Merge tag 'arc-5.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408         uint seq;
409
410         /* flush from head to tail */
411         sdma_flush_descq(sde);
412         spin_lock_irqsave(&sde->flushlist_lock, flags);
413         /* copy flush list */
414         list_splice_init(&sde->flushlist, &flushlist);
415         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
416         /* flush from flush list */
417         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
418                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
419         /* wakeup QPs orphaned on the dmawait list */
420         do {
421                 struct iowait *w, *nw;
422
423                 seq = read_seqbegin(&sde->waitlock);
424                 if (!list_empty(&sde->dmawait)) {
425                         write_seqlock(&sde->waitlock);
426                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
427                                 if (w->wakeup) {
428                                         w->wakeup(w, SDMA_AVAIL_REASON);
429                                         list_del_init(&w->list);
430                                 }
431                         }
432                         write_sequnlock(&sde->waitlock);
433                 }
434         } while (read_seqretry(&sde->waitlock, seq));
435 }
436
437 /*
438  * Fields a work request for flushing the descq ring
439  * and the flush list
440  *
441  * If the engine has been brought to running during
442  * the scheduling delay, the flush is ignored, assuming
443  * that the process of bringing the engine to running
444  * would have done this flush prior to going to running.
445  *
446  */
447 static void sdma_field_flush(struct work_struct *work)
448 {
449         unsigned long flags;
450         struct sdma_engine *sde =
451                 container_of(work, struct sdma_engine, flush_worker);
452
453         write_seqlock_irqsave(&sde->head_lock, flags);
454         if (!__sdma_running(sde))
455                 sdma_flush(sde);
456         write_sequnlock_irqrestore(&sde->head_lock, flags);
457 }
458
459 static void sdma_err_halt_wait(struct work_struct *work)
460 {
461         struct sdma_engine *sde = container_of(work, struct sdma_engine,
462                                                 err_halt_worker);
463         u64 statuscsr;
464         unsigned long timeout;
465
466         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
467         while (1) {
468                 statuscsr = read_sde_csr(sde, SD(STATUS));
469                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
470                 if (statuscsr)
471                         break;
472                 if (time_after(jiffies, timeout)) {
473                         dd_dev_err(sde->dd,
474                                    "SDMA engine %d - timeout waiting for engine to halt\n",
475                                    sde->this_idx);
476                         /*
477                          * Continue anyway.  This could happen if there was
478                          * an uncorrectable error in the wrong spot.
479                          */
480                         break;
481                 }
482                 usleep_range(80, 120);
483         }
484
485         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
486 }
487
488 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
489 {
490         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
491                 unsigned index;
492                 struct hfi1_devdata *dd = sde->dd;
493
494                 for (index = 0; index < dd->num_sdma; index++) {
495                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
496
497                         if (curr_sdma != sde)
498                                 curr_sdma->progress_check_head =
499                                                         curr_sdma->descq_head;
500                 }
501                 dd_dev_err(sde->dd,
502                            "SDMA engine %d - check scheduled\n",
503                                 sde->this_idx);
504                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
505         }
506 }
507
508 static void sdma_err_progress_check(struct timer_list *t)
509 {
510         unsigned index;
511         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
512
513         dd_dev_err(sde->dd, "SDE progress check event\n");
514         for (index = 0; index < sde->dd->num_sdma; index++) {
515                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
516                 unsigned long flags;
517
518                 /* check progress on each engine except the current one */
519                 if (curr_sde == sde)
520                         continue;
521                 /*
522                  * We must lock interrupts when acquiring sde->lock,
523                  * to avoid a deadlock if interrupt triggers and spins on
524                  * the same lock on same CPU
525                  */
526                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
527                 write_seqlock(&curr_sde->head_lock);
528
529                 /* skip non-running queues */
530                 if (curr_sde->state.current_state != sdma_state_s99_running) {
531                         write_sequnlock(&curr_sde->head_lock);
532                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
533                         continue;
534                 }
535
536                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
537                     (curr_sde->descq_head ==
538                                 curr_sde->progress_check_head))
539                         __sdma_process_event(curr_sde,
540                                              sdma_event_e90_sw_halted);
541                 write_sequnlock(&curr_sde->head_lock);
542                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
543         }
544         schedule_work(&sde->err_halt_worker);
545 }
546
547 static void sdma_hw_clean_up_task(unsigned long opaque)
548 {
549         struct sdma_engine *sde = (struct sdma_engine *)opaque;
550         u64 statuscsr;
551
552         while (1) {
553 #ifdef CONFIG_SDMA_VERBOSITY
554                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
555                            sde->this_idx, slashstrip(__FILE__), __LINE__,
556                         __func__);
557 #endif
558                 statuscsr = read_sde_csr(sde, SD(STATUS));
559                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
560                 if (statuscsr)
561                         break;
562                 udelay(10);
563         }
564
565         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
566 }
567
568 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
569 {
570         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
571 }
572
573 /*
574  * flush ring for recovery
575  */
576 static void sdma_flush_descq(struct sdma_engine *sde)
577 {
578         u16 head, tail;
579         int progress = 0;
580         struct sdma_txreq *txp = get_txhead(sde);
581
582         /* The reason for some of the complexity of this code is that
583          * not all descriptors have corresponding txps.  So, we have to
584          * be able to skip over descs until we wander into the range of
585          * the next txp on the list.
586          */
587         head = sde->descq_head & sde->sdma_mask;
588         tail = sde->descq_tail & sde->sdma_mask;
589         while (head != tail) {
590                 /* advance head, wrap if needed */
591                 head = ++sde->descq_head & sde->sdma_mask;
592                 /* if now past this txp's descs, do the callback */
593                 if (txp && txp->next_descq_idx == head) {
594                         /* remove from list */
595                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
596                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
597                         trace_hfi1_sdma_progress(sde, head, tail, txp);
598                         txp = get_txhead(sde);
599                 }
600                 progress++;
601         }
602         if (progress)
603                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
604 }
605
606 static void sdma_sw_clean_up_task(unsigned long opaque)
607 {
608         struct sdma_engine *sde = (struct sdma_engine *)opaque;
609         unsigned long flags;
610
611         spin_lock_irqsave(&sde->tail_lock, flags);
612         write_seqlock(&sde->head_lock);
613
614         /*
615          * At this point, the following should always be true:
616          * - We are halted, so no more descriptors are getting retired.
617          * - We are not running, so no one is submitting new work.
618          * - Only we can send the e40_sw_cleaned, so we can't start
619          *   running again until we say so.  So, the active list and
620          *   descq are ours to play with.
621          */
622
623         /*
624          * In the error clean up sequence, software clean must be called
625          * before the hardware clean so we can use the hardware head in
626          * the progress routine.  A hardware clean or SPC unfreeze will
627          * reset the hardware head.
628          *
629          * Process all retired requests. The progress routine will use the
630          * latest physical hardware head - we are not running so speed does
631          * not matter.
632          */
633         sdma_make_progress(sde, 0);
634
635         sdma_flush(sde);
636
637         /*
638          * Reset our notion of head and tail.
639          * Note that the HW registers have been reset via an earlier
640          * clean up.
641          */
642         sde->descq_tail = 0;
643         sde->descq_head = 0;
644         sde->desc_avail = sdma_descq_freecnt(sde);
645         *sde->head_dma = 0;
646
647         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
648
649         write_sequnlock(&sde->head_lock);
650         spin_unlock_irqrestore(&sde->tail_lock, flags);
651 }
652
653 static void sdma_sw_tear_down(struct sdma_engine *sde)
654 {
655         struct sdma_state *ss = &sde->state;
656
657         /* Releasing this reference means the state machine has stopped. */
658         sdma_put(ss);
659
660         /* stop waiting for all unfreeze events to complete */
661         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
662         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
663 }
664
665 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
666 {
667         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
668 }
669
670 static void sdma_set_state(struct sdma_engine *sde,
671                            enum sdma_states next_state)
672 {
673         struct sdma_state *ss = &sde->state;
674         const struct sdma_set_state_action *action = sdma_action_table;
675         unsigned op = 0;
676
677         trace_hfi1_sdma_state(
678                 sde,
679                 sdma_state_names[ss->current_state],
680                 sdma_state_names[next_state]);
681
682         /* debugging bookkeeping */
683         ss->previous_state = ss->current_state;
684         ss->previous_op = ss->current_op;
685         ss->current_state = next_state;
686
687         if (ss->previous_state != sdma_state_s99_running &&
688             next_state == sdma_state_s99_running)
689                 sdma_flush(sde);
690
691         if (action[next_state].op_enable)
692                 op |= SDMA_SENDCTRL_OP_ENABLE;
693
694         if (action[next_state].op_intenable)
695                 op |= SDMA_SENDCTRL_OP_INTENABLE;
696
697         if (action[next_state].op_halt)
698                 op |= SDMA_SENDCTRL_OP_HALT;
699
700         if (action[next_state].op_cleanup)
701                 op |= SDMA_SENDCTRL_OP_CLEANUP;
702
703         if (action[next_state].go_s99_running_tofalse)
704                 ss->go_s99_running = 0;
705
706         if (action[next_state].go_s99_running_totrue)
707                 ss->go_s99_running = 1;
708
709         ss->current_op = op;
710         sdma_sendctrl(sde, ss->current_op);
711 }
712
713 /**
714  * sdma_get_descq_cnt() - called when device probed
715  *
716  * Return a validated descq count.
717  *
718  * This is currently only used in the verbs initialization to build the tx
719  * list.
720  *
721  * This will probably be deleted in favor of a more scalable approach to
722  * alloc tx's.
723  *
724  */
725 u16 sdma_get_descq_cnt(void)
726 {
727         u16 count = sdma_descq_cnt;
728
729         if (!count)
730                 return SDMA_DESCQ_CNT;
731         /* count must be a power of 2 greater than 64 and less than
732          * 32768.   Otherwise return default.
733          */
734         if (!is_power_of_2(count))
735                 return SDMA_DESCQ_CNT;
736         if (count < 64 || count > 32768)
737                 return SDMA_DESCQ_CNT;
738         return count;
739 }
740
741 /**
742  * sdma_engine_get_vl() - return vl for a given sdma engine
743  * @sde: sdma engine
744  *
745  * This function returns the vl mapped to a given engine, or an error if
746  * the mapping can't be found. The mapping fields are protected by RCU.
747  */
748 int sdma_engine_get_vl(struct sdma_engine *sde)
749 {
750         struct hfi1_devdata *dd = sde->dd;
751         struct sdma_vl_map *m;
752         u8 vl;
753
754         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
755                 return -EINVAL;
756
757         rcu_read_lock();
758         m = rcu_dereference(dd->sdma_map);
759         if (unlikely(!m)) {
760                 rcu_read_unlock();
761                 return -EINVAL;
762         }
763         vl = m->engine_to_vl[sde->this_idx];
764         rcu_read_unlock();
765
766         return vl;
767 }
768
769 /**
770  * sdma_select_engine_vl() - select sdma engine
771  * @dd: devdata
772  * @selector: a spreading factor
773  * @vl: this vl
774  *
775  *
776  * This function returns an engine based on the selector and a vl.  The
777  * mapping fields are protected by RCU.
778  */
779 struct sdma_engine *sdma_select_engine_vl(
780         struct hfi1_devdata *dd,
781         u32 selector,
782         u8 vl)
783 {
784         struct sdma_vl_map *m;
785         struct sdma_map_elem *e;
786         struct sdma_engine *rval;
787
788         /* NOTE This should only happen if SC->VL changed after the initial
789          *      checks on the QP/AH
790          *      Default will return engine 0 below
791          */
792         if (vl >= num_vls) {
793                 rval = NULL;
794                 goto done;
795         }
796
797         rcu_read_lock();
798         m = rcu_dereference(dd->sdma_map);
799         if (unlikely(!m)) {
800                 rcu_read_unlock();
801                 return &dd->per_sdma[0];
802         }
803         e = m->map[vl & m->mask];
804         rval = e->sde[selector & e->mask];
805         rcu_read_unlock();
806
807 done:
808         rval =  !rval ? &dd->per_sdma[0] : rval;
809         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
810         return rval;
811 }
812
813 /**
814  * sdma_select_engine_sc() - select sdma engine
815  * @dd: devdata
816  * @selector: a spreading factor
817  * @sc5: the 5 bit sc
818  *
819  *
820  * This function returns an engine based on the selector and an sc.
821  */
822 struct sdma_engine *sdma_select_engine_sc(
823         struct hfi1_devdata *dd,
824         u32 selector,
825         u8 sc5)
826 {
827         u8 vl = sc_to_vlt(dd, sc5);
828
829         return sdma_select_engine_vl(dd, selector, vl);
830 }
831
832 struct sdma_rht_map_elem {
833         u32 mask;
834         u8 ctr;
835         struct sdma_engine *sde[0];
836 };
837
838 struct sdma_rht_node {
839         unsigned long cpu_id;
840         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
841         struct rhash_head node;
842 };
843
844 #define NR_CPUS_HINT 192
845
846 static const struct rhashtable_params sdma_rht_params = {
847         .nelem_hint = NR_CPUS_HINT,
848         .head_offset = offsetof(struct sdma_rht_node, node),
849         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
850         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
851         .max_size = NR_CPUS,
852         .min_size = 8,
853         .automatic_shrinking = true,
854 };
855
856 /*
857  * sdma_select_user_engine() - select sdma engine based on user setup
858  * @dd: devdata
859  * @selector: a spreading factor
860  * @vl: this vl
861  *
862  * This function returns an sdma engine for a user sdma request.
863  * User defined sdma engine affinity setting is honored when applicable,
864  * otherwise system default sdma engine mapping is used. To ensure correct
865  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
866  */
867 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
868                                             u32 selector, u8 vl)
869 {
870         struct sdma_rht_node *rht_node;
871         struct sdma_engine *sde = NULL;
872         const struct cpumask *current_mask = &current->cpus_allowed;
873         unsigned long cpu_id;
874
875         /*
876          * To ensure that always the same sdma engine(s) will be
877          * selected make sure the process is pinned to this CPU only.
878          */
879         if (cpumask_weight(current_mask) != 1)
880                 goto out;
881
882         cpu_id = smp_processor_id();
883         rcu_read_lock();
884         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
885                                           sdma_rht_params);
886
887         if (rht_node && rht_node->map[vl]) {
888                 struct sdma_rht_map_elem *map = rht_node->map[vl];
889
890                 sde = map->sde[selector & map->mask];
891         }
892         rcu_read_unlock();
893
894         if (sde)
895                 return sde;
896
897 out:
898         return sdma_select_engine_vl(dd, selector, vl);
899 }
900
901 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
902 {
903         int i;
904
905         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
906                 map->sde[map->ctr + i] = map->sde[i];
907 }
908
909 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
910                                  struct sdma_engine *sde)
911 {
912         unsigned int i, pow;
913
914         /* only need to check the first ctr entries for a match */
915         for (i = 0; i < map->ctr; i++) {
916                 if (map->sde[i] == sde) {
917                         memmove(&map->sde[i], &map->sde[i + 1],
918                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
919                         map->ctr--;
920                         pow = roundup_pow_of_two(map->ctr ? : 1);
921                         map->mask = pow - 1;
922                         sdma_populate_sde_map(map);
923                         break;
924                 }
925         }
926 }
927
928 /*
929  * Prevents concurrent reads and writes of the sdma engine cpu_mask
930  */
931 static DEFINE_MUTEX(process_to_sde_mutex);
932
933 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
934                                 size_t count)
935 {
936         struct hfi1_devdata *dd = sde->dd;
937         cpumask_var_t mask, new_mask;
938         unsigned long cpu;
939         int ret, vl, sz;
940         struct sdma_rht_node *rht_node;
941
942         vl = sdma_engine_get_vl(sde);
943         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
944                 return -EINVAL;
945
946         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
947         if (!ret)
948                 return -ENOMEM;
949
950         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
951         if (!ret) {
952                 free_cpumask_var(mask);
953                 return -ENOMEM;
954         }
955         ret = cpulist_parse(buf, mask);
956         if (ret)
957                 goto out_free;
958
959         if (!cpumask_subset(mask, cpu_online_mask)) {
960                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
961                 ret = -EINVAL;
962                 goto out_free;
963         }
964
965         sz = sizeof(struct sdma_rht_map_elem) +
966                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
967
968         mutex_lock(&process_to_sde_mutex);
969
970         for_each_cpu(cpu, mask) {
971                 /* Check if we have this already mapped */
972                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
973                         cpumask_set_cpu(cpu, new_mask);
974                         continue;
975                 }
976
977                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
978                                                   sdma_rht_params);
979                 if (!rht_node) {
980                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
981                         if (!rht_node) {
982                                 ret = -ENOMEM;
983                                 goto out;
984                         }
985
986                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
987                         if (!rht_node->map[vl]) {
988                                 kfree(rht_node);
989                                 ret = -ENOMEM;
990                                 goto out;
991                         }
992                         rht_node->cpu_id = cpu;
993                         rht_node->map[vl]->mask = 0;
994                         rht_node->map[vl]->ctr = 1;
995                         rht_node->map[vl]->sde[0] = sde;
996
997                         ret = rhashtable_insert_fast(dd->sdma_rht,
998                                                      &rht_node->node,
999                                                      sdma_rht_params);
1000                         if (ret) {
1001                                 kfree(rht_node->map[vl]);
1002                                 kfree(rht_node);
1003                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1004                                            cpu);
1005                                 goto out;
1006                         }
1007
1008                 } else {
1009                         int ctr, pow;
1010
1011                         /* Add new user mappings */
1012                         if (!rht_node->map[vl])
1013                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1014
1015                         if (!rht_node->map[vl]) {
1016                                 ret = -ENOMEM;
1017                                 goto out;
1018                         }
1019
1020                         rht_node->map[vl]->ctr++;
1021                         ctr = rht_node->map[vl]->ctr;
1022                         rht_node->map[vl]->sde[ctr - 1] = sde;
1023                         pow = roundup_pow_of_two(ctr);
1024                         rht_node->map[vl]->mask = pow - 1;
1025
1026                         /* Populate the sde map table */
1027                         sdma_populate_sde_map(rht_node->map[vl]);
1028                 }
1029                 cpumask_set_cpu(cpu, new_mask);
1030         }
1031
1032         /* Clean up old mappings */
1033         for_each_cpu(cpu, cpu_online_mask) {
1034                 struct sdma_rht_node *rht_node;
1035
1036                 /* Don't cleanup sdes that are set in the new mask */
1037                 if (cpumask_test_cpu(cpu, mask))
1038                         continue;
1039
1040                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1041                                                   sdma_rht_params);
1042                 if (rht_node) {
1043                         bool empty = true;
1044                         int i;
1045
1046                         /* Remove mappings for old sde */
1047                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1048                                 if (rht_node->map[i])
1049                                         sdma_cleanup_sde_map(rht_node->map[i],
1050                                                              sde);
1051
1052                         /* Free empty hash table entries */
1053                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1054                                 if (!rht_node->map[i])
1055                                         continue;
1056
1057                                 if (rht_node->map[i]->ctr) {
1058                                         empty = false;
1059                                         break;
1060                                 }
1061                         }
1062
1063                         if (empty) {
1064                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1065                                                              &rht_node->node,
1066                                                              sdma_rht_params);
1067                                 WARN_ON(ret);
1068
1069                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1070                                         kfree(rht_node->map[i]);
1071
1072                                 kfree(rht_node);
1073                         }
1074                 }
1075         }
1076
1077         cpumask_copy(&sde->cpu_mask, new_mask);
1078 out:
1079         mutex_unlock(&process_to_sde_mutex);
1080 out_free:
1081         free_cpumask_var(mask);
1082         free_cpumask_var(new_mask);
1083         return ret ? : strnlen(buf, PAGE_SIZE);
1084 }
1085
1086 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1087 {
1088         mutex_lock(&process_to_sde_mutex);
1089         if (cpumask_empty(&sde->cpu_mask))
1090                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1091         else
1092                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1093         mutex_unlock(&process_to_sde_mutex);
1094         return strnlen(buf, PAGE_SIZE);
1095 }
1096
1097 static void sdma_rht_free(void *ptr, void *arg)
1098 {
1099         struct sdma_rht_node *rht_node = ptr;
1100         int i;
1101
1102         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1103                 kfree(rht_node->map[i]);
1104
1105         kfree(rht_node);
1106 }
1107
1108 /**
1109  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1110  * @s: seq file
1111  * @dd: hfi1_devdata
1112  * @cpuid: cpu id
1113  *
1114  * This routine dumps the process to sde mappings per cpu
1115  */
1116 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1117                                 struct hfi1_devdata *dd,
1118                                 unsigned long cpuid)
1119 {
1120         struct sdma_rht_node *rht_node;
1121         int i, j;
1122
1123         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1124                                           sdma_rht_params);
1125         if (!rht_node)
1126                 return;
1127
1128         seq_printf(s, "cpu%3lu: ", cpuid);
1129         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1130                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1131                         continue;
1132
1133                 seq_printf(s, " vl%d: [", i);
1134
1135                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1136                         if (!rht_node->map[i]->sde[j])
1137                                 continue;
1138
1139                         if (j > 0)
1140                                 seq_puts(s, ",");
1141
1142                         seq_printf(s, " sdma%2d",
1143                                    rht_node->map[i]->sde[j]->this_idx);
1144                 }
1145                 seq_puts(s, " ]");
1146         }
1147
1148         seq_puts(s, "\n");
1149 }
1150
1151 /*
1152  * Free the indicated map struct
1153  */
1154 static void sdma_map_free(struct sdma_vl_map *m)
1155 {
1156         int i;
1157
1158         for (i = 0; m && i < m->actual_vls; i++)
1159                 kfree(m->map[i]);
1160         kfree(m);
1161 }
1162
1163 /*
1164  * Handle RCU callback
1165  */
1166 static void sdma_map_rcu_callback(struct rcu_head *list)
1167 {
1168         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1169
1170         sdma_map_free(m);
1171 }
1172
1173 /**
1174  * sdma_map_init - called when # vls change
1175  * @dd: hfi1_devdata
1176  * @port: port number
1177  * @num_vls: number of vls
1178  * @vl_engines: per vl engine mapping (optional)
1179  *
1180  * This routine changes the mapping based on the number of vls.
1181  *
1182  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183  * implies auto computing the loading and giving each VLs a uniform
1184  * distribution of engines per VL.
1185  *
1186  * The auto algorithm computes the sde_per_vl and the number of extra
1187  * engines.  Any extra engines are added from the last VL on down.
1188  *
1189  * rcu locking is used here to control access to the mapping fields.
1190  *
1191  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193  * up to the next highest power of 2 and the first entry is reused
1194  * in a round robin fashion.
1195  *
1196  * If an error occurs the map change is not done and the mapping is
1197  * not changed.
1198  *
1199  */
1200 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1201 {
1202         int i, j;
1203         int extra, sde_per_vl;
1204         int engine = 0;
1205         u8 lvl_engines[OPA_MAX_VLS];
1206         struct sdma_vl_map *oldmap, *newmap;
1207
1208         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1209                 return 0;
1210
1211         if (!vl_engines) {
1212                 /* truncate divide */
1213                 sde_per_vl = dd->num_sdma / num_vls;
1214                 /* extras */
1215                 extra = dd->num_sdma % num_vls;
1216                 vl_engines = lvl_engines;
1217                 /* add extras from last vl down */
1218                 for (i = num_vls - 1; i >= 0; i--, extra--)
1219                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1220         }
1221         /* build new map */
1222         newmap = kzalloc(
1223                 sizeof(struct sdma_vl_map) +
1224                         roundup_pow_of_two(num_vls) *
1225                         sizeof(struct sdma_map_elem *),
1226                 GFP_KERNEL);
1227         if (!newmap)
1228                 goto bail;
1229         newmap->actual_vls = num_vls;
1230         newmap->vls = roundup_pow_of_two(num_vls);
1231         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1232         /* initialize back-map */
1233         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1234                 newmap->engine_to_vl[i] = -1;
1235         for (i = 0; i < newmap->vls; i++) {
1236                 /* save for wrap around */
1237                 int first_engine = engine;
1238
1239                 if (i < newmap->actual_vls) {
1240                         int sz = roundup_pow_of_two(vl_engines[i]);
1241
1242                         /* only allocate once */
1243                         newmap->map[i] = kzalloc(
1244                                 sizeof(struct sdma_map_elem) +
1245                                         sz * sizeof(struct sdma_engine *),
1246                                 GFP_KERNEL);
1247                         if (!newmap->map[i])
1248                                 goto bail;
1249                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1250                         /* assign engines */
1251                         for (j = 0; j < sz; j++) {
1252                                 newmap->map[i]->sde[j] =
1253                                         &dd->per_sdma[engine];
1254                                 if (++engine >= first_engine + vl_engines[i])
1255                                         /* wrap back to first engine */
1256                                         engine = first_engine;
1257                         }
1258                         /* assign back-map */
1259                         for (j = 0; j < vl_engines[i]; j++)
1260                                 newmap->engine_to_vl[first_engine + j] = i;
1261                 } else {
1262                         /* just re-use entry without allocating */
1263                         newmap->map[i] = newmap->map[i % num_vls];
1264                 }
1265                 engine = first_engine + vl_engines[i];
1266         }
1267         /* newmap in hand, save old map */
1268         spin_lock_irq(&dd->sde_map_lock);
1269         oldmap = rcu_dereference_protected(dd->sdma_map,
1270                                            lockdep_is_held(&dd->sde_map_lock));
1271
1272         /* publish newmap */
1273         rcu_assign_pointer(dd->sdma_map, newmap);
1274
1275         spin_unlock_irq(&dd->sde_map_lock);
1276         /* success, free any old map after grace period */
1277         if (oldmap)
1278                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1279         return 0;
1280 bail:
1281         /* free any partial allocation */
1282         sdma_map_free(newmap);
1283         return -ENOMEM;
1284 }
1285
1286 /**
1287  * sdma_clean()  Clean up allocated memory
1288  * @dd:          struct hfi1_devdata
1289  * @num_engines: num sdma engines
1290  *
1291  * This routine can be called regardless of the success of
1292  * sdma_init()
1293  */
1294 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1295 {
1296         size_t i;
1297         struct sdma_engine *sde;
1298
1299         if (dd->sdma_pad_dma) {
1300                 dma_free_coherent(&dd->pcidev->dev, 4,
1301                                   (void *)dd->sdma_pad_dma,
1302                                   dd->sdma_pad_phys);
1303                 dd->sdma_pad_dma = NULL;
1304                 dd->sdma_pad_phys = 0;
1305         }
1306         if (dd->sdma_heads_dma) {
1307                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1308                                   (void *)dd->sdma_heads_dma,
1309                                   dd->sdma_heads_phys);
1310                 dd->sdma_heads_dma = NULL;
1311                 dd->sdma_heads_phys = 0;
1312         }
1313         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1314                 sde = &dd->per_sdma[i];
1315
1316                 sde->head_dma = NULL;
1317                 sde->head_phys = 0;
1318
1319                 if (sde->descq) {
1320                         dma_free_coherent(
1321                                 &dd->pcidev->dev,
1322                                 sde->descq_cnt * sizeof(u64[2]),
1323                                 sde->descq,
1324                                 sde->descq_phys
1325                         );
1326                         sde->descq = NULL;
1327                         sde->descq_phys = 0;
1328                 }
1329                 kvfree(sde->tx_ring);
1330                 sde->tx_ring = NULL;
1331         }
1332         spin_lock_irq(&dd->sde_map_lock);
1333         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1334         RCU_INIT_POINTER(dd->sdma_map, NULL);
1335         spin_unlock_irq(&dd->sde_map_lock);
1336         synchronize_rcu();
1337         kfree(dd->per_sdma);
1338         dd->per_sdma = NULL;
1339
1340         if (dd->sdma_rht) {
1341                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1342                 kfree(dd->sdma_rht);
1343                 dd->sdma_rht = NULL;
1344         }
1345 }
1346
1347 /**
1348  * sdma_init() - called when device probed
1349  * @dd: hfi1_devdata
1350  * @port: port number (currently only zero)
1351  *
1352  * Initializes each sde and its csrs.
1353  * Interrupts are not required to be enabled.
1354  *
1355  * Returns:
1356  * 0 - success, -errno on failure
1357  */
1358 int sdma_init(struct hfi1_devdata *dd, u8 port)
1359 {
1360         unsigned this_idx;
1361         struct sdma_engine *sde;
1362         struct rhashtable *tmp_sdma_rht;
1363         u16 descq_cnt;
1364         void *curr_head;
1365         struct hfi1_pportdata *ppd = dd->pport + port;
1366         u32 per_sdma_credits;
1367         uint idle_cnt = sdma_idle_cnt;
1368         size_t num_engines = chip_sdma_engines(dd);
1369         int ret = -ENOMEM;
1370
1371         if (!HFI1_CAP_IS_KSET(SDMA)) {
1372                 HFI1_CAP_CLEAR(SDMA_AHG);
1373                 return 0;
1374         }
1375         if (mod_num_sdma &&
1376             /* can't exceed chip support */
1377             mod_num_sdma <= chip_sdma_engines(dd) &&
1378             /* count must be >= vls */
1379             mod_num_sdma >= num_vls)
1380                 num_engines = mod_num_sdma;
1381
1382         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1383         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1384         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1385                     chip_sdma_mem_size(dd));
1386
1387         per_sdma_credits =
1388                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1389
1390         /* set up freeze waitqueue */
1391         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1392         atomic_set(&dd->sdma_unfreeze_count, 0);
1393
1394         descq_cnt = sdma_get_descq_cnt();
1395         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1396                     num_engines, descq_cnt);
1397
1398         /* alloc memory for array of send engines */
1399         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1400                                     GFP_KERNEL, dd->node);
1401         if (!dd->per_sdma)
1402                 return ret;
1403
1404         idle_cnt = ns_to_cclock(dd, idle_cnt);
1405         if (idle_cnt)
1406                 dd->default_desc1 =
1407                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1408         else
1409                 dd->default_desc1 =
1410                         SDMA_DESC1_INT_REQ_FLAG;
1411
1412         if (!sdma_desct_intr)
1413                 sdma_desct_intr = SDMA_DESC_INTR;
1414
1415         /* Allocate memory for SendDMA descriptor FIFOs */
1416         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1417                 sde = &dd->per_sdma[this_idx];
1418                 sde->dd = dd;
1419                 sde->ppd = ppd;
1420                 sde->this_idx = this_idx;
1421                 sde->descq_cnt = descq_cnt;
1422                 sde->desc_avail = sdma_descq_freecnt(sde);
1423                 sde->sdma_shift = ilog2(descq_cnt);
1424                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1425
1426                 /* Create a mask specifically for each interrupt source */
1427                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1428                                            this_idx);
1429                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1430                                                 this_idx);
1431                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1432                                             this_idx);
1433                 /* Create a combined mask to cover all 3 interrupt sources */
1434                 sde->imask = sde->int_mask | sde->progress_mask |
1435                              sde->idle_mask;
1436
1437                 spin_lock_init(&sde->tail_lock);
1438                 seqlock_init(&sde->head_lock);
1439                 spin_lock_init(&sde->senddmactrl_lock);
1440                 spin_lock_init(&sde->flushlist_lock);
1441                 seqlock_init(&sde->waitlock);
1442                 /* insure there is always a zero bit */
1443                 sde->ahg_bits = 0xfffffffe00000000ULL;
1444
1445                 sdma_set_state(sde, sdma_state_s00_hw_down);
1446
1447                 /* set up reference counting */
1448                 kref_init(&sde->state.kref);
1449                 init_completion(&sde->state.comp);
1450
1451                 INIT_LIST_HEAD(&sde->flushlist);
1452                 INIT_LIST_HEAD(&sde->dmawait);
1453
1454                 sde->tail_csr =
1455                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1456
1457                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1458                              (unsigned long)sde);
1459
1460                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1461                              (unsigned long)sde);
1462                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464
1465                 sde->progress_check_head = 0;
1466
1467                 timer_setup(&sde->err_progress_check_timer,
1468                             sdma_err_progress_check, 0);
1469
1470                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471                                                 descq_cnt * sizeof(u64[2]),
1472                                                 &sde->descq_phys, GFP_KERNEL);
1473                 if (!sde->descq)
1474                         goto bail;
1475                 sde->tx_ring =
1476                         kvzalloc_node(array_size(descq_cnt,
1477                                                  sizeof(struct sdma_txreq *)),
1478                                       GFP_KERNEL, dd->node);
1479                 if (!sde->tx_ring)
1480                         goto bail;
1481         }
1482
1483         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484         /* Allocate memory for DMA of head registers to memory */
1485         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486                                                 dd->sdma_heads_size,
1487                                                 &dd->sdma_heads_phys,
1488                                                 GFP_KERNEL);
1489         if (!dd->sdma_heads_dma) {
1490                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491                 goto bail;
1492         }
1493
1494         /* Allocate memory for pad */
1495         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32),
1496                                               &dd->sdma_pad_phys, GFP_KERNEL);
1497         if (!dd->sdma_pad_dma) {
1498                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499                 goto bail;
1500         }
1501
1502         /* assign each engine to different cacheline and init registers */
1503         curr_head = (void *)dd->sdma_heads_dma;
1504         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505                 unsigned long phys_offset;
1506
1507                 sde = &dd->per_sdma[this_idx];
1508
1509                 sde->head_dma = curr_head;
1510                 curr_head += L1_CACHE_BYTES;
1511                 phys_offset = (unsigned long)sde->head_dma -
1512                               (unsigned long)dd->sdma_heads_dma;
1513                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515         }
1516         dd->flags |= HFI1_HAS_SEND_DMA;
1517         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518         dd->num_sdma = num_engines;
1519         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520         if (ret < 0)
1521                 goto bail;
1522
1523         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524         if (!tmp_sdma_rht) {
1525                 ret = -ENOMEM;
1526                 goto bail;
1527         }
1528
1529         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530         if (ret < 0)
1531                 goto bail;
1532         dd->sdma_rht = tmp_sdma_rht;
1533
1534         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1535         return 0;
1536
1537 bail:
1538         sdma_clean(dd, num_engines);
1539         return ret;
1540 }
1541
1542 /**
1543  * sdma_all_running() - called when the link goes up
1544  * @dd: hfi1_devdata
1545  *
1546  * This routine moves all engines to the running state.
1547  */
1548 void sdma_all_running(struct hfi1_devdata *dd)
1549 {
1550         struct sdma_engine *sde;
1551         unsigned int i;
1552
1553         /* move all engines to running */
1554         for (i = 0; i < dd->num_sdma; ++i) {
1555                 sde = &dd->per_sdma[i];
1556                 sdma_process_event(sde, sdma_event_e30_go_running);
1557         }
1558 }
1559
1560 /**
1561  * sdma_all_idle() - called when the link goes down
1562  * @dd: hfi1_devdata
1563  *
1564  * This routine moves all engines to the idle state.
1565  */
1566 void sdma_all_idle(struct hfi1_devdata *dd)
1567 {
1568         struct sdma_engine *sde;
1569         unsigned int i;
1570
1571         /* idle all engines */
1572         for (i = 0; i < dd->num_sdma; ++i) {
1573                 sde = &dd->per_sdma[i];
1574                 sdma_process_event(sde, sdma_event_e70_go_idle);
1575         }
1576 }
1577
1578 /**
1579  * sdma_start() - called to kick off state processing for all engines
1580  * @dd: hfi1_devdata
1581  *
1582  * This routine is for kicking off the state processing for all required
1583  * sdma engines.  Interrupts need to be working at this point.
1584  *
1585  */
1586 void sdma_start(struct hfi1_devdata *dd)
1587 {
1588         unsigned i;
1589         struct sdma_engine *sde;
1590
1591         /* kick off the engines state processing */
1592         for (i = 0; i < dd->num_sdma; ++i) {
1593                 sde = &dd->per_sdma[i];
1594                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1595         }
1596 }
1597
1598 /**
1599  * sdma_exit() - used when module is removed
1600  * @dd: hfi1_devdata
1601  */
1602 void sdma_exit(struct hfi1_devdata *dd)
1603 {
1604         unsigned this_idx;
1605         struct sdma_engine *sde;
1606
1607         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1608                         ++this_idx) {
1609                 sde = &dd->per_sdma[this_idx];
1610                 if (!list_empty(&sde->dmawait))
1611                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1612                                    sde->this_idx);
1613                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1614
1615                 del_timer_sync(&sde->err_progress_check_timer);
1616
1617                 /*
1618                  * This waits for the state machine to exit so it is not
1619                  * necessary to kill the sdma_sw_clean_up_task to make sure
1620                  * it is not running.
1621                  */
1622                 sdma_finalput(&sde->state);
1623         }
1624 }
1625
1626 /*
1627  * unmap the indicated descriptor
1628  */
1629 static inline void sdma_unmap_desc(
1630         struct hfi1_devdata *dd,
1631         struct sdma_desc *descp)
1632 {
1633         switch (sdma_mapping_type(descp)) {
1634         case SDMA_MAP_SINGLE:
1635                 dma_unmap_single(
1636                         &dd->pcidev->dev,
1637                         sdma_mapping_addr(descp),
1638                         sdma_mapping_len(descp),
1639                         DMA_TO_DEVICE);
1640                 break;
1641         case SDMA_MAP_PAGE:
1642                 dma_unmap_page(
1643                         &dd->pcidev->dev,
1644                         sdma_mapping_addr(descp),
1645                         sdma_mapping_len(descp),
1646                         DMA_TO_DEVICE);
1647                 break;
1648         }
1649 }
1650
1651 /*
1652  * return the mode as indicated by the first
1653  * descriptor in the tx.
1654  */
1655 static inline u8 ahg_mode(struct sdma_txreq *tx)
1656 {
1657         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1658                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1659 }
1660
1661 /**
1662  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1663  * @dd: hfi1_devdata for unmapping
1664  * @tx: tx request to clean
1665  *
1666  * This is used in the progress routine to clean the tx or
1667  * by the ULP to toss an in-process tx build.
1668  *
1669  * The code can be called multiple times without issue.
1670  *
1671  */
1672 void __sdma_txclean(
1673         struct hfi1_devdata *dd,
1674         struct sdma_txreq *tx)
1675 {
1676         u16 i;
1677
1678         if (tx->num_desc) {
1679                 u8 skip = 0, mode = ahg_mode(tx);
1680
1681                 /* unmap first */
1682                 sdma_unmap_desc(dd, &tx->descp[0]);
1683                 /* determine number of AHG descriptors to skip */
1684                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1685                         skip = mode >> 1;
1686                 for (i = 1 + skip; i < tx->num_desc; i++)
1687                         sdma_unmap_desc(dd, &tx->descp[i]);
1688                 tx->num_desc = 0;
1689         }
1690         kfree(tx->coalesce_buf);
1691         tx->coalesce_buf = NULL;
1692         /* kmalloc'ed descp */
1693         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1694                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1695                 kfree(tx->descp);
1696         }
1697 }
1698
1699 static inline u16 sdma_gethead(struct sdma_engine *sde)
1700 {
1701         struct hfi1_devdata *dd = sde->dd;
1702         int use_dmahead;
1703         u16 hwhead;
1704
1705 #ifdef CONFIG_SDMA_VERBOSITY
1706         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1707                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1708 #endif
1709
1710 retry:
1711         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1712                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1713         hwhead = use_dmahead ?
1714                 (u16)le64_to_cpu(*sde->head_dma) :
1715                 (u16)read_sde_csr(sde, SD(HEAD));
1716
1717         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1718                 u16 cnt;
1719                 u16 swtail;
1720                 u16 swhead;
1721                 int sane;
1722
1723                 swhead = sde->descq_head & sde->sdma_mask;
1724                 /* this code is really bad for cache line trading */
1725                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1726                 cnt = sde->descq_cnt;
1727
1728                 if (swhead < swtail)
1729                         /* not wrapped */
1730                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1731                 else if (swhead > swtail)
1732                         /* wrapped around */
1733                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1734                                 (hwhead <= swtail);
1735                 else
1736                         /* empty */
1737                         sane = (hwhead == swhead);
1738
1739                 if (unlikely(!sane)) {
1740                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1741                                    sde->this_idx,
1742                                    use_dmahead ? "dma" : "kreg",
1743                                    hwhead, swhead, swtail, cnt);
1744                         if (use_dmahead) {
1745                                 /* try one more time, using csr */
1746                                 use_dmahead = 0;
1747                                 goto retry;
1748                         }
1749                         /* proceed as if no progress */
1750                         hwhead = swhead;
1751                 }
1752         }
1753         return hwhead;
1754 }
1755
1756 /*
1757  * This is called when there are send DMA descriptors that might be
1758  * available.
1759  *
1760  * This is called with head_lock held.
1761  */
1762 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1763 {
1764         struct iowait *wait, *nw, *twait;
1765         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1766         uint i, n = 0, seq, tidx = 0;
1767
1768 #ifdef CONFIG_SDMA_VERBOSITY
1769         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1770                    slashstrip(__FILE__), __LINE__, __func__);
1771         dd_dev_err(sde->dd, "avail: %u\n", avail);
1772 #endif
1773
1774         do {
1775                 seq = read_seqbegin(&sde->waitlock);
1776                 if (!list_empty(&sde->dmawait)) {
1777                         /* at least one item */
1778                         write_seqlock(&sde->waitlock);
1779                         /* Harvest waiters wanting DMA descriptors */
1780                         list_for_each_entry_safe(
1781                                         wait,
1782                                         nw,
1783                                         &sde->dmawait,
1784                                         list) {
1785                                 u32 num_desc;
1786
1787                                 if (!wait->wakeup)
1788                                         continue;
1789                                 if (n == ARRAY_SIZE(waits))
1790                                         break;
1791                                 iowait_init_priority(wait);
1792                                 num_desc = iowait_get_all_desc(wait);
1793                                 if (num_desc > avail)
1794                                         break;
1795                                 avail -= num_desc;
1796                                 /* Find the top-priority wait memeber */
1797                                 if (n) {
1798                                         twait = waits[tidx];
1799                                         tidx =
1800                                             iowait_priority_update_top(wait,
1801                                                                        twait,
1802                                                                        n,
1803                                                                        tidx);
1804                                 }
1805                                 list_del_init(&wait->list);
1806                                 waits[n++] = wait;
1807                         }
1808                         write_sequnlock(&sde->waitlock);
1809                         break;
1810                 }
1811         } while (read_seqretry(&sde->waitlock, seq));
1812
1813         /* Schedule the top-priority entry first */
1814         if (n)
1815                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1816
1817         for (i = 0; i < n; i++)
1818                 if (i != tidx)
1819                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1820 }
1821
1822 /* head_lock must be held */
1823 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1824 {
1825         struct sdma_txreq *txp = NULL;
1826         int progress = 0;
1827         u16 hwhead, swhead;
1828         int idle_check_done = 0;
1829
1830         hwhead = sdma_gethead(sde);
1831
1832         /* The reason for some of the complexity of this code is that
1833          * not all descriptors have corresponding txps.  So, we have to
1834          * be able to skip over descs until we wander into the range of
1835          * the next txp on the list.
1836          */
1837
1838 retry:
1839         txp = get_txhead(sde);
1840         swhead = sde->descq_head & sde->sdma_mask;
1841         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1842         while (swhead != hwhead) {
1843                 /* advance head, wrap if needed */
1844                 swhead = ++sde->descq_head & sde->sdma_mask;
1845
1846                 /* if now past this txp's descs, do the callback */
1847                 if (txp && txp->next_descq_idx == swhead) {
1848                         /* remove from list */
1849                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1850                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1851                         /* see if there is another txp */
1852                         txp = get_txhead(sde);
1853                 }
1854                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1855                 progress++;
1856         }
1857
1858         /*
1859          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1860          * to updates to the the dma_head location in host memory. The head
1861          * value read might not be fully up to date. If there are pending
1862          * descriptors and the SDMA idle interrupt fired then read from the
1863          * CSR SDMA head instead to get the latest value from the hardware.
1864          * The hardware SDMA head should be read at most once in this invocation
1865          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1866          */
1867         if ((status & sde->idle_mask) && !idle_check_done) {
1868                 u16 swtail;
1869
1870                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1871                 if (swtail != hwhead) {
1872                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1873                         idle_check_done = 1;
1874                         goto retry;
1875                 }
1876         }
1877
1878         sde->last_status = status;
1879         if (progress)
1880                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1881 }
1882
1883 /*
1884  * sdma_engine_interrupt() - interrupt handler for engine
1885  * @sde: sdma engine
1886  * @status: sdma interrupt reason
1887  *
1888  * Status is a mask of the 3 possible interrupts for this engine.  It will
1889  * contain bits _only_ for this SDMA engine.  It will contain at least one
1890  * bit, it may contain more.
1891  */
1892 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1893 {
1894         trace_hfi1_sdma_engine_interrupt(sde, status);
1895         write_seqlock(&sde->head_lock);
1896         sdma_set_desc_cnt(sde, sdma_desct_intr);
1897         if (status & sde->idle_mask)
1898                 sde->idle_int_cnt++;
1899         else if (status & sde->progress_mask)
1900                 sde->progress_int_cnt++;
1901         else if (status & sde->int_mask)
1902                 sde->sdma_int_cnt++;
1903         sdma_make_progress(sde, status);
1904         write_sequnlock(&sde->head_lock);
1905 }
1906
1907 /**
1908  * sdma_engine_error() - error handler for engine
1909  * @sde: sdma engine
1910  * @status: sdma interrupt reason
1911  */
1912 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1913 {
1914         unsigned long flags;
1915
1916 #ifdef CONFIG_SDMA_VERBOSITY
1917         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1918                    sde->this_idx,
1919                    (unsigned long long)status,
1920                    sdma_state_names[sde->state.current_state]);
1921 #endif
1922         spin_lock_irqsave(&sde->tail_lock, flags);
1923         write_seqlock(&sde->head_lock);
1924         if (status & ALL_SDMA_ENG_HALT_ERRS)
1925                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1926         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1927                 dd_dev_err(sde->dd,
1928                            "SDMA (%u) engine error: 0x%llx state %s\n",
1929                            sde->this_idx,
1930                            (unsigned long long)status,
1931                            sdma_state_names[sde->state.current_state]);
1932                 dump_sdma_state(sde);
1933         }
1934         write_sequnlock(&sde->head_lock);
1935         spin_unlock_irqrestore(&sde->tail_lock, flags);
1936 }
1937
1938 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1939 {
1940         u64 set_senddmactrl = 0;
1941         u64 clr_senddmactrl = 0;
1942         unsigned long flags;
1943
1944 #ifdef CONFIG_SDMA_VERBOSITY
1945         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1946                    sde->this_idx,
1947                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1948                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1949                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1950                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1951 #endif
1952
1953         if (op & SDMA_SENDCTRL_OP_ENABLE)
1954                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1955         else
1956                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1957
1958         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1959                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1960         else
1961                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1962
1963         if (op & SDMA_SENDCTRL_OP_HALT)
1964                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1965         else
1966                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1967
1968         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1969
1970         sde->p_senddmactrl |= set_senddmactrl;
1971         sde->p_senddmactrl &= ~clr_senddmactrl;
1972
1973         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1974                 write_sde_csr(sde, SD(CTRL),
1975                               sde->p_senddmactrl |
1976                               SD(CTRL_SDMA_CLEANUP_SMASK));
1977         else
1978                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1979
1980         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1981
1982 #ifdef CONFIG_SDMA_VERBOSITY
1983         sdma_dumpstate(sde);
1984 #endif
1985 }
1986
1987 static void sdma_setlengen(struct sdma_engine *sde)
1988 {
1989 #ifdef CONFIG_SDMA_VERBOSITY
1990         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1991                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1992 #endif
1993
1994         /*
1995          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1996          * count to enable generation checking and load the internal
1997          * generation counter.
1998          */
1999         write_sde_csr(sde, SD(LEN_GEN),
2000                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2001         write_sde_csr(sde, SD(LEN_GEN),
2002                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2003                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2004 }
2005
2006 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2007 {
2008         /* Commit writes to memory and advance the tail on the chip */
2009         smp_wmb(); /* see get_txhead() */
2010         writeq(tail, sde->tail_csr);
2011 }
2012
2013 /*
2014  * This is called when changing to state s10_hw_start_up_halt_wait as
2015  * a result of send buffer errors or send DMA descriptor errors.
2016  */
2017 static void sdma_hw_start_up(struct sdma_engine *sde)
2018 {
2019         u64 reg;
2020
2021 #ifdef CONFIG_SDMA_VERBOSITY
2022         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2023                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2024 #endif
2025
2026         sdma_setlengen(sde);
2027         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2028         *sde->head_dma = 0;
2029
2030         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2031               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2032         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2033 }
2034
2035 /*
2036  * set_sdma_integrity
2037  *
2038  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2039  */
2040 static void set_sdma_integrity(struct sdma_engine *sde)
2041 {
2042         struct hfi1_devdata *dd = sde->dd;
2043
2044         write_sde_csr(sde, SD(CHECK_ENABLE),
2045                       hfi1_pkt_base_sdma_integrity(dd));
2046 }
2047
2048 static void init_sdma_regs(
2049         struct sdma_engine *sde,
2050         u32 credits,
2051         uint idle_cnt)
2052 {
2053         u8 opval, opmask;
2054 #ifdef CONFIG_SDMA_VERBOSITY
2055         struct hfi1_devdata *dd = sde->dd;
2056
2057         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2058                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2059 #endif
2060
2061         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2062         sdma_setlengen(sde);
2063         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2064         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2065         write_sde_csr(sde, SD(DESC_CNT), 0);
2066         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2067         write_sde_csr(sde, SD(MEMORY),
2068                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2069                       ((u64)(credits * sde->this_idx) <<
2070                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2071         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2072         set_sdma_integrity(sde);
2073         opmask = OPCODE_CHECK_MASK_DISABLED;
2074         opval = OPCODE_CHECK_VAL_DISABLED;
2075         write_sde_csr(sde, SD(CHECK_OPCODE),
2076                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2077                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2078 }
2079
2080 #ifdef CONFIG_SDMA_VERBOSITY
2081
2082 #define sdma_dumpstate_helper0(reg) do { \
2083                 csr = read_csr(sde->dd, reg); \
2084                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2085         } while (0)
2086
2087 #define sdma_dumpstate_helper(reg) do { \
2088                 csr = read_sde_csr(sde, reg); \
2089                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2090                         #reg, sde->this_idx, csr); \
2091         } while (0)
2092
2093 #define sdma_dumpstate_helper2(reg) do { \
2094                 csr = read_csr(sde->dd, reg + (8 * i)); \
2095                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2096                                 #reg, i, csr); \
2097         } while (0)
2098
2099 void sdma_dumpstate(struct sdma_engine *sde)
2100 {
2101         u64 csr;
2102         unsigned i;
2103
2104         sdma_dumpstate_helper(SD(CTRL));
2105         sdma_dumpstate_helper(SD(STATUS));
2106         sdma_dumpstate_helper0(SD(ERR_STATUS));
2107         sdma_dumpstate_helper0(SD(ERR_MASK));
2108         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2109         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2110
2111         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2112                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2113                 sdma_dumpstate_helper2(CCE_INT_MASK);
2114                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2115         }
2116
2117         sdma_dumpstate_helper(SD(TAIL));
2118         sdma_dumpstate_helper(SD(HEAD));
2119         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2120         sdma_dumpstate_helper(SD(IDLE_CNT));
2121         sdma_dumpstate_helper(SD(RELOAD_CNT));
2122         sdma_dumpstate_helper(SD(DESC_CNT));
2123         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2124         sdma_dumpstate_helper(SD(MEMORY));
2125         sdma_dumpstate_helper0(SD(ENGINES));
2126         sdma_dumpstate_helper0(SD(MEM_SIZE));
2127         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2128         sdma_dumpstate_helper(SD(BASE_ADDR));
2129         sdma_dumpstate_helper(SD(LEN_GEN));
2130         sdma_dumpstate_helper(SD(HEAD_ADDR));
2131         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2132         sdma_dumpstate_helper(SD(CHECK_VL));
2133         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2134         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2135         sdma_dumpstate_helper(SD(CHECK_SLID));
2136         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2137 }
2138 #endif
2139
2140 static void dump_sdma_state(struct sdma_engine *sde)
2141 {
2142         struct hw_sdma_desc *descqp;
2143         u64 desc[2];
2144         u64 addr;
2145         u8 gen;
2146         u16 len;
2147         u16 head, tail, cnt;
2148
2149         head = sde->descq_head & sde->sdma_mask;
2150         tail = sde->descq_tail & sde->sdma_mask;
2151         cnt = sdma_descq_freecnt(sde);
2152
2153         dd_dev_err(sde->dd,
2154                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2155                    sde->this_idx, head, tail, cnt,
2156                    !list_empty(&sde->flushlist));
2157
2158         /* print info for each entry in the descriptor queue */
2159         while (head != tail) {
2160                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2161
2162                 descqp = &sde->descq[head];
2163                 desc[0] = le64_to_cpu(descqp->qw[0]);
2164                 desc[1] = le64_to_cpu(descqp->qw[1]);
2165                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2166                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2167                                 'H' : '-';
2168                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2169                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2170                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2171                         & SDMA_DESC0_PHY_ADDR_MASK;
2172                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2173                         & SDMA_DESC1_GENERATION_MASK;
2174                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2175                         & SDMA_DESC0_BYTE_COUNT_MASK;
2176                 dd_dev_err(sde->dd,
2177                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2178                            head, flags, addr, gen, len);
2179                 dd_dev_err(sde->dd,
2180                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2181                            desc[0], desc[1]);
2182                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2183                         dd_dev_err(sde->dd,
2184                                    "\taidx: %u amode: %u alen: %u\n",
2185                                    (u8)((desc[1] &
2186                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2187                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2188                                    (u8)((desc[1] &
2189                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2190                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2191                                    (u8)((desc[1] &
2192                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2193                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2194                 head++;
2195                 head &= sde->sdma_mask;
2196         }
2197 }
2198
2199 #define SDE_FMT \
2200         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2201 /**
2202  * sdma_seqfile_dump_sde() - debugfs dump of sde
2203  * @s: seq file
2204  * @sde: send dma engine to dump
2205  *
2206  * This routine dumps the sde to the indicated seq file.
2207  */
2208 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2209 {
2210         u16 head, tail;
2211         struct hw_sdma_desc *descqp;
2212         u64 desc[2];
2213         u64 addr;
2214         u8 gen;
2215         u16 len;
2216
2217         head = sde->descq_head & sde->sdma_mask;
2218         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2219         seq_printf(s, SDE_FMT, sde->this_idx,
2220                    sde->cpu,
2221                    sdma_state_name(sde->state.current_state),
2222                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2223                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2224                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2225                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2226                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2227                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2228                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2229                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2230                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2231                    (unsigned long long)sde->last_status,
2232                    (unsigned long long)sde->ahg_bits,
2233                    sde->tx_tail,
2234                    sde->tx_head,
2235                    sde->descq_tail,
2236                    sde->descq_head,
2237                    !list_empty(&sde->flushlist),
2238                    sde->descq_full_count,
2239                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2240
2241         /* print info for each entry in the descriptor queue */
2242         while (head != tail) {
2243                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2244
2245                 descqp = &sde->descq[head];
2246                 desc[0] = le64_to_cpu(descqp->qw[0]);
2247                 desc[1] = le64_to_cpu(descqp->qw[1]);
2248                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2249                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2250                                 'H' : '-';
2251                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2252                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2253                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2254                         & SDMA_DESC0_PHY_ADDR_MASK;
2255                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2256                         & SDMA_DESC1_GENERATION_MASK;
2257                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2258                         & SDMA_DESC0_BYTE_COUNT_MASK;
2259                 seq_printf(s,
2260                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2261                            head, flags, addr, gen, len);
2262                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2263                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2264                                    (u8)((desc[1] &
2265                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2266                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2267                                    (u8)((desc[1] &
2268                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2269                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2270                 head = (head + 1) & sde->sdma_mask;
2271         }
2272 }
2273
2274 /*
2275  * add the generation number into
2276  * the qw1 and return
2277  */
2278 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2279 {
2280         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2281
2282         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2283         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2284                         << SDMA_DESC1_GENERATION_SHIFT;
2285         return qw1;
2286 }
2287
2288 /*
2289  * This routine submits the indicated tx
2290  *
2291  * Space has already been guaranteed and
2292  * tail side of ring is locked.
2293  *
2294  * The hardware tail update is done
2295  * in the caller and that is facilitated
2296  * by returning the new tail.
2297  *
2298  * There is special case logic for ahg
2299  * to not add the generation number for
2300  * up to 2 descriptors that follow the
2301  * first descriptor.
2302  *
2303  */
2304 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2305 {
2306         int i;
2307         u16 tail;
2308         struct sdma_desc *descp = tx->descp;
2309         u8 skip = 0, mode = ahg_mode(tx);
2310
2311         tail = sde->descq_tail & sde->sdma_mask;
2312         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2313         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2314         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2315                                    tail, &sde->descq[tail]);
2316         tail = ++sde->descq_tail & sde->sdma_mask;
2317         descp++;
2318         if (mode > SDMA_AHG_APPLY_UPDATE1)
2319                 skip = mode >> 1;
2320         for (i = 1; i < tx->num_desc; i++, descp++) {
2321                 u64 qw1;
2322
2323                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2324                 if (skip) {
2325                         /* edits don't have generation */
2326                         qw1 = descp->qw[1];
2327                         skip--;
2328                 } else {
2329                         /* replace generation with real one for non-edits */
2330                         qw1 = add_gen(sde, descp->qw[1]);
2331                 }
2332                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2333                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2334                                            tail, &sde->descq[tail]);
2335                 tail = ++sde->descq_tail & sde->sdma_mask;
2336         }
2337         tx->next_descq_idx = tail;
2338 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2339         tx->sn = sde->tail_sn++;
2340         trace_hfi1_sdma_in_sn(sde, tx->sn);
2341         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2342 #endif
2343         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2344         sde->desc_avail -= tx->num_desc;
2345         return tail;
2346 }
2347
2348 /*
2349  * Check for progress
2350  */
2351 static int sdma_check_progress(
2352         struct sdma_engine *sde,
2353         struct iowait_work *wait,
2354         struct sdma_txreq *tx,
2355         bool pkts_sent)
2356 {
2357         int ret;
2358
2359         sde->desc_avail = sdma_descq_freecnt(sde);
2360         if (tx->num_desc <= sde->desc_avail)
2361                 return -EAGAIN;
2362         /* pulse the head_lock */
2363         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2364                 unsigned seq;
2365
2366                 seq = raw_seqcount_begin(
2367                         (const seqcount_t *)&sde->head_lock.seqcount);
2368                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2369                 if (ret == -EAGAIN)
2370                         sde->desc_avail = sdma_descq_freecnt(sde);
2371         } else {
2372                 ret = -EBUSY;
2373         }
2374         return ret;
2375 }
2376
2377 /**
2378  * sdma_send_txreq() - submit a tx req to ring
2379  * @sde: sdma engine to use
2380  * @wait: SE wait structure to use when full (may be NULL)
2381  * @tx: sdma_txreq to submit
2382  * @pkts_sent: has any packet been sent yet?
2383  *
2384  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2385  * the packet will be queued to the list in wait.
2386  *
2387  * Return:
2388  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2389  * ring (wait == NULL)
2390  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2391  */
2392 int sdma_send_txreq(struct sdma_engine *sde,
2393                     struct iowait_work *wait,
2394                     struct sdma_txreq *tx,
2395                     bool pkts_sent)
2396 {
2397         int ret = 0;
2398         u16 tail;
2399         unsigned long flags;
2400
2401         /* user should have supplied entire packet */
2402         if (unlikely(tx->tlen))
2403                 return -EINVAL;
2404         tx->wait = iowait_ioww_to_iow(wait);
2405         spin_lock_irqsave(&sde->tail_lock, flags);
2406 retry:
2407         if (unlikely(!__sdma_running(sde)))
2408                 goto unlock_noconn;
2409         if (unlikely(tx->num_desc > sde->desc_avail))
2410                 goto nodesc;
2411         tail = submit_tx(sde, tx);
2412         if (wait)
2413                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2414         sdma_update_tail(sde, tail);
2415 unlock:
2416         spin_unlock_irqrestore(&sde->tail_lock, flags);
2417         return ret;
2418 unlock_noconn:
2419         if (wait)
2420                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2421         tx->next_descq_idx = 0;
2422 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2423         tx->sn = sde->tail_sn++;
2424         trace_hfi1_sdma_in_sn(sde, tx->sn);
2425 #endif
2426         spin_lock(&sde->flushlist_lock);
2427         list_add_tail(&tx->list, &sde->flushlist);
2428         spin_unlock(&sde->flushlist_lock);
2429         iowait_inc_wait_count(wait, tx->num_desc);
2430         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2431         ret = -ECOMM;
2432         goto unlock;
2433 nodesc:
2434         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2435         if (ret == -EAGAIN) {
2436                 ret = 0;
2437                 goto retry;
2438         }
2439         sde->descq_full_count++;
2440         goto unlock;
2441 }
2442
2443 /**
2444  * sdma_send_txlist() - submit a list of tx req to ring
2445  * @sde: sdma engine to use
2446  * @wait: SE wait structure to use when full (may be NULL)
2447  * @tx_list: list of sdma_txreqs to submit
2448  * @count: pointer to a u16 which, after return will contain the total number of
2449  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2450  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2451  *         which are added to SDMA engine flush list if the SDMA engine state is
2452  *         not running.
2453  *
2454  * The call submits the list into the ring.
2455  *
2456  * If the iowait structure is non-NULL and not equal to the iowait list
2457  * the unprocessed part of the list  will be appended to the list in wait.
2458  *
2459  * In all cases, the tx_list will be updated so the head of the tx_list is
2460  * the list of descriptors that have yet to be transmitted.
2461  *
2462  * The intent of this call is to provide a more efficient
2463  * way of submitting multiple packets to SDMA while holding the tail
2464  * side locking.
2465  *
2466  * Return:
2467  * 0 - Success,
2468  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2469  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2470  */
2471 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2472                      struct list_head *tx_list, u16 *count_out)
2473 {
2474         struct sdma_txreq *tx, *tx_next;
2475         int ret = 0;
2476         unsigned long flags;
2477         u16 tail = INVALID_TAIL;
2478         u32 submit_count = 0, flush_count = 0, total_count;
2479
2480         spin_lock_irqsave(&sde->tail_lock, flags);
2481 retry:
2482         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2483                 tx->wait = iowait_ioww_to_iow(wait);
2484                 if (unlikely(!__sdma_running(sde)))
2485                         goto unlock_noconn;
2486                 if (unlikely(tx->num_desc > sde->desc_avail))
2487                         goto nodesc;
2488                 if (unlikely(tx->tlen)) {
2489                         ret = -EINVAL;
2490                         goto update_tail;
2491                 }
2492                 list_del_init(&tx->list);
2493                 tail = submit_tx(sde, tx);
2494                 submit_count++;
2495                 if (tail != INVALID_TAIL &&
2496                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2497                         sdma_update_tail(sde, tail);
2498                         tail = INVALID_TAIL;
2499                 }
2500         }
2501 update_tail:
2502         total_count = submit_count + flush_count;
2503         if (wait) {
2504                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2505                 iowait_starve_clear(submit_count > 0,
2506                                     iowait_ioww_to_iow(wait));
2507         }
2508         if (tail != INVALID_TAIL)
2509                 sdma_update_tail(sde, tail);
2510         spin_unlock_irqrestore(&sde->tail_lock, flags);
2511         *count_out = total_count;
2512         return ret;
2513 unlock_noconn:
2514         spin_lock(&sde->flushlist_lock);
2515         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2516                 tx->wait = iowait_ioww_to_iow(wait);
2517                 list_del_init(&tx->list);
2518                 tx->next_descq_idx = 0;
2519 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2520                 tx->sn = sde->tail_sn++;
2521                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2522 #endif
2523                 list_add_tail(&tx->list, &sde->flushlist);
2524                 flush_count++;
2525                 iowait_inc_wait_count(wait, tx->num_desc);
2526         }
2527         spin_unlock(&sde->flushlist_lock);
2528         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2529         ret = -ECOMM;
2530         goto update_tail;
2531 nodesc:
2532         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2533         if (ret == -EAGAIN) {
2534                 ret = 0;
2535                 goto retry;
2536         }
2537         sde->descq_full_count++;
2538         goto update_tail;
2539 }
2540
2541 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2542 {
2543         unsigned long flags;
2544
2545         spin_lock_irqsave(&sde->tail_lock, flags);
2546         write_seqlock(&sde->head_lock);
2547
2548         __sdma_process_event(sde, event);
2549
2550         if (sde->state.current_state == sdma_state_s99_running)
2551                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2552
2553         write_sequnlock(&sde->head_lock);
2554         spin_unlock_irqrestore(&sde->tail_lock, flags);
2555 }
2556
2557 static void __sdma_process_event(struct sdma_engine *sde,
2558                                  enum sdma_events event)
2559 {
2560         struct sdma_state *ss = &sde->state;
2561         int need_progress = 0;
2562
2563         /* CONFIG SDMA temporary */
2564 #ifdef CONFIG_SDMA_VERBOSITY
2565         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2566                    sdma_state_names[ss->current_state],
2567                    sdma_event_names[event]);
2568 #endif
2569
2570         switch (ss->current_state) {
2571         case sdma_state_s00_hw_down:
2572                 switch (event) {
2573                 case sdma_event_e00_go_hw_down:
2574                         break;
2575                 case sdma_event_e30_go_running:
2576                         /*
2577                          * If down, but running requested (usually result
2578                          * of link up, then we need to start up.
2579                          * This can happen when hw down is requested while
2580                          * bringing the link up with traffic active on
2581                          * 7220, e.g.
2582                          */
2583                         ss->go_s99_running = 1;
2584                         /* fall through -- and start dma engine */
2585                 case sdma_event_e10_go_hw_start:
2586                         /* This reference means the state machine is started */
2587                         sdma_get(&sde->state);
2588                         sdma_set_state(sde,
2589                                        sdma_state_s10_hw_start_up_halt_wait);
2590                         break;
2591                 case sdma_event_e15_hw_halt_done:
2592                         break;
2593                 case sdma_event_e25_hw_clean_up_done:
2594                         break;
2595                 case sdma_event_e40_sw_cleaned:
2596                         sdma_sw_tear_down(sde);
2597                         break;
2598                 case sdma_event_e50_hw_cleaned:
2599                         break;
2600                 case sdma_event_e60_hw_halted:
2601                         break;
2602                 case sdma_event_e70_go_idle:
2603                         break;
2604                 case sdma_event_e80_hw_freeze:
2605                         break;
2606                 case sdma_event_e81_hw_frozen:
2607                         break;
2608                 case sdma_event_e82_hw_unfreeze:
2609                         break;
2610                 case sdma_event_e85_link_down:
2611                         break;
2612                 case sdma_event_e90_sw_halted:
2613                         break;
2614                 }
2615                 break;
2616
2617         case sdma_state_s10_hw_start_up_halt_wait:
2618                 switch (event) {
2619                 case sdma_event_e00_go_hw_down:
2620                         sdma_set_state(sde, sdma_state_s00_hw_down);
2621                         sdma_sw_tear_down(sde);
2622                         break;
2623                 case sdma_event_e10_go_hw_start:
2624                         break;
2625                 case sdma_event_e15_hw_halt_done:
2626                         sdma_set_state(sde,
2627                                        sdma_state_s15_hw_start_up_clean_wait);
2628                         sdma_start_hw_clean_up(sde);
2629                         break;
2630                 case sdma_event_e25_hw_clean_up_done:
2631                         break;
2632                 case sdma_event_e30_go_running:
2633                         ss->go_s99_running = 1;
2634                         break;
2635                 case sdma_event_e40_sw_cleaned:
2636                         break;
2637                 case sdma_event_e50_hw_cleaned:
2638                         break;
2639                 case sdma_event_e60_hw_halted:
2640                         schedule_work(&sde->err_halt_worker);
2641                         break;
2642                 case sdma_event_e70_go_idle:
2643                         ss->go_s99_running = 0;
2644                         break;
2645                 case sdma_event_e80_hw_freeze:
2646                         break;
2647                 case sdma_event_e81_hw_frozen:
2648                         break;
2649                 case sdma_event_e82_hw_unfreeze:
2650                         break;
2651                 case sdma_event_e85_link_down:
2652                         break;
2653                 case sdma_event_e90_sw_halted:
2654                         break;
2655                 }
2656                 break;
2657
2658         case sdma_state_s15_hw_start_up_clean_wait:
2659                 switch (event) {
2660                 case sdma_event_e00_go_hw_down:
2661                         sdma_set_state(sde, sdma_state_s00_hw_down);
2662                         sdma_sw_tear_down(sde);
2663                         break;
2664                 case sdma_event_e10_go_hw_start:
2665                         break;
2666                 case sdma_event_e15_hw_halt_done:
2667                         break;
2668                 case sdma_event_e25_hw_clean_up_done:
2669                         sdma_hw_start_up(sde);
2670                         sdma_set_state(sde, ss->go_s99_running ?
2671                                        sdma_state_s99_running :
2672                                        sdma_state_s20_idle);
2673                         break;
2674                 case sdma_event_e30_go_running:
2675                         ss->go_s99_running = 1;
2676                         break;
2677                 case sdma_event_e40_sw_cleaned:
2678                         break;
2679                 case sdma_event_e50_hw_cleaned:
2680                         break;
2681                 case sdma_event_e60_hw_halted:
2682                         break;
2683                 case sdma_event_e70_go_idle:
2684                         ss->go_s99_running = 0;
2685                         break;
2686                 case sdma_event_e80_hw_freeze:
2687                         break;
2688                 case sdma_event_e81_hw_frozen:
2689                         break;
2690                 case sdma_event_e82_hw_unfreeze:
2691                         break;
2692                 case sdma_event_e85_link_down:
2693                         break;
2694                 case sdma_event_e90_sw_halted:
2695                         break;
2696                 }
2697                 break;
2698
2699         case sdma_state_s20_idle:
2700                 switch (event) {
2701                 case sdma_event_e00_go_hw_down:
2702                         sdma_set_state(sde, sdma_state_s00_hw_down);
2703                         sdma_sw_tear_down(sde);
2704                         break;
2705                 case sdma_event_e10_go_hw_start:
2706                         break;
2707                 case sdma_event_e15_hw_halt_done:
2708                         break;
2709                 case sdma_event_e25_hw_clean_up_done:
2710                         break;
2711                 case sdma_event_e30_go_running:
2712                         sdma_set_state(sde, sdma_state_s99_running);
2713                         ss->go_s99_running = 1;
2714                         break;
2715                 case sdma_event_e40_sw_cleaned:
2716                         break;
2717                 case sdma_event_e50_hw_cleaned:
2718                         break;
2719                 case sdma_event_e60_hw_halted:
2720                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2721                         schedule_work(&sde->err_halt_worker);
2722                         break;
2723                 case sdma_event_e70_go_idle:
2724                         break;
2725                 case sdma_event_e85_link_down:
2726                         /* fall through */
2727                 case sdma_event_e80_hw_freeze:
2728                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2729                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2730                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2731                         break;
2732                 case sdma_event_e81_hw_frozen:
2733                         break;
2734                 case sdma_event_e82_hw_unfreeze:
2735                         break;
2736                 case sdma_event_e90_sw_halted:
2737                         break;
2738                 }
2739                 break;
2740
2741         case sdma_state_s30_sw_clean_up_wait:
2742                 switch (event) {
2743                 case sdma_event_e00_go_hw_down:
2744                         sdma_set_state(sde, sdma_state_s00_hw_down);
2745                         break;
2746                 case sdma_event_e10_go_hw_start:
2747                         break;
2748                 case sdma_event_e15_hw_halt_done:
2749                         break;
2750                 case sdma_event_e25_hw_clean_up_done:
2751                         break;
2752                 case sdma_event_e30_go_running:
2753                         ss->go_s99_running = 1;
2754                         break;
2755                 case sdma_event_e40_sw_cleaned:
2756                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2757                         sdma_start_hw_clean_up(sde);
2758                         break;
2759                 case sdma_event_e50_hw_cleaned:
2760                         break;
2761                 case sdma_event_e60_hw_halted:
2762                         break;
2763                 case sdma_event_e70_go_idle:
2764                         ss->go_s99_running = 0;
2765                         break;
2766                 case sdma_event_e80_hw_freeze:
2767                         break;
2768                 case sdma_event_e81_hw_frozen:
2769                         break;
2770                 case sdma_event_e82_hw_unfreeze:
2771                         break;
2772                 case sdma_event_e85_link_down:
2773                         ss->go_s99_running = 0;
2774                         break;
2775                 case sdma_event_e90_sw_halted:
2776                         break;
2777                 }
2778                 break;
2779
2780         case sdma_state_s40_hw_clean_up_wait:
2781                 switch (event) {
2782                 case sdma_event_e00_go_hw_down:
2783                         sdma_set_state(sde, sdma_state_s00_hw_down);
2784                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2785                         break;
2786                 case sdma_event_e10_go_hw_start:
2787                         break;
2788                 case sdma_event_e15_hw_halt_done:
2789                         break;
2790                 case sdma_event_e25_hw_clean_up_done:
2791                         sdma_hw_start_up(sde);
2792                         sdma_set_state(sde, ss->go_s99_running ?
2793                                        sdma_state_s99_running :
2794                                        sdma_state_s20_idle);
2795                         break;
2796                 case sdma_event_e30_go_running:
2797                         ss->go_s99_running = 1;
2798                         break;
2799                 case sdma_event_e40_sw_cleaned:
2800                         break;
2801                 case sdma_event_e50_hw_cleaned:
2802                         break;
2803                 case sdma_event_e60_hw_halted:
2804                         break;
2805                 case sdma_event_e70_go_idle:
2806                         ss->go_s99_running = 0;
2807                         break;
2808                 case sdma_event_e80_hw_freeze:
2809                         break;
2810                 case sdma_event_e81_hw_frozen:
2811                         break;
2812                 case sdma_event_e82_hw_unfreeze:
2813                         break;
2814                 case sdma_event_e85_link_down:
2815                         ss->go_s99_running = 0;
2816                         break;
2817                 case sdma_event_e90_sw_halted:
2818                         break;
2819                 }
2820                 break;
2821
2822         case sdma_state_s50_hw_halt_wait:
2823                 switch (event) {
2824                 case sdma_event_e00_go_hw_down:
2825                         sdma_set_state(sde, sdma_state_s00_hw_down);
2826                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2827                         break;
2828                 case sdma_event_e10_go_hw_start:
2829                         break;
2830                 case sdma_event_e15_hw_halt_done:
2831                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2832                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2833                         break;
2834                 case sdma_event_e25_hw_clean_up_done:
2835                         break;
2836                 case sdma_event_e30_go_running:
2837                         ss->go_s99_running = 1;
2838                         break;
2839                 case sdma_event_e40_sw_cleaned:
2840                         break;
2841                 case sdma_event_e50_hw_cleaned:
2842                         break;
2843                 case sdma_event_e60_hw_halted:
2844                         schedule_work(&sde->err_halt_worker);
2845                         break;
2846                 case sdma_event_e70_go_idle:
2847                         ss->go_s99_running = 0;
2848                         break;
2849                 case sdma_event_e80_hw_freeze:
2850                         break;
2851                 case sdma_event_e81_hw_frozen:
2852                         break;
2853                 case sdma_event_e82_hw_unfreeze:
2854                         break;
2855                 case sdma_event_e85_link_down:
2856                         ss->go_s99_running = 0;
2857                         break;
2858                 case sdma_event_e90_sw_halted:
2859                         break;
2860                 }
2861                 break;
2862
2863         case sdma_state_s60_idle_halt_wait:
2864                 switch (event) {
2865                 case sdma_event_e00_go_hw_down:
2866                         sdma_set_state(sde, sdma_state_s00_hw_down);
2867                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868                         break;
2869                 case sdma_event_e10_go_hw_start:
2870                         break;
2871                 case sdma_event_e15_hw_halt_done:
2872                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2873                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2874                         break;
2875                 case sdma_event_e25_hw_clean_up_done:
2876                         break;
2877                 case sdma_event_e30_go_running:
2878                         ss->go_s99_running = 1;
2879                         break;
2880                 case sdma_event_e40_sw_cleaned:
2881                         break;
2882                 case sdma_event_e50_hw_cleaned:
2883                         break;
2884                 case sdma_event_e60_hw_halted:
2885                         schedule_work(&sde->err_halt_worker);
2886                         break;
2887                 case sdma_event_e70_go_idle:
2888                         ss->go_s99_running = 0;
2889                         break;
2890                 case sdma_event_e80_hw_freeze:
2891                         break;
2892                 case sdma_event_e81_hw_frozen:
2893                         break;
2894                 case sdma_event_e82_hw_unfreeze:
2895                         break;
2896                 case sdma_event_e85_link_down:
2897                         break;
2898                 case sdma_event_e90_sw_halted:
2899                         break;
2900                 }
2901                 break;
2902
2903         case sdma_state_s80_hw_freeze:
2904                 switch (event) {
2905                 case sdma_event_e00_go_hw_down:
2906                         sdma_set_state(sde, sdma_state_s00_hw_down);
2907                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2908                         break;
2909                 case sdma_event_e10_go_hw_start:
2910                         break;
2911                 case sdma_event_e15_hw_halt_done:
2912                         break;
2913                 case sdma_event_e25_hw_clean_up_done:
2914                         break;
2915                 case sdma_event_e30_go_running:
2916                         ss->go_s99_running = 1;
2917                         break;
2918                 case sdma_event_e40_sw_cleaned:
2919                         break;
2920                 case sdma_event_e50_hw_cleaned:
2921                         break;
2922                 case sdma_event_e60_hw_halted:
2923                         break;
2924                 case sdma_event_e70_go_idle:
2925                         ss->go_s99_running = 0;
2926                         break;
2927                 case sdma_event_e80_hw_freeze:
2928                         break;
2929                 case sdma_event_e81_hw_frozen:
2930                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2931                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2932                         break;
2933                 case sdma_event_e82_hw_unfreeze:
2934                         break;
2935                 case sdma_event_e85_link_down:
2936                         break;
2937                 case sdma_event_e90_sw_halted:
2938                         break;
2939                 }
2940                 break;
2941
2942         case sdma_state_s82_freeze_sw_clean:
2943                 switch (event) {
2944                 case sdma_event_e00_go_hw_down:
2945                         sdma_set_state(sde, sdma_state_s00_hw_down);
2946                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2947                         break;
2948                 case sdma_event_e10_go_hw_start:
2949                         break;
2950                 case sdma_event_e15_hw_halt_done:
2951                         break;
2952                 case sdma_event_e25_hw_clean_up_done:
2953                         break;
2954                 case sdma_event_e30_go_running:
2955                         ss->go_s99_running = 1;
2956                         break;
2957                 case sdma_event_e40_sw_cleaned:
2958                         /* notify caller this engine is done cleaning */
2959                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2960                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2961                         break;
2962                 case sdma_event_e50_hw_cleaned:
2963                         break;
2964                 case sdma_event_e60_hw_halted:
2965                         break;
2966                 case sdma_event_e70_go_idle:
2967                         ss->go_s99_running = 0;
2968                         break;
2969                 case sdma_event_e80_hw_freeze:
2970                         break;
2971                 case sdma_event_e81_hw_frozen:
2972                         break;
2973                 case sdma_event_e82_hw_unfreeze:
2974                         sdma_hw_start_up(sde);
2975                         sdma_set_state(sde, ss->go_s99_running ?
2976                                        sdma_state_s99_running :
2977                                        sdma_state_s20_idle);
2978                         break;
2979                 case sdma_event_e85_link_down:
2980                         break;
2981                 case sdma_event_e90_sw_halted:
2982                         break;
2983                 }
2984                 break;
2985
2986         case sdma_state_s99_running:
2987                 switch (event) {
2988                 case sdma_event_e00_go_hw_down:
2989                         sdma_set_state(sde, sdma_state_s00_hw_down);
2990                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2991                         break;
2992                 case sdma_event_e10_go_hw_start:
2993                         break;
2994                 case sdma_event_e15_hw_halt_done:
2995                         break;
2996                 case sdma_event_e25_hw_clean_up_done:
2997                         break;
2998                 case sdma_event_e30_go_running:
2999                         break;
3000                 case sdma_event_e40_sw_cleaned:
3001                         break;
3002                 case sdma_event_e50_hw_cleaned:
3003                         break;
3004                 case sdma_event_e60_hw_halted:
3005                         need_progress = 1;
3006                         sdma_err_progress_check_schedule(sde);
3007                         /* fall through */
3008                 case sdma_event_e90_sw_halted:
3009                         /*
3010                         * SW initiated halt does not perform engines
3011                         * progress check
3012                         */
3013                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3014                         schedule_work(&sde->err_halt_worker);
3015                         break;
3016                 case sdma_event_e70_go_idle:
3017                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3018                         break;
3019                 case sdma_event_e85_link_down:
3020                         ss->go_s99_running = 0;
3021                         /* fall through */
3022                 case sdma_event_e80_hw_freeze:
3023                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3024                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3025                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3026                         break;
3027                 case sdma_event_e81_hw_frozen:
3028                         break;
3029                 case sdma_event_e82_hw_unfreeze:
3030                         break;
3031                 }
3032                 break;
3033         }
3034
3035         ss->last_event = event;
3036         if (need_progress)
3037                 sdma_make_progress(sde, 0);
3038 }
3039
3040 /*
3041  * _extend_sdma_tx_descs() - helper to extend txreq
3042  *
3043  * This is called once the initial nominal allocation
3044  * of descriptors in the sdma_txreq is exhausted.
3045  *
3046  * The code will bump the allocation up to the max
3047  * of MAX_DESC (64) descriptors. There doesn't seem
3048  * much point in an interim step. The last descriptor
3049  * is reserved for coalesce buffer in order to support
3050  * cases where input packet has >MAX_DESC iovecs.
3051  *
3052  */
3053 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3054 {
3055         int i;
3056
3057         /* Handle last descriptor */
3058         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3059                 /* if tlen is 0, it is for padding, release last descriptor */
3060                 if (!tx->tlen) {
3061                         tx->desc_limit = MAX_DESC;
3062                 } else if (!tx->coalesce_buf) {
3063                         /* allocate coalesce buffer with space for padding */
3064                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3065                                                    GFP_ATOMIC);
3066                         if (!tx->coalesce_buf)
3067                                 goto enomem;
3068                         tx->coalesce_idx = 0;
3069                 }
3070                 return 0;
3071         }
3072
3073         if (unlikely(tx->num_desc == MAX_DESC))
3074                 goto enomem;
3075
3076         tx->descp = kmalloc_array(
3077                         MAX_DESC,
3078                         sizeof(struct sdma_desc),
3079                         GFP_ATOMIC);
3080         if (!tx->descp)
3081                 goto enomem;
3082
3083         /* reserve last descriptor for coalescing */
3084         tx->desc_limit = MAX_DESC - 1;
3085         /* copy ones already built */
3086         for (i = 0; i < tx->num_desc; i++)
3087                 tx->descp[i] = tx->descs[i];
3088         return 0;
3089 enomem:
3090         __sdma_txclean(dd, tx);
3091         return -ENOMEM;
3092 }
3093
3094 /*
3095  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3096  *
3097  * This is called once the initial nominal allocation of descriptors
3098  * in the sdma_txreq is exhausted.
3099  *
3100  * This function calls _extend_sdma_tx_descs to extend or allocate
3101  * coalesce buffer. If there is a allocated coalesce buffer, it will
3102  * copy the input packet data into the coalesce buffer. It also adds
3103  * coalesce buffer descriptor once when whole packet is received.
3104  *
3105  * Return:
3106  * <0 - error
3107  * 0 - coalescing, don't populate descriptor
3108  * 1 - continue with populating descriptor
3109  */
3110 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3111                            int type, void *kvaddr, struct page *page,
3112                            unsigned long offset, u16 len)
3113 {
3114         int pad_len, rval;
3115         dma_addr_t addr;
3116
3117         rval = _extend_sdma_tx_descs(dd, tx);
3118         if (rval) {
3119                 __sdma_txclean(dd, tx);
3120                 return rval;
3121         }
3122
3123         /* If coalesce buffer is allocated, copy data into it */
3124         if (tx->coalesce_buf) {
3125                 if (type == SDMA_MAP_NONE) {
3126                         __sdma_txclean(dd, tx);
3127                         return -EINVAL;
3128                 }
3129
3130                 if (type == SDMA_MAP_PAGE) {
3131                         kvaddr = kmap(page);
3132                         kvaddr += offset;
3133                 } else if (WARN_ON(!kvaddr)) {
3134                         __sdma_txclean(dd, tx);
3135                         return -EINVAL;
3136                 }
3137
3138                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3139                 tx->coalesce_idx += len;
3140                 if (type == SDMA_MAP_PAGE)
3141                         kunmap(page);
3142
3143                 /* If there is more data, return */
3144                 if (tx->tlen - tx->coalesce_idx)
3145                         return 0;
3146
3147                 /* Whole packet is received; add any padding */
3148                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3149                 if (pad_len) {
3150                         pad_len = sizeof(u32) - pad_len;
3151                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3152                         /* padding is taken care of for coalescing case */
3153                         tx->packet_len += pad_len;
3154                         tx->tlen += pad_len;
3155                 }
3156
3157                 /* dma map the coalesce buffer */
3158                 addr = dma_map_single(&dd->pcidev->dev,
3159                                       tx->coalesce_buf,
3160                                       tx->tlen,
3161                                       DMA_TO_DEVICE);
3162
3163                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3164                         __sdma_txclean(dd, tx);
3165                         return -ENOSPC;
3166                 }
3167
3168                 /* Add descriptor for coalesce buffer */
3169                 tx->desc_limit = MAX_DESC;
3170                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3171                                          addr, tx->tlen);
3172         }
3173
3174         return 1;
3175 }
3176
3177 /* Update sdes when the lmc changes */
3178 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3179 {
3180         struct sdma_engine *sde;
3181         int i;
3182         u64 sreg;
3183
3184         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3185                 SD(CHECK_SLID_MASK_SHIFT)) |
3186                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3187                 SD(CHECK_SLID_VALUE_SHIFT));
3188
3189         for (i = 0; i < dd->num_sdma; i++) {
3190                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3191                           i, (u32)sreg);
3192                 sde = &dd->per_sdma[i];
3193                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3194         }
3195 }
3196
3197 /* tx not dword sized - pad */
3198 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3199 {
3200         int rval = 0;
3201
3202         tx->num_desc++;
3203         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3204                 rval = _extend_sdma_tx_descs(dd, tx);
3205                 if (rval) {
3206                         __sdma_txclean(dd, tx);
3207                         return rval;
3208                 }
3209         }
3210         /* finish the one just added */
3211         make_tx_sdma_desc(
3212                 tx,
3213                 SDMA_MAP_NONE,
3214                 dd->sdma_pad_phys,
3215                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3216         _sdma_close_tx(dd, tx);
3217         return rval;
3218 }
3219
3220 /*
3221  * Add ahg to the sdma_txreq
3222  *
3223  * The logic will consume up to 3
3224  * descriptors at the beginning of
3225  * sdma_txreq.
3226  */
3227 void _sdma_txreq_ahgadd(
3228         struct sdma_txreq *tx,
3229         u8 num_ahg,
3230         u8 ahg_entry,
3231         u32 *ahg,
3232         u8 ahg_hlen)
3233 {
3234         u32 i, shift = 0, desc = 0;
3235         u8 mode;
3236
3237         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3238         /* compute mode */
3239         if (num_ahg == 1)
3240                 mode = SDMA_AHG_APPLY_UPDATE1;
3241         else if (num_ahg <= 5)
3242                 mode = SDMA_AHG_APPLY_UPDATE2;
3243         else
3244                 mode = SDMA_AHG_APPLY_UPDATE3;
3245         tx->num_desc++;
3246         /* initialize to consumed descriptors to zero */
3247         switch (mode) {
3248         case SDMA_AHG_APPLY_UPDATE3:
3249                 tx->num_desc++;
3250                 tx->descs[2].qw[0] = 0;
3251                 tx->descs[2].qw[1] = 0;
3252                 /* FALLTHROUGH */
3253         case SDMA_AHG_APPLY_UPDATE2:
3254                 tx->num_desc++;
3255                 tx->descs[1].qw[0] = 0;
3256                 tx->descs[1].qw[1] = 0;
3257                 break;
3258         }
3259         ahg_hlen >>= 2;
3260         tx->descs[0].qw[1] |=
3261                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3262                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3263                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3264                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3265                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3266                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3267                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3268                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3269         for (i = 0; i < (num_ahg - 1); i++) {
3270                 if (!shift && !(i & 2))
3271                         desc++;
3272                 tx->descs[desc].qw[!!(i & 2)] |=
3273                         (((u64)ahg[i + 1])
3274                                 << shift);
3275                 shift = (shift + 32) & 63;
3276         }
3277 }
3278
3279 /**
3280  * sdma_ahg_alloc - allocate an AHG entry
3281  * @sde: engine to allocate from
3282  *
3283  * Return:
3284  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3285  * -ENOSPC if an entry is not available
3286  */
3287 int sdma_ahg_alloc(struct sdma_engine *sde)
3288 {
3289         int nr;
3290         int oldbit;
3291
3292         if (!sde) {
3293                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3294                 return -EINVAL;
3295         }
3296         while (1) {
3297                 nr = ffz(READ_ONCE(sde->ahg_bits));
3298                 if (nr > 31) {
3299                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3300                         return -ENOSPC;
3301                 }
3302                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3303                 if (!oldbit)
3304                         break;
3305                 cpu_relax();
3306         }
3307         trace_hfi1_ahg_allocate(sde, nr);
3308         return nr;
3309 }
3310
3311 /**
3312  * sdma_ahg_free - free an AHG entry
3313  * @sde: engine to return AHG entry
3314  * @ahg_index: index to free
3315  *
3316  * This routine frees the indicate AHG entry.
3317  */
3318 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3319 {
3320         if (!sde)
3321                 return;
3322         trace_hfi1_ahg_deallocate(sde, ahg_index);
3323         if (ahg_index < 0 || ahg_index > 31)
3324                 return;
3325         clear_bit(ahg_index, &sde->ahg_bits);
3326 }
3327
3328 /*
3329  * SPC freeze handling for SDMA engines.  Called when the driver knows
3330  * the SPC is going into a freeze but before the freeze is fully
3331  * settled.  Generally an error interrupt.
3332  *
3333  * This event will pull the engine out of running so no more entries can be
3334  * added to the engine's queue.
3335  */
3336 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3337 {
3338         int i;
3339         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3340                                              sdma_event_e80_hw_freeze;
3341
3342         /* set up the wait but do not wait here */
3343         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3344
3345         /* tell all engines to stop running and wait */
3346         for (i = 0; i < dd->num_sdma; i++)
3347                 sdma_process_event(&dd->per_sdma[i], event);
3348
3349         /* sdma_freeze() will wait for all engines to have stopped */
3350 }
3351
3352 /*
3353  * SPC freeze handling for SDMA engines.  Called when the driver knows
3354  * the SPC is fully frozen.
3355  */
3356 void sdma_freeze(struct hfi1_devdata *dd)
3357 {
3358         int i;
3359         int ret;
3360
3361         /*
3362          * Make sure all engines have moved out of the running state before
3363          * continuing.
3364          */
3365         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3366                                        atomic_read(&dd->sdma_unfreeze_count) <=
3367                                        0);
3368         /* interrupted or count is negative, then unloading - just exit */
3369         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3370                 return;
3371
3372         /* set up the count for the next wait */
3373         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3374
3375         /* tell all engines that the SPC is frozen, they can start cleaning */
3376         for (i = 0; i < dd->num_sdma; i++)
3377                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3378
3379         /*
3380          * Wait for everyone to finish software clean before exiting.  The
3381          * software clean will read engine CSRs, so must be completed before
3382          * the next step, which will clear the engine CSRs.
3383          */
3384         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3385                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3386         /* no need to check results - done no matter what */
3387 }
3388
3389 /*
3390  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3391  *
3392  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3393  * that is left is a software clean.  We could do it after the SPC is fully
3394  * frozen, but then we'd have to add another state to wait for the unfreeze.
3395  * Instead, just defer the software clean until the unfreeze step.
3396  */
3397 void sdma_unfreeze(struct hfi1_devdata *dd)
3398 {
3399         int i;
3400
3401         /* tell all engines start freeze clean up */
3402         for (i = 0; i < dd->num_sdma; i++)
3403                 sdma_process_event(&dd->per_sdma[i],
3404                                    sdma_event_e82_hw_unfreeze);
3405 }
3406
3407 /**
3408  * _sdma_engine_progress_schedule() - schedule progress on engine
3409  * @sde: sdma_engine to schedule progress
3410  *
3411  */
3412 void _sdma_engine_progress_schedule(
3413         struct sdma_engine *sde)
3414 {
3415         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3416         /* assume we have selected a good cpu */
3417         write_csr(sde->dd,
3418                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3419                   sde->progress_mask);
3420 }