Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / file_ops.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13
14 #include <rdma/ib.h>
15
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43                           const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45                           struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50                               u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52                               u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54                                 u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56                            struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60                          const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62                          struct hfi1_user_info *uinfo,
63                          struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68                           unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72                        unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75                             unsigned long arg);
76
77 static const struct file_operations hfi1_file_ops = {
78         .owner = THIS_MODULE,
79         .write_iter = hfi1_write_iter,
80         .open = hfi1_file_open,
81         .release = hfi1_file_close,
82         .unlocked_ioctl = hfi1_file_ioctl,
83         .poll = hfi1_poll,
84         .mmap = hfi1_file_mmap,
85         .llseek = noop_llseek,
86 };
87
88 static const struct vm_operations_struct vm_ops = {
89         .fault = vma_fault,
90 };
91
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96         PIO_BUFS = 1,
97         PIO_BUFS_SOP,
98         PIO_CRED,
99         RCV_HDRQ,
100         RCV_EGRBUF,
101         UREGS,
102         EVENTS,
103         STATUS,
104         RTAIL,
105         SUBCTXT_UREGS,
106         SUBCTXT_RCV_HDRQ,
107         SUBCTXT_EGRBUF,
108         SDMA_COMP
109 };
110
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126
127 #define HFI1_MMAP_TOKEN_SET(field, val) \
128         (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130         (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132         (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133         HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134         HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135         HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136         HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138 #define dbg(fmt, ...)                           \
139         pr_info(fmt, ##__VA_ARGS__)
140
141 static inline int is_valid_mmap(u64 token)
142 {
143         return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145
146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148         struct hfi1_filedata *fd;
149         struct hfi1_devdata *dd = container_of(inode->i_cdev,
150                                                struct hfi1_devdata,
151                                                user_cdev);
152
153         if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154                 return -EINVAL;
155
156         if (!refcount_inc_not_zero(&dd->user_refcount))
157                 return -ENXIO;
158
159         /* The real work is performed later in assign_ctxt() */
160
161         fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162
163         if (!fd || init_srcu_struct(&fd->pq_srcu))
164                 goto nomem;
165         spin_lock_init(&fd->pq_rcu_lock);
166         spin_lock_init(&fd->tid_lock);
167         spin_lock_init(&fd->invalid_lock);
168         fd->rec_cpu_num = -1; /* no cpu affinity by default */
169         fd->dd = dd;
170         fp->private_data = fd;
171         return 0;
172 nomem:
173         kfree(fd);
174         fp->private_data = NULL;
175         if (refcount_dec_and_test(&dd->user_refcount))
176                 complete(&dd->user_comp);
177         return -ENOMEM;
178 }
179
180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181                             unsigned long arg)
182 {
183         struct hfi1_filedata *fd = fp->private_data;
184         struct hfi1_ctxtdata *uctxt = fd->uctxt;
185         int ret = 0;
186         int uval = 0;
187
188         hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189         if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190             cmd != HFI1_IOCTL_GET_VERS &&
191             !uctxt)
192                 return -EINVAL;
193
194         switch (cmd) {
195         case HFI1_IOCTL_ASSIGN_CTXT:
196                 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197                 break;
198
199         case HFI1_IOCTL_CTXT_INFO:
200                 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201                 break;
202
203         case HFI1_IOCTL_USER_INFO:
204                 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205                 break;
206
207         case HFI1_IOCTL_CREDIT_UPD:
208                 if (uctxt)
209                         sc_return_credits(uctxt->sc);
210                 break;
211
212         case HFI1_IOCTL_TID_UPDATE:
213                 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214                 break;
215
216         case HFI1_IOCTL_TID_FREE:
217                 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218                 break;
219
220         case HFI1_IOCTL_TID_INVAL_READ:
221                 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222                 break;
223
224         case HFI1_IOCTL_RECV_CTRL:
225                 ret = manage_rcvq(uctxt, fd->subctxt, arg);
226                 break;
227
228         case HFI1_IOCTL_POLL_TYPE:
229                 if (get_user(uval, (int __user *)arg))
230                         return -EFAULT;
231                 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232                 break;
233
234         case HFI1_IOCTL_ACK_EVENT:
235                 ret = user_event_ack(uctxt, fd->subctxt, arg);
236                 break;
237
238         case HFI1_IOCTL_SET_PKEY:
239                 ret = set_ctxt_pkey(uctxt, arg);
240                 break;
241
242         case HFI1_IOCTL_CTXT_RESET:
243                 ret = ctxt_reset(uctxt);
244                 break;
245
246         case HFI1_IOCTL_GET_VERS:
247                 uval = HFI1_USER_SWVERSION;
248                 if (put_user(uval, (int __user *)arg))
249                         return -EFAULT;
250                 break;
251
252         default:
253                 return -EINVAL;
254         }
255
256         return ret;
257 }
258
259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261         struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262         struct hfi1_user_sdma_pkt_q *pq;
263         struct hfi1_user_sdma_comp_q *cq = fd->cq;
264         int done = 0, reqs = 0;
265         unsigned long dim = from->nr_segs;
266         int idx;
267
268         if (!HFI1_CAP_IS_KSET(SDMA))
269                 return -EINVAL;
270         if (!user_backed_iter(from))
271                 return -EINVAL;
272         idx = srcu_read_lock(&fd->pq_srcu);
273         pq = srcu_dereference(fd->pq, &fd->pq_srcu);
274         if (!cq || !pq) {
275                 srcu_read_unlock(&fd->pq_srcu, idx);
276                 return -EIO;
277         }
278
279         trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
280
281         if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
282                 srcu_read_unlock(&fd->pq_srcu, idx);
283                 return -ENOSPC;
284         }
285
286         while (dim) {
287                 const struct iovec *iov = iter_iov(from);
288                 int ret;
289                 unsigned long count = 0;
290
291                 ret = hfi1_user_sdma_process_request(
292                         fd, (struct iovec *)(iov + done),
293                         dim, &count);
294                 if (ret) {
295                         reqs = ret;
296                         break;
297                 }
298                 dim -= count;
299                 done += count;
300                 reqs++;
301         }
302
303         srcu_read_unlock(&fd->pq_srcu, idx);
304         return reqs;
305 }
306
307 static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
308                              u64 memaddr, void *memvirt, dma_addr_t memdma,
309                              ssize_t memlen, struct vm_area_struct *vma)
310 {
311         hfi1_cdbg(PROC,
312                   "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313                   ctxt, subctxt, type, mapio, vmf, !!memdma,
314                   memaddr ?: (u64)memvirt, memlen,
315                   vma->vm_end - vma->vm_start, vma->vm_flags);
316 }
317
318 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
319 {
320         struct hfi1_filedata *fd = fp->private_data;
321         struct hfi1_ctxtdata *uctxt = fd->uctxt;
322         struct hfi1_devdata *dd;
323         unsigned long flags;
324         u64 token = vma->vm_pgoff << PAGE_SHIFT,
325                 memaddr = 0;
326         void *memvirt = NULL;
327         dma_addr_t memdma = 0;
328         u8 subctxt, mapio = 0, vmf = 0, type;
329         ssize_t memlen = 0;
330         int ret = 0;
331         u16 ctxt;
332
333         if (!is_valid_mmap(token) || !uctxt ||
334             !(vma->vm_flags & VM_SHARED)) {
335                 ret = -EINVAL;
336                 goto done;
337         }
338         dd = uctxt->dd;
339         ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
340         subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
341         type = HFI1_MMAP_TOKEN_GET(TYPE, token);
342         if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
343                 ret = -EINVAL;
344                 goto done;
345         }
346
347         /*
348          * vm_pgoff is used as a buffer selector cookie.  Always mmap from
349          * the beginning.
350          */ 
351         vma->vm_pgoff = 0;
352         flags = vma->vm_flags;
353
354         switch (type) {
355         case PIO_BUFS:
356         case PIO_BUFS_SOP:
357                 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
358                                 /* chip pio base */
359                            (uctxt->sc->hw_context * BIT(16))) +
360                                 /* 64K PIO space / ctxt */
361                         (type == PIO_BUFS_SOP ?
362                                 (TXE_PIO_SIZE / 2) : 0); /* sop? */
363                 /*
364                  * Map only the amount allocated to the context, not the
365                  * entire available context's PIO space.
366                  */
367                 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
368                 flags &= ~VM_MAYREAD;
369                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
370                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
371                 mapio = 1;
372                 break;
373         case PIO_CRED: {
374                 u64 cr_page_offset;
375                 if (flags & VM_WRITE) {
376                         ret = -EPERM;
377                         goto done;
378                 }
379                 /*
380                  * The credit return location for this context could be on the
381                  * second or third page allocated for credit returns (if number
382                  * of enabled contexts > 64 and 128 respectively).
383                  */
384                 cr_page_offset = ((u64)uctxt->sc->hw_free -
385                                      (u64)dd->cr_base[uctxt->numa_id].va) &
386                                    PAGE_MASK;
387                 memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
388                 memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
389                 memlen = PAGE_SIZE;
390                 flags &= ~VM_MAYWRITE;
391                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
392                 /*
393                  * The driver has already allocated memory for credit
394                  * returns and programmed it into the chip. Has that
395                  * memory been flagged as non-cached?
396                  */
397                 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
398                 break;
399         }
400         case RCV_HDRQ:
401                 memlen = rcvhdrq_size(uctxt);
402                 memvirt = uctxt->rcvhdrq;
403                 memdma = uctxt->rcvhdrq_dma;
404                 break;
405         case RCV_EGRBUF: {
406                 unsigned long vm_start_save;
407                 unsigned long vm_end_save;
408                 int i;
409                 /*
410                  * The RcvEgr buffer need to be handled differently
411                  * as multiple non-contiguous pages need to be mapped
412                  * into the user process.
413                  */
414                 memlen = uctxt->egrbufs.size;
415                 if ((vma->vm_end - vma->vm_start) != memlen) {
416                         dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
417                                    (vma->vm_end - vma->vm_start), memlen);
418                         ret = -EINVAL;
419                         goto done;
420                 }
421                 if (vma->vm_flags & VM_WRITE) {
422                         ret = -EPERM;
423                         goto done;
424                 }
425                 vm_flags_clear(vma, VM_MAYWRITE);
426                 /*
427                  * Mmap multiple separate allocations into a single vma.  From
428                  * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429                  * requires the mmap to exactly fill the vma starting at
430                  * vma_start.  Adjust the vma start and end for each eager
431                  * buffer segment mapped.  Restore the originals when done.
432                  */
433                 vm_start_save = vma->vm_start;
434                 vm_end_save = vma->vm_end;
435                 vma->vm_end = vma->vm_start;
436                 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
437                         memlen = uctxt->egrbufs.buffers[i].len;
438                         memvirt = uctxt->egrbufs.buffers[i].addr;
439                         memdma = uctxt->egrbufs.buffers[i].dma;
440                         vma->vm_end += memlen;
441                         mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
442                                   memvirt, memdma, memlen, vma);
443                         ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
444                                                 memvirt, memdma, memlen);
445                         if (ret < 0) {
446                                 vma->vm_start = vm_start_save;
447                                 vma->vm_end = vm_end_save;
448                                 goto done;
449                         }
450                         vma->vm_start += memlen;
451                 }
452                 vma->vm_start = vm_start_save;
453                 vma->vm_end = vm_end_save;
454                 ret = 0;
455                 goto done;
456         }
457         case UREGS:
458                 /*
459                  * Map only the page that contains this context's user
460                  * registers.
461                  */
462                 memaddr = (unsigned long)
463                         (dd->physaddr + RXE_PER_CONTEXT_USER)
464                         + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
465                 /*
466                  * TidFlow table is on the same page as the rest of the
467                  * user registers.
468                  */
469                 memlen = PAGE_SIZE;
470                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
471                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
472                 mapio = 1;
473                 break;
474         case EVENTS:
475                 /*
476                  * Use the page where this context's flags are. User level
477                  * knows where it's own bitmap is within the page.
478                  */
479                 memaddr = (unsigned long)
480                         (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
481                 memlen = PAGE_SIZE;
482                 /*
483                  * v3.7 removes VM_RESERVED but the effect is kept by
484                  * using VM_IO.
485                  */
486                 flags |= VM_IO | VM_DONTEXPAND;
487                 vmf = 1;
488                 break;
489         case STATUS:
490                 if (flags & VM_WRITE) {
491                         ret = -EPERM;
492                         goto done;
493                 }
494                 memaddr = kvirt_to_phys((void *)dd->status);
495                 memlen = PAGE_SIZE;
496                 flags |= VM_IO | VM_DONTEXPAND;
497                 break;
498         case RTAIL:
499                 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
500                         /*
501                          * If the memory allocation failed, the context alloc
502                          * also would have failed, so we would never get here
503                          */
504                         ret = -EINVAL;
505                         goto done;
506                 }
507                 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
508                         ret = -EPERM;
509                         goto done;
510                 }
511                 memlen = PAGE_SIZE;
512                 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
513                 memdma = uctxt->rcvhdrqtailaddr_dma;
514                 flags &= ~VM_MAYWRITE;
515                 break;
516         case SUBCTXT_UREGS:
517                 memaddr = (u64)uctxt->subctxt_uregbase;
518                 memlen = PAGE_SIZE;
519                 flags |= VM_IO | VM_DONTEXPAND;
520                 vmf = 1;
521                 break;
522         case SUBCTXT_RCV_HDRQ:
523                 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524                 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525                 flags |= VM_IO | VM_DONTEXPAND;
526                 vmf = 1;
527                 break;
528         case SUBCTXT_EGRBUF:
529                 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530                 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531                 flags |= VM_IO | VM_DONTEXPAND;
532                 flags &= ~VM_MAYWRITE;
533                 vmf = 1;
534                 break;
535         case SDMA_COMP: {
536                 struct hfi1_user_sdma_comp_q *cq = fd->cq;
537
538                 if (!cq) {
539                         ret = -EFAULT;
540                         goto done;
541                 }
542                 memaddr = (u64)cq->comps;
543                 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544                 flags |= VM_IO | VM_DONTEXPAND;
545                 vmf = 1;
546                 break;
547         }
548         default:
549                 ret = -EINVAL;
550                 break;
551         }
552
553         if ((vma->vm_end - vma->vm_start) != memlen) {
554                 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555                           uctxt->ctxt, fd->subctxt,
556                           (vma->vm_end - vma->vm_start), memlen);
557                 ret = -EINVAL;
558                 goto done;
559         }
560
561         vm_flags_reset(vma, flags);
562         mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma, 
563                   memlen, vma);
564         if (vmf) {
565                 vma->vm_pgoff = PFN_DOWN(memaddr);
566                 vma->vm_ops = &vm_ops;
567                 ret = 0;
568         } else if (memdma) {
569                 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
570                                         memvirt, memdma, memlen);
571         } else if (mapio) {
572                 ret = io_remap_pfn_range(vma, vma->vm_start,
573                                          PFN_DOWN(memaddr),
574                                          memlen,
575                                          vma->vm_page_prot);
576         } else if (memvirt) {
577                 ret = remap_pfn_range(vma, vma->vm_start,
578                                       PFN_DOWN(__pa(memvirt)),
579                                       memlen,
580                                       vma->vm_page_prot);
581         } else {
582                 ret = remap_pfn_range(vma, vma->vm_start,
583                                       PFN_DOWN(memaddr),
584                                       memlen,
585                                       vma->vm_page_prot);
586         }
587 done:
588         return ret;
589 }
590
591 /*
592  * Local (non-chip) user memory is not mapped right away but as it is
593  * accessed by the user-level code.
594  */
595 static vm_fault_t vma_fault(struct vm_fault *vmf)
596 {
597         struct page *page;
598
599         page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
600         if (!page)
601                 return VM_FAULT_SIGBUS;
602
603         get_page(page);
604         vmf->page = page;
605
606         return 0;
607 }
608
609 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
610 {
611         struct hfi1_ctxtdata *uctxt;
612         __poll_t pollflag;
613
614         uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
615         if (!uctxt)
616                 pollflag = EPOLLERR;
617         else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
618                 pollflag = poll_urgent(fp, pt);
619         else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
620                 pollflag = poll_next(fp, pt);
621         else /* invalid */
622                 pollflag = EPOLLERR;
623
624         return pollflag;
625 }
626
627 static int hfi1_file_close(struct inode *inode, struct file *fp)
628 {
629         struct hfi1_filedata *fdata = fp->private_data;
630         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
631         struct hfi1_devdata *dd = container_of(inode->i_cdev,
632                                                struct hfi1_devdata,
633                                                user_cdev);
634         unsigned long flags, *ev;
635
636         fp->private_data = NULL;
637
638         if (!uctxt)
639                 goto done;
640
641         hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
642
643         flush_wc();
644         /* drain user sdma queue */
645         hfi1_user_sdma_free_queues(fdata, uctxt);
646
647         /* release the cpu */
648         hfi1_put_proc_affinity(fdata->rec_cpu_num);
649
650         /* clean up rcv side */
651         hfi1_user_exp_rcv_free(fdata);
652
653         /*
654          * fdata->uctxt is used in the above cleanup.  It is not ready to be
655          * removed until here.
656          */
657         fdata->uctxt = NULL;
658         hfi1_rcd_put(uctxt);
659
660         /*
661          * Clear any left over, unhandled events so the next process that
662          * gets this context doesn't get confused.
663          */
664         ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
665         *ev = 0;
666
667         spin_lock_irqsave(&dd->uctxt_lock, flags);
668         __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
669         if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
670                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
671                 goto done;
672         }
673         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
674
675         /*
676          * Disable receive context and interrupt available, reset all
677          * RcvCtxtCtrl bits to default values.
678          */
679         hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
680                      HFI1_RCVCTRL_TIDFLOW_DIS |
681                      HFI1_RCVCTRL_INTRAVAIL_DIS |
682                      HFI1_RCVCTRL_TAILUPD_DIS |
683                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
684                      HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
685                      HFI1_RCVCTRL_NO_EGR_DROP_DIS |
686                      HFI1_RCVCTRL_URGENT_DIS, uctxt);
687         /* Clear the context's J_KEY */
688         hfi1_clear_ctxt_jkey(dd, uctxt);
689         /*
690          * If a send context is allocated, reset context integrity
691          * checks to default and disable the send context.
692          */
693         if (uctxt->sc) {
694                 sc_disable(uctxt->sc);
695                 set_pio_integrity(uctxt->sc);
696         }
697
698         hfi1_free_ctxt_rcv_groups(uctxt);
699         hfi1_clear_ctxt_pkey(dd, uctxt);
700
701         uctxt->event_flags = 0;
702
703         deallocate_ctxt(uctxt);
704 done:
705
706         if (refcount_dec_and_test(&dd->user_refcount))
707                 complete(&dd->user_comp);
708
709         cleanup_srcu_struct(&fdata->pq_srcu);
710         kfree(fdata);
711         return 0;
712 }
713
714 /*
715  * Convert kernel *virtual* addresses to physical addresses.
716  * This is used to vmalloc'ed addresses.
717  */
718 static u64 kvirt_to_phys(void *addr)
719 {
720         struct page *page;
721         u64 paddr = 0;
722
723         page = vmalloc_to_page(addr);
724         if (page)
725                 paddr = page_to_pfn(page) << PAGE_SHIFT;
726
727         return paddr;
728 }
729
730 /**
731  * complete_subctxt - complete sub-context info
732  * @fd: valid filedata pointer
733  *
734  * Sub-context info can only be set up after the base context
735  * has been completed.  This is indicated by the clearing of the
736  * HFI1_CTXT_BASE_UINIT bit.
737  *
738  * Wait for the bit to be cleared, and then complete the subcontext
739  * initialization.
740  *
741  */
742 static int complete_subctxt(struct hfi1_filedata *fd)
743 {
744         int ret;
745         unsigned long flags;
746
747         /*
748          * sub-context info can only be set up after the base context
749          * has been completed.
750          */
751         ret = wait_event_interruptible(
752                 fd->uctxt->wait,
753                 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
754
755         if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
756                 ret = -ENOMEM;
757
758         /* Finish the sub-context init */
759         if (!ret) {
760                 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
761                 ret = init_user_ctxt(fd, fd->uctxt);
762         }
763
764         if (ret) {
765                 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
766                 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
767                 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
768                 hfi1_rcd_put(fd->uctxt);
769                 fd->uctxt = NULL;
770         }
771
772         return ret;
773 }
774
775 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
776 {
777         int ret;
778         unsigned int swmajor;
779         struct hfi1_ctxtdata *uctxt = NULL;
780         struct hfi1_user_info uinfo;
781
782         if (fd->uctxt)
783                 return -EINVAL;
784
785         if (sizeof(uinfo) != len)
786                 return -EINVAL;
787
788         if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
789                 return -EFAULT;
790
791         swmajor = uinfo.userversion >> 16;
792         if (swmajor != HFI1_USER_SWMAJOR)
793                 return -ENODEV;
794
795         if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
796                 return -EINVAL;
797
798         /*
799          * Acquire the mutex to protect against multiple creations of what
800          * could be a shared base context.
801          */
802         mutex_lock(&hfi1_mutex);
803         /*
804          * Get a sub context if available  (fd->uctxt will be set).
805          * ret < 0 error, 0 no context, 1 sub-context found
806          */
807         ret = find_sub_ctxt(fd, &uinfo);
808
809         /*
810          * Allocate a base context if context sharing is not required or a
811          * sub context wasn't found.
812          */
813         if (!ret)
814                 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
815
816         mutex_unlock(&hfi1_mutex);
817
818         /* Depending on the context type, finish the appropriate init */
819         switch (ret) {
820         case 0:
821                 ret = setup_base_ctxt(fd, uctxt);
822                 if (ret)
823                         deallocate_ctxt(uctxt);
824                 break;
825         case 1:
826                 ret = complete_subctxt(fd);
827                 break;
828         default:
829                 break;
830         }
831
832         return ret;
833 }
834
835 /**
836  * match_ctxt - match context
837  * @fd: valid filedata pointer
838  * @uinfo: user info to compare base context with
839  * @uctxt: context to compare uinfo to.
840  *
841  * Compare the given context with the given information to see if it
842  * can be used for a sub context.
843  */
844 static int match_ctxt(struct hfi1_filedata *fd,
845                       const struct hfi1_user_info *uinfo,
846                       struct hfi1_ctxtdata *uctxt)
847 {
848         struct hfi1_devdata *dd = fd->dd;
849         unsigned long flags;
850         u16 subctxt;
851
852         /* Skip dynamically allocated kernel contexts */
853         if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
854                 return 0;
855
856         /* Skip ctxt if it doesn't match the requested one */
857         if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
858             uctxt->jkey != generate_jkey(current_uid()) ||
859             uctxt->subctxt_id != uinfo->subctxt_id ||
860             uctxt->subctxt_cnt != uinfo->subctxt_cnt)
861                 return 0;
862
863         /* Verify the sharing process matches the base */
864         if (uctxt->userversion != uinfo->userversion)
865                 return -EINVAL;
866
867         /* Find an unused sub context */
868         spin_lock_irqsave(&dd->uctxt_lock, flags);
869         if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
870                 /* context is being closed, do not use */
871                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
872                 return 0;
873         }
874
875         subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
876                                       HFI1_MAX_SHARED_CTXTS);
877         if (subctxt >= uctxt->subctxt_cnt) {
878                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
879                 return -EBUSY;
880         }
881
882         fd->subctxt = subctxt;
883         __set_bit(fd->subctxt, uctxt->in_use_ctxts);
884         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
885
886         fd->uctxt = uctxt;
887         hfi1_rcd_get(uctxt);
888
889         return 1;
890 }
891
892 /**
893  * find_sub_ctxt - fund sub-context
894  * @fd: valid filedata pointer
895  * @uinfo: matching info to use to find a possible context to share.
896  *
897  * The hfi1_mutex must be held when this function is called.  It is
898  * necessary to ensure serialized creation of shared contexts.
899  *
900  * Return:
901  *    0      No sub-context found
902  *    1      Subcontext found and allocated
903  *    errno  EINVAL (incorrect parameters)
904  *           EBUSY (all sub contexts in use)
905  */
906 static int find_sub_ctxt(struct hfi1_filedata *fd,
907                          const struct hfi1_user_info *uinfo)
908 {
909         struct hfi1_ctxtdata *uctxt;
910         struct hfi1_devdata *dd = fd->dd;
911         u16 i;
912         int ret;
913
914         if (!uinfo->subctxt_cnt)
915                 return 0;
916
917         for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
918                 uctxt = hfi1_rcd_get_by_index(dd, i);
919                 if (uctxt) {
920                         ret = match_ctxt(fd, uinfo, uctxt);
921                         hfi1_rcd_put(uctxt);
922                         /* value of != 0 will return */
923                         if (ret)
924                                 return ret;
925                 }
926         }
927
928         return 0;
929 }
930
931 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
932                          struct hfi1_user_info *uinfo,
933                          struct hfi1_ctxtdata **rcd)
934 {
935         struct hfi1_ctxtdata *uctxt;
936         int ret, numa;
937
938         if (dd->flags & HFI1_FROZEN) {
939                 /*
940                  * Pick an error that is unique from all other errors
941                  * that are returned so the user process knows that
942                  * it tried to allocate while the SPC was frozen.  It
943                  * it should be able to retry with success in a short
944                  * while.
945                  */
946                 return -EIO;
947         }
948
949         if (!dd->freectxts)
950                 return -EBUSY;
951
952         /*
953          * If we don't have a NUMA node requested, preference is towards
954          * device NUMA node.
955          */
956         fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
957         if (fd->rec_cpu_num != -1)
958                 numa = cpu_to_node(fd->rec_cpu_num);
959         else
960                 numa = numa_node_id();
961         ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
962         if (ret < 0) {
963                 dd_dev_err(dd, "user ctxtdata allocation failed\n");
964                 return ret;
965         }
966         hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967                   uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
968                   uctxt->numa_id);
969
970         /*
971          * Allocate and enable a PIO send context.
972          */
973         uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
974         if (!uctxt->sc) {
975                 ret = -ENOMEM;
976                 goto ctxdata_free;
977         }
978         hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
979                   uctxt->sc->hw_context);
980         ret = sc_enable(uctxt->sc);
981         if (ret)
982                 goto ctxdata_free;
983
984         /*
985          * Setup sub context information if the user-level has requested
986          * sub contexts.
987          * This has to be done here so the rest of the sub-contexts find the
988          * proper base context.
989          * NOTE: _set_bit() can be used here because the context creation is
990          * protected by the mutex (rather than the spin_lock), and will be the
991          * very first instance of this context.
992          */
993         __set_bit(0, uctxt->in_use_ctxts);
994         if (uinfo->subctxt_cnt)
995                 init_subctxts(uctxt, uinfo);
996         uctxt->userversion = uinfo->userversion;
997         uctxt->flags = hfi1_cap_mask; /* save current flag state */
998         init_waitqueue_head(&uctxt->wait);
999         strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000         memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001         uctxt->jkey = generate_jkey(current_uid());
1002         hfi1_stats.sps_ctxts++;
1003         /*
1004          * Disable ASPM when there are open user/PSM contexts to avoid
1005          * issues with ASPM L1 exit latency
1006          */
1007         if (dd->freectxts-- == dd->num_user_contexts)
1008                 aspm_disable_all(dd);
1009
1010         *rcd = uctxt;
1011
1012         return 0;
1013
1014 ctxdata_free:
1015         hfi1_free_ctxt(uctxt);
1016         return ret;
1017 }
1018
1019 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020 {
1021         mutex_lock(&hfi1_mutex);
1022         hfi1_stats.sps_ctxts--;
1023         if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024                 aspm_enable_all(uctxt->dd);
1025         mutex_unlock(&hfi1_mutex);
1026
1027         hfi1_free_ctxt(uctxt);
1028 }
1029
1030 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031                           const struct hfi1_user_info *uinfo)
1032 {
1033         uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034         uctxt->subctxt_id = uinfo->subctxt_id;
1035         set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036 }
1037
1038 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039 {
1040         int ret = 0;
1041         u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043         uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044         if (!uctxt->subctxt_uregbase)
1045                 return -ENOMEM;
1046
1047         /* We can take the size of the RcvHdr Queue from the master */
1048         uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049                                                   num_subctxts);
1050         if (!uctxt->subctxt_rcvhdr_base) {
1051                 ret = -ENOMEM;
1052                 goto bail_ureg;
1053         }
1054
1055         uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056                                                 num_subctxts);
1057         if (!uctxt->subctxt_rcvegrbuf) {
1058                 ret = -ENOMEM;
1059                 goto bail_rhdr;
1060         }
1061
1062         return 0;
1063
1064 bail_rhdr:
1065         vfree(uctxt->subctxt_rcvhdr_base);
1066         uctxt->subctxt_rcvhdr_base = NULL;
1067 bail_ureg:
1068         vfree(uctxt->subctxt_uregbase);
1069         uctxt->subctxt_uregbase = NULL;
1070
1071         return ret;
1072 }
1073
1074 static void user_init(struct hfi1_ctxtdata *uctxt)
1075 {
1076         unsigned int rcvctrl_ops = 0;
1077
1078         /* initialize poll variables... */
1079         uctxt->urgent = 0;
1080         uctxt->urgent_poll = 0;
1081
1082         /*
1083          * Now enable the ctxt for receive.
1084          * For chips that are set to DMA the tail register to memory
1085          * when they change (and when the update bit transitions from
1086          * 0 to 1.  So for those chips, we turn it off and then back on.
1087          * This will (very briefly) affect any other open ctxts, but the
1088          * duration is very short, and therefore isn't an issue.  We
1089          * explicitly set the in-memory tail copy to 0 beforehand, so we
1090          * don't have to wait to be sure the DMA update has happened
1091          * (chip resets head/tail to 0 on transition to enable).
1092          */
1093         if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094                 clear_rcvhdrtail(uctxt);
1095
1096         /* Setup J_KEY before enabling the context */
1097         hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098
1099         rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100         rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101         if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102                 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103         /*
1104          * Ignore the bit in the flags for now until proper
1105          * support for multiple packet per rcv array entry is
1106          * added.
1107          */
1108         if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109                 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111                 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113                 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114         /*
1115          * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116          * We can't rely on the correct value to be set from prior
1117          * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118          * for both cases.
1119          */
1120         if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122         else
1123                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124         hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125 }
1126
1127 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128 {
1129         struct hfi1_ctxt_info cinfo;
1130         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132         if (sizeof(cinfo) != len)
1133                 return -EINVAL;
1134
1135         memset(&cinfo, 0, sizeof(cinfo));
1136         cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137                                 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138                         HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139                         HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140         /* adjust flag if this fd is not able to cache */
1141         if (!fd->use_mn)
1142                 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144         cinfo.num_active = hfi1_count_active_units();
1145         cinfo.unit = uctxt->dd->unit;
1146         cinfo.ctxt = uctxt->ctxt;
1147         cinfo.subctxt = fd->subctxt;
1148         cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149                                 uctxt->dd->rcv_entries.group_size) +
1150                 uctxt->expected_count;
1151         cinfo.credits = uctxt->sc->credits;
1152         cinfo.numa_node = uctxt->numa_id;
1153         cinfo.rec_cpu = fd->rec_cpu_num;
1154         cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156         cinfo.egrtids = uctxt->egrbufs.alloced;
1157         cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158         cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159         cinfo.sdma_ring_size = fd->cq->nentries;
1160         cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162         trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163         if (copy_to_user((void __user *)arg, &cinfo, len))
1164                 return -EFAULT;
1165
1166         return 0;
1167 }
1168
1169 static int init_user_ctxt(struct hfi1_filedata *fd,
1170                           struct hfi1_ctxtdata *uctxt)
1171 {
1172         int ret;
1173
1174         ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175         if (ret)
1176                 return ret;
1177
1178         ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179         if (ret)
1180                 hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182         return ret;
1183 }
1184
1185 static int setup_base_ctxt(struct hfi1_filedata *fd,
1186                            struct hfi1_ctxtdata *uctxt)
1187 {
1188         struct hfi1_devdata *dd = uctxt->dd;
1189         int ret = 0;
1190
1191         hfi1_init_ctxt(uctxt->sc);
1192
1193         /* Now allocate the RcvHdr queue and eager buffers. */
1194         ret = hfi1_create_rcvhdrq(dd, uctxt);
1195         if (ret)
1196                 goto done;
1197
1198         ret = hfi1_setup_eagerbufs(uctxt);
1199         if (ret)
1200                 goto done;
1201
1202         /* If sub-contexts are enabled, do the appropriate setup */
1203         if (uctxt->subctxt_cnt)
1204                 ret = setup_subctxt(uctxt);
1205         if (ret)
1206                 goto done;
1207
1208         ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209         if (ret)
1210                 goto done;
1211
1212         ret = init_user_ctxt(fd, uctxt);
1213         if (ret) {
1214                 hfi1_free_ctxt_rcv_groups(uctxt);
1215                 goto done;
1216         }
1217
1218         user_init(uctxt);
1219
1220         /* Now that the context is set up, the fd can get a reference. */
1221         fd->uctxt = uctxt;
1222         hfi1_rcd_get(uctxt);
1223
1224 done:
1225         if (uctxt->subctxt_cnt) {
1226                 /*
1227                  * On error, set the failed bit so sub-contexts will clean up
1228                  * correctly.
1229                  */
1230                 if (ret)
1231                         set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232
1233                 /*
1234                  * Base context is done (successfully or not), notify anybody
1235                  * using a sub-context that is waiting for this completion.
1236                  */
1237                 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238                 wake_up(&uctxt->wait);
1239         }
1240
1241         return ret;
1242 }
1243
1244 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245 {
1246         struct hfi1_base_info binfo;
1247         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248         struct hfi1_devdata *dd = uctxt->dd;
1249         unsigned offset;
1250
1251         trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252
1253         if (sizeof(binfo) != len)
1254                 return -EINVAL;
1255
1256         memset(&binfo, 0, sizeof(binfo));
1257         binfo.hw_version = dd->revision;
1258         binfo.sw_version = HFI1_USER_SWVERSION;
1259         binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260         binfo.jkey = uctxt->jkey;
1261         /*
1262          * If more than 64 contexts are enabled the allocated credit
1263          * return will span two or three contiguous pages. Since we only
1264          * map the page containing the context's credit return address,
1265          * we need to calculate the offset in the proper page.
1266          */
1267         offset = ((u64)uctxt->sc->hw_free -
1268                   (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269         binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270                                                 fd->subctxt, offset);
1271         binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272                                             fd->subctxt,
1273                                             uctxt->sc->base_addr);
1274         binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275                                                 uctxt->ctxt,
1276                                                 fd->subctxt,
1277                                                 uctxt->sc->base_addr);
1278         binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279                                                fd->subctxt,
1280                                                uctxt->rcvhdrq);
1281         binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282                                                fd->subctxt,
1283                                                uctxt->egrbufs.rcvtids[0].dma);
1284         binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285                                                   fd->subctxt, 0);
1286         /*
1287          * user regs are at
1288          * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289          */
1290         binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291                                              fd->subctxt, 0);
1292         offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293                                 sizeof(*dd->events));
1294         binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295                                                fd->subctxt,
1296                                                offset);
1297         binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298                                                fd->subctxt,
1299                                                dd->status);
1300         if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301                 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302                                                         fd->subctxt, 0);
1303         if (uctxt->subctxt_cnt) {
1304                 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305                                                          uctxt->ctxt,
1306                                                          fd->subctxt, 0);
1307                 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308                                                           uctxt->ctxt,
1309                                                           fd->subctxt, 0);
1310                 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311                                                           uctxt->ctxt,
1312                                                           fd->subctxt, 0);
1313         }
1314
1315         if (copy_to_user((void __user *)arg, &binfo, len))
1316                 return -EFAULT;
1317
1318         return 0;
1319 }
1320
1321 /**
1322  * user_exp_rcv_setup - Set up the given tid rcv list
1323  * @fd: file data of the current driver instance
1324  * @arg: ioctl argumnent for user space information
1325  * @len: length of data structure associated with ioctl command
1326  *
1327  * Wrapper to validate ioctl information before doing _rcv_setup.
1328  *
1329  */
1330 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331                               u32 len)
1332 {
1333         int ret;
1334         unsigned long addr;
1335         struct hfi1_tid_info tinfo;
1336
1337         if (sizeof(tinfo) != len)
1338                 return -EINVAL;
1339
1340         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341                 return -EFAULT;
1342
1343         ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344         if (!ret) {
1345                 /*
1346                  * Copy the number of tidlist entries we used
1347                  * and the length of the buffer we registered.
1348                  */
1349                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351                                  sizeof(tinfo.tidcnt)))
1352                         ret = -EFAULT;
1353
1354                 addr = arg + offsetof(struct hfi1_tid_info, length);
1355                 if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356                                  sizeof(tinfo.length)))
1357                         ret = -EFAULT;
1358
1359                 if (ret)
1360                         hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361         }
1362
1363         return ret;
1364 }
1365
1366 /**
1367  * user_exp_rcv_clear - Clear the given tid rcv list
1368  * @fd: file data of the current driver instance
1369  * @arg: ioctl argumnent for user space information
1370  * @len: length of data structure associated with ioctl command
1371  *
1372  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1373  * of this, we need to use this wrapper to copy the user space information
1374  * before doing the clear.
1375  */
1376 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377                               u32 len)
1378 {
1379         int ret;
1380         unsigned long addr;
1381         struct hfi1_tid_info tinfo;
1382
1383         if (sizeof(tinfo) != len)
1384                 return -EINVAL;
1385
1386         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387                 return -EFAULT;
1388
1389         ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390         if (!ret) {
1391                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393                                  sizeof(tinfo.tidcnt)))
1394                         return -EFAULT;
1395         }
1396
1397         return ret;
1398 }
1399
1400 /**
1401  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402  * @fd: file data of the current driver instance
1403  * @arg: ioctl argumnent for user space information
1404  * @len: length of data structure associated with ioctl command
1405  *
1406  * Wrapper to validate ioctl information before doing _rcv_invalid.
1407  *
1408  */
1409 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410                                 u32 len)
1411 {
1412         int ret;
1413         unsigned long addr;
1414         struct hfi1_tid_info tinfo;
1415
1416         if (sizeof(tinfo) != len)
1417                 return -EINVAL;
1418
1419         if (!fd->invalid_tids)
1420                 return -EINVAL;
1421
1422         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423                 return -EFAULT;
1424
1425         ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426         if (ret)
1427                 return ret;
1428
1429         addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430         if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431                          sizeof(tinfo.tidcnt)))
1432                 ret = -EFAULT;
1433
1434         return ret;
1435 }
1436
1437 static __poll_t poll_urgent(struct file *fp,
1438                                 struct poll_table_struct *pt)
1439 {
1440         struct hfi1_filedata *fd = fp->private_data;
1441         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442         struct hfi1_devdata *dd = uctxt->dd;
1443         __poll_t pollflag;
1444
1445         poll_wait(fp, &uctxt->wait, pt);
1446
1447         spin_lock_irq(&dd->uctxt_lock);
1448         if (uctxt->urgent != uctxt->urgent_poll) {
1449                 pollflag = EPOLLIN | EPOLLRDNORM;
1450                 uctxt->urgent_poll = uctxt->urgent;
1451         } else {
1452                 pollflag = 0;
1453                 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454         }
1455         spin_unlock_irq(&dd->uctxt_lock);
1456
1457         return pollflag;
1458 }
1459
1460 static __poll_t poll_next(struct file *fp,
1461                               struct poll_table_struct *pt)
1462 {
1463         struct hfi1_filedata *fd = fp->private_data;
1464         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465         struct hfi1_devdata *dd = uctxt->dd;
1466         __poll_t pollflag;
1467
1468         poll_wait(fp, &uctxt->wait, pt);
1469
1470         spin_lock_irq(&dd->uctxt_lock);
1471         if (hdrqempty(uctxt)) {
1472                 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474                 pollflag = 0;
1475         } else {
1476                 pollflag = EPOLLIN | EPOLLRDNORM;
1477         }
1478         spin_unlock_irq(&dd->uctxt_lock);
1479
1480         return pollflag;
1481 }
1482
1483 /*
1484  * Find all user contexts in use, and set the specified bit in their
1485  * event mask.
1486  * See also find_ctxt() for a similar use, that is specific to send buffers.
1487  */
1488 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489 {
1490         struct hfi1_ctxtdata *uctxt;
1491         struct hfi1_devdata *dd = ppd->dd;
1492         u16 ctxt;
1493
1494         if (!dd->events)
1495                 return -EINVAL;
1496
1497         for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498              ctxt++) {
1499                 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500                 if (uctxt) {
1501                         unsigned long *evs;
1502                         int i;
1503                         /*
1504                          * subctxt_cnt is 0 if not shared, so do base
1505                          * separately, first, then remaining subctxt, if any
1506                          */
1507                         evs = dd->events + uctxt_offset(uctxt);
1508                         set_bit(evtbit, evs);
1509                         for (i = 1; i < uctxt->subctxt_cnt; i++)
1510                                 set_bit(evtbit, evs + i);
1511                         hfi1_rcd_put(uctxt);
1512                 }
1513         }
1514
1515         return 0;
1516 }
1517
1518 /**
1519  * manage_rcvq - manage a context's receive queue
1520  * @uctxt: the context
1521  * @subctxt: the sub-context
1522  * @arg: start/stop action to carry out
1523  *
1524  * start_stop == 0 disables receive on the context, for use in queue
1525  * overflow conditions.  start_stop==1 re-enables, to be used to
1526  * re-init the software copy of the head register
1527  */
1528 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529                        unsigned long arg)
1530 {
1531         struct hfi1_devdata *dd = uctxt->dd;
1532         unsigned int rcvctrl_op;
1533         int start_stop;
1534
1535         if (subctxt)
1536                 return 0;
1537
1538         if (get_user(start_stop, (int __user *)arg))
1539                 return -EFAULT;
1540
1541         /* atomically clear receive enable ctxt. */
1542         if (start_stop) {
1543                 /*
1544                  * On enable, force in-memory copy of the tail register to
1545                  * 0, so that protocol code doesn't have to worry about
1546                  * whether or not the chip has yet updated the in-memory
1547                  * copy or not on return from the system call. The chip
1548                  * always resets it's tail register back to 0 on a
1549                  * transition from disabled to enabled.
1550                  */
1551                 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552                         clear_rcvhdrtail(uctxt);
1553                 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554         } else {
1555                 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556         }
1557         hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558         /* always; new head should be equal to new tail; see above */
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * clear the event notifier events for this context.
1565  * User process then performs actions appropriate to bit having been
1566  * set, if desired, and checks again in future.
1567  */
1568 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569                           unsigned long arg)
1570 {
1571         int i;
1572         struct hfi1_devdata *dd = uctxt->dd;
1573         unsigned long *evs;
1574         unsigned long events;
1575
1576         if (!dd->events)
1577                 return 0;
1578
1579         if (get_user(events, (unsigned long __user *)arg))
1580                 return -EFAULT;
1581
1582         evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584         for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585                 if (!test_bit(i, &events))
1586                         continue;
1587                 clear_bit(i, evs);
1588         }
1589         return 0;
1590 }
1591
1592 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593 {
1594         int i;
1595         struct hfi1_pportdata *ppd = uctxt->ppd;
1596         struct hfi1_devdata *dd = uctxt->dd;
1597         u16 pkey;
1598
1599         if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600                 return -EPERM;
1601
1602         if (get_user(pkey, (u16 __user *)arg))
1603                 return -EFAULT;
1604
1605         if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606                 return -EINVAL;
1607
1608         for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609                 if (pkey == ppd->pkeys[i])
1610                         return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611
1612         return -ENOENT;
1613 }
1614
1615 /**
1616  * ctxt_reset - Reset the user context
1617  * @uctxt: valid user context
1618  */
1619 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620 {
1621         struct send_context *sc;
1622         struct hfi1_devdata *dd;
1623         int ret = 0;
1624
1625         if (!uctxt || !uctxt->dd || !uctxt->sc)
1626                 return -EINVAL;
1627
1628         /*
1629          * There is no protection here. User level has to guarantee that
1630          * no one will be writing to the send context while it is being
1631          * re-initialized.  If user level breaks that guarantee, it will
1632          * break it's own context and no one else's.
1633          */
1634         dd = uctxt->dd;
1635         sc = uctxt->sc;
1636
1637         /*
1638          * Wait until the interrupt handler has marked the context as
1639          * halted or frozen. Report error if we time out.
1640          */
1641         wait_event_interruptible_timeout(
1642                 sc->halt_wait, (sc->flags & SCF_HALTED),
1643                 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644         if (!(sc->flags & SCF_HALTED))
1645                 return -ENOLCK;
1646
1647         /*
1648          * If the send context was halted due to a Freeze, wait until the
1649          * device has been "unfrozen" before resetting the context.
1650          */
1651         if (sc->flags & SCF_FROZEN) {
1652                 wait_event_interruptible_timeout(
1653                         dd->event_queue,
1654                         !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655                         msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656                 if (dd->flags & HFI1_FROZEN)
1657                         return -ENOLCK;
1658
1659                 if (dd->flags & HFI1_FORCED_FREEZE)
1660                         /*
1661                          * Don't allow context reset if we are into
1662                          * forced freeze
1663                          */
1664                         return -ENODEV;
1665
1666                 sc_disable(sc);
1667                 ret = sc_enable(sc);
1668                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669         } else {
1670                 ret = sc_restart(sc);
1671         }
1672         if (!ret)
1673                 sc_return_credits(sc);
1674
1675         return ret;
1676 }
1677
1678 static void user_remove(struct hfi1_devdata *dd)
1679 {
1680
1681         hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682 }
1683
1684 static int user_add(struct hfi1_devdata *dd)
1685 {
1686         char name[10];
1687         int ret;
1688
1689         snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690         ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691                              &dd->user_cdev, &dd->user_device,
1692                              true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693         if (ret)
1694                 user_remove(dd);
1695
1696         return ret;
1697 }
1698
1699 /*
1700  * Create per-unit files in /dev
1701  */
1702 int hfi1_device_create(struct hfi1_devdata *dd)
1703 {
1704         return user_add(dd);
1705 }
1706
1707 /*
1708  * Remove per-unit files in /dev
1709  * void, core kernel returns no errors for this stuff
1710  */
1711 void hfi1_device_remove(struct hfi1_devdata *dd)
1712 {
1713         user_remove(dd);
1714 }