scsi: core: Avoid that system resume triggers a kernel warning
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496         unsigned index;
497         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560  * flush ring for recovery
561  */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564         u16 head, tail;
565         int progress = 0;
566         struct sdma_txreq *txp = get_txhead(sde);
567
568         /* The reason for some of the complexity of this code is that
569          * not all descriptors have corresponding txps.  So, we have to
570          * be able to skip over descs until we wander into the range of
571          * the next txp on the list.
572          */
573         head = sde->descq_head & sde->sdma_mask;
574         tail = sde->descq_tail & sde->sdma_mask;
575         while (head != tail) {
576                 /* advance head, wrap if needed */
577                 head = ++sde->descq_head & sde->sdma_mask;
578                 /* if now past this txp's descs, do the callback */
579                 if (txp && txp->next_descq_idx == head) {
580                         /* remove from list */
581                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583                         trace_hfi1_sdma_progress(sde, head, tail, txp);
584                         txp = get_txhead(sde);
585                 }
586                 progress++;
587         }
588         if (progress)
589                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594         struct sdma_engine *sde = (struct sdma_engine *)opaque;
595         unsigned long flags;
596
597         spin_lock_irqsave(&sde->tail_lock, flags);
598         write_seqlock(&sde->head_lock);
599
600         /*
601          * At this point, the following should always be true:
602          * - We are halted, so no more descriptors are getting retired.
603          * - We are not running, so no one is submitting new work.
604          * - Only we can send the e40_sw_cleaned, so we can't start
605          *   running again until we say so.  So, the active list and
606          *   descq are ours to play with.
607          */
608
609         /*
610          * In the error clean up sequence, software clean must be called
611          * before the hardware clean so we can use the hardware head in
612          * the progress routine.  A hardware clean or SPC unfreeze will
613          * reset the hardware head.
614          *
615          * Process all retired requests. The progress routine will use the
616          * latest physical hardware head - we are not running so speed does
617          * not matter.
618          */
619         sdma_make_progress(sde, 0);
620
621         sdma_flush(sde);
622
623         /*
624          * Reset our notion of head and tail.
625          * Note that the HW registers have been reset via an earlier
626          * clean up.
627          */
628         sde->descq_tail = 0;
629         sde->descq_head = 0;
630         sde->desc_avail = sdma_descq_freecnt(sde);
631         *sde->head_dma = 0;
632
633         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635         write_sequnlock(&sde->head_lock);
636         spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641         struct sdma_state *ss = &sde->state;
642
643         /* Releasing this reference means the state machine has stopped. */
644         sdma_put(ss);
645
646         /* stop waiting for all unfreeze events to complete */
647         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
656 static void sdma_set_state(struct sdma_engine *sde,
657                            enum sdma_states next_state)
658 {
659         struct sdma_state *ss = &sde->state;
660         const struct sdma_set_state_action *action = sdma_action_table;
661         unsigned op = 0;
662
663         trace_hfi1_sdma_state(
664                 sde,
665                 sdma_state_names[ss->current_state],
666                 sdma_state_names[next_state]);
667
668         /* debugging bookkeeping */
669         ss->previous_state = ss->current_state;
670         ss->previous_op = ss->current_op;
671         ss->current_state = next_state;
672
673         if (ss->previous_state != sdma_state_s99_running &&
674             next_state == sdma_state_s99_running)
675                 sdma_flush(sde);
676
677         if (action[next_state].op_enable)
678                 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680         if (action[next_state].op_intenable)
681                 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683         if (action[next_state].op_halt)
684                 op |= SDMA_SENDCTRL_OP_HALT;
685
686         if (action[next_state].op_cleanup)
687                 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689         if (action[next_state].go_s99_running_tofalse)
690                 ss->go_s99_running = 0;
691
692         if (action[next_state].go_s99_running_totrue)
693                 ss->go_s99_running = 1;
694
695         ss->current_op = op;
696         sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700  * sdma_get_descq_cnt() - called when device probed
701  *
702  * Return a validated descq count.
703  *
704  * This is currently only used in the verbs initialization to build the tx
705  * list.
706  *
707  * This will probably be deleted in favor of a more scalable approach to
708  * alloc tx's.
709  *
710  */
711 u16 sdma_get_descq_cnt(void)
712 {
713         u16 count = sdma_descq_cnt;
714
715         if (!count)
716                 return SDMA_DESCQ_CNT;
717         /* count must be a power of 2 greater than 64 and less than
718          * 32768.   Otherwise return default.
719          */
720         if (!is_power_of_2(count))
721                 return SDMA_DESCQ_CNT;
722         if (count < 64 || count > 32768)
723                 return SDMA_DESCQ_CNT;
724         return count;
725 }
726
727 /**
728  * sdma_engine_get_vl() - return vl for a given sdma engine
729  * @sde: sdma engine
730  *
731  * This function returns the vl mapped to a given engine, or an error if
732  * the mapping can't be found. The mapping fields are protected by RCU.
733  */
734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736         struct hfi1_devdata *dd = sde->dd;
737         struct sdma_vl_map *m;
738         u8 vl;
739
740         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741                 return -EINVAL;
742
743         rcu_read_lock();
744         m = rcu_dereference(dd->sdma_map);
745         if (unlikely(!m)) {
746                 rcu_read_unlock();
747                 return -EINVAL;
748         }
749         vl = m->engine_to_vl[sde->this_idx];
750         rcu_read_unlock();
751
752         return vl;
753 }
754
755 /**
756  * sdma_select_engine_vl() - select sdma engine
757  * @dd: devdata
758  * @selector: a spreading factor
759  * @vl: this vl
760  *
761  *
762  * This function returns an engine based on the selector and a vl.  The
763  * mapping fields are protected by RCU.
764  */
765 struct sdma_engine *sdma_select_engine_vl(
766         struct hfi1_devdata *dd,
767         u32 selector,
768         u8 vl)
769 {
770         struct sdma_vl_map *m;
771         struct sdma_map_elem *e;
772         struct sdma_engine *rval;
773
774         /* NOTE This should only happen if SC->VL changed after the initial
775          *      checks on the QP/AH
776          *      Default will return engine 0 below
777          */
778         if (vl >= num_vls) {
779                 rval = NULL;
780                 goto done;
781         }
782
783         rcu_read_lock();
784         m = rcu_dereference(dd->sdma_map);
785         if (unlikely(!m)) {
786                 rcu_read_unlock();
787                 return &dd->per_sdma[0];
788         }
789         e = m->map[vl & m->mask];
790         rval = e->sde[selector & e->mask];
791         rcu_read_unlock();
792
793 done:
794         rval =  !rval ? &dd->per_sdma[0] : rval;
795         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796         return rval;
797 }
798
799 /**
800  * sdma_select_engine_sc() - select sdma engine
801  * @dd: devdata
802  * @selector: a spreading factor
803  * @sc5: the 5 bit sc
804  *
805  *
806  * This function returns an engine based on the selector and an sc.
807  */
808 struct sdma_engine *sdma_select_engine_sc(
809         struct hfi1_devdata *dd,
810         u32 selector,
811         u8 sc5)
812 {
813         u8 vl = sc_to_vlt(dd, sc5);
814
815         return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819         u32 mask;
820         u8 ctr;
821         struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825         unsigned long cpu_id;
826         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827         struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833         .nelem_hint = NR_CPUS_HINT,
834         .head_offset = offsetof(struct sdma_rht_node, node),
835         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837         .max_size = NR_CPUS,
838         .min_size = 8,
839         .automatic_shrinking = true,
840 };
841
842 /*
843  * sdma_select_user_engine() - select sdma engine based on user setup
844  * @dd: devdata
845  * @selector: a spreading factor
846  * @vl: this vl
847  *
848  * This function returns an sdma engine for a user sdma request.
849  * User defined sdma engine affinity setting is honored when applicable,
850  * otherwise system default sdma engine mapping is used. To ensure correct
851  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852  */
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854                                             u32 selector, u8 vl)
855 {
856         struct sdma_rht_node *rht_node;
857         struct sdma_engine *sde = NULL;
858         const struct cpumask *current_mask = &current->cpus_allowed;
859         unsigned long cpu_id;
860
861         /*
862          * To ensure that always the same sdma engine(s) will be
863          * selected make sure the process is pinned to this CPU only.
864          */
865         if (cpumask_weight(current_mask) != 1)
866                 goto out;
867
868         cpu_id = smp_processor_id();
869         rcu_read_lock();
870         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871                                           sdma_rht_params);
872
873         if (rht_node && rht_node->map[vl]) {
874                 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876                 sde = map->sde[selector & map->mask];
877         }
878         rcu_read_unlock();
879
880         if (sde)
881                 return sde;
882
883 out:
884         return sdma_select_engine_vl(dd, selector, vl);
885 }
886
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889         int i;
890
891         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892                 map->sde[map->ctr + i] = map->sde[i];
893 }
894
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896                                  struct sdma_engine *sde)
897 {
898         unsigned int i, pow;
899
900         /* only need to check the first ctr entries for a match */
901         for (i = 0; i < map->ctr; i++) {
902                 if (map->sde[i] == sde) {
903                         memmove(&map->sde[i], &map->sde[i + 1],
904                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
905                         map->ctr--;
906                         pow = roundup_pow_of_two(map->ctr ? : 1);
907                         map->mask = pow - 1;
908                         sdma_populate_sde_map(map);
909                         break;
910                 }
911         }
912 }
913
914 /*
915  * Prevents concurrent reads and writes of the sdma engine cpu_mask
916  */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920                                 size_t count)
921 {
922         struct hfi1_devdata *dd = sde->dd;
923         cpumask_var_t mask, new_mask;
924         unsigned long cpu;
925         int ret, vl, sz;
926         struct sdma_rht_node *rht_node;
927
928         vl = sdma_engine_get_vl(sde);
929         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
930                 return -EINVAL;
931
932         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933         if (!ret)
934                 return -ENOMEM;
935
936         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937         if (!ret) {
938                 free_cpumask_var(mask);
939                 return -ENOMEM;
940         }
941         ret = cpulist_parse(buf, mask);
942         if (ret)
943                 goto out_free;
944
945         if (!cpumask_subset(mask, cpu_online_mask)) {
946                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947                 ret = -EINVAL;
948                 goto out_free;
949         }
950
951         sz = sizeof(struct sdma_rht_map_elem) +
952                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954         mutex_lock(&process_to_sde_mutex);
955
956         for_each_cpu(cpu, mask) {
957                 /* Check if we have this already mapped */
958                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959                         cpumask_set_cpu(cpu, new_mask);
960                         continue;
961                 }
962
963                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
964                                                   sdma_rht_params);
965                 if (!rht_node) {
966                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967                         if (!rht_node) {
968                                 ret = -ENOMEM;
969                                 goto out;
970                         }
971
972                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973                         if (!rht_node->map[vl]) {
974                                 kfree(rht_node);
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978                         rht_node->cpu_id = cpu;
979                         rht_node->map[vl]->mask = 0;
980                         rht_node->map[vl]->ctr = 1;
981                         rht_node->map[vl]->sde[0] = sde;
982
983                         ret = rhashtable_insert_fast(dd->sdma_rht,
984                                                      &rht_node->node,
985                                                      sdma_rht_params);
986                         if (ret) {
987                                 kfree(rht_node->map[vl]);
988                                 kfree(rht_node);
989                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990                                            cpu);
991                                 goto out;
992                         }
993
994                 } else {
995                         int ctr, pow;
996
997                         /* Add new user mappings */
998                         if (!rht_node->map[vl])
999                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001                         if (!rht_node->map[vl]) {
1002                                 ret = -ENOMEM;
1003                                 goto out;
1004                         }
1005
1006                         rht_node->map[vl]->ctr++;
1007                         ctr = rht_node->map[vl]->ctr;
1008                         rht_node->map[vl]->sde[ctr - 1] = sde;
1009                         pow = roundup_pow_of_two(ctr);
1010                         rht_node->map[vl]->mask = pow - 1;
1011
1012                         /* Populate the sde map table */
1013                         sdma_populate_sde_map(rht_node->map[vl]);
1014                 }
1015                 cpumask_set_cpu(cpu, new_mask);
1016         }
1017
1018         /* Clean up old mappings */
1019         for_each_cpu(cpu, cpu_online_mask) {
1020                 struct sdma_rht_node *rht_node;
1021
1022                 /* Don't cleanup sdes that are set in the new mask */
1023                 if (cpumask_test_cpu(cpu, mask))
1024                         continue;
1025
1026                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1027                                                   sdma_rht_params);
1028                 if (rht_node) {
1029                         bool empty = true;
1030                         int i;
1031
1032                         /* Remove mappings for old sde */
1033                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034                                 if (rht_node->map[i])
1035                                         sdma_cleanup_sde_map(rht_node->map[i],
1036                                                              sde);
1037
1038                         /* Free empty hash table entries */
1039                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040                                 if (!rht_node->map[i])
1041                                         continue;
1042
1043                                 if (rht_node->map[i]->ctr) {
1044                                         empty = false;
1045                                         break;
1046                                 }
1047                         }
1048
1049                         if (empty) {
1050                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1051                                                              &rht_node->node,
1052                                                              sdma_rht_params);
1053                                 WARN_ON(ret);
1054
1055                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056                                         kfree(rht_node->map[i]);
1057
1058                                 kfree(rht_node);
1059                         }
1060                 }
1061         }
1062
1063         cpumask_copy(&sde->cpu_mask, new_mask);
1064 out:
1065         mutex_unlock(&process_to_sde_mutex);
1066 out_free:
1067         free_cpumask_var(mask);
1068         free_cpumask_var(new_mask);
1069         return ret ? : strnlen(buf, PAGE_SIZE);
1070 }
1071
1072 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 {
1074         mutex_lock(&process_to_sde_mutex);
1075         if (cpumask_empty(&sde->cpu_mask))
1076                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077         else
1078                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079         mutex_unlock(&process_to_sde_mutex);
1080         return strnlen(buf, PAGE_SIZE);
1081 }
1082
1083 static void sdma_rht_free(void *ptr, void *arg)
1084 {
1085         struct sdma_rht_node *rht_node = ptr;
1086         int i;
1087
1088         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089                 kfree(rht_node->map[i]);
1090
1091         kfree(rht_node);
1092 }
1093
1094 /**
1095  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096  * @s: seq file
1097  * @dd: hfi1_devdata
1098  * @cpuid: cpu id
1099  *
1100  * This routine dumps the process to sde mappings per cpu
1101  */
1102 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103                                 struct hfi1_devdata *dd,
1104                                 unsigned long cpuid)
1105 {
1106         struct sdma_rht_node *rht_node;
1107         int i, j;
1108
1109         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1110                                           sdma_rht_params);
1111         if (!rht_node)
1112                 return;
1113
1114         seq_printf(s, "cpu%3lu: ", cpuid);
1115         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117                         continue;
1118
1119                 seq_printf(s, " vl%d: [", i);
1120
1121                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122                         if (!rht_node->map[i]->sde[j])
1123                                 continue;
1124
1125                         if (j > 0)
1126                                 seq_puts(s, ",");
1127
1128                         seq_printf(s, " sdma%2d",
1129                                    rht_node->map[i]->sde[j]->this_idx);
1130                 }
1131                 seq_puts(s, " ]");
1132         }
1133
1134         seq_puts(s, "\n");
1135 }
1136
1137 /*
1138  * Free the indicated map struct
1139  */
1140 static void sdma_map_free(struct sdma_vl_map *m)
1141 {
1142         int i;
1143
1144         for (i = 0; m && i < m->actual_vls; i++)
1145                 kfree(m->map[i]);
1146         kfree(m);
1147 }
1148
1149 /*
1150  * Handle RCU callback
1151  */
1152 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 {
1154         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156         sdma_map_free(m);
1157 }
1158
1159 /**
1160  * sdma_map_init - called when # vls change
1161  * @dd: hfi1_devdata
1162  * @port: port number
1163  * @num_vls: number of vls
1164  * @vl_engines: per vl engine mapping (optional)
1165  *
1166  * This routine changes the mapping based on the number of vls.
1167  *
1168  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169  * implies auto computing the loading and giving each VLs a uniform
1170  * distribution of engines per VL.
1171  *
1172  * The auto algorithm computes the sde_per_vl and the number of extra
1173  * engines.  Any extra engines are added from the last VL on down.
1174  *
1175  * rcu locking is used here to control access to the mapping fields.
1176  *
1177  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179  * up to the next highest power of 2 and the first entry is reused
1180  * in a round robin fashion.
1181  *
1182  * If an error occurs the map change is not done and the mapping is
1183  * not changed.
1184  *
1185  */
1186 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187 {
1188         int i, j;
1189         int extra, sde_per_vl;
1190         int engine = 0;
1191         u8 lvl_engines[OPA_MAX_VLS];
1192         struct sdma_vl_map *oldmap, *newmap;
1193
1194         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195                 return 0;
1196
1197         if (!vl_engines) {
1198                 /* truncate divide */
1199                 sde_per_vl = dd->num_sdma / num_vls;
1200                 /* extras */
1201                 extra = dd->num_sdma % num_vls;
1202                 vl_engines = lvl_engines;
1203                 /* add extras from last vl down */
1204                 for (i = num_vls - 1; i >= 0; i--, extra--)
1205                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206         }
1207         /* build new map */
1208         newmap = kzalloc(
1209                 sizeof(struct sdma_vl_map) +
1210                         roundup_pow_of_two(num_vls) *
1211                         sizeof(struct sdma_map_elem *),
1212                 GFP_KERNEL);
1213         if (!newmap)
1214                 goto bail;
1215         newmap->actual_vls = num_vls;
1216         newmap->vls = roundup_pow_of_two(num_vls);
1217         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1218         /* initialize back-map */
1219         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220                 newmap->engine_to_vl[i] = -1;
1221         for (i = 0; i < newmap->vls; i++) {
1222                 /* save for wrap around */
1223                 int first_engine = engine;
1224
1225                 if (i < newmap->actual_vls) {
1226                         int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228                         /* only allocate once */
1229                         newmap->map[i] = kzalloc(
1230                                 sizeof(struct sdma_map_elem) +
1231                                         sz * sizeof(struct sdma_engine *),
1232                                 GFP_KERNEL);
1233                         if (!newmap->map[i])
1234                                 goto bail;
1235                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236                         /* assign engines */
1237                         for (j = 0; j < sz; j++) {
1238                                 newmap->map[i]->sde[j] =
1239                                         &dd->per_sdma[engine];
1240                                 if (++engine >= first_engine + vl_engines[i])
1241                                         /* wrap back to first engine */
1242                                         engine = first_engine;
1243                         }
1244                         /* assign back-map */
1245                         for (j = 0; j < vl_engines[i]; j++)
1246                                 newmap->engine_to_vl[first_engine + j] = i;
1247                 } else {
1248                         /* just re-use entry without allocating */
1249                         newmap->map[i] = newmap->map[i % num_vls];
1250                 }
1251                 engine = first_engine + vl_engines[i];
1252         }
1253         /* newmap in hand, save old map */
1254         spin_lock_irq(&dd->sde_map_lock);
1255         oldmap = rcu_dereference_protected(dd->sdma_map,
1256                                            lockdep_is_held(&dd->sde_map_lock));
1257
1258         /* publish newmap */
1259         rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261         spin_unlock_irq(&dd->sde_map_lock);
1262         /* success, free any old map after grace period */
1263         if (oldmap)
1264                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265         return 0;
1266 bail:
1267         /* free any partial allocation */
1268         sdma_map_free(newmap);
1269         return -ENOMEM;
1270 }
1271
1272 /**
1273  * sdma_clean()  Clean up allocated memory
1274  * @dd:          struct hfi1_devdata
1275  * @num_engines: num sdma engines
1276  *
1277  * This routine can be called regardless of the success of
1278  * sdma_init()
1279  */
1280 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282         size_t i;
1283         struct sdma_engine *sde;
1284
1285         if (dd->sdma_pad_dma) {
1286                 dma_free_coherent(&dd->pcidev->dev, 4,
1287                                   (void *)dd->sdma_pad_dma,
1288                                   dd->sdma_pad_phys);
1289                 dd->sdma_pad_dma = NULL;
1290                 dd->sdma_pad_phys = 0;
1291         }
1292         if (dd->sdma_heads_dma) {
1293                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294                                   (void *)dd->sdma_heads_dma,
1295                                   dd->sdma_heads_phys);
1296                 dd->sdma_heads_dma = NULL;
1297                 dd->sdma_heads_phys = 0;
1298         }
1299         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300                 sde = &dd->per_sdma[i];
1301
1302                 sde->head_dma = NULL;
1303                 sde->head_phys = 0;
1304
1305                 if (sde->descq) {
1306                         dma_free_coherent(
1307                                 &dd->pcidev->dev,
1308                                 sde->descq_cnt * sizeof(u64[2]),
1309                                 sde->descq,
1310                                 sde->descq_phys
1311                         );
1312                         sde->descq = NULL;
1313                         sde->descq_phys = 0;
1314                 }
1315                 kvfree(sde->tx_ring);
1316                 sde->tx_ring = NULL;
1317         }
1318         spin_lock_irq(&dd->sde_map_lock);
1319         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320         RCU_INIT_POINTER(dd->sdma_map, NULL);
1321         spin_unlock_irq(&dd->sde_map_lock);
1322         synchronize_rcu();
1323         kfree(dd->per_sdma);
1324         dd->per_sdma = NULL;
1325
1326         if (dd->sdma_rht) {
1327                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328                 kfree(dd->sdma_rht);
1329                 dd->sdma_rht = NULL;
1330         }
1331 }
1332
1333 /**
1334  * sdma_init() - called when device probed
1335  * @dd: hfi1_devdata
1336  * @port: port number (currently only zero)
1337  *
1338  * Initializes each sde and its csrs.
1339  * Interrupts are not required to be enabled.
1340  *
1341  * Returns:
1342  * 0 - success, -errno on failure
1343  */
1344 int sdma_init(struct hfi1_devdata *dd, u8 port)
1345 {
1346         unsigned this_idx;
1347         struct sdma_engine *sde;
1348         struct rhashtable *tmp_sdma_rht;
1349         u16 descq_cnt;
1350         void *curr_head;
1351         struct hfi1_pportdata *ppd = dd->pport + port;
1352         u32 per_sdma_credits;
1353         uint idle_cnt = sdma_idle_cnt;
1354         size_t num_engines = chip_sdma_engines(dd);
1355         int ret = -ENOMEM;
1356
1357         if (!HFI1_CAP_IS_KSET(SDMA)) {
1358                 HFI1_CAP_CLEAR(SDMA_AHG);
1359                 return 0;
1360         }
1361         if (mod_num_sdma &&
1362             /* can't exceed chip support */
1363             mod_num_sdma <= chip_sdma_engines(dd) &&
1364             /* count must be >= vls */
1365             mod_num_sdma >= num_vls)
1366                 num_engines = mod_num_sdma;
1367
1368         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1369         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1370         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1371                     chip_sdma_mem_size(dd));
1372
1373         per_sdma_credits =
1374                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1375
1376         /* set up freeze waitqueue */
1377         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378         atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380         descq_cnt = sdma_get_descq_cnt();
1381         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1382                     num_engines, descq_cnt);
1383
1384         /* alloc memory for array of send engines */
1385         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386                                     GFP_KERNEL, dd->node);
1387         if (!dd->per_sdma)
1388                 return ret;
1389
1390         idle_cnt = ns_to_cclock(dd, idle_cnt);
1391         if (idle_cnt)
1392                 dd->default_desc1 =
1393                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394         else
1395                 dd->default_desc1 =
1396                         SDMA_DESC1_INT_REQ_FLAG;
1397
1398         if (!sdma_desct_intr)
1399                 sdma_desct_intr = SDMA_DESC_INTR;
1400
1401         /* Allocate memory for SendDMA descriptor FIFOs */
1402         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403                 sde = &dd->per_sdma[this_idx];
1404                 sde->dd = dd;
1405                 sde->ppd = ppd;
1406                 sde->this_idx = this_idx;
1407                 sde->descq_cnt = descq_cnt;
1408                 sde->desc_avail = sdma_descq_freecnt(sde);
1409                 sde->sdma_shift = ilog2(descq_cnt);
1410                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1411
1412                 /* Create a mask specifically for each interrupt source */
1413                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414                                            this_idx);
1415                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416                                                 this_idx);
1417                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418                                             this_idx);
1419                 /* Create a combined mask to cover all 3 interrupt sources */
1420                 sde->imask = sde->int_mask | sde->progress_mask |
1421                              sde->idle_mask;
1422
1423                 spin_lock_init(&sde->tail_lock);
1424                 seqlock_init(&sde->head_lock);
1425                 spin_lock_init(&sde->senddmactrl_lock);
1426                 spin_lock_init(&sde->flushlist_lock);
1427                 seqlock_init(&sde->waitlock);
1428                 /* insure there is always a zero bit */
1429                 sde->ahg_bits = 0xfffffffe00000000ULL;
1430
1431                 sdma_set_state(sde, sdma_state_s00_hw_down);
1432
1433                 /* set up reference counting */
1434                 kref_init(&sde->state.kref);
1435                 init_completion(&sde->state.comp);
1436
1437                 INIT_LIST_HEAD(&sde->flushlist);
1438                 INIT_LIST_HEAD(&sde->dmawait);
1439
1440                 sde->tail_csr =
1441                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1442
1443                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1444                              (unsigned long)sde);
1445
1446                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1447                              (unsigned long)sde);
1448                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1449                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1450
1451                 sde->progress_check_head = 0;
1452
1453                 timer_setup(&sde->err_progress_check_timer,
1454                             sdma_err_progress_check, 0);
1455
1456                 sde->descq = dma_zalloc_coherent(
1457                         &dd->pcidev->dev,
1458                         descq_cnt * sizeof(u64[2]),
1459                         &sde->descq_phys,
1460                         GFP_KERNEL
1461                 );
1462                 if (!sde->descq)
1463                         goto bail;
1464                 sde->tx_ring =
1465                         kvzalloc_node(array_size(descq_cnt,
1466                                                  sizeof(struct sdma_txreq *)),
1467                                       GFP_KERNEL, dd->node);
1468                 if (!sde->tx_ring)
1469                         goto bail;
1470         }
1471
1472         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1473         /* Allocate memory for DMA of head registers to memory */
1474         dd->sdma_heads_dma = dma_zalloc_coherent(
1475                 &dd->pcidev->dev,
1476                 dd->sdma_heads_size,
1477                 &dd->sdma_heads_phys,
1478                 GFP_KERNEL
1479         );
1480         if (!dd->sdma_heads_dma) {
1481                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1482                 goto bail;
1483         }
1484
1485         /* Allocate memory for pad */
1486         dd->sdma_pad_dma = dma_zalloc_coherent(
1487                 &dd->pcidev->dev,
1488                 sizeof(u32),
1489                 &dd->sdma_pad_phys,
1490                 GFP_KERNEL
1491         );
1492         if (!dd->sdma_pad_dma) {
1493                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1494                 goto bail;
1495         }
1496
1497         /* assign each engine to different cacheline and init registers */
1498         curr_head = (void *)dd->sdma_heads_dma;
1499         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1500                 unsigned long phys_offset;
1501
1502                 sde = &dd->per_sdma[this_idx];
1503
1504                 sde->head_dma = curr_head;
1505                 curr_head += L1_CACHE_BYTES;
1506                 phys_offset = (unsigned long)sde->head_dma -
1507                               (unsigned long)dd->sdma_heads_dma;
1508                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1509                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1510         }
1511         dd->flags |= HFI1_HAS_SEND_DMA;
1512         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1513         dd->num_sdma = num_engines;
1514         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1515         if (ret < 0)
1516                 goto bail;
1517
1518         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1519         if (!tmp_sdma_rht) {
1520                 ret = -ENOMEM;
1521                 goto bail;
1522         }
1523
1524         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1525         if (ret < 0)
1526                 goto bail;
1527         dd->sdma_rht = tmp_sdma_rht;
1528
1529         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1530         return 0;
1531
1532 bail:
1533         sdma_clean(dd, num_engines);
1534         return ret;
1535 }
1536
1537 /**
1538  * sdma_all_running() - called when the link goes up
1539  * @dd: hfi1_devdata
1540  *
1541  * This routine moves all engines to the running state.
1542  */
1543 void sdma_all_running(struct hfi1_devdata *dd)
1544 {
1545         struct sdma_engine *sde;
1546         unsigned int i;
1547
1548         /* move all engines to running */
1549         for (i = 0; i < dd->num_sdma; ++i) {
1550                 sde = &dd->per_sdma[i];
1551                 sdma_process_event(sde, sdma_event_e30_go_running);
1552         }
1553 }
1554
1555 /**
1556  * sdma_all_idle() - called when the link goes down
1557  * @dd: hfi1_devdata
1558  *
1559  * This routine moves all engines to the idle state.
1560  */
1561 void sdma_all_idle(struct hfi1_devdata *dd)
1562 {
1563         struct sdma_engine *sde;
1564         unsigned int i;
1565
1566         /* idle all engines */
1567         for (i = 0; i < dd->num_sdma; ++i) {
1568                 sde = &dd->per_sdma[i];
1569                 sdma_process_event(sde, sdma_event_e70_go_idle);
1570         }
1571 }
1572
1573 /**
1574  * sdma_start() - called to kick off state processing for all engines
1575  * @dd: hfi1_devdata
1576  *
1577  * This routine is for kicking off the state processing for all required
1578  * sdma engines.  Interrupts need to be working at this point.
1579  *
1580  */
1581 void sdma_start(struct hfi1_devdata *dd)
1582 {
1583         unsigned i;
1584         struct sdma_engine *sde;
1585
1586         /* kick off the engines state processing */
1587         for (i = 0; i < dd->num_sdma; ++i) {
1588                 sde = &dd->per_sdma[i];
1589                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1590         }
1591 }
1592
1593 /**
1594  * sdma_exit() - used when module is removed
1595  * @dd: hfi1_devdata
1596  */
1597 void sdma_exit(struct hfi1_devdata *dd)
1598 {
1599         unsigned this_idx;
1600         struct sdma_engine *sde;
1601
1602         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1603                         ++this_idx) {
1604                 sde = &dd->per_sdma[this_idx];
1605                 if (!list_empty(&sde->dmawait))
1606                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1607                                    sde->this_idx);
1608                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1609
1610                 del_timer_sync(&sde->err_progress_check_timer);
1611
1612                 /*
1613                  * This waits for the state machine to exit so it is not
1614                  * necessary to kill the sdma_sw_clean_up_task to make sure
1615                  * it is not running.
1616                  */
1617                 sdma_finalput(&sde->state);
1618         }
1619 }
1620
1621 /*
1622  * unmap the indicated descriptor
1623  */
1624 static inline void sdma_unmap_desc(
1625         struct hfi1_devdata *dd,
1626         struct sdma_desc *descp)
1627 {
1628         switch (sdma_mapping_type(descp)) {
1629         case SDMA_MAP_SINGLE:
1630                 dma_unmap_single(
1631                         &dd->pcidev->dev,
1632                         sdma_mapping_addr(descp),
1633                         sdma_mapping_len(descp),
1634                         DMA_TO_DEVICE);
1635                 break;
1636         case SDMA_MAP_PAGE:
1637                 dma_unmap_page(
1638                         &dd->pcidev->dev,
1639                         sdma_mapping_addr(descp),
1640                         sdma_mapping_len(descp),
1641                         DMA_TO_DEVICE);
1642                 break;
1643         }
1644 }
1645
1646 /*
1647  * return the mode as indicated by the first
1648  * descriptor in the tx.
1649  */
1650 static inline u8 ahg_mode(struct sdma_txreq *tx)
1651 {
1652         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1653                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1654 }
1655
1656 /**
1657  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1658  * @dd: hfi1_devdata for unmapping
1659  * @tx: tx request to clean
1660  *
1661  * This is used in the progress routine to clean the tx or
1662  * by the ULP to toss an in-process tx build.
1663  *
1664  * The code can be called multiple times without issue.
1665  *
1666  */
1667 void __sdma_txclean(
1668         struct hfi1_devdata *dd,
1669         struct sdma_txreq *tx)
1670 {
1671         u16 i;
1672
1673         if (tx->num_desc) {
1674                 u8 skip = 0, mode = ahg_mode(tx);
1675
1676                 /* unmap first */
1677                 sdma_unmap_desc(dd, &tx->descp[0]);
1678                 /* determine number of AHG descriptors to skip */
1679                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1680                         skip = mode >> 1;
1681                 for (i = 1 + skip; i < tx->num_desc; i++)
1682                         sdma_unmap_desc(dd, &tx->descp[i]);
1683                 tx->num_desc = 0;
1684         }
1685         kfree(tx->coalesce_buf);
1686         tx->coalesce_buf = NULL;
1687         /* kmalloc'ed descp */
1688         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1689                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1690                 kfree(tx->descp);
1691         }
1692 }
1693
1694 static inline u16 sdma_gethead(struct sdma_engine *sde)
1695 {
1696         struct hfi1_devdata *dd = sde->dd;
1697         int use_dmahead;
1698         u16 hwhead;
1699
1700 #ifdef CONFIG_SDMA_VERBOSITY
1701         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1702                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1703 #endif
1704
1705 retry:
1706         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1707                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1708         hwhead = use_dmahead ?
1709                 (u16)le64_to_cpu(*sde->head_dma) :
1710                 (u16)read_sde_csr(sde, SD(HEAD));
1711
1712         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1713                 u16 cnt;
1714                 u16 swtail;
1715                 u16 swhead;
1716                 int sane;
1717
1718                 swhead = sde->descq_head & sde->sdma_mask;
1719                 /* this code is really bad for cache line trading */
1720                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1721                 cnt = sde->descq_cnt;
1722
1723                 if (swhead < swtail)
1724                         /* not wrapped */
1725                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1726                 else if (swhead > swtail)
1727                         /* wrapped around */
1728                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1729                                 (hwhead <= swtail);
1730                 else
1731                         /* empty */
1732                         sane = (hwhead == swhead);
1733
1734                 if (unlikely(!sane)) {
1735                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1736                                    sde->this_idx,
1737                                    use_dmahead ? "dma" : "kreg",
1738                                    hwhead, swhead, swtail, cnt);
1739                         if (use_dmahead) {
1740                                 /* try one more time, using csr */
1741                                 use_dmahead = 0;
1742                                 goto retry;
1743                         }
1744                         /* proceed as if no progress */
1745                         hwhead = swhead;
1746                 }
1747         }
1748         return hwhead;
1749 }
1750
1751 /*
1752  * This is called when there are send DMA descriptors that might be
1753  * available.
1754  *
1755  * This is called with head_lock held.
1756  */
1757 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1758 {
1759         struct iowait *wait, *nw;
1760         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1761         uint i, n = 0, seq, max_idx = 0;
1762         u8 max_starved_cnt = 0;
1763
1764 #ifdef CONFIG_SDMA_VERBOSITY
1765         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1766                    slashstrip(__FILE__), __LINE__, __func__);
1767         dd_dev_err(sde->dd, "avail: %u\n", avail);
1768 #endif
1769
1770         do {
1771                 seq = read_seqbegin(&sde->waitlock);
1772                 if (!list_empty(&sde->dmawait)) {
1773                         /* at least one item */
1774                         write_seqlock(&sde->waitlock);
1775                         /* Harvest waiters wanting DMA descriptors */
1776                         list_for_each_entry_safe(
1777                                         wait,
1778                                         nw,
1779                                         &sde->dmawait,
1780                                         list) {
1781                                 u32 num_desc;
1782
1783                                 if (!wait->wakeup)
1784                                         continue;
1785                                 if (n == ARRAY_SIZE(waits))
1786                                         break;
1787                                 num_desc = iowait_get_all_desc(wait);
1788                                 if (num_desc > avail)
1789                                         break;
1790                                 avail -= num_desc;
1791                                 /* Find the most starved wait memeber */
1792                                 iowait_starve_find_max(wait, &max_starved_cnt,
1793                                                        n, &max_idx);
1794                                 list_del_init(&wait->list);
1795                                 waits[n++] = wait;
1796                         }
1797                         write_sequnlock(&sde->waitlock);
1798                         break;
1799                 }
1800         } while (read_seqretry(&sde->waitlock, seq));
1801
1802         /* Schedule the most starved one first */
1803         if (n)
1804                 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1805
1806         for (i = 0; i < n; i++)
1807                 if (i != max_idx)
1808                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1809 }
1810
1811 /* head_lock must be held */
1812 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1813 {
1814         struct sdma_txreq *txp = NULL;
1815         int progress = 0;
1816         u16 hwhead, swhead;
1817         int idle_check_done = 0;
1818
1819         hwhead = sdma_gethead(sde);
1820
1821         /* The reason for some of the complexity of this code is that
1822          * not all descriptors have corresponding txps.  So, we have to
1823          * be able to skip over descs until we wander into the range of
1824          * the next txp on the list.
1825          */
1826
1827 retry:
1828         txp = get_txhead(sde);
1829         swhead = sde->descq_head & sde->sdma_mask;
1830         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1831         while (swhead != hwhead) {
1832                 /* advance head, wrap if needed */
1833                 swhead = ++sde->descq_head & sde->sdma_mask;
1834
1835                 /* if now past this txp's descs, do the callback */
1836                 if (txp && txp->next_descq_idx == swhead) {
1837                         /* remove from list */
1838                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1839                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1840                         /* see if there is another txp */
1841                         txp = get_txhead(sde);
1842                 }
1843                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1844                 progress++;
1845         }
1846
1847         /*
1848          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1849          * to updates to the the dma_head location in host memory. The head
1850          * value read might not be fully up to date. If there are pending
1851          * descriptors and the SDMA idle interrupt fired then read from the
1852          * CSR SDMA head instead to get the latest value from the hardware.
1853          * The hardware SDMA head should be read at most once in this invocation
1854          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1855          */
1856         if ((status & sde->idle_mask) && !idle_check_done) {
1857                 u16 swtail;
1858
1859                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1860                 if (swtail != hwhead) {
1861                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1862                         idle_check_done = 1;
1863                         goto retry;
1864                 }
1865         }
1866
1867         sde->last_status = status;
1868         if (progress)
1869                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1870 }
1871
1872 /*
1873  * sdma_engine_interrupt() - interrupt handler for engine
1874  * @sde: sdma engine
1875  * @status: sdma interrupt reason
1876  *
1877  * Status is a mask of the 3 possible interrupts for this engine.  It will
1878  * contain bits _only_ for this SDMA engine.  It will contain at least one
1879  * bit, it may contain more.
1880  */
1881 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1882 {
1883         trace_hfi1_sdma_engine_interrupt(sde, status);
1884         write_seqlock(&sde->head_lock);
1885         sdma_set_desc_cnt(sde, sdma_desct_intr);
1886         if (status & sde->idle_mask)
1887                 sde->idle_int_cnt++;
1888         else if (status & sde->progress_mask)
1889                 sde->progress_int_cnt++;
1890         else if (status & sde->int_mask)
1891                 sde->sdma_int_cnt++;
1892         sdma_make_progress(sde, status);
1893         write_sequnlock(&sde->head_lock);
1894 }
1895
1896 /**
1897  * sdma_engine_error() - error handler for engine
1898  * @sde: sdma engine
1899  * @status: sdma interrupt reason
1900  */
1901 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1902 {
1903         unsigned long flags;
1904
1905 #ifdef CONFIG_SDMA_VERBOSITY
1906         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1907                    sde->this_idx,
1908                    (unsigned long long)status,
1909                    sdma_state_names[sde->state.current_state]);
1910 #endif
1911         spin_lock_irqsave(&sde->tail_lock, flags);
1912         write_seqlock(&sde->head_lock);
1913         if (status & ALL_SDMA_ENG_HALT_ERRS)
1914                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1915         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1916                 dd_dev_err(sde->dd,
1917                            "SDMA (%u) engine error: 0x%llx state %s\n",
1918                            sde->this_idx,
1919                            (unsigned long long)status,
1920                            sdma_state_names[sde->state.current_state]);
1921                 dump_sdma_state(sde);
1922         }
1923         write_sequnlock(&sde->head_lock);
1924         spin_unlock_irqrestore(&sde->tail_lock, flags);
1925 }
1926
1927 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1928 {
1929         u64 set_senddmactrl = 0;
1930         u64 clr_senddmactrl = 0;
1931         unsigned long flags;
1932
1933 #ifdef CONFIG_SDMA_VERBOSITY
1934         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1935                    sde->this_idx,
1936                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1937                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1938                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1939                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1940 #endif
1941
1942         if (op & SDMA_SENDCTRL_OP_ENABLE)
1943                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1944         else
1945                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1946
1947         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1948                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1949         else
1950                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1951
1952         if (op & SDMA_SENDCTRL_OP_HALT)
1953                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1954         else
1955                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1956
1957         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1958
1959         sde->p_senddmactrl |= set_senddmactrl;
1960         sde->p_senddmactrl &= ~clr_senddmactrl;
1961
1962         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1963                 write_sde_csr(sde, SD(CTRL),
1964                               sde->p_senddmactrl |
1965                               SD(CTRL_SDMA_CLEANUP_SMASK));
1966         else
1967                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1968
1969         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1970
1971 #ifdef CONFIG_SDMA_VERBOSITY
1972         sdma_dumpstate(sde);
1973 #endif
1974 }
1975
1976 static void sdma_setlengen(struct sdma_engine *sde)
1977 {
1978 #ifdef CONFIG_SDMA_VERBOSITY
1979         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1980                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1981 #endif
1982
1983         /*
1984          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1985          * count to enable generation checking and load the internal
1986          * generation counter.
1987          */
1988         write_sde_csr(sde, SD(LEN_GEN),
1989                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1990         write_sde_csr(sde, SD(LEN_GEN),
1991                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1992                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1993 }
1994
1995 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1996 {
1997         /* Commit writes to memory and advance the tail on the chip */
1998         smp_wmb(); /* see get_txhead() */
1999         writeq(tail, sde->tail_csr);
2000 }
2001
2002 /*
2003  * This is called when changing to state s10_hw_start_up_halt_wait as
2004  * a result of send buffer errors or send DMA descriptor errors.
2005  */
2006 static void sdma_hw_start_up(struct sdma_engine *sde)
2007 {
2008         u64 reg;
2009
2010 #ifdef CONFIG_SDMA_VERBOSITY
2011         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2012                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2013 #endif
2014
2015         sdma_setlengen(sde);
2016         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2017         *sde->head_dma = 0;
2018
2019         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2020               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2021         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2022 }
2023
2024 /*
2025  * set_sdma_integrity
2026  *
2027  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2028  */
2029 static void set_sdma_integrity(struct sdma_engine *sde)
2030 {
2031         struct hfi1_devdata *dd = sde->dd;
2032
2033         write_sde_csr(sde, SD(CHECK_ENABLE),
2034                       hfi1_pkt_base_sdma_integrity(dd));
2035 }
2036
2037 static void init_sdma_regs(
2038         struct sdma_engine *sde,
2039         u32 credits,
2040         uint idle_cnt)
2041 {
2042         u8 opval, opmask;
2043 #ifdef CONFIG_SDMA_VERBOSITY
2044         struct hfi1_devdata *dd = sde->dd;
2045
2046         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2047                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2048 #endif
2049
2050         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2051         sdma_setlengen(sde);
2052         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2053         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2054         write_sde_csr(sde, SD(DESC_CNT), 0);
2055         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2056         write_sde_csr(sde, SD(MEMORY),
2057                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2058                       ((u64)(credits * sde->this_idx) <<
2059                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2060         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2061         set_sdma_integrity(sde);
2062         opmask = OPCODE_CHECK_MASK_DISABLED;
2063         opval = OPCODE_CHECK_VAL_DISABLED;
2064         write_sde_csr(sde, SD(CHECK_OPCODE),
2065                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2066                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2067 }
2068
2069 #ifdef CONFIG_SDMA_VERBOSITY
2070
2071 #define sdma_dumpstate_helper0(reg) do { \
2072                 csr = read_csr(sde->dd, reg); \
2073                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2074         } while (0)
2075
2076 #define sdma_dumpstate_helper(reg) do { \
2077                 csr = read_sde_csr(sde, reg); \
2078                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2079                         #reg, sde->this_idx, csr); \
2080         } while (0)
2081
2082 #define sdma_dumpstate_helper2(reg) do { \
2083                 csr = read_csr(sde->dd, reg + (8 * i)); \
2084                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2085                                 #reg, i, csr); \
2086         } while (0)
2087
2088 void sdma_dumpstate(struct sdma_engine *sde)
2089 {
2090         u64 csr;
2091         unsigned i;
2092
2093         sdma_dumpstate_helper(SD(CTRL));
2094         sdma_dumpstate_helper(SD(STATUS));
2095         sdma_dumpstate_helper0(SD(ERR_STATUS));
2096         sdma_dumpstate_helper0(SD(ERR_MASK));
2097         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2098         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2099
2100         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2101                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2102                 sdma_dumpstate_helper2(CCE_INT_MASK);
2103                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2104         }
2105
2106         sdma_dumpstate_helper(SD(TAIL));
2107         sdma_dumpstate_helper(SD(HEAD));
2108         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2109         sdma_dumpstate_helper(SD(IDLE_CNT));
2110         sdma_dumpstate_helper(SD(RELOAD_CNT));
2111         sdma_dumpstate_helper(SD(DESC_CNT));
2112         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2113         sdma_dumpstate_helper(SD(MEMORY));
2114         sdma_dumpstate_helper0(SD(ENGINES));
2115         sdma_dumpstate_helper0(SD(MEM_SIZE));
2116         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2117         sdma_dumpstate_helper(SD(BASE_ADDR));
2118         sdma_dumpstate_helper(SD(LEN_GEN));
2119         sdma_dumpstate_helper(SD(HEAD_ADDR));
2120         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2121         sdma_dumpstate_helper(SD(CHECK_VL));
2122         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2123         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2124         sdma_dumpstate_helper(SD(CHECK_SLID));
2125         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2126 }
2127 #endif
2128
2129 static void dump_sdma_state(struct sdma_engine *sde)
2130 {
2131         struct hw_sdma_desc *descqp;
2132         u64 desc[2];
2133         u64 addr;
2134         u8 gen;
2135         u16 len;
2136         u16 head, tail, cnt;
2137
2138         head = sde->descq_head & sde->sdma_mask;
2139         tail = sde->descq_tail & sde->sdma_mask;
2140         cnt = sdma_descq_freecnt(sde);
2141
2142         dd_dev_err(sde->dd,
2143                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2144                    sde->this_idx, head, tail, cnt,
2145                    !list_empty(&sde->flushlist));
2146
2147         /* print info for each entry in the descriptor queue */
2148         while (head != tail) {
2149                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2150
2151                 descqp = &sde->descq[head];
2152                 desc[0] = le64_to_cpu(descqp->qw[0]);
2153                 desc[1] = le64_to_cpu(descqp->qw[1]);
2154                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2155                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2156                                 'H' : '-';
2157                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2158                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2159                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2160                         & SDMA_DESC0_PHY_ADDR_MASK;
2161                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2162                         & SDMA_DESC1_GENERATION_MASK;
2163                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2164                         & SDMA_DESC0_BYTE_COUNT_MASK;
2165                 dd_dev_err(sde->dd,
2166                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2167                            head, flags, addr, gen, len);
2168                 dd_dev_err(sde->dd,
2169                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2170                            desc[0], desc[1]);
2171                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2172                         dd_dev_err(sde->dd,
2173                                    "\taidx: %u amode: %u alen: %u\n",
2174                                    (u8)((desc[1] &
2175                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2176                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2177                                    (u8)((desc[1] &
2178                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2179                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2180                                    (u8)((desc[1] &
2181                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2182                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2183                 head++;
2184                 head &= sde->sdma_mask;
2185         }
2186 }
2187
2188 #define SDE_FMT \
2189         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2190 /**
2191  * sdma_seqfile_dump_sde() - debugfs dump of sde
2192  * @s: seq file
2193  * @sde: send dma engine to dump
2194  *
2195  * This routine dumps the sde to the indicated seq file.
2196  */
2197 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2198 {
2199         u16 head, tail;
2200         struct hw_sdma_desc *descqp;
2201         u64 desc[2];
2202         u64 addr;
2203         u8 gen;
2204         u16 len;
2205
2206         head = sde->descq_head & sde->sdma_mask;
2207         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2208         seq_printf(s, SDE_FMT, sde->this_idx,
2209                    sde->cpu,
2210                    sdma_state_name(sde->state.current_state),
2211                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2212                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2213                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2214                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2215                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2216                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2217                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2218                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2219                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2220                    (unsigned long long)sde->last_status,
2221                    (unsigned long long)sde->ahg_bits,
2222                    sde->tx_tail,
2223                    sde->tx_head,
2224                    sde->descq_tail,
2225                    sde->descq_head,
2226                    !list_empty(&sde->flushlist),
2227                    sde->descq_full_count,
2228                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2229
2230         /* print info for each entry in the descriptor queue */
2231         while (head != tail) {
2232                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2233
2234                 descqp = &sde->descq[head];
2235                 desc[0] = le64_to_cpu(descqp->qw[0]);
2236                 desc[1] = le64_to_cpu(descqp->qw[1]);
2237                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2238                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2239                                 'H' : '-';
2240                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2241                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2242                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2243                         & SDMA_DESC0_PHY_ADDR_MASK;
2244                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2245                         & SDMA_DESC1_GENERATION_MASK;
2246                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2247                         & SDMA_DESC0_BYTE_COUNT_MASK;
2248                 seq_printf(s,
2249                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2250                            head, flags, addr, gen, len);
2251                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2252                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2253                                    (u8)((desc[1] &
2254                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2255                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2256                                    (u8)((desc[1] &
2257                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2258                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2259                 head = (head + 1) & sde->sdma_mask;
2260         }
2261 }
2262
2263 /*
2264  * add the generation number into
2265  * the qw1 and return
2266  */
2267 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2268 {
2269         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2270
2271         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2272         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2273                         << SDMA_DESC1_GENERATION_SHIFT;
2274         return qw1;
2275 }
2276
2277 /*
2278  * This routine submits the indicated tx
2279  *
2280  * Space has already been guaranteed and
2281  * tail side of ring is locked.
2282  *
2283  * The hardware tail update is done
2284  * in the caller and that is facilitated
2285  * by returning the new tail.
2286  *
2287  * There is special case logic for ahg
2288  * to not add the generation number for
2289  * up to 2 descriptors that follow the
2290  * first descriptor.
2291  *
2292  */
2293 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2294 {
2295         int i;
2296         u16 tail;
2297         struct sdma_desc *descp = tx->descp;
2298         u8 skip = 0, mode = ahg_mode(tx);
2299
2300         tail = sde->descq_tail & sde->sdma_mask;
2301         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2302         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2303         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2304                                    tail, &sde->descq[tail]);
2305         tail = ++sde->descq_tail & sde->sdma_mask;
2306         descp++;
2307         if (mode > SDMA_AHG_APPLY_UPDATE1)
2308                 skip = mode >> 1;
2309         for (i = 1; i < tx->num_desc; i++, descp++) {
2310                 u64 qw1;
2311
2312                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2313                 if (skip) {
2314                         /* edits don't have generation */
2315                         qw1 = descp->qw[1];
2316                         skip--;
2317                 } else {
2318                         /* replace generation with real one for non-edits */
2319                         qw1 = add_gen(sde, descp->qw[1]);
2320                 }
2321                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2322                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2323                                            tail, &sde->descq[tail]);
2324                 tail = ++sde->descq_tail & sde->sdma_mask;
2325         }
2326         tx->next_descq_idx = tail;
2327 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2328         tx->sn = sde->tail_sn++;
2329         trace_hfi1_sdma_in_sn(sde, tx->sn);
2330         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2331 #endif
2332         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2333         sde->desc_avail -= tx->num_desc;
2334         return tail;
2335 }
2336
2337 /*
2338  * Check for progress
2339  */
2340 static int sdma_check_progress(
2341         struct sdma_engine *sde,
2342         struct iowait_work *wait,
2343         struct sdma_txreq *tx,
2344         bool pkts_sent)
2345 {
2346         int ret;
2347
2348         sde->desc_avail = sdma_descq_freecnt(sde);
2349         if (tx->num_desc <= sde->desc_avail)
2350                 return -EAGAIN;
2351         /* pulse the head_lock */
2352         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2353                 unsigned seq;
2354
2355                 seq = raw_seqcount_begin(
2356                         (const seqcount_t *)&sde->head_lock.seqcount);
2357                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2358                 if (ret == -EAGAIN)
2359                         sde->desc_avail = sdma_descq_freecnt(sde);
2360         } else {
2361                 ret = -EBUSY;
2362         }
2363         return ret;
2364 }
2365
2366 /**
2367  * sdma_send_txreq() - submit a tx req to ring
2368  * @sde: sdma engine to use
2369  * @wait: SE wait structure to use when full (may be NULL)
2370  * @tx: sdma_txreq to submit
2371  * @pkts_sent: has any packet been sent yet?
2372  *
2373  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2374  * the packet will be queued to the list in wait.
2375  *
2376  * Return:
2377  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2378  * ring (wait == NULL)
2379  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2380  */
2381 int sdma_send_txreq(struct sdma_engine *sde,
2382                     struct iowait_work *wait,
2383                     struct sdma_txreq *tx,
2384                     bool pkts_sent)
2385 {
2386         int ret = 0;
2387         u16 tail;
2388         unsigned long flags;
2389
2390         /* user should have supplied entire packet */
2391         if (unlikely(tx->tlen))
2392                 return -EINVAL;
2393         tx->wait = iowait_ioww_to_iow(wait);
2394         spin_lock_irqsave(&sde->tail_lock, flags);
2395 retry:
2396         if (unlikely(!__sdma_running(sde)))
2397                 goto unlock_noconn;
2398         if (unlikely(tx->num_desc > sde->desc_avail))
2399                 goto nodesc;
2400         tail = submit_tx(sde, tx);
2401         if (wait)
2402                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2403         sdma_update_tail(sde, tail);
2404 unlock:
2405         spin_unlock_irqrestore(&sde->tail_lock, flags);
2406         return ret;
2407 unlock_noconn:
2408         if (wait)
2409                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2410         tx->next_descq_idx = 0;
2411 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2412         tx->sn = sde->tail_sn++;
2413         trace_hfi1_sdma_in_sn(sde, tx->sn);
2414 #endif
2415         spin_lock(&sde->flushlist_lock);
2416         list_add_tail(&tx->list, &sde->flushlist);
2417         spin_unlock(&sde->flushlist_lock);
2418         iowait_inc_wait_count(wait, tx->num_desc);
2419         schedule_work(&sde->flush_worker);
2420         ret = -ECOMM;
2421         goto unlock;
2422 nodesc:
2423         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2424         if (ret == -EAGAIN) {
2425                 ret = 0;
2426                 goto retry;
2427         }
2428         sde->descq_full_count++;
2429         goto unlock;
2430 }
2431
2432 /**
2433  * sdma_send_txlist() - submit a list of tx req to ring
2434  * @sde: sdma engine to use
2435  * @wait: SE wait structure to use when full (may be NULL)
2436  * @tx_list: list of sdma_txreqs to submit
2437  * @count: pointer to a u16 which, after return will contain the total number of
2438  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2439  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2440  *         which are added to SDMA engine flush list if the SDMA engine state is
2441  *         not running.
2442  *
2443  * The call submits the list into the ring.
2444  *
2445  * If the iowait structure is non-NULL and not equal to the iowait list
2446  * the unprocessed part of the list  will be appended to the list in wait.
2447  *
2448  * In all cases, the tx_list will be updated so the head of the tx_list is
2449  * the list of descriptors that have yet to be transmitted.
2450  *
2451  * The intent of this call is to provide a more efficient
2452  * way of submitting multiple packets to SDMA while holding the tail
2453  * side locking.
2454  *
2455  * Return:
2456  * 0 - Success,
2457  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2458  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2459  */
2460 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2461                      struct list_head *tx_list, u16 *count_out)
2462 {
2463         struct sdma_txreq *tx, *tx_next;
2464         int ret = 0;
2465         unsigned long flags;
2466         u16 tail = INVALID_TAIL;
2467         u32 submit_count = 0, flush_count = 0, total_count;
2468
2469         spin_lock_irqsave(&sde->tail_lock, flags);
2470 retry:
2471         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2472                 tx->wait = iowait_ioww_to_iow(wait);
2473                 if (unlikely(!__sdma_running(sde)))
2474                         goto unlock_noconn;
2475                 if (unlikely(tx->num_desc > sde->desc_avail))
2476                         goto nodesc;
2477                 if (unlikely(tx->tlen)) {
2478                         ret = -EINVAL;
2479                         goto update_tail;
2480                 }
2481                 list_del_init(&tx->list);
2482                 tail = submit_tx(sde, tx);
2483                 submit_count++;
2484                 if (tail != INVALID_TAIL &&
2485                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2486                         sdma_update_tail(sde, tail);
2487                         tail = INVALID_TAIL;
2488                 }
2489         }
2490 update_tail:
2491         total_count = submit_count + flush_count;
2492         if (wait) {
2493                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2494                 iowait_starve_clear(submit_count > 0,
2495                                     iowait_ioww_to_iow(wait));
2496         }
2497         if (tail != INVALID_TAIL)
2498                 sdma_update_tail(sde, tail);
2499         spin_unlock_irqrestore(&sde->tail_lock, flags);
2500         *count_out = total_count;
2501         return ret;
2502 unlock_noconn:
2503         spin_lock(&sde->flushlist_lock);
2504         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2505                 tx->wait = iowait_ioww_to_iow(wait);
2506                 list_del_init(&tx->list);
2507                 tx->next_descq_idx = 0;
2508 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2509                 tx->sn = sde->tail_sn++;
2510                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2511 #endif
2512                 list_add_tail(&tx->list, &sde->flushlist);
2513                 flush_count++;
2514                 iowait_inc_wait_count(wait, tx->num_desc);
2515         }
2516         spin_unlock(&sde->flushlist_lock);
2517         schedule_work(&sde->flush_worker);
2518         ret = -ECOMM;
2519         goto update_tail;
2520 nodesc:
2521         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2522         if (ret == -EAGAIN) {
2523                 ret = 0;
2524                 goto retry;
2525         }
2526         sde->descq_full_count++;
2527         goto update_tail;
2528 }
2529
2530 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2531 {
2532         unsigned long flags;
2533
2534         spin_lock_irqsave(&sde->tail_lock, flags);
2535         write_seqlock(&sde->head_lock);
2536
2537         __sdma_process_event(sde, event);
2538
2539         if (sde->state.current_state == sdma_state_s99_running)
2540                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2541
2542         write_sequnlock(&sde->head_lock);
2543         spin_unlock_irqrestore(&sde->tail_lock, flags);
2544 }
2545
2546 static void __sdma_process_event(struct sdma_engine *sde,
2547                                  enum sdma_events event)
2548 {
2549         struct sdma_state *ss = &sde->state;
2550         int need_progress = 0;
2551
2552         /* CONFIG SDMA temporary */
2553 #ifdef CONFIG_SDMA_VERBOSITY
2554         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2555                    sdma_state_names[ss->current_state],
2556                    sdma_event_names[event]);
2557 #endif
2558
2559         switch (ss->current_state) {
2560         case sdma_state_s00_hw_down:
2561                 switch (event) {
2562                 case sdma_event_e00_go_hw_down:
2563                         break;
2564                 case sdma_event_e30_go_running:
2565                         /*
2566                          * If down, but running requested (usually result
2567                          * of link up, then we need to start up.
2568                          * This can happen when hw down is requested while
2569                          * bringing the link up with traffic active on
2570                          * 7220, e.g.
2571                          */
2572                         ss->go_s99_running = 1;
2573                         /* fall through -- and start dma engine */
2574                 case sdma_event_e10_go_hw_start:
2575                         /* This reference means the state machine is started */
2576                         sdma_get(&sde->state);
2577                         sdma_set_state(sde,
2578                                        sdma_state_s10_hw_start_up_halt_wait);
2579                         break;
2580                 case sdma_event_e15_hw_halt_done:
2581                         break;
2582                 case sdma_event_e25_hw_clean_up_done:
2583                         break;
2584                 case sdma_event_e40_sw_cleaned:
2585                         sdma_sw_tear_down(sde);
2586                         break;
2587                 case sdma_event_e50_hw_cleaned:
2588                         break;
2589                 case sdma_event_e60_hw_halted:
2590                         break;
2591                 case sdma_event_e70_go_idle:
2592                         break;
2593                 case sdma_event_e80_hw_freeze:
2594                         break;
2595                 case sdma_event_e81_hw_frozen:
2596                         break;
2597                 case sdma_event_e82_hw_unfreeze:
2598                         break;
2599                 case sdma_event_e85_link_down:
2600                         break;
2601                 case sdma_event_e90_sw_halted:
2602                         break;
2603                 }
2604                 break;
2605
2606         case sdma_state_s10_hw_start_up_halt_wait:
2607                 switch (event) {
2608                 case sdma_event_e00_go_hw_down:
2609                         sdma_set_state(sde, sdma_state_s00_hw_down);
2610                         sdma_sw_tear_down(sde);
2611                         break;
2612                 case sdma_event_e10_go_hw_start:
2613                         break;
2614                 case sdma_event_e15_hw_halt_done:
2615                         sdma_set_state(sde,
2616                                        sdma_state_s15_hw_start_up_clean_wait);
2617                         sdma_start_hw_clean_up(sde);
2618                         break;
2619                 case sdma_event_e25_hw_clean_up_done:
2620                         break;
2621                 case sdma_event_e30_go_running:
2622                         ss->go_s99_running = 1;
2623                         break;
2624                 case sdma_event_e40_sw_cleaned:
2625                         break;
2626                 case sdma_event_e50_hw_cleaned:
2627                         break;
2628                 case sdma_event_e60_hw_halted:
2629                         schedule_work(&sde->err_halt_worker);
2630                         break;
2631                 case sdma_event_e70_go_idle:
2632                         ss->go_s99_running = 0;
2633                         break;
2634                 case sdma_event_e80_hw_freeze:
2635                         break;
2636                 case sdma_event_e81_hw_frozen:
2637                         break;
2638                 case sdma_event_e82_hw_unfreeze:
2639                         break;
2640                 case sdma_event_e85_link_down:
2641                         break;
2642                 case sdma_event_e90_sw_halted:
2643                         break;
2644                 }
2645                 break;
2646
2647         case sdma_state_s15_hw_start_up_clean_wait:
2648                 switch (event) {
2649                 case sdma_event_e00_go_hw_down:
2650                         sdma_set_state(sde, sdma_state_s00_hw_down);
2651                         sdma_sw_tear_down(sde);
2652                         break;
2653                 case sdma_event_e10_go_hw_start:
2654                         break;
2655                 case sdma_event_e15_hw_halt_done:
2656                         break;
2657                 case sdma_event_e25_hw_clean_up_done:
2658                         sdma_hw_start_up(sde);
2659                         sdma_set_state(sde, ss->go_s99_running ?
2660                                        sdma_state_s99_running :
2661                                        sdma_state_s20_idle);
2662                         break;
2663                 case sdma_event_e30_go_running:
2664                         ss->go_s99_running = 1;
2665                         break;
2666                 case sdma_event_e40_sw_cleaned:
2667                         break;
2668                 case sdma_event_e50_hw_cleaned:
2669                         break;
2670                 case sdma_event_e60_hw_halted:
2671                         break;
2672                 case sdma_event_e70_go_idle:
2673                         ss->go_s99_running = 0;
2674                         break;
2675                 case sdma_event_e80_hw_freeze:
2676                         break;
2677                 case sdma_event_e81_hw_frozen:
2678                         break;
2679                 case sdma_event_e82_hw_unfreeze:
2680                         break;
2681                 case sdma_event_e85_link_down:
2682                         break;
2683                 case sdma_event_e90_sw_halted:
2684                         break;
2685                 }
2686                 break;
2687
2688         case sdma_state_s20_idle:
2689                 switch (event) {
2690                 case sdma_event_e00_go_hw_down:
2691                         sdma_set_state(sde, sdma_state_s00_hw_down);
2692                         sdma_sw_tear_down(sde);
2693                         break;
2694                 case sdma_event_e10_go_hw_start:
2695                         break;
2696                 case sdma_event_e15_hw_halt_done:
2697                         break;
2698                 case sdma_event_e25_hw_clean_up_done:
2699                         break;
2700                 case sdma_event_e30_go_running:
2701                         sdma_set_state(sde, sdma_state_s99_running);
2702                         ss->go_s99_running = 1;
2703                         break;
2704                 case sdma_event_e40_sw_cleaned:
2705                         break;
2706                 case sdma_event_e50_hw_cleaned:
2707                         break;
2708                 case sdma_event_e60_hw_halted:
2709                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2710                         schedule_work(&sde->err_halt_worker);
2711                         break;
2712                 case sdma_event_e70_go_idle:
2713                         break;
2714                 case sdma_event_e85_link_down:
2715                         /* fall through */
2716                 case sdma_event_e80_hw_freeze:
2717                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2718                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2719                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2720                         break;
2721                 case sdma_event_e81_hw_frozen:
2722                         break;
2723                 case sdma_event_e82_hw_unfreeze:
2724                         break;
2725                 case sdma_event_e90_sw_halted:
2726                         break;
2727                 }
2728                 break;
2729
2730         case sdma_state_s30_sw_clean_up_wait:
2731                 switch (event) {
2732                 case sdma_event_e00_go_hw_down:
2733                         sdma_set_state(sde, sdma_state_s00_hw_down);
2734                         break;
2735                 case sdma_event_e10_go_hw_start:
2736                         break;
2737                 case sdma_event_e15_hw_halt_done:
2738                         break;
2739                 case sdma_event_e25_hw_clean_up_done:
2740                         break;
2741                 case sdma_event_e30_go_running:
2742                         ss->go_s99_running = 1;
2743                         break;
2744                 case sdma_event_e40_sw_cleaned:
2745                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2746                         sdma_start_hw_clean_up(sde);
2747                         break;
2748                 case sdma_event_e50_hw_cleaned:
2749                         break;
2750                 case sdma_event_e60_hw_halted:
2751                         break;
2752                 case sdma_event_e70_go_idle:
2753                         ss->go_s99_running = 0;
2754                         break;
2755                 case sdma_event_e80_hw_freeze:
2756                         break;
2757                 case sdma_event_e81_hw_frozen:
2758                         break;
2759                 case sdma_event_e82_hw_unfreeze:
2760                         break;
2761                 case sdma_event_e85_link_down:
2762                         ss->go_s99_running = 0;
2763                         break;
2764                 case sdma_event_e90_sw_halted:
2765                         break;
2766                 }
2767                 break;
2768
2769         case sdma_state_s40_hw_clean_up_wait:
2770                 switch (event) {
2771                 case sdma_event_e00_go_hw_down:
2772                         sdma_set_state(sde, sdma_state_s00_hw_down);
2773                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2774                         break;
2775                 case sdma_event_e10_go_hw_start:
2776                         break;
2777                 case sdma_event_e15_hw_halt_done:
2778                         break;
2779                 case sdma_event_e25_hw_clean_up_done:
2780                         sdma_hw_start_up(sde);
2781                         sdma_set_state(sde, ss->go_s99_running ?
2782                                        sdma_state_s99_running :
2783                                        sdma_state_s20_idle);
2784                         break;
2785                 case sdma_event_e30_go_running:
2786                         ss->go_s99_running = 1;
2787                         break;
2788                 case sdma_event_e40_sw_cleaned:
2789                         break;
2790                 case sdma_event_e50_hw_cleaned:
2791                         break;
2792                 case sdma_event_e60_hw_halted:
2793                         break;
2794                 case sdma_event_e70_go_idle:
2795                         ss->go_s99_running = 0;
2796                         break;
2797                 case sdma_event_e80_hw_freeze:
2798                         break;
2799                 case sdma_event_e81_hw_frozen:
2800                         break;
2801                 case sdma_event_e82_hw_unfreeze:
2802                         break;
2803                 case sdma_event_e85_link_down:
2804                         ss->go_s99_running = 0;
2805                         break;
2806                 case sdma_event_e90_sw_halted:
2807                         break;
2808                 }
2809                 break;
2810
2811         case sdma_state_s50_hw_halt_wait:
2812                 switch (event) {
2813                 case sdma_event_e00_go_hw_down:
2814                         sdma_set_state(sde, sdma_state_s00_hw_down);
2815                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2816                         break;
2817                 case sdma_event_e10_go_hw_start:
2818                         break;
2819                 case sdma_event_e15_hw_halt_done:
2820                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2821                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2822                         break;
2823                 case sdma_event_e25_hw_clean_up_done:
2824                         break;
2825                 case sdma_event_e30_go_running:
2826                         ss->go_s99_running = 1;
2827                         break;
2828                 case sdma_event_e40_sw_cleaned:
2829                         break;
2830                 case sdma_event_e50_hw_cleaned:
2831                         break;
2832                 case sdma_event_e60_hw_halted:
2833                         schedule_work(&sde->err_halt_worker);
2834                         break;
2835                 case sdma_event_e70_go_idle:
2836                         ss->go_s99_running = 0;
2837                         break;
2838                 case sdma_event_e80_hw_freeze:
2839                         break;
2840                 case sdma_event_e81_hw_frozen:
2841                         break;
2842                 case sdma_event_e82_hw_unfreeze:
2843                         break;
2844                 case sdma_event_e85_link_down:
2845                         ss->go_s99_running = 0;
2846                         break;
2847                 case sdma_event_e90_sw_halted:
2848                         break;
2849                 }
2850                 break;
2851
2852         case sdma_state_s60_idle_halt_wait:
2853                 switch (event) {
2854                 case sdma_event_e00_go_hw_down:
2855                         sdma_set_state(sde, sdma_state_s00_hw_down);
2856                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2857                         break;
2858                 case sdma_event_e10_go_hw_start:
2859                         break;
2860                 case sdma_event_e15_hw_halt_done:
2861                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2862                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2863                         break;
2864                 case sdma_event_e25_hw_clean_up_done:
2865                         break;
2866                 case sdma_event_e30_go_running:
2867                         ss->go_s99_running = 1;
2868                         break;
2869                 case sdma_event_e40_sw_cleaned:
2870                         break;
2871                 case sdma_event_e50_hw_cleaned:
2872                         break;
2873                 case sdma_event_e60_hw_halted:
2874                         schedule_work(&sde->err_halt_worker);
2875                         break;
2876                 case sdma_event_e70_go_idle:
2877                         ss->go_s99_running = 0;
2878                         break;
2879                 case sdma_event_e80_hw_freeze:
2880                         break;
2881                 case sdma_event_e81_hw_frozen:
2882                         break;
2883                 case sdma_event_e82_hw_unfreeze:
2884                         break;
2885                 case sdma_event_e85_link_down:
2886                         break;
2887                 case sdma_event_e90_sw_halted:
2888                         break;
2889                 }
2890                 break;
2891
2892         case sdma_state_s80_hw_freeze:
2893                 switch (event) {
2894                 case sdma_event_e00_go_hw_down:
2895                         sdma_set_state(sde, sdma_state_s00_hw_down);
2896                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2897                         break;
2898                 case sdma_event_e10_go_hw_start:
2899                         break;
2900                 case sdma_event_e15_hw_halt_done:
2901                         break;
2902                 case sdma_event_e25_hw_clean_up_done:
2903                         break;
2904                 case sdma_event_e30_go_running:
2905                         ss->go_s99_running = 1;
2906                         break;
2907                 case sdma_event_e40_sw_cleaned:
2908                         break;
2909                 case sdma_event_e50_hw_cleaned:
2910                         break;
2911                 case sdma_event_e60_hw_halted:
2912                         break;
2913                 case sdma_event_e70_go_idle:
2914                         ss->go_s99_running = 0;
2915                         break;
2916                 case sdma_event_e80_hw_freeze:
2917                         break;
2918                 case sdma_event_e81_hw_frozen:
2919                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2920                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2921                         break;
2922                 case sdma_event_e82_hw_unfreeze:
2923                         break;
2924                 case sdma_event_e85_link_down:
2925                         break;
2926                 case sdma_event_e90_sw_halted:
2927                         break;
2928                 }
2929                 break;
2930
2931         case sdma_state_s82_freeze_sw_clean:
2932                 switch (event) {
2933                 case sdma_event_e00_go_hw_down:
2934                         sdma_set_state(sde, sdma_state_s00_hw_down);
2935                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2936                         break;
2937                 case sdma_event_e10_go_hw_start:
2938                         break;
2939                 case sdma_event_e15_hw_halt_done:
2940                         break;
2941                 case sdma_event_e25_hw_clean_up_done:
2942                         break;
2943                 case sdma_event_e30_go_running:
2944                         ss->go_s99_running = 1;
2945                         break;
2946                 case sdma_event_e40_sw_cleaned:
2947                         /* notify caller this engine is done cleaning */
2948                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2949                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2950                         break;
2951                 case sdma_event_e50_hw_cleaned:
2952                         break;
2953                 case sdma_event_e60_hw_halted:
2954                         break;
2955                 case sdma_event_e70_go_idle:
2956                         ss->go_s99_running = 0;
2957                         break;
2958                 case sdma_event_e80_hw_freeze:
2959                         break;
2960                 case sdma_event_e81_hw_frozen:
2961                         break;
2962                 case sdma_event_e82_hw_unfreeze:
2963                         sdma_hw_start_up(sde);
2964                         sdma_set_state(sde, ss->go_s99_running ?
2965                                        sdma_state_s99_running :
2966                                        sdma_state_s20_idle);
2967                         break;
2968                 case sdma_event_e85_link_down:
2969                         break;
2970                 case sdma_event_e90_sw_halted:
2971                         break;
2972                 }
2973                 break;
2974
2975         case sdma_state_s99_running:
2976                 switch (event) {
2977                 case sdma_event_e00_go_hw_down:
2978                         sdma_set_state(sde, sdma_state_s00_hw_down);
2979                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2980                         break;
2981                 case sdma_event_e10_go_hw_start:
2982                         break;
2983                 case sdma_event_e15_hw_halt_done:
2984                         break;
2985                 case sdma_event_e25_hw_clean_up_done:
2986                         break;
2987                 case sdma_event_e30_go_running:
2988                         break;
2989                 case sdma_event_e40_sw_cleaned:
2990                         break;
2991                 case sdma_event_e50_hw_cleaned:
2992                         break;
2993                 case sdma_event_e60_hw_halted:
2994                         need_progress = 1;
2995                         sdma_err_progress_check_schedule(sde);
2996                         /* fall through */
2997                 case sdma_event_e90_sw_halted:
2998                         /*
2999                         * SW initiated halt does not perform engines
3000                         * progress check
3001                         */
3002                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3003                         schedule_work(&sde->err_halt_worker);
3004                         break;
3005                 case sdma_event_e70_go_idle:
3006                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3007                         break;
3008                 case sdma_event_e85_link_down:
3009                         ss->go_s99_running = 0;
3010                         /* fall through */
3011                 case sdma_event_e80_hw_freeze:
3012                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3013                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3014                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3015                         break;
3016                 case sdma_event_e81_hw_frozen:
3017                         break;
3018                 case sdma_event_e82_hw_unfreeze:
3019                         break;
3020                 }
3021                 break;
3022         }
3023
3024         ss->last_event = event;
3025         if (need_progress)
3026                 sdma_make_progress(sde, 0);
3027 }
3028
3029 /*
3030  * _extend_sdma_tx_descs() - helper to extend txreq
3031  *
3032  * This is called once the initial nominal allocation
3033  * of descriptors in the sdma_txreq is exhausted.
3034  *
3035  * The code will bump the allocation up to the max
3036  * of MAX_DESC (64) descriptors. There doesn't seem
3037  * much point in an interim step. The last descriptor
3038  * is reserved for coalesce buffer in order to support
3039  * cases where input packet has >MAX_DESC iovecs.
3040  *
3041  */
3042 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3043 {
3044         int i;
3045
3046         /* Handle last descriptor */
3047         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3048                 /* if tlen is 0, it is for padding, release last descriptor */
3049                 if (!tx->tlen) {
3050                         tx->desc_limit = MAX_DESC;
3051                 } else if (!tx->coalesce_buf) {
3052                         /* allocate coalesce buffer with space for padding */
3053                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3054                                                    GFP_ATOMIC);
3055                         if (!tx->coalesce_buf)
3056                                 goto enomem;
3057                         tx->coalesce_idx = 0;
3058                 }
3059                 return 0;
3060         }
3061
3062         if (unlikely(tx->num_desc == MAX_DESC))
3063                 goto enomem;
3064
3065         tx->descp = kmalloc_array(
3066                         MAX_DESC,
3067                         sizeof(struct sdma_desc),
3068                         GFP_ATOMIC);
3069         if (!tx->descp)
3070                 goto enomem;
3071
3072         /* reserve last descriptor for coalescing */
3073         tx->desc_limit = MAX_DESC - 1;
3074         /* copy ones already built */
3075         for (i = 0; i < tx->num_desc; i++)
3076                 tx->descp[i] = tx->descs[i];
3077         return 0;
3078 enomem:
3079         __sdma_txclean(dd, tx);
3080         return -ENOMEM;
3081 }
3082
3083 /*
3084  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3085  *
3086  * This is called once the initial nominal allocation of descriptors
3087  * in the sdma_txreq is exhausted.
3088  *
3089  * This function calls _extend_sdma_tx_descs to extend or allocate
3090  * coalesce buffer. If there is a allocated coalesce buffer, it will
3091  * copy the input packet data into the coalesce buffer. It also adds
3092  * coalesce buffer descriptor once when whole packet is received.
3093  *
3094  * Return:
3095  * <0 - error
3096  * 0 - coalescing, don't populate descriptor
3097  * 1 - continue with populating descriptor
3098  */
3099 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3100                            int type, void *kvaddr, struct page *page,
3101                            unsigned long offset, u16 len)
3102 {
3103         int pad_len, rval;
3104         dma_addr_t addr;
3105
3106         rval = _extend_sdma_tx_descs(dd, tx);
3107         if (rval) {
3108                 __sdma_txclean(dd, tx);
3109                 return rval;
3110         }
3111
3112         /* If coalesce buffer is allocated, copy data into it */
3113         if (tx->coalesce_buf) {
3114                 if (type == SDMA_MAP_NONE) {
3115                         __sdma_txclean(dd, tx);
3116                         return -EINVAL;
3117                 }
3118
3119                 if (type == SDMA_MAP_PAGE) {
3120                         kvaddr = kmap(page);
3121                         kvaddr += offset;
3122                 } else if (WARN_ON(!kvaddr)) {
3123                         __sdma_txclean(dd, tx);
3124                         return -EINVAL;
3125                 }
3126
3127                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3128                 tx->coalesce_idx += len;
3129                 if (type == SDMA_MAP_PAGE)
3130                         kunmap(page);
3131
3132                 /* If there is more data, return */
3133                 if (tx->tlen - tx->coalesce_idx)
3134                         return 0;
3135
3136                 /* Whole packet is received; add any padding */
3137                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3138                 if (pad_len) {
3139                         pad_len = sizeof(u32) - pad_len;
3140                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3141                         /* padding is taken care of for coalescing case */
3142                         tx->packet_len += pad_len;
3143                         tx->tlen += pad_len;
3144                 }
3145
3146                 /* dma map the coalesce buffer */
3147                 addr = dma_map_single(&dd->pcidev->dev,
3148                                       tx->coalesce_buf,
3149                                       tx->tlen,
3150                                       DMA_TO_DEVICE);
3151
3152                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3153                         __sdma_txclean(dd, tx);
3154                         return -ENOSPC;
3155                 }
3156
3157                 /* Add descriptor for coalesce buffer */
3158                 tx->desc_limit = MAX_DESC;
3159                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3160                                          addr, tx->tlen);
3161         }
3162
3163         return 1;
3164 }
3165
3166 /* Update sdes when the lmc changes */
3167 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3168 {
3169         struct sdma_engine *sde;
3170         int i;
3171         u64 sreg;
3172
3173         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3174                 SD(CHECK_SLID_MASK_SHIFT)) |
3175                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3176                 SD(CHECK_SLID_VALUE_SHIFT));
3177
3178         for (i = 0; i < dd->num_sdma; i++) {
3179                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3180                           i, (u32)sreg);
3181                 sde = &dd->per_sdma[i];
3182                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3183         }
3184 }
3185
3186 /* tx not dword sized - pad */
3187 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3188 {
3189         int rval = 0;
3190
3191         tx->num_desc++;
3192         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3193                 rval = _extend_sdma_tx_descs(dd, tx);
3194                 if (rval) {
3195                         __sdma_txclean(dd, tx);
3196                         return rval;
3197                 }
3198         }
3199         /* finish the one just added */
3200         make_tx_sdma_desc(
3201                 tx,
3202                 SDMA_MAP_NONE,
3203                 dd->sdma_pad_phys,
3204                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3205         _sdma_close_tx(dd, tx);
3206         return rval;
3207 }
3208
3209 /*
3210  * Add ahg to the sdma_txreq
3211  *
3212  * The logic will consume up to 3
3213  * descriptors at the beginning of
3214  * sdma_txreq.
3215  */
3216 void _sdma_txreq_ahgadd(
3217         struct sdma_txreq *tx,
3218         u8 num_ahg,
3219         u8 ahg_entry,
3220         u32 *ahg,
3221         u8 ahg_hlen)
3222 {
3223         u32 i, shift = 0, desc = 0;
3224         u8 mode;
3225
3226         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3227         /* compute mode */
3228         if (num_ahg == 1)
3229                 mode = SDMA_AHG_APPLY_UPDATE1;
3230         else if (num_ahg <= 5)
3231                 mode = SDMA_AHG_APPLY_UPDATE2;
3232         else
3233                 mode = SDMA_AHG_APPLY_UPDATE3;
3234         tx->num_desc++;
3235         /* initialize to consumed descriptors to zero */
3236         switch (mode) {
3237         case SDMA_AHG_APPLY_UPDATE3:
3238                 tx->num_desc++;
3239                 tx->descs[2].qw[0] = 0;
3240                 tx->descs[2].qw[1] = 0;
3241                 /* FALLTHROUGH */
3242         case SDMA_AHG_APPLY_UPDATE2:
3243                 tx->num_desc++;
3244                 tx->descs[1].qw[0] = 0;
3245                 tx->descs[1].qw[1] = 0;
3246                 break;
3247         }
3248         ahg_hlen >>= 2;
3249         tx->descs[0].qw[1] |=
3250                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3251                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3252                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3253                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3254                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3255                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3256                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3257                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3258         for (i = 0; i < (num_ahg - 1); i++) {
3259                 if (!shift && !(i & 2))
3260                         desc++;
3261                 tx->descs[desc].qw[!!(i & 2)] |=
3262                         (((u64)ahg[i + 1])
3263                                 << shift);
3264                 shift = (shift + 32) & 63;
3265         }
3266 }
3267
3268 /**
3269  * sdma_ahg_alloc - allocate an AHG entry
3270  * @sde: engine to allocate from
3271  *
3272  * Return:
3273  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3274  * -ENOSPC if an entry is not available
3275  */
3276 int sdma_ahg_alloc(struct sdma_engine *sde)
3277 {
3278         int nr;
3279         int oldbit;
3280
3281         if (!sde) {
3282                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3283                 return -EINVAL;
3284         }
3285         while (1) {
3286                 nr = ffz(READ_ONCE(sde->ahg_bits));
3287                 if (nr > 31) {
3288                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3289                         return -ENOSPC;
3290                 }
3291                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3292                 if (!oldbit)
3293                         break;
3294                 cpu_relax();
3295         }
3296         trace_hfi1_ahg_allocate(sde, nr);
3297         return nr;
3298 }
3299
3300 /**
3301  * sdma_ahg_free - free an AHG entry
3302  * @sde: engine to return AHG entry
3303  * @ahg_index: index to free
3304  *
3305  * This routine frees the indicate AHG entry.
3306  */
3307 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3308 {
3309         if (!sde)
3310                 return;
3311         trace_hfi1_ahg_deallocate(sde, ahg_index);
3312         if (ahg_index < 0 || ahg_index > 31)
3313                 return;
3314         clear_bit(ahg_index, &sde->ahg_bits);
3315 }
3316
3317 /*
3318  * SPC freeze handling for SDMA engines.  Called when the driver knows
3319  * the SPC is going into a freeze but before the freeze is fully
3320  * settled.  Generally an error interrupt.
3321  *
3322  * This event will pull the engine out of running so no more entries can be
3323  * added to the engine's queue.
3324  */
3325 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3326 {
3327         int i;
3328         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3329                                              sdma_event_e80_hw_freeze;
3330
3331         /* set up the wait but do not wait here */
3332         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3333
3334         /* tell all engines to stop running and wait */
3335         for (i = 0; i < dd->num_sdma; i++)
3336                 sdma_process_event(&dd->per_sdma[i], event);
3337
3338         /* sdma_freeze() will wait for all engines to have stopped */
3339 }
3340
3341 /*
3342  * SPC freeze handling for SDMA engines.  Called when the driver knows
3343  * the SPC is fully frozen.
3344  */
3345 void sdma_freeze(struct hfi1_devdata *dd)
3346 {
3347         int i;
3348         int ret;
3349
3350         /*
3351          * Make sure all engines have moved out of the running state before
3352          * continuing.
3353          */
3354         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3355                                        atomic_read(&dd->sdma_unfreeze_count) <=
3356                                        0);
3357         /* interrupted or count is negative, then unloading - just exit */
3358         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3359                 return;
3360
3361         /* set up the count for the next wait */
3362         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3363
3364         /* tell all engines that the SPC is frozen, they can start cleaning */
3365         for (i = 0; i < dd->num_sdma; i++)
3366                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3367
3368         /*
3369          * Wait for everyone to finish software clean before exiting.  The
3370          * software clean will read engine CSRs, so must be completed before
3371          * the next step, which will clear the engine CSRs.
3372          */
3373         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3374                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3375         /* no need to check results - done no matter what */
3376 }
3377
3378 /*
3379  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3380  *
3381  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3382  * that is left is a software clean.  We could do it after the SPC is fully
3383  * frozen, but then we'd have to add another state to wait for the unfreeze.
3384  * Instead, just defer the software clean until the unfreeze step.
3385  */
3386 void sdma_unfreeze(struct hfi1_devdata *dd)
3387 {
3388         int i;
3389
3390         /* tell all engines start freeze clean up */
3391         for (i = 0; i < dd->num_sdma; i++)
3392                 sdma_process_event(&dd->per_sdma[i],
3393                                    sdma_event_e82_hw_unfreeze);
3394 }
3395
3396 /**
3397  * _sdma_engine_progress_schedule() - schedule progress on engine
3398  * @sde: sdma_engine to schedule progress
3399  *
3400  */
3401 void _sdma_engine_progress_schedule(
3402         struct sdma_engine *sde)
3403 {
3404         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3405         /* assume we have selected a good cpu */
3406         write_csr(sde->dd,
3407                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3408                   sde->progress_mask);
3409 }