector & e->mask];
805         rcu_read_unlock();
806
807 done:
808         rval =  !rval ? &dd->per_sdma[0] : rval;
809         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
810         return rval;
811 }
812
813 /**
814  * sdma_select_engine_sc() - select sdma engine
815  * @dd: devdata
816  * @selector: a spreading factor
817  * @sc5: the 5 bit sc
818  *
819  *
820  * This function returns an engine based on the selector and an sc.
821  */
822 struct sdma_engine *sdma_select_engine_sc(
823         struct hfi1_devdata *dd,
824         u32 selector,
825         u8 sc5)
826 {
827         u8 vl = sc_to_vlt(dd, sc5);
828
829         return sdma_select_engine_vl(dd, selector, vl);
830 }
831
832 struct sdma_rht_map_elem {
833         u32 mask;
834         u8 ctr;
835         struct sdma_engine *sde[0];
836 };
837
838 struct sdma_rht_node {
839         unsigned long cpu_id;
840         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
841         struct rhash_head node;
842 };
843
844 #define NR_CPUS_HINT 192
845
846 static const struct rhashtable_params sdma_rht_params = {
847         .nelem_hint = NR_CPUS_HINT,
848         .head_offset = offsetof(struct sdma_rht_node, node),
849         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
850         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
851         .max_size = NR_CPUS,
852         .min_size = 8,
853         .automatic_shrinking = true,
854 };
855
856 /*
857  * sdma_select_user_engine() - select sdma engine based on user setup
858  * @dd: devdata
859  * @selector: a spreading factor
860  * @vl: this vl
861  *
862  * This function returns an sdma engine for a user sdma request.
863  * User defined sdma engine affinity setting is honored when applicable,
864  * otherwise system default sdma engine mapping is used. To ensure correct
865  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
866  */
867 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
868                                             u32 selector, u8 vl)
869 {
870         struct sdma_rht_node *rht_node;
871         struct sdma_engine *sde = NULL;
872         unsigned long cpu_id;
873
874         /*
875          * To ensure that always the same sdma engine(s) will be
876          * selected make sure the process is pinned to this CPU only.
877          */
878         if (current->nr_cpus_allowed != 1)
879                 goto out;
880
881         cpu_id = smp_processor_id();
882         rcu_read_lock();
883         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
884                                           sdma_rht_params);
885
886         if (rht_node && rht_node->map[vl]) {
887                 struct sdma_rht_map_elem *map = rht_node->map[vl];
888
889                 sde = map->sde[selector & map->mask];
890         }
891         rcu_read_unlock();
892
893         if (sde)
894                 return sde;
895
896 out:
897         return sdma_select_engine_vl(dd, selector, vl);
898 }
899
900 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
901 {
902         int i;
903
904         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
905                 map->sde[map->ctr + i] = map->sde[i];
906 }
907
908 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
909                                  struct sdma_engine *sde)
910 {
911         unsigned int i, pow;
912
913         /* only need to check the first ctr entries for a match */
914         for (i = 0; i < map->ctr; i++) {
915                 if (map->sde[i] == sde) {
916                         memmove(&map->sde[i], &map->sde[i + 1],
917                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
918                         map->ctr--;
919                         pow = roundup_pow_of_two(map->ctr ? : 1);
920                         map->mask = pow - 1;
921                         sdma_populate_sde_map(map);
922                         break;
923                 }
924         }
925 }
926
927 /*
928  * Prevents concurrent reads and writes of the sdma engine cpu_mask
929  */
930 static DEFINE_MUTEX(process_to_sde_mutex);
931
932 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
933                                 size_t count)
934 {
935         struct hfi1_devdata *dd = sde->dd;
936         cpumask_var_t mask, new_mask;
937         unsigned long cpu;
938         int ret, vl, sz;
939         struct sdma_rht_node *rht_node;
940
941         vl = sdma_engine_get_vl(sde);
942         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
943                 return -EINVAL;
944
945         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
946         if (!ret)
947                 return -ENOMEM;
948
949         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
950         if (!ret) {
951                 free_cpumask_var(mask);
952                 return -ENOMEM;
953         }
954         ret = cpulist_parse(buf, mask);
955         if (ret)
956                 goto out_free;
957
958         if (!cpumask_subset(mask, cpu_online_mask)) {
959                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
960                 ret = -EINVAL;
961                 goto out_free;
962         }
963
964         sz = sizeof(struct sdma_rht_map_elem) +
965                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
966
967         mutex_lock(&process_to_sde_mutex);
968
969         for_each_cpu(cpu, mask) {
970                 /* Check if we have this already mapped */
971                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
972                         cpumask_set_cpu(cpu, new_mask);
973                         continue;
974                 }
975
976                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
977                                                   sdma_rht_params);
978                 if (!rht_node) {
979                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
980                         if (!rht_node) {
981                                 ret = -ENOMEM;
982                                 goto out;
983                         }
984
985                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
986                         if (!rht_node->map[vl]) {
987                                 kfree(rht_node);
988                                 ret = -ENOMEM;
989                                 goto out;
990                         }
991                         rht_node->cpu_id = cpu;
992                         rht_node->map[vl]->mask = 0;
993                         rht_node->map[vl]->ctr = 1;
994                         rht_node->map[vl]->sde[0] = sde;
995
996                         ret = rhashtable_insert_fast(dd->sdma_rht,
997                                                      &rht_node->node,
998                                                      sdma_rht_params);
999                         if (ret) {
1000                                 kfree(rht_node->map[vl]);
1001                                 kfree(rht_node);
1002                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1003                                            cpu);
1004                                 goto out;
1005                         }
1006
1007                 } else {
1008                         int ctr, pow;
1009
1010                         /* Add new user mappings */
1011                         if (!rht_node->map[vl])
1012                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1013
1014                         if (!rht_node->map[vl]) {
1015                                 ret = -ENOMEM;
1016                                 goto out;
1017                         }
1018
1019                         rht_node->map[vl]->ctr++;
1020                         ctr = rht_node->map[vl]->ctr;
1021                         rht_node->map[vl]->sde[ctr - 1] = sde;
1022                         pow = roundup_pow_of_two(ctr);
1023                         rht_node->map[vl]->mask = pow - 1;
1024
1025                         /* Populate the sde map table */
1026                         sdma_populate_sde_map(rht_node->map[vl]);
1027                 }
1028                 cpumask_set_cpu(cpu, new_mask);
1029         }
1030
1031         /* Clean up old mappings */
1032         for_each_cpu(cpu, cpu_online_mask) {
1033                 struct sdma_rht_node *rht_node;
1034
1035                 /* Don't cleanup sdes that are set in the new mask */
1036                 if (cpumask_test_cpu(cpu, mask))
1037                         continue;
1038
1039                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1040                                                   sdma_rht_params);
1041                 if (rht_node) {
1042                         bool empty = true;
1043                         int i;
1044
1045                         /* Remove mappings for old sde */
1046                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1047                                 if (rht_node->map[i])
1048                                         sdma_cleanup_sde_map(rht_node->map[i],
1049                                                              sde);
1050
1051                         /* Free empty hash table entries */
1052                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1053                                 if (!rht_node->map[i])
1054                                         continue;
1055
1056                                 if (rht_node->map[i]->ctr) {
1057                                         empty = false;
1058                                         break;
1059                                 }
1060                         }
1061
1062                         if (empty) {
1063                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1064                                                              &rht_node->node,
1065                                                              sdma_rht_params);
1066                                 WARN_ON(ret);
1067
1068                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1069                                         kfree(rht_node->map[i]);
1070
1071                                 kfree(rht_node);
1072                         }
1073                 }
1074         }
1075
1076         cpumask_copy(&sde->cpu_mask, new_mask);
1077 out:
1078         mutex_unlock(&process_to_sde_mutex);
1079 out_free:
1080         free_cpumask_var(mask);
1081         free_cpumask_var(new_mask);
1082         return ret ? : strnlen(buf, PAGE_SIZE);
1083 }
1084
1085 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1086 {
1087         mutex_lock(&process_to_sde_mutex);
1088         if (cpumask_empty(&sde->cpu_mask))
1089                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1090         else
1091                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1092         mutex_unlock(&process_to_sde_mutex);
1093         return strnlen(buf, PAGE_SIZE);
1094 }
1095
1096 static void sdma_rht_free(void *ptr, void *arg)
1097 {
1098         struct sdma_rht_node *rht_node = ptr;
1099         int i;
1100
1101         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1102                 kfree(rht_node->map[i]);
1103
1104         kfree(rht_node);
1105 }
1106
1107 /**
1108  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1109  * @s: seq file
1110  * @dd: hfi1_devdata
1111  * @cpuid: cpu id
1112  *
1113  * This routine dumps the process to sde mappings per cpu
1114  */
1115 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1116                                 struct hfi1_devdata *dd,
1117                                 unsigned long cpuid)
1118 {
1119         struct sdma_rht_node *rht_node;
1120         int i, j;
1121
1122         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1123                                           sdma_rht_params);
1124         if (!rht_node)
1125                 return;
1126
1127         seq_printf(s, "cpu%3lu: ", cpuid);
1128         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1129                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1130                         continue;
1131
1132                 seq_printf(s, " vl%d: [", i);
1133
1134                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1135                         if (!rht_node->map[i]->sde[j])
1136                                 continue;
1137
1138                         if (j > 0)
1139                                 seq_puts(s, ",");
1140
1141                         seq_printf(s, " sdma%2d",
1142                                    rht_node->map[i]->sde[j]->this_idx);
1143                 }
1144                 seq_puts(s, " ]");
1145         }
1146
1147         seq_puts(s, "\n");
1148 }
1149
1150 /*
1151  * Free the indicated map struct
1152  */
1153 static void sdma_map_free(struct sdma_vl_map *m)
1154 {
1155         int i;
1156
1157         for (i = 0; m && i < m->actual_vls; i++)
1158                 kfree(m->map[i]);
1159         kfree(m);
1160 }
1161
1162 /*
1163  * Handle RCU callback
1164  */
1165 static void sdma_map_rcu_callback(struct rcu_head *list)
1166 {
1167         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1168
1169         sdma_map_free(m);
1170 }
1171
1172 /**
1173  * sdma_map_init - called when # vls change
1174  * @dd: hfi1_devdata
1175  * @port: port number
1176  * @num_vls: number of vls
1177  * @vl_engines: per vl engine mapping (optional)
1178  *
1179  * This routine changes the mapping based on the number of vls.
1180  *
1181  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1182  * implies auto computing the loading and giving each VLs a uniform
1183  * distribution of engines per VL.
1184  *
1185  * The auto algorithm computes the sde_per_vl and the number of extra
1186  * engines.  Any extra engines are added from the last VL on down.
1187  *
1188  * rcu locking is used here to control access to the mapping fields.
1189  *
1190  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1191  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1192  * up to the next highest power of 2 and the first entry is reused
1193  * in a round robin fashion.
1194  *
1195  * If an error occurs the map change is not done and the mapping is
1196  * not changed.
1197  *
1198  */
1199 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1200 {
1201         int i, j;
1202         int extra, sde_per_vl;
1203         int engine = 0;
1204         u8 lvl_engines[OPA_MAX_VLS];
1205         struct sdma_vl_map *oldmap, *newmap;
1206
1207         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1208                 return 0;
1209
1210         if (!vl_engines) {
1211                 /* truncate divide */
1212                 sde_per_vl = dd->num_sdma / num_vls;
1213                 /* extras */
1214                 extra = dd->num_sdma % num_vls;
1215                 vl_engines = lvl_engines;
1216                 /* add extras from last vl down */
1217                 for (i = num_vls - 1; i >= 0; i--, extra--)
1218                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1219         }
1220         /* build new map */
1221         newmap = kzalloc(
1222                 sizeof(struct sdma_vl_map) +
1223                         roundup_pow_of_two(num_vls) *
1224                         sizeof(struct sdma_map_elem *),
1225                 GFP_KERNEL);
1226         if (!newmap)
1227                 goto bail;
1228         newmap->actual_vls = num_vls;
1229         newmap->vls = roundup_pow_of_two(num_vls);
1230         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1231         /* initialize back-map */
1232         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1233                 newmap->engine_to_vl[i] = -1;
1234         for (i = 0; i < newmap->vls; i++) {
1235                 /* save for wrap around */
1236                 int first_engine = engine;
1237
1238                 if (i < newmap->actual_vls) {
1239                         int sz = roundup_pow_of_two(vl_engines[i]);
1240
1241                         /* only allocate once */
1242                         newmap->map[i] = kzalloc(
1243                                 sizeof(struct sdma_map_elem) +
1244                                         sz * sizeof(struct sdma_engine *),
1245                                 GFP_KERNEL);
1246                         if (!newmap->map[i])
1247                                 goto bail;
1248                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1249                         /* assign engines */
1250                         for (j = 0; j < sz; j++) {
1251                                 newmap->map[i]->sde[j] =
1252                                         &dd->per_sdma[engine];
1253                                 if (++engine >= first_engine + vl_engines[i])
1254                                         /* wrap back to first engine */
1255                                         engine = first_engine;
1256                         }
1257                         /* assign back-map */
1258                         for (j = 0; j < vl_engines[i]; j++)
1259                                 newmap->engine_to_vl[first_engine + j] = i;
1260                 } else {
1261                         /* just re-use entry without allocating */
1262                         newmap->map[i] = newmap->map[i % num_vls];
1263                 }
1264                 engine = first_engine + vl_engines[i];
1265         }
1266         /* newmap in hand, save old map */
1267         spin_lock_irq(&dd->sde_map_lock);
1268         oldmap = rcu_dereference_protected(dd->sdma_map,
1269                                            lockdep_is_held(&dd->sde_map_lock));
1270
1271         /* publish newmap */
1272         rcu_assign_pointer(dd->sdma_map, newmap);
1273
1274         spin_unlock_irq(&dd->sde_map_lock);
1275         /* success, free any old map after grace period */
1276         if (oldmap)
1277                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1278         return 0;
1279 bail:
1280         /* free any partial allocation */
1281         sdma_map_free(newmap);
1282         return -ENOMEM;
1283 }
1284
1285 /**
1286  * sdma_clean()  Clean up allocated memory
1287  * @dd:          struct hfi1_devdata
1288  * @num_engines: num sdma engines
1289  *
1290  * This routine can be called regardless of the success of
1291  * sdma_init()
1292  */
1293 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1294 {
1295         size_t i;
1296         struct sdma_engine *sde;
1297
1298         if (dd->sdma_pad_dma) {
1299                 dma_free_coherent(&dd->pcidev->dev, 4,
1300                                   (void *)dd->sdma_pad_dma,
1301                                   dd->sdma_pad_phys);
1302                 dd->sdma_pad_dma = NULL;
1303                 dd->sdma_pad_phys = 0;
1304         }
1305         if (dd->sdma_heads_dma) {
1306                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1307                                   (void *)dd->sdma_heads_dma,
1308                                   dd->sdma_heads_phys);
1309                 dd->sdma_heads_dma = NULL;
1310                 dd->sdma_heads_phys = 0;
1311         }
1312         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1313                 sde = &dd->per_sdma[i];
1314
1315                 sde->head_dma = NULL;
1316                 sde->head_phys = 0;
1317
1318                 if (sde->descq) {
1319                         dma_free_coherent(
1320                                 &dd->pcidev->dev,
1321                                 sde->descq_cnt * sizeof(u64[2]),
1322                                 sde->descq,
1323                                 sde->descq_phys
1324                         );
1325                         sde->descq = NULL;
1326                         sde->descq_phys = 0;
1327                 }
1328                 kvfree(sde->tx_ring);
1329                 sde->tx_ring = NULL;
1330         }
1331         spin_lock_irq(&dd->sde_map_lock);
1332         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1333         RCU_INIT_POINTER(dd->sdma_map, NULL);
1334         spin_unlock_irq(&dd->sde_map_lock);
1335         synchronize_rcu();
1336         kfree(dd->per_sdma);
1337         dd->per_sdma = NULL;
1338
1339         if (dd->sdma_rht) {
1340                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1341                 kfree(dd->sdma_rht);
1342                 dd->sdma_rht = NULL;
1343         }
1344 }
1345
1346 /**
1347  * sdma_init() - called when device probed
1348  * @dd: hfi1_devdata
1349  * @port: port number (currently only zero)
1350  *
1351  * Initializes each sde and its csrs.
1352  * Interrupts are not required to be enabled.
1353  *
1354  * Returns:
1355  * 0 - success, -errno on failure
1356  */
1357 int sdma_init(struct hfi1_devdata *dd, u8 port)
1358 {
1359         unsigned this_idx;
1360         struct sdma_engine *sde;
1361         struct rhashtable *tmp_sdma_rht;
1362         u16 descq_cnt;
1363         void *curr_head;
1364         struct hfi1_pportdata *ppd = dd->pport + port;
1365         u32 per_sdma_credits;
1366         uint idle_cnt = sdma_idle_cnt;
1367         size_t num_engines = chip_sdma_engines(dd);
1368         int ret = -ENOMEM;
1369
1370         if (!HFI1_CAP_IS_KSET(SDMA)) {
1371                 HFI1_CAP_CLEAR(SDMA_AHG);
1372                 return 0;
1373         }
1374         if (mod_num_sdma &&
1375             /* can't exceed chip support */
1376             mod_num_sdma <= chip_sdma_engines(dd) &&
1377             /* count must be >= vls */
1378             mod_num_sdma >= num_vls)
1379                 num_engines = mod_num_sdma;
1380
1381         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1382         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1383         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1384                     chip_sdma_mem_size(dd));
1385
1386         per_sdma_credits =
1387                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1388
1389         /* set up freeze waitqueue */
1390         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1391         atomic_set(&dd->sdma_unfreeze_count, 0);
1392
1393         descq_cnt = sdma_get_descq_cnt();
1394         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1395                     num_engines, descq_cnt);
1396
1397         /* alloc memory for array of send engines */
1398         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1399                                     GFP_KERNEL, dd->node);
1400         if (!dd->per_sdma)
1401                 return ret;
1402
1403         idle_cnt = ns_to_cclock(dd, idle_cnt);
1404         if (idle_cnt)
1405                 dd->default_desc1 =
1406                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1407         else
1408                 dd->default_desc1 =
1409                         SDMA_DESC1_INT_REQ_FLAG;
1410
1411         if (!sdma_desct_intr)
1412                 sdma_desct_intr = SDMA_DESC_INTR;
1413
1414         /* Allocate memory for SendDMA descriptor FIFOs */
1415         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1416                 sde = &dd->per_sdma[this_idx];
1417                 sde->dd = dd;
1418                 sde->ppd = ppd;
1419                 sde->this_idx = this_idx;
1420                 sde->descq_cnt = descq_cnt;
1421                 sde->desc_avail = sdma_descq_freecnt(sde);
1422                 sde->sdma_shift = ilog2(descq_cnt);
1423                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1424
1425                 /* Create a mask specifically for each interrupt source */
1426                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1427                                            this_idx);
1428                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1429                                                 this_idx);
1430                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1431                                             this_idx);
1432                 /* Create a combined mask to cover all 3 interrupt sources */
1433                 sde->imask = sde->int_mask | sde->progress_mask |
1434                              sde->idle_mask;
1435
1436                 spin_lock_init(&sde->tail_lock);
1437                 seqlock_init(&sde->head_lock);
1438                 spin_lock_init(&sde->senddmactrl_lock);
1439                 spin_lock_init(&sde->flushlist_lock);
1440                 seqlock_init(&sde->waitlock);
1441                 /* insure there is always a zero bit */
1442                 sde->ahg_bits = 0xfffffffe00000000ULL;
1443
1444                 sdma_set_state(sde, sdma_state_s00_hw_down);
1445
1446                 /* set up reference counting */
1447                 kref_init(&sde->state.kref);
1448                 init_completion(&sde->state.comp);
1449
1450                 INIT_LIST_HEAD(&sde->flushlist);
1451                 INIT_LIST_HEAD(&sde->dmawait);
1452
1453                 sde->tail_csr =
1454                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1455
1456                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1457                              (unsigned long)sde);
1458
1459                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1460                              (unsigned long)sde);
1461                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1462                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1463
1464                 sde->progress_check_head = 0;
1465
1466                 timer_setup(&sde->err_progress_check_timer,
1467                             sdma_err_progress_check, 0);
1468
1469                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1470                                                 descq_cnt * sizeof(u64[2]),
1471                                                 &sde->descq_phys, GFP_KERNEL);
1472                 if (!sde->descq)
1473                         goto bail;
1474                 sde->tx_ring =
1475                         kvzalloc_node(array_size(descq_cnt,
1476                                                  sizeof(struct sdma_txreq *)),
1477                                       GFP_KERNEL, dd->node);
1478                 if (!sde->tx_ring)
1479                         goto bail;
1480         }
1481
1482         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1483         /* Allocate memory for DMA of head registers to memory */
1484         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1485                                                 dd->sdma_heads_size,
1486                                                 &dd->sdma_heads_phys,
1487                                                 GFP_KERNEL);
1488         if (!dd->sdma_heads_dma) {
1489                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1490                 goto bail;
1491         }
1492
1493         /* Allocate memory for pad */
1494         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1495                                               &dd->sdma_pad_phys, GFP_KERNEL);
1496         if (!dd->sdma_pad_dma) {
1497                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1498                 goto bail;
1499         }
1500
1501         /* assign each engine to different cacheline and init registers */
1502         curr_head = (void *)dd->sdma_heads_dma;
1503         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1504                 unsigned long phys_offset;
1505
1506                 sde = &dd->per_sdma[this_idx];
1507
1508                 sde->head_dma = curr_head;
1509                 curr_head += L1_CACHE_BYTES;
1510                 phys_offset = (unsigned long)sde->head_dma -
1511                               (unsigned long)dd->sdma_heads_dma;
1512                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1513                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1514         }
1515         dd->flags |= HFI1_HAS_SEND_DMA;
1516         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1517         dd->num_sdma = num_engines;
1518         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1519         if (ret < 0)
1520                 goto bail;
1521
1522         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1523         if (!tmp_sdma_rht) {
1524                 ret = -ENOMEM;
1525                 goto bail;
1526         }
1527
1528         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1529         if (ret < 0)
1530                 goto bail;
1531         dd->sdma_rht = tmp_sdma_rht;
1532
1533         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1534         return 0;
1535
1536 bail:
1537         sdma_clean(dd, num_engines);
1538         return ret;
1539 }
1540
1541 /**
1542  * sdma_all_running() - called when the link goes up
1543  * @dd: hfi1_devdata
1544  *
1545  * This routine moves all engines to the running state.
1546  */
1547 void sdma_all_running(struct hfi1_devdata *dd)
1548 {
1549         struct sdma_engine *sde;
1550         unsigned int i;
1551
1552         /* move all engines to running */
1553         for (i = 0; i < dd->num_sdma; ++i) {
1554                 sde = &dd->per_sdma[i];
1555                 sdma_process_event(sde, sdma_event_e30_go_running);
1556         }
1557 }
1558
1559 /**
1560  * sdma_all_idle() - called when the link goes down
1561  * @dd: hfi1_devdata
1562  *
1563  * This routine moves all engines to the idle state.
1564  */
1565 void sdma_all_idle(struct hfi1_devdata *dd)
1566 {
1567         struct sdma_engine *sde;
1568         unsigned int i;
1569
1570         /* idle all engines */
1571         for (i = 0; i < dd->num_sdma; ++i) {
1572                 sde = &dd->per_sdma[i];
1573                 sdma_process_event(sde, sdma_event_e70_go_idle);
1574         }
1575 }
1576
1577 /**
1578  * sdma_start() - called to kick off state processing for all engines
1579  * @dd: hfi1_devdata
1580  *
1581  * This routine is for kicking off the state processing for all required
1582  * sdma engines.  Interrupts need to be working at this point.
1583  *
1584  */
1585 void sdma_start(struct hfi1_devdata *dd)
1586 {
1587         unsigned i;
1588         struct sdma_engine *sde;
1589
1590         /* kick off the engines state processing */
1591         for (i = 0; i < dd->num_sdma; ++i) {
1592                 sde = &dd->per_sdma[i];
1593                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1594         }
1595 }
1596
1597 /**
1598  * sdma_exit() - used when module is removed
1599  * @dd: hfi1_devdata
1600  */
1601 void sdma_exit(struct hfi1_devdata *dd)
1602 {
1603         unsigned this_idx;
1604         struct sdma_engine *sde;
1605
1606         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1607                         ++this_idx) {
1608                 sde = &dd->per_sdma[this_idx];
1609                 if (!list_empty(&sde->dmawait))
1610                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1611                                    sde->this_idx);
1612                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1613
1614                 del_timer_sync(&sde->err_progress_check_timer);
1615
1616                 /*
1617                  * This waits for the state machine to exit so it is not
1618                  * necessary to kill the sdma_sw_clean_up_task to make sure
1619                  * it is not running.
1620                  */
1621                 sdma_finalput(&sde->state);
1622         }
1623 }
1624
1625 /*
1626  * unmap the indicated descriptor
1627  */
1628 static inline void sdma_unmap_desc(
1629         struct hfi1_devdata *dd,
1630         struct sdma_desc *descp)
1631 {
1632         switch (sdma_mapping_type(descp)) {
1633         case SDMA_MAP_SINGLE:
1634                 dma_unmap_single(
1635                         &dd->pcidev->dev,
1636                         sdma_mapping_addr(descp),
1637                         sdma_mapping_len(descp),
1638                         DMA_TO_DEVICE);
1639                 break;
1640         case SDMA_MAP_PAGE:
1641                 dma_unmap_page(
1642                         &dd->pcidev->dev,
1643                         sdma_mapping_addr(descp),
1644                         sdma_mapping_len(descp),
1645                         DMA_TO_DEVICE);
1646                 break;
1647         }
1648 }
1649
1650 /*
1651  * return the mode as indicated by the first
1652  * descriptor in the tx.
1653  */
1654 static inline u8 ahg_mode(struct sdma_txreq *tx)
1655 {
1656         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1657                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1658 }
1659
1660 /**
1661  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1662  * @dd: hfi1_devdata for unmapping
1663  * @tx: tx request to clean
1664  *
1665  * This is used in the progress routine to clean the tx or
1666  * by the ULP to toss an in-process tx build.
1667  *
1668  * The code can be called multiple times without issue.
1669  *
1670  */
1671 void __sdma_txclean(
1672         struct hfi1_devdata *dd,
1673         struct sdma_txreq *tx)
1674 {
1675         u16 i;
1676
1677         if (tx->num_desc) {
1678                 u8 skip = 0, mode = ahg_mode(tx);
1679
1680                 /* unmap first */
1681                 sdma_unmap_desc(dd, &tx->descp[0]);
1682                 /* determine number of AHG descriptors to skip */
1683                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1684                         skip = mode >> 1;
1685                 for (i = 1 + skip; i < tx->num_desc; i++)
1686                         sdma_unmap_desc(dd, &tx->descp[i]);
1687                 tx->num_desc = 0;
1688         }
1689         kfree(tx->coalesce_buf);
1690         tx->coalesce_buf = NULL;
1691         /* kmalloc'ed descp */
1692         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1693                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1694                 kfree(tx->descp);
1695         }
1696 }
1697
1698 static inline u16 sdma_gethead(struct sdma_engine *sde)
1699 {
1700         struct hfi1_devdata *dd = sde->dd;
1701         int use_dmahead;
1702         u16 hwhead;
1703
1704 #ifdef CONFIG_SDMA_VERBOSITY
1705         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1706                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1707 #endif
1708
1709 retry:
1710         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1711                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1712         hwhead = use_dmahead ?
1713                 (u16)le64_to_cpu(*sde->head_dma) :
1714                 (u16)read_sde_csr(sde, SD(HEAD));
1715
1716         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1717                 u16 cnt;
1718                 u16 swtail;
1719                 u16 swhead;
1720                 int sane;
1721
1722                 swhead = sde->descq_head & sde->sdma_mask;
1723                 /* this code is really bad for cache line trading */
1724                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1725                 cnt = sde->descq_cnt;
1726
1727                 if (swhead < swtail)
1728                         /* not wrapped */
1729                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1730                 else if (swhead > swtail)
1731                         /* wrapped around */
1732                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1733                                 (hwhead <= swtail);
1734                 else
1735                         /* empty */
1736                         sane = (hwhead == swhead);
1737
1738                 if (unlikely(!sane)) {
1739                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1740                                    sde->this_idx,
1741                                    use_dmahead ? "dma" : "kreg",
1742                                    hwhead, swhead, swtail, cnt);
1743                         if (use_dmahead) {
1744                                 /* try one more time, using csr */
1745                                 use_dmahead = 0;
1746                                 goto retry;
1747                         }
1748                         /* proceed as if no progress */
1749                         hwhead = swhead;
1750                 }
1751         }
1752         return hwhead;
1753 }
1754
1755 /*
1756  * This is called when there are send DMA descriptors that might be
1757  * available.
1758  *
1759  * This is called with head_lock held.
1760  */
1761 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1762 {
1763         struct iowait *wait, *nw, *twait;
1764         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1765         uint i, n = 0, seq, tidx = 0;
1766
1767 #ifdef CONFIG_SDMA_VERBOSITY
1768         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1769                    slashstrip(__FILE__), __LINE__, __func__);
1770         dd_dev_err(sde->dd, "avail: %u\n", avail);
1771 #endif
1772
1773         do {
1774                 seq = read_seqbegin(&sde->waitlock);
1775                 if (!list_empty(&sde->dmawait)) {
1776                         /* at least one item */
1777                         write_seqlock(&sde->waitlock);
1778                         /* Harvest waiters wanting DMA descriptors */
1779                         list_for_each_entry_safe(
1780                                         wait,
1781                                         nw,
1782                                         &sde->dmawait,
1783                                         list) {
1784                                 u32 num_desc;
1785
1786                                 if (!wait->wakeup)
1787                                         continue;
1788                                 if (n == ARRAY_SIZE(waits))
1789                                         break;
1790                                 iowait_init_priority(wait);
1791                                 num_desc = iowait_get_all_desc(wait);
1792                                 if (num_desc > avail)
1793                                         break;
1794                                 avail -= num_desc;
1795                                 /* Find the top-priority wait memeber */
1796                                 if (n) {
1797                                         twait = waits[tidx];
1798                                         tidx =
1799                                             iowait_priority_update_top(wait,
1800                                                                        twait,
1801                                                                        n,
1802                                                                        tidx);
1803                                 }
1804                                 list_del_init(&wait->list);
1805                                 waits[n++] = wait;
1806                         }
1807                         write_sequnlock(&sde->waitlock);
1808                         break;
1809                 }
1810         } while (read_seqretry(&sde->waitlock, seq));
1811
1812         /* Schedule the top-priority entry first */
1813         if (n)
1814                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1815
1816         for (i = 0; i < n; i++)
1817                 if (i != tidx)
1818                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1819 }
1820
1821 /* head_lock must be held */
1822 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1823 {
1824         struct sdma_txreq *txp = NULL;
1825         int progress = 0;
1826         u16 hwhead, swhead;
1827         int idle_check_done = 0;
1828
1829         hwhead = sdma_gethead(sde);
1830
1831         /* The reason for some of the complexity of this code is that
1832          * not all descriptors have corresponding txps.  So, we have to
1833          * be able to skip over descs until we wander into the range of
1834          * the next txp on the list.
1835          */
1836
1837 retry:
1838         txp = get_txhead(sde);
1839         swhead = sde->descq_head & sde->sdma_mask;
1840         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1841         while (swhead != hwhead) {
1842                 /* advance head, wrap if needed */
1843                 swhead = ++sde->descq_head & sde->sdma_mask;
1844
1845                 /* if now past this txp's descs, do the callback */
1846                 if (txp && txp->next_descq_idx == swhead) {
1847                         /* remove from list */
1848                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1849                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1850                         /* see if there is another txp */
1851                         txp = get_txhead(sde);
1852                 }
1853                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1854                 progress++;
1855         }
1856
1857         /*
1858          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1859          * to updates to the the dma_head location in host memory. The head
1860          * value read might not be fully up to date. If there are pending
1861          * descriptors and the SDMA idle interrupt fired then read from the
1862          * CSR SDMA head instead to get the latest value from the hardware.
1863          * The hardware SDMA head should be read at most once in this invocation
1864          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1865          */
1866         if ((status & sde->idle_mask) && !idle_check_done) {
1867                 u16 swtail;
1868
1869                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1870                 if (swtail != hwhead) {
1871                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1872                         idle_check_done = 1;
1873                         goto retry;
1874                 }
1875         }
1876
1877         sde->last_status = status;
1878         if (progress)
1879                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1880 }
1881
1882 /*
1883  * sdma_engine_interrupt() - interrupt handler for engine
1884  * @sde: sdma engine
1885  * @status: sdma interrupt reason
1886  *
1887  * Status is a mask of the 3 possible interrupts for this engine.  It will
1888  * contain bits _only_ for this SDMA engine.  It will contain at least one
1889  * bit, it may contain more.
1890  */
1891 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1892 {
1893         trace_hfi1_sdma_engine_interrupt(sde, status);
1894         write_seqlock(&sde->head_lock);
1895         sdma_set_desc_cnt(sde, sdma_desct_intr);
1896         if (status & sde->idle_mask)
1897                 sde->idle_int_cnt++;
1898         else if (status & sde->progress_mask)
1899                 sde->progress_int_cnt++;
1900         else if (status & sde->int_mask)
1901                 sde->sdma_int_cnt++;
1902         sdma_make_progress(sde, status);
1903         write_sequnlock(&sde->head_lock);
1904 }
1905
1906 /**
1907  * sdma_engine_error() - error handler for engine
1908  * @sde: sdma engine
1909  * @status: sdma interrupt reason
1910  */
1911 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1912 {
1913         unsigned long flags;
1914
1915 #ifdef CONFIG_SDMA_VERBOSITY
1916         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1917                    sde->this_idx,
1918                    (unsigned long long)status,
1919                    sdma_state_names[sde->state.current_state]);
1920 #endif
1921         spin_lock_irqsave(&sde->tail_lock, flags);
1922         write_seqlock(&sde->head_lock);
1923         if (status & ALL_SDMA_ENG_HALT_ERRS)
1924                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1925         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1926                 dd_dev_err(sde->dd,
1927                            "SDMA (%u) engine error: 0x%llx state %s\n",
1928                            sde->this_idx,
1929                            (unsigned long long)status,
1930                            sdma_state_names[sde->state.current_state]);
1931                 dump_sdma_state(sde);
1932         }
1933         write_sequnlock(&sde->head_lock);
1934         spin_unlock_irqrestore(&sde->tail_lock, flags);
1935 }
1936
1937 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1938 {
1939         u64 set_senddmactrl = 0;
1940         u64 clr_senddmactrl = 0;
1941         unsigned long flags;
1942
1943 #ifdef CONFIG_SDMA_VERBOSITY
1944         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1945                    sde->this_idx,
1946                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1947                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1948                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1949                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1950 #endif
1951
1952         if (op & SDMA_SENDCTRL_OP_ENABLE)
1953                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1954         else
1955                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1956
1957         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1958                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1959         else
1960                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1961
1962         if (op & SDMA_SENDCTRL_OP_HALT)
1963                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1964         else
1965                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1966
1967         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1968
1969         sde->p_senddmactrl |= set_senddmactrl;
1970         sde->p_senddmactrl &= ~clr_senddmactrl;
1971
1972         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1973                 write_sde_csr(sde, SD(CTRL),
1974                               sde->p_senddmactrl |
1975                               SD(CTRL_SDMA_CLEANUP_SMASK));
1976         else
1977                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1978
1979         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1980
1981 #ifdef CONFIG_SDMA_VERBOSITY
1982         sdma_dumpstate(sde);
1983 #endif
1984 }
1985
1986 static void sdma_setlengen(struct sdma_engine *sde)
1987 {
1988 #ifdef CONFIG_SDMA_VERBOSITY
1989         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1990                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1991 #endif
1992
1993         /*
1994          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1995          * count to enable generation checking and load the internal
1996          * generation counter.
1997          */
1998         write_sde_csr(sde, SD(LEN_GEN),
1999                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2000         write_sde_csr(sde, SD(LEN_GEN),
2001                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2002                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2003 }
2004
2005 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2006 {
2007         /* Commit writes to memory and advance the tail on the chip */
2008         smp_wmb(); /* see get_txhead() */
2009         writeq(tail, sde->tail_csr);
2010 }
2011
2012 /*
2013  * This is called when changing to state s10_hw_start_up_halt_wait as
2014  * a result of send buffer errors or send DMA descriptor errors.
2015  */
2016 static void sdma_hw_start_up(struct sdma_engine *sde)
2017 {
2018         u64 reg;
2019
2020 #ifdef CONFIG_SDMA_VERBOSITY
2021         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2022                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2023 #endif
2024
2025         sdma_setlengen(sde);
2026         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2027         *sde->head_dma = 0;
2028
2029         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2030               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2031         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2032 }
2033
2034 /*
2035  * set_sdma_integrity
2036  *
2037  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2038  */
2039 static void set_sdma_integrity(struct sdma_engine *sde)
2040 {
2041         struct hfi1_devdata *dd = sde->dd;
2042
2043         write_sde_csr(sde, SD(CHECK_ENABLE),
2044                       hfi1_pkt_base_sdma_integrity(dd));
2045 }
2046
2047 static void init_sdma_regs(
2048         struct sdma_engine *sde,
2049         u32 credits,
2050         uint idle_cnt)
2051 {
2052         u8 opval, opmask;
2053 #ifdef CONFIG_SDMA_VERBOSITY
2054         struct hfi1_devdata *dd = sde->dd;
2055
2056         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2057                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2058 #endif
2059
2060         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2061         sdma_setlengen(sde);
2062         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2063         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2064         write_sde_csr(sde, SD(DESC_CNT), 0);
2065         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2066         write_sde_csr(sde, SD(MEMORY),
2067                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2068                       ((u64)(credits * sde->this_idx) <<
2069                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2070         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2071         set_sdma_integrity(sde);
2072         opmask = OPCODE_CHECK_MASK_DISABLED;
2073         opval = OPCODE_CHECK_VAL_DISABLED;
2074         write_sde_csr(sde, SD(CHECK_OPCODE),
2075                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2076                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2077 }
2078
2079 #ifdef CONFIG_SDMA_VERBOSITY
2080
2081 #define sdma_dumpstate_helper0(reg) do { \
2082                 csr = read_csr(sde->dd, reg); \
2083                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2084         } while (0)
2085
2086 #define sdma_dumpstate_helper(reg) do { \
2087                 csr = read_sde_csr(sde, reg); \
2088                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2089                         #reg, sde->this_idx, csr); \
2090         } while (0)
2091
2092 #define sdma_dumpstate_helper2(reg) do { \
2093                 csr = read_csr(sde->dd, reg + (8 * i)); \
2094                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2095                                 #reg, i, csr); \
2096         } while (0)
2097
2098 void sdma_dumpstate(struct sdma_engine *sde)
2099 {
2100         u64 csr;
2101         unsigned i;
2102
2103         sdma_dumpstate_helper(SD(CTRL));
2104         sdma_dumpstate_helper(SD(STATUS));
2105         sdma_dumpstate_helper0(SD(ERR_STATUS));
2106         sdma_dumpstate_helper0(SD(ERR_MASK));
2107         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2108         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2109
2110         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2111                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2112                 sdma_dumpstate_helper2(CCE_INT_MASK);
2113                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2114         }
2115
2116         sdma_dumpstate_helper(SD(TAIL));
2117         sdma_dumpstate_helper(SD(HEAD));
2118         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2119         sdma_dumpstate_helper(SD(IDLE_CNT));
2120         sdma_dumpstate_helper(SD(RELOAD_CNT));
2121         sdma_dumpstate_helper(SD(DESC_CNT));
2122         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2123         sdma_dumpstate_helper(SD(MEMORY));
2124         sdma_dumpstate_helper0(SD(ENGINES));
2125         sdma_dumpstate_helper0(SD(MEM_SIZE));
2126         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2127         sdma_dumpstate_helper(SD(BASE_ADDR));
2128         sdma_dumpstate_helper(SD(LEN_GEN));
2129         sdma_dumpstate_helper(SD(HEAD_ADDR));
2130         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2131         sdma_dumpstate_helper(SD(CHECK_VL));
2132         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2133         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2134         sdma_dumpstate_helper(SD(CHECK_SLID));
2135         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2136 }
2137 #endif
2138
2139 static void dump_sdma_state(struct sdma_engine *sde)
2140 {
2141         struct hw_sdma_desc *descqp;
2142         u64 desc[2];
2143         u64 addr;
2144         u8 gen;
2145         u16 len;
2146         u16 head, tail, cnt;
2147
2148         head = sde->descq_head & sde->sdma_mask;
2149         tail = sde->descq_tail & sde->sdma_mask;
2150         cnt = sdma_descq_freecnt(sde);
2151
2152         dd_dev_err(sde->dd,
2153                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2154                    sde->this_idx, head, tail, cnt,
2155                    !list_empty(&sde->flushlist));
2156
2157         /* print info for each entry in the descriptor queue */
2158         while (head != tail) {
2159                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2160
2161                 descqp = &sde->descq[head];
2162                 desc[0] = le64_to_cpu(descqp->qw[0]);
2163                 desc[1] = le64_to_cpu(descqp->qw[1]);
2164                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2165                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2166                                 'H' : '-';
2167                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2168                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2169                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2170                         & SDMA_DESC0_PHY_ADDR_MASK;
2171                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2172                         & SDMA_DESC1_GENERATION_MASK;
2173                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2174                         & SDMA_DESC0_BYTE_COUNT_MASK;
2175                 dd_dev_err(sde->dd,
2176                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2177                            head, flags, addr, gen, len);
2178                 dd_dev_err(sde->dd,
2179                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2180                            desc[0], desc[1]);
2181                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2182                         dd_dev_err(sde->dd,
2183                                    "\taidx: %u amode: %u alen: %u\n",
2184                                    (u8)((desc[1] &
2185                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2186                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2187                                    (u8)((desc[1] &
2188                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2189                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2190                                    (u8)((desc[1] &
2191                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2192                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2193                 head++;
2194                 head &= sde->sdma_mask;
2195         }
2196 }
2197
2198 #define SDE_FMT \
2199         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2200 /**
2201  * sdma_seqfile_dump_sde() - debugfs dump of sde
2202  * @s: seq file
2203  * @sde: send dma engine to dump
2204  *
2205  * This routine dumps the sde to the indicated seq file.
2206  */
2207 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2208 {
2209         u16 head, tail;
2210         struct hw_sdma_desc *descqp;
2211         u64 desc[2];
2212         u64 addr;
2213         u8 gen;
2214         u16 len;
2215
2216         head = sde->descq_head & sde->sdma_mask;
2217         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2218         seq_printf(s, SDE_FMT, sde->this_idx,
2219                    sde->cpu,
2220                    sdma_state_name(sde->state.current_state),
2221                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2222                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2223                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2224                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2225                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2226                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2227                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2228                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2229                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2230                    (unsigned long long)sde->last_status,
2231                    (unsigned long long)sde->ahg_bits,
2232                    sde->tx_tail,
2233                    sde->tx_head,
2234                    sde->descq_tail,
2235                    sde->descq_head,
2236                    !list_empty(&sde->flushlist),
2237                    sde->descq_full_count,
2238                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2239
2240         /* print info for each entry in the descriptor queue */
2241         while (head != tail) {
2242                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2243
2244                 descqp = &sde->descq[head];
2245                 desc[0] = le64_to_cpu(descqp->qw[0]);
2246                 desc[1] = le64_to_cpu(descqp->qw[1]);
2247                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2248                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2249                                 'H' : '-';
2250                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2251                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2252                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2253                         & SDMA_DESC0_PHY_ADDR_MASK;
2254                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2255                         & SDMA_DESC1_GENERATION_MASK;
2256                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2257                         & SDMA_DESC0_BYTE_COUNT_MASK;
2258                 seq_printf(s,
2259                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2260                            head, flags, addr, gen, len);
2261                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2262                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2263                                    (u8)((desc[1] &
2264                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2265                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2266                                    (u8)((desc[1] &
2267                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2268                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2269                 head = (head + 1) & sde->sdma_mask;
2270         }
2271 }
2272
2273 /*
2274  * add the generation number into
2275  * the qw1 and return
2276  */
2277 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2278 {
2279         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2280
2281         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2282         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2283                         << SDMA_DESC1_GENERATION_SHIFT;
2284         return qw1;
2285 }
2286
2287 /*
2288  * This routine submits the indicated tx
2289  *
2290  * Space has already been guaranteed and
2291  * tail side of ring is locked.
2292  *
2293  * The hardware tail update is done
2294  * in the caller and that is facilitated
2295  * by returning the new tail.
2296  *
2297  * There is special case logic for ahg
2298  * to not add the generation number for
2299  * up to 2 descriptors that follow the
2300  * first descriptor.
2301  *
2302  */
2303 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2304 {
2305         int i;
2306         u16 tail;
2307         struct sdma_desc *descp = tx->descp;
2308         u8 skip = 0, mode = ahg_mode(tx);
2309
2310         tail = sde->descq_tail & sde->sdma_mask;
2311         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2312         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2313         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2314                                    tail, &sde->descq[tail]);
2315         tail = ++sde->descq_tail & sde->sdma_mask;
2316         descp++;
2317         if (mode > SDMA_AHG_APPLY_UPDATE1)
2318                 skip = mode >> 1;
2319         for (i = 1; i < tx->num_desc; i++, descp++) {
2320                 u64 qw1;
2321
2322                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2323                 if (skip) {
2324                         /* edits don't have generation */
2325                         qw1 = descp->qw[1];
2326                         skip--;
2327                 } else {
2328                         /* replace generation with real one for non-edits */
2329                         qw1 = add_gen(sde, descp->qw[1]);
2330                 }
2331                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2332                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2333                                            tail, &sde->descq[tail]);
2334                 tail = ++sde->descq_tail & sde->sdma_mask;
2335         }
2336         tx->next_descq_idx = tail;
2337 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2338         tx->sn = sde->tail_sn++;
2339         trace_hfi1_sdma_in_sn(sde, tx->sn);
2340         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2341 #endif
2342         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2343         sde->desc_avail -= tx->num_desc;
2344         return tail;
2345 }
2346
2347 /*
2348  * Check for progress
2349  */
2350 static int sdma_check_progress(
2351         struct sdma_engine *sde,
2352         struct iowait_work *wait,
2353         struct sdma_txreq *tx,
2354         bool pkts_sent)
2355 {
2356         int ret;
2357
2358         sde->desc_avail = sdma_descq_freecnt(sde);
2359         if (tx->num_desc <= sde->desc_avail)
2360                 return -EAGAIN;
2361         /* pulse the head_lock */
2362         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2363                 unsigned seq;
2364
2365                 seq = raw_seqcount_begin(
2366                         (const seqcount_t *)&sde->head_lock.seqcount);
2367                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2368                 if (ret == -EAGAIN)
2369                         sde->desc_avail = sdma_descq_freecnt(sde);
2370         } else {
2371                 ret = -EBUSY;
2372         }
2373         return ret;
2374 }
2375
2376 /**
2377  * sdma_send_txreq() - submit a tx req to ring
2378  * @sde: sdma engine to use
2379  * @wait: SE wait structure to use when full (may be NULL)
2380  * @tx: sdma_txreq to submit
2381  * @pkts_sent: has any packet been sent yet?
2382  *
2383  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2384  * the packet will be queued to the list in wait.
2385  *
2386  * Return:
2387  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2388  * ring (wait == NULL)
2389  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2390  */
2391 int sdma_send_txreq(struct sdma_engine *sde,
2392                     struct iowait_work *wait,
2393                     struct sdma_txreq *tx,
2394                     bool pkts_sent)
2395 {
2396         int ret = 0;
2397         u16 tail;
2398         unsigned long flags;
2399
2400         /* user should have supplied entire packet */
2401         if (unlikely(tx->tlen))
2402                 return -EINVAL;
2403         tx->wait = iowait_ioww_to_iow(wait);
2404         spin_lock_irqsave(&sde->tail_lock, flags);
2405 retry:
2406         if (unlikely(!__sdma_running(sde)))
2407                 goto unlock_noconn;
2408         if (unlikely(tx->num_desc > sde->desc_avail))
2409                 goto nodesc;
2410         tail = submit_tx(sde, tx);
2411         if (wait)
2412                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2413         sdma_update_tail(sde, tail);
2414 unlock:
2415         spin_unlock_irqrestore(&sde->tail_lock, flags);
2416         return ret;
2417 unlock_noconn:
2418         if (wait)
2419                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2420         tx->next_descq_idx = 0;
2421 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2422         tx->sn = sde->tail_sn++;
2423         trace_hfi1_sdma_in_sn(sde, tx->sn);
2424 #endif
2425         spin_lock(&sde->flushlist_lock);
2426         list_add_tail(&tx->list, &sde->flushlist);
2427         spin_unlock(&sde->flushlist_lock);
2428         iowait_inc_wait_count(wait, tx->num_desc);
2429         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2430         ret = -ECOMM;
2431         goto unlock;
2432 nodesc:
2433         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2434         if (ret == -EAGAIN) {
2435                 ret = 0;
2436                 goto retry;
2437         }
2438         sde->descq_full_count++;
2439         goto unlock;
2440 }
2441
2442 /**
2443  * sdma_send_txlist() - submit a list of tx req to ring
2444  * @sde: sdma engine to use
2445  * @wait: SE wait structure to use when full (may be NULL)
2446  * @tx_list: list of sdma_txreqs to submit
2447  * @count: pointer to a u16 which, after return will contain the total number of
2448  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2449  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2450  *         which are added to SDMA engine flush list if the SDMA engine state is
2451  *         not running.
2452  *
2453  * The call submits the list into the ring.
2454  *
2455  * If the iowait structure is non-NULL and not equal to the iowait list
2456  * the unprocessed part of the list  will be appended to the list in wait.
2457  *
2458  * In all cases, the tx_list will be updated so the head of the tx_list is
2459  * the list of descriptors that have yet to be transmitted.
2460  *
2461  * The intent of this call is to provide a more efficient
2462  * way of submitting multiple packets to SDMA while holding the tail
2463  * side locking.
2464  *
2465  * Return:
2466  * 0 - Success,
2467  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2468  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2469  */
2470 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2471                      struct list_head *tx_list, u16 *count_out)
2472 {
2473         struct sdma_txreq *tx, *tx_next;
2474         int ret = 0;
2475         unsigned long flags;
2476         u16 tail = INVALID_TAIL;
2477         u32 submit_count = 0, flush_count = 0, total_count;
2478
2479         spin_lock_irqsave(&sde->tail_lock, flags);
2480 retry:
2481         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2482                 tx->wait = iowait_ioww_to_iow(wait);
2483                 if (unlikely(!__sdma_running(sde)))
2484                         goto unlock_noconn;
2485                 if (unlikely(tx->num_desc > sde->desc_avail))
2486                         goto nodesc;
2487                 if (unlikely(tx->tlen)) {
2488                         ret = -EINVAL;
2489                         goto update_tail;
2490                 }
2491                 list_del_init(&tx->list);
2492                 tail = submit_tx(sde, tx);
2493                 submit_count++;
2494                 if (tail != INVALID_TAIL &&
2495                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2496                         sdma_update_tail(sde, tail);
2497                         tail = INVALID_TAIL;
2498                 }
2499         }
2500 update_tail:
2501         total_count = submit_count + flush_count;
2502         if (wait) {
2503                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2504                 iowait_starve_clear(submit_count > 0,
2505                                     iowait_ioww_to_iow(wait));
2506         }
2507         if (tail != INVALID_TAIL)
2508                 sdma_update_tail(sde, tail);
2509         spin_unlock_irqrestore(&sde->tail_lock, flags);
2510         *count_out = total_count;
2511         return ret;
2512 unlock_noconn:
2513         spin_lock(&sde->flushlist_lock);
2514         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2515                 tx->wait = iowait_ioww_to_iow(wait);
2516                 list_del_init(&tx->list);
2517                 tx->next_descq_idx = 0;
2518 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2519                 tx->sn = sde->tail_sn++;
2520                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2521 #endif
2522                 list_add_tail(&tx->list, &sde->flushlist);
2523                 flush_count++;
2524                 iowait_inc_wait_count(wait, tx->num_desc);
2525         }
2526         spin_unlock(&sde->flushlist_lock);
2527         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2528         ret = -ECOMM;
2529         goto update_tail;
2530 nodesc:
2531         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2532         if (ret == -EAGAIN) {
2533                 ret = 0;
2534                 goto retry;
2535         }
2536         sde->descq_full_count++;
2537         goto update_tail;
2538 }
2539
2540 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2541 {
2542         unsigned long flags;
2543
2544         spin_lock_irqsave(&sde->tail_lock, flags);
2545         write_seqlock(&sde->head_lock);
2546
2547         __sdma_process_event(sde, event);
2548
2549         if (sde->state.current_state == sdma_state_s99_running)
2550                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2551
2552         write_sequnlock(&sde->head_lock);
2553         spin_unlock_irqrestore(&sde->tail_lock, flags);
2554 }
2555
2556 static void __sdma_process_event(struct sdma_engine *sde,
2557                                  enum sdma_events event)
2558 {
2559         struct sdma_state *ss = &sde->state;
2560         int need_progress = 0;
2561
2562         /* CONFIG SDMA temporary */
2563 #ifdef CONFIG_SDMA_VERBOSITY
2564         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2565                    sdma_state_names[ss->current_state],
2566                    sdma_event_names[event]);
2567 #endif
2568
2569         switch (ss->current_state) {
2570         case sdma_state_s00_hw_down:
2571                 switch (event) {
2572                 case sdma_event_e00_go_hw_down:
2573                         break;
2574                 case sdma_event_e30_go_running:
2575                         /*
2576                          * If down, but running requested (usually result
2577                          * of link up, then we need to start up.
2578                          * This can happen when hw down is requested while
2579                          * bringing the link up with traffic active on
2580                          * 7220, e.g.
2581                          */
2582                         ss->go_s99_running = 1;
2583                         /* fall through -- and start dma engine */
2584                 case sdma_event_e10_go_hw_start:
2585                         /* This reference means the state machine is started */
2586                         sdma_get(&sde->state);
2587                         sdma_set_state(sde,
2588                                        sdma_state_s10_hw_start_up_halt_wait);
2589                         break;
2590                 case sdma_event_e15_hw_halt_done:
2591                         break;
2592                 case sdma_event_e25_hw_clean_up_done:
2593                         break;
2594                 case sdma_event_e40_sw_cleaned:
2595                         sdma_sw_tear_down(sde);
2596                         break;
2597                 case sdma_event_e50_hw_cleaned:
2598                         break;
2599                 case sdma_event_e60_hw_halted:
2600                         break;
2601                 case sdma_event_e70_go_idle:
2602                         break;
2603                 case sdma_event_e80_hw_freeze:
2604                         break;
2605                 case sdma_event_e81_hw_frozen:
2606                         break;
2607                 case sdma_event_e82_hw_unfreeze:
2608                         break;
2609                 case sdma_event_e85_link_down:
2610                         break;
2611                 case sdma_event_e90_sw_halted:
2612                         break;
2613                 }
2614                 break;
2615
2616         case sdma_state_s10_hw_start_up_halt_wait:
2617                 switch (event) {
2618                 case sdma_event_e00_go_hw_down:
2619                         sdma_set_state(sde, sdma_state_s00_hw_down);
2620                         sdma_sw_tear_down(sde);
2621                         break;
2622                 case sdma_event_e10_go_hw_start:
2623                         break;
2624                 case sdma_event_e15_hw_halt_done:
2625                         sdma_set_state(sde,
2626                                        sdma_state_s15_hw_start_up_clean_wait);
2627                         sdma_start_hw_clean_up(sde);
2628                         break;
2629                 case sdma_event_e25_hw_clean_up_done:
2630                         break;
2631                 case sdma_event_e30_go_running:
2632                         ss->go_s99_running = 1;
2633                         break;
2634                 case sdma_event_e40_sw_cleaned:
2635                         break;
2636                 case sdma_event_e50_hw_cleaned:
2637                         break;
2638                 case sdma_event_e60_hw_halted:
2639                         schedule_work(&sde->err_halt_worker);
2640                         break;
2641                 case sdma_event_e70_go_idle:
2642                         ss->go_s99_running = 0;
2643                         break;
2644                 case sdma_event_e80_hw_freeze:
2645                         break;
2646                 case sdma_event_e81_hw_frozen:
2647                         break;
2648                 case sdma_event_e82_hw_unfreeze:
2649                         break;
2650                 case sdma_event_e85_link_down:
2651                         break;
2652                 case sdma_event_e90_sw_halted:
2653                         break;
2654                 }
2655                 break;
2656
2657         case sdma_state_s15_hw_start_up_clean_wait:
2658                 switch (event) {
2659                 case sdma_event_e00_go_hw_down:
2660                         sdma_set_state(sde, sdma_state_s00_hw_down);
2661                         sdma_sw_tear_down(sde);
2662                         break;
2663                 case sdma_event_e10_go_hw_start:
2664                         break;
2665                 case sdma_event_e15_hw_halt_done:
2666                         break;
2667                 case sdma_event_e25_hw_clean_up_done:
2668                         sdma_hw_start_up(sde);
2669                         sdma_set_state(sde, ss->go_s99_running ?
2670                                        sdma_state_s99_running :
2671                                        sdma_state_s20_idle);
2672                         break;
2673                 case sdma_event_e30_go_running:
2674                         ss->go_s99_running = 1;
2675                         break;
2676                 case sdma_event_e40_sw_cleaned:
2677                         break;
2678                 case sdma_event_e50_hw_cleaned:
2679                         break;
2680                 case sdma_event_e60_hw_halted:
2681                         break;
2682                 case sdma_event_e70_go_idle:
2683                         ss->go_s99_running = 0;
2684                         break;
2685                 case sdma_event_e80_hw_freeze:
2686                         break;
2687                 case sdma_event_e81_hw_frozen:
2688                         break;
2689                 case sdma_event_e82_hw_unfreeze:
2690                         break;
2691                 case sdma_event_e85_link_down:
2692                         break;
2693                 case sdma_event_e90_sw_halted:
2694                         break;
2695                 }
2696                 break;
2697
2698         case sdma_state_s20_idle:
2699                 switch (event) {
2700                 case sdma_event_e00_go_hw_down:
2701                         sdma_set_state(sde, sdma_state_s00_hw_down);
2702                         sdma_sw_tear_down(sde);
2703                         break;
2704                 case sdma_event_e10_go_hw_start:
2705                         break;
2706                 case sdma_event_e15_hw_halt_done:
2707                         break;
2708                 case sdma_event_e25_hw_clean_up_done:
2709                         break;
2710                 case sdma_event_e30_go_running:
2711                         sdma_set_state(sde, sdma_state_s99_running);
2712                         ss->go_s99_running = 1;
2713                         break;
2714                 case sdma_event_e40_sw_cleaned:
2715                         break;
2716                 case sdma_event_e50_hw_cleaned:
2717                         break;
2718                 case sdma_event_e60_hw_halted:
2719                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2720                         schedule_work(&sde->err_halt_worker);
2721                         break;
2722                 case sdma_event_e70_go_idle:
2723                         break;
2724                 case sdma_event_e85_link_down:
2725                         /* fall through */
2726                 case sdma_event_e80_hw_freeze:
2727                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2728                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2729                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2730                         break;
2731                 case sdma_event_e81_hw_frozen:
2732                         break;
2733                 case sdma_event_e82_hw_unfreeze:
2734                         break;
2735                 case sdma_event_e90_sw_halted:
2736                         break;
2737                 }
2738                 break;
2739
2740         case sdma_state_s30_sw_clean_up_wait:
2741                 switch (event) {
2742                 case sdma_event_e00_go_hw_down:
2743                         sdma_set_state(sde, sdma_state_s00_hw_down);
2744                         break;
2745                 case sdma_event_e10_go_hw_start:
2746                         break;
2747                 case sdma_event_e15_hw_halt_done:
2748                         break;
2749                 case sdma_event_e25_hw_clean_up_done:
2750                         break;
2751                 case sdma_event_e30_go_running:
2752                         ss->go_s99_running = 1;
2753                         break;
2754                 case sdma_event_e40_sw_cleaned:
2755                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2756                         sdma_start_hw_clean_up(sde);
2757                         break;
2758                 case sdma_event_e50_hw_cleaned:
2759                         break;
2760                 case sdma_event_e60_hw_halted:
2761                         break;
2762                 case sdma_event_e70_go_idle:
2763                         ss->go_s99_running = 0;
2764                         break;
2765                 case sdma_event_e80_hw_freeze:
2766                         break;
2767                 case sdma_event_e81_hw_frozen:
2768                         break;
2769                 case sdma_event_e82_hw_unfreeze:
2770                         break;
2771                 case sdma_event_e85_link_down:
2772                         ss->go_s99_running = 0;
2773                         break;
2774                 case sdma_event_e90_sw_halted:
2775                         break;
2776                 }
2777                 break;
2778
2779         case sdma_state_s40_hw_clean_up_wait:
2780                 switch (event) {
2781                 case sdma_event_e00_go_hw_down:
2782                         sdma_set_state(sde, sdma_state_s00_hw_down);
2783                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2784                         break;
2785                 case sdma_event_e10_go_hw_start:
2786                         break;
2787                 case sdma_event_e15_hw_halt_done:
2788                         break;
2789                 case sdma_event_e25_hw_clean_up_done:
2790                         sdma_hw_start_up(sde);
2791                         sdma_set_state(sde, ss->go_s99_running ?
2792                                        sdma_state_s99_running :
2793                                        sdma_state_s20_idle);
2794                         break;
2795                 case sdma_event_e30_go_running:
2796                         ss->go_s99_running = 1;
2797                         break;
2798                 case sdma_event_e40_sw_cleaned:
2799                         break;
2800                 case sdma_event_e50_hw_cleaned:
2801                         break;
2802                 case sdma_event_e60_hw_halted:
2803                         break;
2804                 case sdma_event_e70_go_idle:
2805                         ss->go_s99_running = 0;
2806                         break;
2807                 case sdma_event_e80_hw_freeze:
2808                         break;
2809                 case sdma_event_e81_hw_frozen:
2810                         break;
2811                 case sdma_event_e82_hw_unfreeze:
2812                         break;
2813                 case sdma_event_e85_link_down:
2814                         ss->go_s99_running = 0;
2815                         break;
2816                 case sdma_event_e90_sw_halted:
2817                         break;
2818                 }
2819                 break;
2820
2821         case sdma_state_s50_hw_halt_wait:
2822                 switch (event) {
2823                 case sdma_event_e00_go_hw_down:
2824                         sdma_set_state(sde, sdma_state_s00_hw_down);
2825                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2826                         break;
2827                 case sdma_event_e10_go_hw_start:
2828                         break;
2829                 case sdma_event_e15_hw_halt_done:
2830                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2831                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2832                         break;
2833                 case sdma_event_e25_hw_clean_up_done:
2834                         break;
2835                 case sdma_event_e30_go_running:
2836                         ss->go_s99_running = 1;
2837                         break;
2838                 case sdma_event_e40_sw_cleaned:
2839                         break;
2840                 case sdma_event_e50_hw_cleaned:
2841                         break;
2842                 case sdma_event_e60_hw_halted:
2843                         schedule_work(&sde->err_halt_worker);
2844                         break;
2845                 case sdma_event_e70_go_idle:
2846                         ss->go_s99_running = 0;
2847                         break;
2848                 case sdma_event_e80_hw_freeze:
2849                         break;
2850                 case sdma_event_e81_hw_frozen:
2851                         break;
2852                 case sdma_event_e82_hw_unfreeze:
2853                         break;
2854                 case sdma_event_e85_link_down:
2855                         ss->go_s99_running = 0;
2856                         break;
2857                 case sdma_event_e90_sw_halted:
2858                         break;
2859                 }
2860                 break;
2861
2862         case sdma_state_s60_idle_halt_wait:
2863                 switch (event) {
2864                 case sdma_event_e00_go_hw_down:
2865                         sdma_set_state(sde, sdma_state_s00_hw_down);
2866                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2867                         break;
2868                 case sdma_event_e10_go_hw_start:
2869                         break;
2870                 case sdma_event_e15_hw_halt_done:
2871                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2872                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2873                         break;
2874                 case sdma_event_e25_hw_clean_up_done:
2875                         break;
2876                 case sdma_event_e30_go_running:
2877                         ss->go_s99_running = 1;
2878                         break;
2879                 case sdma_event_e40_sw_cleaned:
2880                         break;
2881                 case sdma_event_e50_hw_cleaned:
2882                         break;
2883                 case sdma_event_e60_hw_halted:
2884                         schedule_work(&sde->err_halt_worker);
2885                         break;
2886                 case sdma_event_e70_go_idle:
2887                         ss->go_s99_running = 0;
2888                         break;
2889                 case sdma_event_e80_hw_freeze:
2890                         break;
2891                 case sdma_event_e81_hw_frozen:
2892                         break;
2893                 case sdma_event_e82_hw_unfreeze:
2894                         break;
2895                 case sdma_event_e85_link_down:
2896                         break;
2897                 case sdma_event_e90_sw_halted:
2898                         break;
2899                 }
2900                 break;
2901
2902         case sdma_state_s80_hw_freeze:
2903                 switch (event) {
2904                 case sdma_event_e00_go_hw_down:
2905                         sdma_set_state(sde, sdma_state_s00_hw_down);
2906                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2907                         break;
2908                 case sdma_event_e10_go_hw_start:
2909                         break;
2910                 case sdma_event_e15_hw_halt_done:
2911                         break;
2912                 case sdma_event_e25_hw_clean_up_done:
2913                         break;
2914                 case sdma_event_e30_go_running:
2915                         ss->go_s99_running = 1;
2916                         break;
2917                 case sdma_event_e40_sw_cleaned:
2918                         break;
2919                 case sdma_event_e50_hw_cleaned:
2920                         break;
2921                 case sdma_event_e60_hw_halted:
2922                         break;
2923                 case sdma_event_e70_go_idle:
2924                         ss->go_s99_running = 0;
2925                         break;
2926                 case sdma_event_e80_hw_freeze:
2927                         break;
2928                 case sdma_event_e81_hw_frozen:
2929                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2930                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2931                         break;
2932                 case sdma_event_e82_hw_unfreeze:
2933                         break;
2934                 case sdma_event_e85_link_down:
2935                         break;
2936                 case sdma_event_e90_sw_halted:
2937                         break;
2938                 }
2939                 break;
2940
2941         case sdma_state_s82_freeze_sw_clean:
2942                 switch (event) {
2943                 case sdma_event_e00_go_hw_down:
2944                         sdma_set_state(sde, sdma_state_s00_hw_down);
2945                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2946                         break;
2947                 case sdma_event_e10_go_hw_start:
2948                         break;
2949                 case sdma_event_e15_hw_halt_done:
2950                         break;
2951                 case sdma_event_e25_hw_clean_up_done:
2952                         break;
2953                 case sdma_event_e30_go_running:
2954                         ss->go_s99_running = 1;
2955                         break;
2956                 case sdma_event_e40_sw_cleaned:
2957                         /* notify caller this engine is done cleaning */
2958                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2959                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2960                         break;
2961                 case sdma_event_e50_hw_cleaned:
2962                         break;
2963                 case sdma_event_e60_hw_halted:
2964                         break;
2965                 case sdma_event_e70_go_idle:
2966                         ss->go_s99_running = 0;
2967                         break;
2968                 case sdma_event_e80_hw_freeze:
2969                         break;
2970                 case sdma_event_e81_hw_frozen:
2971                         break;
2972                 case sdma_event_e82_hw_unfreeze:
2973                         sdma_hw_start_up(sde);
2974                         sdma_set_state(sde, ss->go_s99_running ?
2975                                        sdma_state_s99_running :
2976                                        sdma_state_s20_idle);
2977                         break;
2978                 case sdma_event_e85_link_down:
2979                         break;
2980                 case sdma_event_e90_sw_halted:
2981                         break;
2982                 }
2983                 break;
2984
2985         case sdma_state_s99_running:
2986                 switch (event) {
2987                 case sdma_event_e00_go_hw_down:
2988                         sdma_set_state(sde, sdma_state_s00_hw_down);
2989                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2990                         break;
2991                 case sdma_event_e10_go_hw_start:
2992                         break;
2993                 case sdma_event_e15_hw_halt_done:
2994                         break;
2995                 case sdma_event_e25_hw_clean_up_done:
2996                         break;
2997                 case sdma_event_e30_go_running:
2998                         break;
2999                 case sdma_event_e40_sw_cleaned:
3000                         break;
3001                 case sdma_event_e50_hw_cleaned:
3002                         break;
3003                 case sdma_event_e60_hw_halted:
3004                         need_progress = 1;
3005                         sdma_err_progress_check_schedule(sde);
3006                         /* fall through */
3007                 case sdma_event_e90_sw_halted:
3008                         /*
3009                         * SW initiated halt does not perform engines
3010                         * progress check
3011                         */
3012                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3013                         schedule_work(&sde->err_halt_worker);
3014                         break;
3015                 case sdma_event_e70_go_idle:
3016                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3017                         break;
3018                 case sdma_event_e85_link_down:
3019                         ss->go_s99_running = 0;
3020                         /* fall through */
3021                 case sdma_event_e80_hw_freeze:
3022                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3023                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3024                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3025                         break;
3026                 case sdma_event_e81_hw_frozen:
3027                         break;
3028                 case sdma_event_e82_hw_unfreeze:
3029                         break;
3030                 }
3031                 break;
3032         }
3033
3034         ss->last_event = event;
3035         if (need_progress)
3036                 sdma_make_progress(sde, 0);
3037 }
3038
3039 /*
3040  * _extend_sdma_tx_descs() - helper to extend txreq
3041  *
3042  * This is called once the initial nominal allocation
3043  * of descriptors in the sdma_txreq is exhausted.
3044  *
3045  * The code will bump the allocation up to the max
3046  * of MAX_DESC (64) descriptors. There doesn't seem
3047  * much point in an interim step. The last descriptor
3048  * is reserved for coalesce buffer in order to support
3049  * cases where input packet has >MAX_DESC iovecs.
3050  *
3051  */
3052 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3053 {
3054         int i;
3055
3056         /* Handle last descriptor */
3057         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3058                 /* if tlen is 0, it is for padding, release last descriptor */
3059                 if (!tx->tlen) {
3060                         tx->desc_limit = MAX_DESC;
3061                 } else if (!tx->coalesce_buf) {
3062                         /* allocate coalesce buffer with space for padding */
3063                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3064                                                    GFP_ATOMIC);
3065                         if (!tx->coalesce_buf)
3066                                 goto enomem;
3067                         tx->coalesce_idx = 0;
3068                 }
3069                 return 0;
3070         }
3071
3072         if (unlikely(tx->num_desc == MAX_DESC))
3073                 goto enomem;
3074
3075         tx->descp = kmalloc_array(
3076                         MAX_DESC,
3077                         sizeof(struct sdma_desc),
3078                         GFP_ATOMIC);
3079         if (!tx->descp)
3080                 goto enomem;
3081
3082         /* reserve last descriptor for coalescing */
3083         tx->desc_limit = MAX_DESC - 1;
3084         /* copy ones already built */
3085         for (i = 0; i < tx->num_desc; i++)
3086                 tx->descp[i] = tx->descs[i];
3087         return 0;
3088 enomem:
3089         __sdma_txclean(dd, tx);
3090         return -ENOMEM;
3091 }
3092
3093 /*
3094  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3095  *
3096  * This is called once the initial nominal allocation of descriptors
3097  * in the sdma_txreq is exhausted.
3098  *
3099  * This function calls _extend_sdma_tx_descs to extend or allocate
3100  * coalesce buffer. If there is a allocated coalesce buffer, it will
3101  * copy the input packet data into the coalesce buffer. It also adds
3102  * coalesce buffer descriptor once when whole packet is received.
3103  *
3104  * Return:
3105  * <0 - error
3106  * 0 - coalescing, don't populate descriptor
3107  * 1 - continue with populating descriptor
3108  */
3109 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3110                            int type, void *kvaddr, struct page *page,
3111                            unsigned long offset, u16 len)
3112 {
3113         int pad_len, rval;
3114         dma_addr_t addr;
3115
3116         rval = _extend_sdma_tx_descs(dd, tx);
3117         if (rval) {
3118                 __sdma_txclean(dd, tx);
3119                 return rval;
3120         }
3121
3122         /* If coalesce buffer is allocated, copy data into it */
3123         if (tx->coalesce_buf) {
3124                 if (type == SDMA_MAP_NONE) {
3125                         __sdma_txclean(dd, tx);
3126                         return -EINVAL;
3127                 }
3128
3129                 if (type == SDMA_MAP_PAGE) {
3130                         kvaddr = kmap(page);
3131                         kvaddr += offset;
3132                 } else if (WARN_ON(!kvaddr)) {
3133                         __sdma_txclean(dd, tx);
3134                         return -EINVAL;
3135                 }
3136
3137                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3138                 tx->coalesce_idx += len;
3139                 if (type == SDMA_MAP_PAGE)
3140                         kunmap(page);
3141
3142                 /* If there is more data, return */
3143                 if (tx->tlen - tx->coalesce_idx)
3144                         return 0;
3145
3146                 /* Whole packet is received; add any padding */
3147                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3148                 if (pad_len) {
3149                         pad_len = sizeof(u32) - pad_len;
3150                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3151                         /* padding is taken care of for coalescing case */
3152                         tx->packet_len += pad_len;
3153                         tx->tlen += pad_len;
3154                 }
3155
3156                 /* dma map the coalesce buffer */
3157                 addr = dma_map_single(&dd->pcidev->dev,
3158                                       tx->coalesce_buf,
3159                                       tx->tlen,
3160                                       DMA_TO_DEVICE);
3161
3162                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3163                         __sdma_txclean(dd, tx);
3164                         return -ENOSPC;
3165                 }
3166
3167                 /* Add descriptor for coalesce buffer */
3168                 tx->desc_limit = MAX_DESC;
3169                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3170                                          addr, tx->tlen);
3171         }
3172
3173         return 1;
3174 }
3175
3176 /* Update sdes when the lmc changes */
3177 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3178 {
3179         struct sdma_engine *sde;
3180         int i;
3181         u64 sreg;
3182
3183         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3184                 SD(CHECK_SLID_MASK_SHIFT)) |
3185                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3186                 SD(CHECK_SLID_VALUE_SHIFT));
3187
3188         for (i = 0; i < dd->num_sdma; i++) {
3189                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3190                           i, (u32)sreg);
3191                 sde = &dd->per_sdma[i];
3192                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3193         }
3194 }
3195
3196 /* tx not dword sized - pad */
3197 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3198 {
3199         int rval = 0;
3200
3201         tx->num_desc++;
3202         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3203                 rval = _extend_sdma_tx_descs(dd, tx);
3204                 if (rval) {
3205                         __sdma_txclean(dd, tx);
3206                         return rval;
3207                 }
3208         }
3209         /* finish the one just added */
3210         make_tx_sdma_desc(
3211                 tx,
3212                 SDMA_MAP_NONE,
3213                 dd->sdma_pad_phys,
3214                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3215         _sdma_close_tx(dd, tx);
3216         return rval;
3217 }
3218
3219 /*
3220  * Add ahg to the sdma_txreq
3221  *
3222  * The logic will consume up to 3
3223  * descriptors at the beginning of
3224  * sdma_txreq.
3225  */
3226 void _sdma_txreq_ahgadd(
3227         struct sdma_txreq *tx,
3228         u8 num_ahg,
3229         u8 ahg_entry,
3230         u32 *ahg,
3231         u8 ahg_hlen)
3232 {
3233         u32 i, shift = 0, desc = 0;
3234         u8 mode;
3235
3236         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3237         /* compute mode */
3238         if (num_ahg == 1)
3239                 mode = SDMA_AHG_APPLY_UPDATE1;
3240         else if (num_ahg <= 5)
3241                 mode = SDMA_AHG_APPLY_UPDATE2;
3242         else
3243                 mode = SDMA_AHG_APPLY_UPDATE3;
3244         tx->num_desc++;
3245         /* initialize to consumed descriptors to zero */
3246         switch (mode) {
3247         case SDMA_AHG_APPLY_UPDATE3:
3248                 tx->num_desc++;
3249                 tx->descs[2].qw[0] = 0;
3250                 tx->descs[2].qw[1] = 0;
3251                 /* FALLTHROUGH */
3252         case SDMA_AHG_APPLY_UPDATE2:
3253                 tx->num_desc++;
3254                 tx->descs[1].qw[0] = 0;
3255                 tx->descs[1].qw[1] = 0;
3256                 break;
3257         }
3258         ahg_hlen >>= 2;
3259         tx->descs[0].qw[1] |=
3260                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3261                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3262                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3263                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3264                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3265                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3266                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3267                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3268         for (i = 0; i < (num_ahg - 1); i++) {
3269                 if (!shift && !(i & 2))
3270                         desc++;
3271                 tx->descs[desc].qw[!!(i & 2)] |=
3272                         (((u64)ahg[i + 1])
3273                                 << shift);
3274                 shift = (shift + 32) & 63;
3275         }
3276 }
3277
3278 /**
3279  * sdma_ahg_alloc - allocate an AHG entry
3280  * @sde: engine to allocate from
3281  *
3282  * Return:
3283  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3284  * -ENOSPC if an entry is not available
3285  */
3286 int sdma_ahg_alloc(struct sdma_engine *sde)
3287 {
3288         int nr;
3289         int oldbit;
3290
3291         if (!sde) {
3292                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3293                 return -EINVAL;
3294         }
3295         while (1) {
3296                 nr = ffz(READ_ONCE(sde->ahg_bits));
3297                 if (nr > 31) {
3298                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3299                         return -ENOSPC;
3300                 }
3301                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3302                 if (!oldbit)
3303                         break;
3304                 cpu_relax();
3305         }
3306         trace_hfi1_ahg_allocate(sde, nr);
3307         return nr;
3308 }
3309
3310 /**
3311  * sdma_ahg_free - free an AHG entry
3312  * @sde: engine to return AHG entry
3313  * @ahg_index: index to free
3314  *
3315  * This routine frees the indicate AHG entry.
3316  */
3317 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3318 {
3319         if (!sde)
3320                 return;
3321         trace_hfi1_ahg_deallocate(sde, ahg_index);
3322         if (ahg_index < 0 || ahg_index > 31)
3323                 return;
3324         clear_bit(ahg_index, &sde->ahg_bits);
3325 }
3326
3327 /*
3328  * SPC freeze handling for SDMA engines.  Called when the driver knows
3329  * the SPC is going into a freeze but before the freeze is fully
3330  * settled.  Generally an error interrupt.
3331  *
3332  * This event will pull the engine out of running so no more entries can be
3333  * added to the engine's queue.
3334  */
3335 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3336 {
3337         int i;
3338         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3339                                              sdma_event_e80_hw_freeze;
3340
3341         /* set up the wait but do not wait here */
3342         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3343
3344         /* tell all engines to stop running and wait */
3345         for (i = 0; i < dd->num_sdma; i++)
3346                 sdma_process_event(&dd->per_sdma[i], event);
3347
3348         /* sdma_freeze() will wait for all engines to have stopped */
3349 }
3350
3351 /*
3352  * SPC freeze handling for SDMA engines.  Called when the driver knows
3353  * the SPC is fully frozen.
3354  */
3355 void sdma_freeze(struct hfi1_devdata *dd)
3356 {
3357         int i;
3358         int ret;
3359
3360         /*
3361          * Make sure all engines have moved out of the running state before
3362          * continuing.
3363          */
3364         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3365                                        atomic_read(&dd->sdma_unfreeze_count) <=
3366                                        0);
3367         /* interrupted or count is negative, then unloading - just exit */
3368         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3369                 return;
3370
3371         /* set up the count for the next wait */
3372         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3373
3374         /* tell all engines that the SPC is frozen, they can start cleaning */
3375         for (i = 0; i < dd->num_sdma; i++)
3376                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3377
3378         /*
3379          * Wait for everyone to finish software clean before exiting.  The
3380          * software clean will read engine CSRs, so must be completed before
3381          * the next step, which will clear the engine CSRs.
3382          */
3383         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3384                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3385         /* no need to check results - done no matter what */
3386 }
3387
3388 /*
3389  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3390  *
3391  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3392  * that is left is a software clean.  We could do it after the SPC is fully
3393  * frozen, but then we'd have to add another state to wait for the unfreeze.
3394  * Instead, just defer the software clean until the unfreeze step.
3395  */
3396 void sdma_unfreeze(struct hfi1_devdata *dd)
3397 {
3398         int i;
3399
3400         /* tell all engines start freeze clean up */
3401         for (i = 0; i < dd->num_sdma; i++)
3402                 sdma_process_event(&dd->per_sdma[i],
3403                                    sdma_event_e82_hw_unfreeze);
3404 }
3405
3406 /**
3407  * _sdma_engine_progress_schedule() - schedule progress on engine
3408  * @sde: sdma_engine to schedule progress
3409  *
3410  */
3411 void _sdma_engine_progress_schedule(
3412         struct sdma_engine *sde)
3413 {
3414         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3415         /* assume we have selected a good cpu */
3416         write_csr(sde->dd,
3417                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3418                   sde->progress_mask);
3419 }