Merge tag 'regmap-fix-v5.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 #include "netdev.h"
73
74 #undef pr_fmt
75 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
76
77 /*
78  * min buffers we want to have per context, after driver
79  */
80 #define HFI1_MIN_USER_CTXT_BUFCNT 7
81
82 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
83 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
84
85 #define NUM_IB_PORTS 1
86
87 /*
88  * Number of user receive contexts we are configured to use (to allow for more
89  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
90  */
91 int num_user_contexts = -1;
92 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
93 MODULE_PARM_DESC(
94         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
95
96 uint krcvqs[RXE_NUM_DATA_VL];
97 int krcvqsset;
98 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
99 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
100
101 /* computed based on above array */
102 unsigned long n_krcvqs;
103
104 static unsigned hfi1_rcvarr_split = 25;
105 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
106 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
107
108 static uint eager_buffer_size = (8 << 20); /* 8MB */
109 module_param(eager_buffer_size, uint, S_IRUGO);
110 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
111
112 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
113 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
114 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
115
116 static uint hfi1_hdrq_entsize = 32;
117 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
118 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
119
120 unsigned int user_credit_return_threshold = 33; /* default is 33% */
121 module_param(user_credit_return_threshold, uint, S_IRUGO);
122 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
123
124 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
125
126 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
127                              struct hfi1_pportdata *ppd)
128 {
129         struct hfi1_ctxtdata *rcd;
130         int ret;
131
132         /* Control context has to be always 0 */
133         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
134
135         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
136         if (ret < 0) {
137                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
138                 return ret;
139         }
140
141         /*
142          * Set up the kernel context flags here and now because they use
143          * default values for all receive side memories.  User contexts will
144          * be handled as they are created.
145          */
146         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
147                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
148                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
149                 HFI1_CAP_KGET(DMA_RTAIL);
150
151         /* Control context must use DMA_RTAIL */
152         if (rcd->ctxt == HFI1_CTRL_CTXT)
153                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
154         rcd->fast_handler = get_dma_rtail_setting(rcd) ?
155                                 handle_receive_interrupt_dma_rtail :
156                                 handle_receive_interrupt_nodma_rtail;
157         rcd->slow_handler = handle_receive_interrupt;
158
159         hfi1_set_seq_cnt(rcd, 1);
160
161         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
162         if (!rcd->sc) {
163                 dd_dev_err(dd, "Kernel send context allocation failed\n");
164                 return -ENOMEM;
165         }
166         hfi1_init_ctxt(rcd->sc);
167
168         return 0;
169 }
170
171 /*
172  * Create the receive context array and one or more kernel contexts
173  */
174 int hfi1_create_kctxts(struct hfi1_devdata *dd)
175 {
176         u16 i;
177         int ret;
178
179         dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
180                                GFP_KERNEL, dd->node);
181         if (!dd->rcd)
182                 return -ENOMEM;
183
184         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
185                 ret = hfi1_create_kctxt(dd, dd->pport);
186                 if (ret)
187                         goto bail;
188         }
189
190         return 0;
191 bail:
192         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
193                 hfi1_free_ctxt(dd->rcd[i]);
194
195         /* All the contexts should be freed, free the array */
196         kfree(dd->rcd);
197         dd->rcd = NULL;
198         return ret;
199 }
200
201 /*
202  * Helper routines for the receive context reference count (rcd and uctxt).
203  */
204 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
205 {
206         kref_init(&rcd->kref);
207 }
208
209 /**
210  * hfi1_rcd_free - When reference is zero clean up.
211  * @kref: pointer to an initialized rcd data structure
212  *
213  */
214 static void hfi1_rcd_free(struct kref *kref)
215 {
216         unsigned long flags;
217         struct hfi1_ctxtdata *rcd =
218                 container_of(kref, struct hfi1_ctxtdata, kref);
219
220         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
221         rcd->dd->rcd[rcd->ctxt] = NULL;
222         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
223
224         hfi1_free_ctxtdata(rcd->dd, rcd);
225
226         kfree(rcd);
227 }
228
229 /**
230  * hfi1_rcd_put - decrement reference for rcd
231  * @rcd: pointer to an initialized rcd data structure
232  *
233  * Use this to put a reference after the init.
234  */
235 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
236 {
237         if (rcd)
238                 return kref_put(&rcd->kref, hfi1_rcd_free);
239
240         return 0;
241 }
242
243 /**
244  * hfi1_rcd_get - increment reference for rcd
245  * @rcd: pointer to an initialized rcd data structure
246  *
247  * Use this to get a reference after the init.
248  *
249  * Return : reflect kref_get_unless_zero(), which returns non-zero on
250  * increment, otherwise 0.
251  */
252 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
253 {
254         return kref_get_unless_zero(&rcd->kref);
255 }
256
257 /**
258  * allocate_rcd_index - allocate an rcd index from the rcd array
259  * @dd: pointer to a valid devdata structure
260  * @rcd: rcd data structure to assign
261  * @index: pointer to index that is allocated
262  *
263  * Find an empty index in the rcd array, and assign the given rcd to it.
264  * If the array is full, we are EBUSY.
265  *
266  */
267 static int allocate_rcd_index(struct hfi1_devdata *dd,
268                               struct hfi1_ctxtdata *rcd, u16 *index)
269 {
270         unsigned long flags;
271         u16 ctxt;
272
273         spin_lock_irqsave(&dd->uctxt_lock, flags);
274         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
275                 if (!dd->rcd[ctxt])
276                         break;
277
278         if (ctxt < dd->num_rcv_contexts) {
279                 rcd->ctxt = ctxt;
280                 dd->rcd[ctxt] = rcd;
281                 hfi1_rcd_init(rcd);
282         }
283         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
284
285         if (ctxt >= dd->num_rcv_contexts)
286                 return -EBUSY;
287
288         *index = ctxt;
289
290         return 0;
291 }
292
293 /**
294  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
295  * array
296  * @dd: pointer to a valid devdata structure
297  * @ctxt: the index of an possilbe rcd
298  *
299  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
300  * ctxt index is valid.
301  *
302  * The caller is responsible for making the _put().
303  *
304  */
305 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
306                                                  u16 ctxt)
307 {
308         if (ctxt < dd->num_rcv_contexts)
309                 return hfi1_rcd_get_by_index(dd, ctxt);
310
311         return NULL;
312 }
313
314 /**
315  * hfi1_rcd_get_by_index
316  * @dd: pointer to a valid devdata structure
317  * @ctxt: the index of an possilbe rcd
318  *
319  * We need to protect access to the rcd array.  If access is needed to
320  * one or more index, get the protecting spinlock and then increment the
321  * kref.
322  *
323  * The caller is responsible for making the _put().
324  *
325  */
326 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
327 {
328         unsigned long flags;
329         struct hfi1_ctxtdata *rcd = NULL;
330
331         spin_lock_irqsave(&dd->uctxt_lock, flags);
332         if (dd->rcd[ctxt]) {
333                 rcd = dd->rcd[ctxt];
334                 if (!hfi1_rcd_get(rcd))
335                         rcd = NULL;
336         }
337         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
338
339         return rcd;
340 }
341
342 /*
343  * Common code for user and kernel context create and setup.
344  * NOTE: the initial kref is done here (hf1_rcd_init()).
345  */
346 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
347                          struct hfi1_ctxtdata **context)
348 {
349         struct hfi1_devdata *dd = ppd->dd;
350         struct hfi1_ctxtdata *rcd;
351         unsigned kctxt_ngroups = 0;
352         u32 base;
353
354         if (dd->rcv_entries.nctxt_extra >
355             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
356                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
357                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
358         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
359         if (rcd) {
360                 u32 rcvtids, max_entries;
361                 u16 ctxt;
362                 int ret;
363
364                 ret = allocate_rcd_index(dd, rcd, &ctxt);
365                 if (ret) {
366                         *context = NULL;
367                         kfree(rcd);
368                         return ret;
369                 }
370
371                 INIT_LIST_HEAD(&rcd->qp_wait_list);
372                 hfi1_exp_tid_group_init(rcd);
373                 rcd->ppd = ppd;
374                 rcd->dd = dd;
375                 rcd->numa_id = numa;
376                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
377                 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
378                 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
379
380                 mutex_init(&rcd->exp_mutex);
381                 spin_lock_init(&rcd->exp_lock);
382                 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
383                 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
384
385                 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
386
387                 /*
388                  * Calculate the context's RcvArray entry starting point.
389                  * We do this here because we have to take into account all
390                  * the RcvArray entries that previous context would have
391                  * taken and we have to account for any extra groups assigned
392                  * to the static (kernel) or dynamic (vnic/user) contexts.
393                  */
394                 if (ctxt < dd->first_dyn_alloc_ctxt) {
395                         if (ctxt < kctxt_ngroups) {
396                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
397                                 rcd->rcv_array_groups++;
398                         } else {
399                                 base = kctxt_ngroups +
400                                         (ctxt * dd->rcv_entries.ngroups);
401                         }
402                 } else {
403                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
404
405                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
406                                 kctxt_ngroups);
407                         if (ct < dd->rcv_entries.nctxt_extra) {
408                                 base += ct * (dd->rcv_entries.ngroups + 1);
409                                 rcd->rcv_array_groups++;
410                         } else {
411                                 base += dd->rcv_entries.nctxt_extra +
412                                         (ct * dd->rcv_entries.ngroups);
413                         }
414                 }
415                 rcd->eager_base = base * dd->rcv_entries.group_size;
416
417                 rcd->rcvhdrq_cnt = rcvhdrcnt;
418                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
419                 rcd->rhf_offset =
420                         rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
421                 /*
422                  * Simple Eager buffer allocation: we have already pre-allocated
423                  * the number of RcvArray entry groups. Each ctxtdata structure
424                  * holds the number of groups for that context.
425                  *
426                  * To follow CSR requirements and maintain cacheline alignment,
427                  * make sure all sizes and bases are multiples of group_size.
428                  *
429                  * The expected entry count is what is left after assigning
430                  * eager.
431                  */
432                 max_entries = rcd->rcv_array_groups *
433                         dd->rcv_entries.group_size;
434                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
435                 rcd->egrbufs.count = round_down(rcvtids,
436                                                 dd->rcv_entries.group_size);
437                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
438                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
439                                    rcd->ctxt);
440                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
441                 }
442                 hfi1_cdbg(PROC,
443                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
444                           rcd->ctxt, rcd->egrbufs.count);
445
446                 /*
447                  * Allocate array that will hold the eager buffer accounting
448                  * data.
449                  * This will allocate the maximum possible buffer count based
450                  * on the value of the RcvArray split parameter.
451                  * The resulting value will be rounded down to the closest
452                  * multiple of dd->rcv_entries.group_size.
453                  */
454                 rcd->egrbufs.buffers =
455                         kcalloc_node(rcd->egrbufs.count,
456                                      sizeof(*rcd->egrbufs.buffers),
457                                      GFP_KERNEL, numa);
458                 if (!rcd->egrbufs.buffers)
459                         goto bail;
460                 rcd->egrbufs.rcvtids =
461                         kcalloc_node(rcd->egrbufs.count,
462                                      sizeof(*rcd->egrbufs.rcvtids),
463                                      GFP_KERNEL, numa);
464                 if (!rcd->egrbufs.rcvtids)
465                         goto bail;
466                 rcd->egrbufs.size = eager_buffer_size;
467                 /*
468                  * The size of the buffers programmed into the RcvArray
469                  * entries needs to be big enough to handle the highest
470                  * MTU supported.
471                  */
472                 if (rcd->egrbufs.size < hfi1_max_mtu) {
473                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
474                         hfi1_cdbg(PROC,
475                                   "ctxt%u: eager bufs size too small. Adjusting to %u\n",
476                                     rcd->ctxt, rcd->egrbufs.size);
477                 }
478                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
479
480                 /* Applicable only for statically created kernel contexts */
481                 if (ctxt < dd->first_dyn_alloc_ctxt) {
482                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
483                                                     GFP_KERNEL, numa);
484                         if (!rcd->opstats)
485                                 goto bail;
486
487                         /* Initialize TID flow generations for the context */
488                         hfi1_kern_init_ctxt_generations(rcd);
489                 }
490
491                 *context = rcd;
492                 return 0;
493         }
494
495 bail:
496         *context = NULL;
497         hfi1_free_ctxt(rcd);
498         return -ENOMEM;
499 }
500
501 /**
502  * hfi1_free_ctxt
503  * @rcd: pointer to an initialized rcd data structure
504  *
505  * This wrapper is the free function that matches hfi1_create_ctxtdata().
506  * When a context is done being used (kernel or user), this function is called
507  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
508  * Other users of the context do a get/put sequence to make sure that the
509  * structure isn't removed while in use.
510  */
511 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
512 {
513         hfi1_rcd_put(rcd);
514 }
515
516 /*
517  * Select the largest ccti value over all SLs to determine the intra-
518  * packet gap for the link.
519  *
520  * called with cca_timer_lock held (to protect access to cca_timer
521  * array), and rcu_read_lock() (to protect access to cc_state).
522  */
523 void set_link_ipg(struct hfi1_pportdata *ppd)
524 {
525         struct hfi1_devdata *dd = ppd->dd;
526         struct cc_state *cc_state;
527         int i;
528         u16 cce, ccti_limit, max_ccti = 0;
529         u16 shift, mult;
530         u64 src;
531         u32 current_egress_rate; /* Mbits /sec */
532         u32 max_pkt_time;
533         /*
534          * max_pkt_time is the maximum packet egress time in units
535          * of the fabric clock period 1/(805 MHz).
536          */
537
538         cc_state = get_cc_state(ppd);
539
540         if (!cc_state)
541                 /*
542                  * This should _never_ happen - rcu_read_lock() is held,
543                  * and set_link_ipg() should not be called if cc_state
544                  * is NULL.
545                  */
546                 return;
547
548         for (i = 0; i < OPA_MAX_SLS; i++) {
549                 u16 ccti = ppd->cca_timer[i].ccti;
550
551                 if (ccti > max_ccti)
552                         max_ccti = ccti;
553         }
554
555         ccti_limit = cc_state->cct.ccti_limit;
556         if (max_ccti > ccti_limit)
557                 max_ccti = ccti_limit;
558
559         cce = cc_state->cct.entries[max_ccti].entry;
560         shift = (cce & 0xc000) >> 14;
561         mult = (cce & 0x3fff);
562
563         current_egress_rate = active_egress_rate(ppd);
564
565         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
566
567         src = (max_pkt_time >> shift) * mult;
568
569         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
570         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
571
572         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
573 }
574
575 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
576 {
577         struct cca_timer *cca_timer;
578         struct hfi1_pportdata *ppd;
579         int sl;
580         u16 ccti_timer, ccti_min;
581         struct cc_state *cc_state;
582         unsigned long flags;
583         enum hrtimer_restart ret = HRTIMER_NORESTART;
584
585         cca_timer = container_of(t, struct cca_timer, hrtimer);
586         ppd = cca_timer->ppd;
587         sl = cca_timer->sl;
588
589         rcu_read_lock();
590
591         cc_state = get_cc_state(ppd);
592
593         if (!cc_state) {
594                 rcu_read_unlock();
595                 return HRTIMER_NORESTART;
596         }
597
598         /*
599          * 1) decrement ccti for SL
600          * 2) calculate IPG for link (set_link_ipg())
601          * 3) restart timer, unless ccti is at min value
602          */
603
604         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
605         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
606
607         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
608
609         if (cca_timer->ccti > ccti_min) {
610                 cca_timer->ccti--;
611                 set_link_ipg(ppd);
612         }
613
614         if (cca_timer->ccti > ccti_min) {
615                 unsigned long nsec = 1024 * ccti_timer;
616                 /* ccti_timer is in units of 1.024 usec */
617                 hrtimer_forward_now(t, ns_to_ktime(nsec));
618                 ret = HRTIMER_RESTART;
619         }
620
621         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
622         rcu_read_unlock();
623         return ret;
624 }
625
626 /*
627  * Common code for initializing the physical port structure.
628  */
629 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
630                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
631 {
632         int i;
633         uint default_pkey_idx;
634         struct cc_state *cc_state;
635
636         ppd->dd = dd;
637         ppd->hw_pidx = hw_pidx;
638         ppd->port = port; /* IB port number, not index */
639         ppd->prev_link_width = LINK_WIDTH_DEFAULT;
640         /*
641          * There are C_VL_COUNT number of PortVLXmitWait counters.
642          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
643          */
644         for (i = 0; i < C_VL_COUNT + 1; i++) {
645                 ppd->port_vl_xmit_wait_last[i] = 0;
646                 ppd->vl_xmit_flit_cnt[i] = 0;
647         }
648
649         default_pkey_idx = 1;
650
651         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
652         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
653
654         if (loopback) {
655                 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
656                            !default_pkey_idx);
657                 ppd->pkeys[!default_pkey_idx] = 0x8001;
658         }
659
660         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
661         INIT_WORK(&ppd->link_up_work, handle_link_up);
662         INIT_WORK(&ppd->link_down_work, handle_link_down);
663         INIT_WORK(&ppd->freeze_work, handle_freeze);
664         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
665         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
666         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
667         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
668         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
669         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
670
671         mutex_init(&ppd->hls_lock);
672         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
673
674         ppd->qsfp_info.ppd = ppd;
675         ppd->sm_trap_qp = 0x0;
676         ppd->sa_qp = 0x1;
677
678         ppd->hfi1_wq = NULL;
679
680         spin_lock_init(&ppd->cca_timer_lock);
681
682         for (i = 0; i < OPA_MAX_SLS; i++) {
683                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
684                              HRTIMER_MODE_REL);
685                 ppd->cca_timer[i].ppd = ppd;
686                 ppd->cca_timer[i].sl = i;
687                 ppd->cca_timer[i].ccti = 0;
688                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
689         }
690
691         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
692
693         spin_lock_init(&ppd->cc_state_lock);
694         spin_lock_init(&ppd->cc_log_lock);
695         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
696         RCU_INIT_POINTER(ppd->cc_state, cc_state);
697         if (!cc_state)
698                 goto bail;
699         return;
700
701 bail:
702         dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
703 }
704
705 /*
706  * Do initialization for device that is only needed on
707  * first detect, not on resets.
708  */
709 static int loadtime_init(struct hfi1_devdata *dd)
710 {
711         return 0;
712 }
713
714 /**
715  * init_after_reset - re-initialize after a reset
716  * @dd: the hfi1_ib device
717  *
718  * sanity check at least some of the values after reset, and
719  * ensure no receive or transmit (explicitly, in case reset
720  * failed
721  */
722 static int init_after_reset(struct hfi1_devdata *dd)
723 {
724         int i;
725         struct hfi1_ctxtdata *rcd;
726         /*
727          * Ensure chip does no sends or receives, tail updates, or
728          * pioavail updates while we re-initialize.  This is mostly
729          * for the driver data structures, not chip registers.
730          */
731         for (i = 0; i < dd->num_rcv_contexts; i++) {
732                 rcd = hfi1_rcd_get_by_index(dd, i);
733                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
734                              HFI1_RCVCTRL_INTRAVAIL_DIS |
735                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
736                 hfi1_rcd_put(rcd);
737         }
738         pio_send_control(dd, PSC_GLOBAL_DISABLE);
739         for (i = 0; i < dd->num_send_contexts; i++)
740                 sc_disable(dd->send_contexts[i].sc);
741
742         return 0;
743 }
744
745 static void enable_chip(struct hfi1_devdata *dd)
746 {
747         struct hfi1_ctxtdata *rcd;
748         u32 rcvmask;
749         u16 i;
750
751         /* enable PIO send */
752         pio_send_control(dd, PSC_GLOBAL_ENABLE);
753
754         /*
755          * Enable kernel ctxts' receive and receive interrupt.
756          * Other ctxts done as user opens and initializes them.
757          */
758         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
759                 rcd = hfi1_rcd_get_by_index(dd, i);
760                 if (!rcd)
761                         continue;
762                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
763                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
764                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
765                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
766                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
767                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
768                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
769                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
770                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
771                 if (HFI1_CAP_IS_KSET(TID_RDMA))
772                         rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
773                 hfi1_rcvctrl(dd, rcvmask, rcd);
774                 sc_enable(rcd->sc);
775                 hfi1_rcd_put(rcd);
776         }
777 }
778
779 /**
780  * create_workqueues - create per port workqueues
781  * @dd: the hfi1_ib device
782  */
783 static int create_workqueues(struct hfi1_devdata *dd)
784 {
785         int pidx;
786         struct hfi1_pportdata *ppd;
787
788         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
789                 ppd = dd->pport + pidx;
790                 if (!ppd->hfi1_wq) {
791                         ppd->hfi1_wq =
792                                 alloc_workqueue(
793                                     "hfi%d_%d",
794                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
795                                     WQ_MEM_RECLAIM,
796                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
797                                     dd->unit, pidx);
798                         if (!ppd->hfi1_wq)
799                                 goto wq_error;
800                 }
801                 if (!ppd->link_wq) {
802                         /*
803                          * Make the link workqueue single-threaded to enforce
804                          * serialization.
805                          */
806                         ppd->link_wq =
807                                 alloc_workqueue(
808                                     "hfi_link_%d_%d",
809                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
810                                     1, /* max_active */
811                                     dd->unit, pidx);
812                         if (!ppd->link_wq)
813                                 goto wq_error;
814                 }
815         }
816         return 0;
817 wq_error:
818         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
819         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
820                 ppd = dd->pport + pidx;
821                 if (ppd->hfi1_wq) {
822                         destroy_workqueue(ppd->hfi1_wq);
823                         ppd->hfi1_wq = NULL;
824                 }
825                 if (ppd->link_wq) {
826                         destroy_workqueue(ppd->link_wq);
827                         ppd->link_wq = NULL;
828                 }
829         }
830         return -ENOMEM;
831 }
832
833 /**
834  * enable_general_intr() - Enable the IRQs that will be handled by the
835  * general interrupt handler.
836  * @dd: valid devdata
837  *
838  */
839 static void enable_general_intr(struct hfi1_devdata *dd)
840 {
841         set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
842         set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
843         set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
844         set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
845         set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
846         set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
847         set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
848 }
849
850 /**
851  * hfi1_init - do the actual initialization sequence on the chip
852  * @dd: the hfi1_ib device
853  * @reinit: re-initializing, so don't allocate new memory
854  *
855  * Do the actual initialization sequence on the chip.  This is done
856  * both from the init routine called from the PCI infrastructure, and
857  * when we reset the chip, or detect that it was reset internally,
858  * or it's administratively re-enabled.
859  *
860  * Memory allocation here and in called routines is only done in
861  * the first case (reinit == 0).  We have to be careful, because even
862  * without memory allocation, we need to re-write all the chip registers
863  * TIDs, etc. after the reset or enable has completed.
864  */
865 int hfi1_init(struct hfi1_devdata *dd, int reinit)
866 {
867         int ret = 0, pidx, lastfail = 0;
868         unsigned long len;
869         u16 i;
870         struct hfi1_ctxtdata *rcd;
871         struct hfi1_pportdata *ppd;
872
873         /* Set up send low level handlers */
874         dd->process_pio_send = hfi1_verbs_send_pio;
875         dd->process_dma_send = hfi1_verbs_send_dma;
876         dd->pio_inline_send = pio_copy;
877         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
878
879         if (is_ax(dd)) {
880                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
881                 dd->do_drop = true;
882         } else {
883                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
884                 dd->do_drop = false;
885         }
886
887         /* make sure the link is not "up" */
888         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
889                 ppd = dd->pport + pidx;
890                 ppd->linkup = 0;
891         }
892
893         if (reinit)
894                 ret = init_after_reset(dd);
895         else
896                 ret = loadtime_init(dd);
897         if (ret)
898                 goto done;
899
900         /* allocate dummy tail memory for all receive contexts */
901         dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
902                                                          sizeof(u64),
903                                                          &dd->rcvhdrtail_dummy_dma,
904                                                          GFP_KERNEL);
905
906         if (!dd->rcvhdrtail_dummy_kvaddr) {
907                 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
908                 ret = -ENOMEM;
909                 goto done;
910         }
911
912         /* dd->rcd can be NULL if early initialization failed */
913         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
914                 /*
915                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
916                  * re-init, the simplest way to handle this is to free
917                  * existing, and re-allocate.
918                  * Need to re-create rest of ctxt 0 ctxtdata as well.
919                  */
920                 rcd = hfi1_rcd_get_by_index(dd, i);
921                 if (!rcd)
922                         continue;
923
924                 rcd->do_interrupt = &handle_receive_interrupt;
925
926                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
927                 if (!lastfail)
928                         lastfail = hfi1_setup_eagerbufs(rcd);
929                 if (!lastfail)
930                         lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
931                 if (lastfail) {
932                         dd_dev_err(dd,
933                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
934                         ret = lastfail;
935                 }
936                 /* enable IRQ */
937                 hfi1_rcd_put(rcd);
938         }
939
940         /* Allocate enough memory for user event notification. */
941         len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
942                          sizeof(*dd->events));
943         dd->events = vmalloc_user(len);
944         if (!dd->events)
945                 dd_dev_err(dd, "Failed to allocate user events page\n");
946         /*
947          * Allocate a page for device and port status.
948          * Page will be shared amongst all user processes.
949          */
950         dd->status = vmalloc_user(PAGE_SIZE);
951         if (!dd->status)
952                 dd_dev_err(dd, "Failed to allocate dev status page\n");
953         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
954                 ppd = dd->pport + pidx;
955                 if (dd->status)
956                         /* Currently, we only have one port */
957                         ppd->statusp = &dd->status->port;
958
959                 set_mtu(ppd);
960         }
961
962         /* enable chip even if we have an error, so we can debug cause */
963         enable_chip(dd);
964
965 done:
966         /*
967          * Set status even if port serdes is not initialized
968          * so that diags will work.
969          */
970         if (dd->status)
971                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
972                         HFI1_STATUS_INITTED;
973         if (!ret) {
974                 /* enable all interrupts from the chip */
975                 enable_general_intr(dd);
976                 init_qsfp_int(dd);
977
978                 /* chip is OK for user apps; mark it as initialized */
979                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
980                         ppd = dd->pport + pidx;
981
982                         /*
983                          * start the serdes - must be after interrupts are
984                          * enabled so we are notified when the link goes up
985                          */
986                         lastfail = bringup_serdes(ppd);
987                         if (lastfail)
988                                 dd_dev_info(dd,
989                                             "Failed to bring up port %u\n",
990                                             ppd->port);
991
992                         /*
993                          * Set status even if port serdes is not initialized
994                          * so that diags will work.
995                          */
996                         if (ppd->statusp)
997                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
998                                                         HFI1_STATUS_INITTED;
999                         if (!ppd->link_speed_enabled)
1000                                 continue;
1001                 }
1002         }
1003
1004         /* if ret is non-zero, we probably should do some cleanup here... */
1005         return ret;
1006 }
1007
1008 struct hfi1_devdata *hfi1_lookup(int unit)
1009 {
1010         return xa_load(&hfi1_dev_table, unit);
1011 }
1012
1013 /*
1014  * Stop the timers during unit shutdown, or after an error late
1015  * in initialization.
1016  */
1017 static void stop_timers(struct hfi1_devdata *dd)
1018 {
1019         struct hfi1_pportdata *ppd;
1020         int pidx;
1021
1022         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1023                 ppd = dd->pport + pidx;
1024                 if (ppd->led_override_timer.function) {
1025                         del_timer_sync(&ppd->led_override_timer);
1026                         atomic_set(&ppd->led_override_timer_active, 0);
1027                 }
1028         }
1029 }
1030
1031 /**
1032  * shutdown_device - shut down a device
1033  * @dd: the hfi1_ib device
1034  *
1035  * This is called to make the device quiet when we are about to
1036  * unload the driver, and also when the device is administratively
1037  * disabled.   It does not free any data structures.
1038  * Everything it does has to be setup again by hfi1_init(dd, 1)
1039  */
1040 static void shutdown_device(struct hfi1_devdata *dd)
1041 {
1042         struct hfi1_pportdata *ppd;
1043         struct hfi1_ctxtdata *rcd;
1044         unsigned pidx;
1045         int i;
1046
1047         if (dd->flags & HFI1_SHUTDOWN)
1048                 return;
1049         dd->flags |= HFI1_SHUTDOWN;
1050
1051         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1052                 ppd = dd->pport + pidx;
1053
1054                 ppd->linkup = 0;
1055                 if (ppd->statusp)
1056                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1057                                            HFI1_STATUS_IB_READY);
1058         }
1059         dd->flags &= ~HFI1_INITTED;
1060
1061         /* mask and clean up interrupts */
1062         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1063         msix_clean_up_interrupts(dd);
1064
1065         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1066                 ppd = dd->pport + pidx;
1067                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1068                         rcd = hfi1_rcd_get_by_index(dd, i);
1069                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1070                                      HFI1_RCVCTRL_CTXT_DIS |
1071                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1072                                      HFI1_RCVCTRL_PKEY_DIS |
1073                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1074                         hfi1_rcd_put(rcd);
1075                 }
1076                 /*
1077                  * Gracefully stop all sends allowing any in progress to
1078                  * trickle out first.
1079                  */
1080                 for (i = 0; i < dd->num_send_contexts; i++)
1081                         sc_flush(dd->send_contexts[i].sc);
1082         }
1083
1084         /*
1085          * Enough for anything that's going to trickle out to have actually
1086          * done so.
1087          */
1088         udelay(20);
1089
1090         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1091                 ppd = dd->pport + pidx;
1092
1093                 /* disable all contexts */
1094                 for (i = 0; i < dd->num_send_contexts; i++)
1095                         sc_disable(dd->send_contexts[i].sc);
1096                 /* disable the send device */
1097                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1098
1099                 shutdown_led_override(ppd);
1100
1101                 /*
1102                  * Clear SerdesEnable.
1103                  * We can't count on interrupts since we are stopping.
1104                  */
1105                 hfi1_quiet_serdes(ppd);
1106
1107                 if (ppd->hfi1_wq) {
1108                         destroy_workqueue(ppd->hfi1_wq);
1109                         ppd->hfi1_wq = NULL;
1110                 }
1111                 if (ppd->link_wq) {
1112                         destroy_workqueue(ppd->link_wq);
1113                         ppd->link_wq = NULL;
1114                 }
1115         }
1116         sdma_exit(dd);
1117 }
1118
1119 /**
1120  * hfi1_free_ctxtdata - free a context's allocated data
1121  * @dd: the hfi1_ib device
1122  * @rcd: the ctxtdata structure
1123  *
1124  * free up any allocated data for a context
1125  * It should never change any chip state, or global driver state.
1126  */
1127 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1128 {
1129         u32 e;
1130
1131         if (!rcd)
1132                 return;
1133
1134         if (rcd->rcvhdrq) {
1135                 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1136                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1137                 rcd->rcvhdrq = NULL;
1138                 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1139                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1140                                           (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1141                                           rcd->rcvhdrqtailaddr_dma);
1142                         rcd->rcvhdrtail_kvaddr = NULL;
1143                 }
1144         }
1145
1146         /* all the RcvArray entries should have been cleared by now */
1147         kfree(rcd->egrbufs.rcvtids);
1148         rcd->egrbufs.rcvtids = NULL;
1149
1150         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1151                 if (rcd->egrbufs.buffers[e].dma)
1152                         dma_free_coherent(&dd->pcidev->dev,
1153                                           rcd->egrbufs.buffers[e].len,
1154                                           rcd->egrbufs.buffers[e].addr,
1155                                           rcd->egrbufs.buffers[e].dma);
1156         }
1157         kfree(rcd->egrbufs.buffers);
1158         rcd->egrbufs.alloced = 0;
1159         rcd->egrbufs.buffers = NULL;
1160
1161         sc_free(rcd->sc);
1162         rcd->sc = NULL;
1163
1164         vfree(rcd->subctxt_uregbase);
1165         vfree(rcd->subctxt_rcvegrbuf);
1166         vfree(rcd->subctxt_rcvhdr_base);
1167         kfree(rcd->opstats);
1168
1169         rcd->subctxt_uregbase = NULL;
1170         rcd->subctxt_rcvegrbuf = NULL;
1171         rcd->subctxt_rcvhdr_base = NULL;
1172         rcd->opstats = NULL;
1173 }
1174
1175 /*
1176  * Release our hold on the shared asic data.  If we are the last one,
1177  * return the structure to be finalized outside the lock.  Must be
1178  * holding hfi1_dev_table lock.
1179  */
1180 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1181 {
1182         struct hfi1_asic_data *ad;
1183         int other;
1184
1185         if (!dd->asic_data)
1186                 return NULL;
1187         dd->asic_data->dds[dd->hfi1_id] = NULL;
1188         other = dd->hfi1_id ? 0 : 1;
1189         ad = dd->asic_data;
1190         dd->asic_data = NULL;
1191         /* return NULL if the other dd still has a link */
1192         return ad->dds[other] ? NULL : ad;
1193 }
1194
1195 static void finalize_asic_data(struct hfi1_devdata *dd,
1196                                struct hfi1_asic_data *ad)
1197 {
1198         clean_up_i2c(dd, ad);
1199         kfree(ad);
1200 }
1201
1202 /**
1203  * hfi1_free_devdata - cleans up and frees per-unit data structure
1204  * @dd: pointer to a valid devdata structure
1205  *
1206  * It cleans up and frees all data structures set up by
1207  * by hfi1_alloc_devdata().
1208  */
1209 void hfi1_free_devdata(struct hfi1_devdata *dd)
1210 {
1211         struct hfi1_asic_data *ad;
1212         unsigned long flags;
1213
1214         xa_lock_irqsave(&hfi1_dev_table, flags);
1215         __xa_erase(&hfi1_dev_table, dd->unit);
1216         ad = release_asic_data(dd);
1217         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1218
1219         finalize_asic_data(dd, ad);
1220         free_platform_config(dd);
1221         rcu_barrier(); /* wait for rcu callbacks to complete */
1222         free_percpu(dd->int_counter);
1223         free_percpu(dd->rcv_limit);
1224         free_percpu(dd->send_schedule);
1225         free_percpu(dd->tx_opstats);
1226         dd->int_counter   = NULL;
1227         dd->rcv_limit     = NULL;
1228         dd->send_schedule = NULL;
1229         dd->tx_opstats    = NULL;
1230         kfree(dd->comp_vect);
1231         dd->comp_vect = NULL;
1232         sdma_clean(dd, dd->num_sdma);
1233         rvt_dealloc_device(&dd->verbs_dev.rdi);
1234 }
1235
1236 /**
1237  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1238  * @pdev: Valid PCI device
1239  * @extra: How many bytes to alloc past the default
1240  *
1241  * Must be done via verbs allocator, because the verbs cleanup process
1242  * both does cleanup and free of the data structure.
1243  * "extra" is for chip-specific data.
1244  */
1245 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1246                                                size_t extra)
1247 {
1248         struct hfi1_devdata *dd;
1249         int ret, nports;
1250
1251         /* extra is * number of ports */
1252         nports = extra / sizeof(struct hfi1_pportdata);
1253
1254         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1255                                                      nports);
1256         if (!dd)
1257                 return ERR_PTR(-ENOMEM);
1258         dd->num_pports = nports;
1259         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1260         dd->pcidev = pdev;
1261         pci_set_drvdata(pdev, dd);
1262         dd->node = NUMA_NO_NODE;
1263
1264         ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1265                         GFP_KERNEL);
1266         if (ret < 0) {
1267                 dev_err(&pdev->dev,
1268                         "Could not allocate unit ID: error %d\n", -ret);
1269                 goto bail;
1270         }
1271         rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1272
1273         /*
1274          * Initialize all locks for the device. This needs to be as early as
1275          * possible so locks are usable.
1276          */
1277         spin_lock_init(&dd->sc_lock);
1278         spin_lock_init(&dd->sendctrl_lock);
1279         spin_lock_init(&dd->rcvctrl_lock);
1280         spin_lock_init(&dd->uctxt_lock);
1281         spin_lock_init(&dd->hfi1_diag_trans_lock);
1282         spin_lock_init(&dd->sc_init_lock);
1283         spin_lock_init(&dd->dc8051_memlock);
1284         seqlock_init(&dd->sc2vl_lock);
1285         spin_lock_init(&dd->sde_map_lock);
1286         spin_lock_init(&dd->pio_map_lock);
1287         mutex_init(&dd->dc8051_lock);
1288         init_waitqueue_head(&dd->event_queue);
1289         spin_lock_init(&dd->irq_src_lock);
1290
1291         dd->int_counter = alloc_percpu(u64);
1292         if (!dd->int_counter) {
1293                 ret = -ENOMEM;
1294                 goto bail;
1295         }
1296
1297         dd->rcv_limit = alloc_percpu(u64);
1298         if (!dd->rcv_limit) {
1299                 ret = -ENOMEM;
1300                 goto bail;
1301         }
1302
1303         dd->send_schedule = alloc_percpu(u64);
1304         if (!dd->send_schedule) {
1305                 ret = -ENOMEM;
1306                 goto bail;
1307         }
1308
1309         dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1310         if (!dd->tx_opstats) {
1311                 ret = -ENOMEM;
1312                 goto bail;
1313         }
1314
1315         dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1316         if (!dd->comp_vect) {
1317                 ret = -ENOMEM;
1318                 goto bail;
1319         }
1320
1321         atomic_set(&dd->ipoib_rsm_usr_num, 0);
1322         return dd;
1323
1324 bail:
1325         hfi1_free_devdata(dd);
1326         return ERR_PTR(ret);
1327 }
1328
1329 /*
1330  * Called from freeze mode handlers, and from PCI error
1331  * reporting code.  Should be paranoid about state of
1332  * system and data structures.
1333  */
1334 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1335 {
1336         if (dd->flags & HFI1_INITTED) {
1337                 u32 pidx;
1338
1339                 dd->flags &= ~HFI1_INITTED;
1340                 if (dd->pport)
1341                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1342                                 struct hfi1_pportdata *ppd;
1343
1344                                 ppd = dd->pport + pidx;
1345                                 if (dd->flags & HFI1_PRESENT)
1346                                         set_link_state(ppd, HLS_DN_DISABLE);
1347
1348                                 if (ppd->statusp)
1349                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1350                         }
1351         }
1352
1353         /*
1354          * Mark as having had an error for driver, and also
1355          * for /sys and status word mapped to user programs.
1356          * This marks unit as not usable, until reset.
1357          */
1358         if (dd->status)
1359                 dd->status->dev |= HFI1_STATUS_HWERROR;
1360 }
1361
1362 static void remove_one(struct pci_dev *);
1363 static int init_one(struct pci_dev *, const struct pci_device_id *);
1364 static void shutdown_one(struct pci_dev *);
1365
1366 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1367 #define PFX DRIVER_NAME ": "
1368
1369 const struct pci_device_id hfi1_pci_tbl[] = {
1370         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1371         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1372         { 0, }
1373 };
1374
1375 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1376
1377 static struct pci_driver hfi1_pci_driver = {
1378         .name = DRIVER_NAME,
1379         .probe = init_one,
1380         .remove = remove_one,
1381         .shutdown = shutdown_one,
1382         .id_table = hfi1_pci_tbl,
1383         .err_handler = &hfi1_pci_err_handler,
1384 };
1385
1386 static void __init compute_krcvqs(void)
1387 {
1388         int i;
1389
1390         for (i = 0; i < krcvqsset; i++)
1391                 n_krcvqs += krcvqs[i];
1392 }
1393
1394 /*
1395  * Do all the generic driver unit- and chip-independent memory
1396  * allocation and initialization.
1397  */
1398 static int __init hfi1_mod_init(void)
1399 {
1400         int ret;
1401
1402         ret = dev_init();
1403         if (ret)
1404                 goto bail;
1405
1406         ret = node_affinity_init();
1407         if (ret)
1408                 goto bail;
1409
1410         /* validate max MTU before any devices start */
1411         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1412                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1413                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1414                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1415         }
1416         /* valid CUs run from 1-128 in powers of 2 */
1417         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1418                 hfi1_cu = 1;
1419         /* valid credit return threshold is 0-100, variable is unsigned */
1420         if (user_credit_return_threshold > 100)
1421                 user_credit_return_threshold = 100;
1422
1423         compute_krcvqs();
1424         /*
1425          * sanitize receive interrupt count, time must wait until after
1426          * the hardware type is known
1427          */
1428         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1429                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1430         /* reject invalid combinations */
1431         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1432                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1433                 rcv_intr_count = 1;
1434         }
1435         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1436                 /*
1437                  * Avoid indefinite packet delivery by requiring a timeout
1438                  * if count is > 1.
1439                  */
1440                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1441                 rcv_intr_timeout = 1;
1442         }
1443         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1444                 /*
1445                  * The dynamic algorithm expects a non-zero timeout
1446                  * and a count > 1.
1447                  */
1448                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1449                 rcv_intr_dynamic = 0;
1450         }
1451
1452         /* sanitize link CRC options */
1453         link_crc_mask &= SUPPORTED_CRCS;
1454
1455         ret = opfn_init();
1456         if (ret < 0) {
1457                 pr_err("Failed to allocate opfn_wq");
1458                 goto bail_dev;
1459         }
1460
1461         /*
1462          * These must be called before the driver is registered with
1463          * the PCI subsystem.
1464          */
1465         hfi1_dbg_init();
1466         ret = pci_register_driver(&hfi1_pci_driver);
1467         if (ret < 0) {
1468                 pr_err("Unable to register driver: error %d\n", -ret);
1469                 goto bail_dev;
1470         }
1471         goto bail; /* all OK */
1472
1473 bail_dev:
1474         hfi1_dbg_exit();
1475         dev_cleanup();
1476 bail:
1477         return ret;
1478 }
1479
1480 module_init(hfi1_mod_init);
1481
1482 /*
1483  * Do the non-unit driver cleanup, memory free, etc. at unload.
1484  */
1485 static void __exit hfi1_mod_cleanup(void)
1486 {
1487         pci_unregister_driver(&hfi1_pci_driver);
1488         opfn_exit();
1489         node_affinity_destroy_all();
1490         hfi1_dbg_exit();
1491
1492         WARN_ON(!xa_empty(&hfi1_dev_table));
1493         dispose_firmware();     /* asymmetric with obtain_firmware() */
1494         dev_cleanup();
1495 }
1496
1497 module_exit(hfi1_mod_cleanup);
1498
1499 /* this can only be called after a successful initialization */
1500 static void cleanup_device_data(struct hfi1_devdata *dd)
1501 {
1502         int ctxt;
1503         int pidx;
1504
1505         /* users can't do anything more with chip */
1506         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1507                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1508                 struct cc_state *cc_state;
1509                 int i;
1510
1511                 if (ppd->statusp)
1512                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1513
1514                 for (i = 0; i < OPA_MAX_SLS; i++)
1515                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1516
1517                 spin_lock(&ppd->cc_state_lock);
1518                 cc_state = get_cc_state_protected(ppd);
1519                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1520                 spin_unlock(&ppd->cc_state_lock);
1521
1522                 if (cc_state)
1523                         kfree_rcu(cc_state, rcu);
1524         }
1525
1526         free_credit_return(dd);
1527
1528         if (dd->rcvhdrtail_dummy_kvaddr) {
1529                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1530                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1531                                   dd->rcvhdrtail_dummy_dma);
1532                 dd->rcvhdrtail_dummy_kvaddr = NULL;
1533         }
1534
1535         /*
1536          * Free any resources still in use (usually just kernel contexts)
1537          * at unload; we do for ctxtcnt, because that's what we allocate.
1538          */
1539         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1540                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1541
1542                 if (rcd) {
1543                         hfi1_free_ctxt_rcv_groups(rcd);
1544                         hfi1_free_ctxt(rcd);
1545                 }
1546         }
1547
1548         kfree(dd->rcd);
1549         dd->rcd = NULL;
1550
1551         free_pio_map(dd);
1552         /* must follow rcv context free - need to remove rcv's hooks */
1553         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1554                 sc_free(dd->send_contexts[ctxt].sc);
1555         dd->num_send_contexts = 0;
1556         kfree(dd->send_contexts);
1557         dd->send_contexts = NULL;
1558         kfree(dd->hw_to_sw);
1559         dd->hw_to_sw = NULL;
1560         kfree(dd->boardname);
1561         vfree(dd->events);
1562         vfree(dd->status);
1563 }
1564
1565 /*
1566  * Clean up on unit shutdown, or error during unit load after
1567  * successful initialization.
1568  */
1569 static void postinit_cleanup(struct hfi1_devdata *dd)
1570 {
1571         hfi1_start_cleanup(dd);
1572         hfi1_comp_vectors_clean_up(dd);
1573         hfi1_dev_affinity_clean_up(dd);
1574
1575         hfi1_pcie_ddcleanup(dd);
1576         hfi1_pcie_cleanup(dd->pcidev);
1577
1578         cleanup_device_data(dd);
1579
1580         hfi1_free_devdata(dd);
1581 }
1582
1583 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1584 {
1585         int ret = 0, j, pidx, initfail;
1586         struct hfi1_devdata *dd;
1587         struct hfi1_pportdata *ppd;
1588
1589         /* First, lock the non-writable module parameters */
1590         HFI1_CAP_LOCK();
1591
1592         /* Validate dev ids */
1593         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1594               ent->device == PCI_DEVICE_ID_INTEL1)) {
1595                 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1596                         ent->device);
1597                 ret = -ENODEV;
1598                 goto bail;
1599         }
1600
1601         /* Allocate the dd so we can get to work */
1602         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1603                                 sizeof(struct hfi1_pportdata));
1604         if (IS_ERR(dd)) {
1605                 ret = PTR_ERR(dd);
1606                 goto bail;
1607         }
1608
1609         /* Validate some global module parameters */
1610         ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1611         if (ret)
1612                 goto bail;
1613
1614         /* use the encoding function as a sanitization check */
1615         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1616                 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1617                            hfi1_hdrq_entsize);
1618                 ret = -EINVAL;
1619                 goto bail;
1620         }
1621
1622         /* The receive eager buffer size must be set before the receive
1623          * contexts are created.
1624          *
1625          * Set the eager buffer size.  Validate that it falls in a range
1626          * allowed by the hardware - all powers of 2 between the min and
1627          * max.  The maximum valid MTU is within the eager buffer range
1628          * so we do not need to cap the max_mtu by an eager buffer size
1629          * setting.
1630          */
1631         if (eager_buffer_size) {
1632                 if (!is_power_of_2(eager_buffer_size))
1633                         eager_buffer_size =
1634                                 roundup_pow_of_two(eager_buffer_size);
1635                 eager_buffer_size =
1636                         clamp_val(eager_buffer_size,
1637                                   MIN_EAGER_BUFFER * 8,
1638                                   MAX_EAGER_BUFFER_TOTAL);
1639                 dd_dev_info(dd, "Eager buffer size %u\n",
1640                             eager_buffer_size);
1641         } else {
1642                 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1643                 ret = -EINVAL;
1644                 goto bail;
1645         }
1646
1647         /* restrict value of hfi1_rcvarr_split */
1648         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1649
1650         ret = hfi1_pcie_init(dd);
1651         if (ret)
1652                 goto bail;
1653
1654         /*
1655          * Do device-specific initialization, function table setup, dd
1656          * allocation, etc.
1657          */
1658         ret = hfi1_init_dd(dd);
1659         if (ret)
1660                 goto clean_bail; /* error already printed */
1661
1662         ret = create_workqueues(dd);
1663         if (ret)
1664                 goto clean_bail;
1665
1666         /* do the generic initialization */
1667         initfail = hfi1_init(dd, 0);
1668
1669         ret = hfi1_register_ib_device(dd);
1670
1671         /*
1672          * Now ready for use.  this should be cleared whenever we
1673          * detect a reset, or initiate one.  If earlier failure,
1674          * we still create devices, so diags, etc. can be used
1675          * to determine cause of problem.
1676          */
1677         if (!initfail && !ret) {
1678                 dd->flags |= HFI1_INITTED;
1679                 /* create debufs files after init and ib register */
1680                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1681         }
1682
1683         j = hfi1_device_create(dd);
1684         if (j)
1685                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1686
1687         if (initfail || ret) {
1688                 msix_clean_up_interrupts(dd);
1689                 stop_timers(dd);
1690                 flush_workqueue(ib_wq);
1691                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1692                         hfi1_quiet_serdes(dd->pport + pidx);
1693                         ppd = dd->pport + pidx;
1694                         if (ppd->hfi1_wq) {
1695                                 destroy_workqueue(ppd->hfi1_wq);
1696                                 ppd->hfi1_wq = NULL;
1697                         }
1698                         if (ppd->link_wq) {
1699                                 destroy_workqueue(ppd->link_wq);
1700                                 ppd->link_wq = NULL;
1701                         }
1702                 }
1703                 if (!j)
1704                         hfi1_device_remove(dd);
1705                 if (!ret)
1706                         hfi1_unregister_ib_device(dd);
1707                 postinit_cleanup(dd);
1708                 if (initfail)
1709                         ret = initfail;
1710                 goto bail;      /* everything already cleaned */
1711         }
1712
1713         sdma_start(dd);
1714
1715         return 0;
1716
1717 clean_bail:
1718         hfi1_pcie_cleanup(pdev);
1719 bail:
1720         return ret;
1721 }
1722
1723 static void wait_for_clients(struct hfi1_devdata *dd)
1724 {
1725         /*
1726          * Remove the device init value and complete the device if there is
1727          * no clients or wait for active clients to finish.
1728          */
1729         if (atomic_dec_and_test(&dd->user_refcount))
1730                 complete(&dd->user_comp);
1731
1732         wait_for_completion(&dd->user_comp);
1733 }
1734
1735 static void remove_one(struct pci_dev *pdev)
1736 {
1737         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1738
1739         /* close debugfs files before ib unregister */
1740         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1741
1742         /* remove the /dev hfi1 interface */
1743         hfi1_device_remove(dd);
1744
1745         /* wait for existing user space clients to finish */
1746         wait_for_clients(dd);
1747
1748         /* unregister from IB core */
1749         hfi1_unregister_ib_device(dd);
1750
1751         /* free netdev data */
1752         hfi1_netdev_free(dd);
1753
1754         /*
1755          * Disable the IB link, disable interrupts on the device,
1756          * clear dma engines, etc.
1757          */
1758         shutdown_device(dd);
1759
1760         stop_timers(dd);
1761
1762         /* wait until all of our (qsfp) queue_work() calls complete */
1763         flush_workqueue(ib_wq);
1764
1765         postinit_cleanup(dd);
1766 }
1767
1768 static void shutdown_one(struct pci_dev *pdev)
1769 {
1770         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1771
1772         shutdown_device(dd);
1773 }
1774
1775 /**
1776  * hfi1_create_rcvhdrq - create a receive header queue
1777  * @dd: the hfi1_ib device
1778  * @rcd: the context data
1779  *
1780  * This must be contiguous memory (from an i/o perspective), and must be
1781  * DMA'able (which means for some systems, it will go through an IOMMU,
1782  * or be forced into a low address range).
1783  */
1784 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1785 {
1786         unsigned amt;
1787
1788         if (!rcd->rcvhdrq) {
1789                 gfp_t gfp_flags;
1790
1791                 amt = rcvhdrq_size(rcd);
1792
1793                 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1794                         gfp_flags = GFP_KERNEL;
1795                 else
1796                         gfp_flags = GFP_USER;
1797                 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1798                                                   &rcd->rcvhdrq_dma,
1799                                                   gfp_flags | __GFP_COMP);
1800
1801                 if (!rcd->rcvhdrq) {
1802                         dd_dev_err(dd,
1803                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1804                                    amt, rcd->ctxt);
1805                         goto bail;
1806                 }
1807
1808                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1809                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1810                         rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1811                                                                     PAGE_SIZE,
1812                                                                     &rcd->rcvhdrqtailaddr_dma,
1813                                                                     gfp_flags);
1814                         if (!rcd->rcvhdrtail_kvaddr)
1815                                 goto bail_free;
1816                 }
1817         }
1818
1819         set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1820                       rcd->rcvhdrq_cnt);
1821
1822         return 0;
1823
1824 bail_free:
1825         dd_dev_err(dd,
1826                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1827                    rcd->ctxt);
1828         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1829                           rcd->rcvhdrq_dma);
1830         rcd->rcvhdrq = NULL;
1831 bail:
1832         return -ENOMEM;
1833 }
1834
1835 /**
1836  * allocate eager buffers, both kernel and user contexts.
1837  * @rcd: the context we are setting up.
1838  *
1839  * Allocate the eager TID buffers and program them into hip.
1840  * They are no longer completely contiguous, we do multiple allocation
1841  * calls.  Otherwise we get the OOM code involved, by asking for too
1842  * much per call, with disastrous results on some kernels.
1843  */
1844 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1845 {
1846         struct hfi1_devdata *dd = rcd->dd;
1847         u32 max_entries, egrtop, alloced_bytes = 0;
1848         gfp_t gfp_flags;
1849         u16 order, idx = 0;
1850         int ret = 0;
1851         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1852
1853         /*
1854          * GFP_USER, but without GFP_FS, so buffer cache can be
1855          * coalesced (we hope); otherwise, even at order 4,
1856          * heavy filesystem activity makes these fail, and we can
1857          * use compound pages.
1858          */
1859         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1860
1861         /*
1862          * The minimum size of the eager buffers is a groups of MTU-sized
1863          * buffers.
1864          * The global eager_buffer_size parameter is checked against the
1865          * theoretical lower limit of the value. Here, we check against the
1866          * MTU.
1867          */
1868         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1869                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1870         /*
1871          * If using one-pkt-per-egr-buffer, lower the eager buffer
1872          * size to the max MTU (page-aligned).
1873          */
1874         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1875                 rcd->egrbufs.rcvtid_size = round_mtu;
1876
1877         /*
1878          * Eager buffers sizes of 1MB or less require smaller TID sizes
1879          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1880          */
1881         if (rcd->egrbufs.size <= (1 << 20))
1882                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1883                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1884
1885         while (alloced_bytes < rcd->egrbufs.size &&
1886                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1887                 rcd->egrbufs.buffers[idx].addr =
1888                         dma_alloc_coherent(&dd->pcidev->dev,
1889                                            rcd->egrbufs.rcvtid_size,
1890                                            &rcd->egrbufs.buffers[idx].dma,
1891                                            gfp_flags);
1892                 if (rcd->egrbufs.buffers[idx].addr) {
1893                         rcd->egrbufs.buffers[idx].len =
1894                                 rcd->egrbufs.rcvtid_size;
1895                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1896                                 rcd->egrbufs.buffers[idx].addr;
1897                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1898                                 rcd->egrbufs.buffers[idx].dma;
1899                         rcd->egrbufs.alloced++;
1900                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1901                         idx++;
1902                 } else {
1903                         u32 new_size, i, j;
1904                         u64 offset = 0;
1905
1906                         /*
1907                          * Fail the eager buffer allocation if:
1908                          *   - we are already using the lowest acceptable size
1909                          *   - we are using one-pkt-per-egr-buffer (this implies
1910                          *     that we are accepting only one size)
1911                          */
1912                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1913                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1914                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1915                                            rcd->ctxt);
1916                                 ret = -ENOMEM;
1917                                 goto bail_rcvegrbuf_phys;
1918                         }
1919
1920                         new_size = rcd->egrbufs.rcvtid_size / 2;
1921
1922                         /*
1923                          * If the first attempt to allocate memory failed, don't
1924                          * fail everything but continue with the next lower
1925                          * size.
1926                          */
1927                         if (idx == 0) {
1928                                 rcd->egrbufs.rcvtid_size = new_size;
1929                                 continue;
1930                         }
1931
1932                         /*
1933                          * Re-partition already allocated buffers to a smaller
1934                          * size.
1935                          */
1936                         rcd->egrbufs.alloced = 0;
1937                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1938                                 if (i >= rcd->egrbufs.count)
1939                                         break;
1940                                 rcd->egrbufs.rcvtids[i].dma =
1941                                         rcd->egrbufs.buffers[j].dma + offset;
1942                                 rcd->egrbufs.rcvtids[i].addr =
1943                                         rcd->egrbufs.buffers[j].addr + offset;
1944                                 rcd->egrbufs.alloced++;
1945                                 if ((rcd->egrbufs.buffers[j].dma + offset +
1946                                      new_size) ==
1947                                     (rcd->egrbufs.buffers[j].dma +
1948                                      rcd->egrbufs.buffers[j].len)) {
1949                                         j++;
1950                                         offset = 0;
1951                                 } else {
1952                                         offset += new_size;
1953                                 }
1954                         }
1955                         rcd->egrbufs.rcvtid_size = new_size;
1956                 }
1957         }
1958         rcd->egrbufs.numbufs = idx;
1959         rcd->egrbufs.size = alloced_bytes;
1960
1961         hfi1_cdbg(PROC,
1962                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1963                   rcd->ctxt, rcd->egrbufs.alloced,
1964                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1965
1966         /*
1967          * Set the contexts rcv array head update threshold to the closest
1968          * power of 2 (so we can use a mask instead of modulo) below half
1969          * the allocated entries.
1970          */
1971         rcd->egrbufs.threshold =
1972                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1973         /*
1974          * Compute the expected RcvArray entry base. This is done after
1975          * allocating the eager buffers in order to maximize the
1976          * expected RcvArray entries for the context.
1977          */
1978         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1979         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1980         rcd->expected_count = max_entries - egrtop;
1981         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1982                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1983
1984         rcd->expected_base = rcd->eager_base + egrtop;
1985         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1986                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1987                   rcd->eager_base, rcd->expected_base);
1988
1989         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1990                 hfi1_cdbg(PROC,
1991                           "ctxt%u: current Eager buffer size is invalid %u\n",
1992                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
1993                 ret = -EINVAL;
1994                 goto bail_rcvegrbuf_phys;
1995         }
1996
1997         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1998                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1999                              rcd->egrbufs.rcvtids[idx].dma, order);
2000                 cond_resched();
2001         }
2002
2003         return 0;
2004
2005 bail_rcvegrbuf_phys:
2006         for (idx = 0; idx < rcd->egrbufs.alloced &&
2007              rcd->egrbufs.buffers[idx].addr;
2008              idx++) {
2009                 dma_free_coherent(&dd->pcidev->dev,
2010                                   rcd->egrbufs.buffers[idx].len,
2011                                   rcd->egrbufs.buffers[idx].addr,
2012                                   rcd->egrbufs.buffers[idx].dma);
2013                 rcd->egrbufs.buffers[idx].addr = NULL;
2014                 rcd->egrbufs.buffers[idx].dma = 0;
2015                 rcd->egrbufs.buffers[idx].len = 0;
2016         }
2017
2018         return ret;
2019 }