Merge tag 'io_uring-5.13-2021-05-22' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / driver.c
1 /*
2  * Copyright(c) 2015-2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 #include <linux/etherdevice.h>
58
59 #include "hfi.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "sdma.h"
63 #include "debugfs.h"
64 #include "vnic.h"
65 #include "fault.h"
66
67 #include "ipoib.h"
68 #include "netdev.h"
69
70 #undef pr_fmt
71 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
72
73 /*
74  * The size has to be longer than this string, so we can append
75  * board/chip information to it in the initialization code.
76  */
77 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
78
79 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
80
81 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
82 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
84                  HFI1_DEFAULT_MAX_MTU));
85
86 unsigned int hfi1_cu = 1;
87 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
88 MODULE_PARM_DESC(cu, "Credit return units");
89
90 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
91 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
92 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
93 static const struct kernel_param_ops cap_ops = {
94         .set = hfi1_caps_set,
95         .get = hfi1_caps_get
96 };
97 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
98 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
99
100 MODULE_LICENSE("Dual BSD/GPL");
101 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
102
103 /*
104  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
105  */
106 #define MAX_PKT_RECV 64
107 /*
108  * MAX_PKT_THREAD_RCV is the max # of packets processed before
109  * the qp_wait_list queue is flushed.
110  */
111 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
112 #define EGR_HEAD_UPDATE_THRESHOLD 16
113
114 struct hfi1_ib_stats hfi1_stats;
115
116 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
117 {
118         int ret = 0;
119         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
120                 cap_mask = *cap_mask_ptr, value, diff,
121                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
122                               HFI1_CAP_WRITABLE_MASK);
123
124         ret = kstrtoul(val, 0, &value);
125         if (ret) {
126                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
127                 goto done;
128         }
129         /* Get the changed bits (except the locked bit) */
130         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
131
132         /* Remove any bits that are not allowed to change after driver load */
133         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
134                 pr_warn("Ignoring non-writable capability bits %#lx\n",
135                         diff & ~write_mask);
136                 diff &= write_mask;
137         }
138
139         /* Mask off any reserved bits */
140         diff &= ~HFI1_CAP_RESERVED_MASK;
141         /* Clear any previously set and changing bits */
142         cap_mask &= ~diff;
143         /* Update the bits with the new capability */
144         cap_mask |= (value & diff);
145         /* Check for any kernel/user restrictions */
146         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
147                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
148         cap_mask &= ~diff;
149         /* Set the bitmask to the final set */
150         *cap_mask_ptr = cap_mask;
151 done:
152         return ret;
153 }
154
155 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
156 {
157         unsigned long cap_mask = *(unsigned long *)kp->arg;
158
159         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
160         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
161
162         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
163 }
164
165 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
166 {
167         struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
168         struct hfi1_devdata *dd = container_of(ibdev,
169                                                struct hfi1_devdata, verbs_dev);
170         return dd->pcidev;
171 }
172
173 /*
174  * Return count of units with at least one port ACTIVE.
175  */
176 int hfi1_count_active_units(void)
177 {
178         struct hfi1_devdata *dd;
179         struct hfi1_pportdata *ppd;
180         unsigned long index, flags;
181         int pidx, nunits_active = 0;
182
183         xa_lock_irqsave(&hfi1_dev_table, flags);
184         xa_for_each(&hfi1_dev_table, index, dd) {
185                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
186                         continue;
187                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
188                         ppd = dd->pport + pidx;
189                         if (ppd->lid && ppd->linkup) {
190                                 nunits_active++;
191                                 break;
192                         }
193                 }
194         }
195         xa_unlock_irqrestore(&hfi1_dev_table, flags);
196         return nunits_active;
197 }
198
199 /*
200  * Get address of eager buffer from it's index (allocated in chunks, not
201  * contiguous).
202  */
203 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
204                                u8 *update)
205 {
206         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
207
208         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
209         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
210                         (offset * RCV_BUF_BLOCK_SIZE));
211 }
212
213 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
214                                     __le32 *rhf_addr)
215 {
216         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
217
218         return (void *)(rhf_addr - rcd->rhf_offset + offset);
219 }
220
221 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
222                                                    __le32 *rhf_addr)
223 {
224         return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
225 }
226
227 static inline struct hfi1_16b_header
228                 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
229                                      __le32 *rhf_addr)
230 {
231         return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
232 }
233
234 /*
235  * Validate and encode the a given RcvArray Buffer size.
236  * The function will check whether the given size falls within
237  * allowed size ranges for the respective type and, optionally,
238  * return the proper encoding.
239  */
240 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
241 {
242         if (unlikely(!PAGE_ALIGNED(size)))
243                 return 0;
244         if (unlikely(size < MIN_EAGER_BUFFER))
245                 return 0;
246         if (size >
247             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
248                 return 0;
249         if (encoded)
250                 *encoded = ilog2(size / PAGE_SIZE) + 1;
251         return 1;
252 }
253
254 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
255                        struct hfi1_packet *packet)
256 {
257         struct ib_header *rhdr = packet->hdr;
258         u32 rte = rhf_rcv_type_err(packet->rhf);
259         u32 mlid_base;
260         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
261         struct hfi1_devdata *dd = ppd->dd;
262         struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
263         struct rvt_dev_info *rdi = &verbs_dev->rdi;
264
265         if ((packet->rhf & RHF_DC_ERR) &&
266             hfi1_dbg_fault_suppress_err(verbs_dev))
267                 return;
268
269         if (packet->rhf & RHF_ICRC_ERR)
270                 return;
271
272         if (packet->etype == RHF_RCV_TYPE_BYPASS) {
273                 goto drop;
274         } else {
275                 u8 lnh = ib_get_lnh(rhdr);
276
277                 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
278                 if (lnh == HFI1_LRH_BTH) {
279                         packet->ohdr = &rhdr->u.oth;
280                 } else if (lnh == HFI1_LRH_GRH) {
281                         packet->ohdr = &rhdr->u.l.oth;
282                         packet->grh = &rhdr->u.l.grh;
283                 } else {
284                         goto drop;
285                 }
286         }
287
288         if (packet->rhf & RHF_TID_ERR) {
289                 /* For TIDERR and RC QPs preemptively schedule a NAK */
290                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
291                 u32 dlid = ib_get_dlid(rhdr);
292                 u32 qp_num;
293
294                 /* Sanity check packet */
295                 if (tlen < 24)
296                         goto drop;
297
298                 /* Check for GRH */
299                 if (packet->grh) {
300                         u32 vtf;
301                         struct ib_grh *grh = packet->grh;
302
303                         if (grh->next_hdr != IB_GRH_NEXT_HDR)
304                                 goto drop;
305                         vtf = be32_to_cpu(grh->version_tclass_flow);
306                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
307                                 goto drop;
308                 }
309
310                 /* Get the destination QP number. */
311                 qp_num = ib_bth_get_qpn(packet->ohdr);
312                 if (dlid < mlid_base) {
313                         struct rvt_qp *qp;
314                         unsigned long flags;
315
316                         rcu_read_lock();
317                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
318                         if (!qp) {
319                                 rcu_read_unlock();
320                                 goto drop;
321                         }
322
323                         /*
324                          * Handle only RC QPs - for other QP types drop error
325                          * packet.
326                          */
327                         spin_lock_irqsave(&qp->r_lock, flags);
328
329                         /* Check for valid receive state. */
330                         if (!(ib_rvt_state_ops[qp->state] &
331                               RVT_PROCESS_RECV_OK)) {
332                                 ibp->rvp.n_pkt_drops++;
333                         }
334
335                         switch (qp->ibqp.qp_type) {
336                         case IB_QPT_RC:
337                                 hfi1_rc_hdrerr(rcd, packet, qp);
338                                 break;
339                         default:
340                                 /* For now don't handle any other QP types */
341                                 break;
342                         }
343
344                         spin_unlock_irqrestore(&qp->r_lock, flags);
345                         rcu_read_unlock();
346                 } /* Unicast QP */
347         } /* Valid packet with TIDErr */
348
349         /* handle "RcvTypeErr" flags */
350         switch (rte) {
351         case RHF_RTE_ERROR_OP_CODE_ERR:
352         {
353                 void *ebuf = NULL;
354                 u8 opcode;
355
356                 if (rhf_use_egr_bfr(packet->rhf))
357                         ebuf = packet->ebuf;
358
359                 if (!ebuf)
360                         goto drop; /* this should never happen */
361
362                 opcode = ib_bth_get_opcode(packet->ohdr);
363                 if (opcode == IB_OPCODE_CNP) {
364                         /*
365                          * Only in pre-B0 h/w is the CNP_OPCODE handled
366                          * via this code path.
367                          */
368                         struct rvt_qp *qp = NULL;
369                         u32 lqpn, rqpn;
370                         u16 rlid;
371                         u8 svc_type, sl, sc5;
372
373                         sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
374                         sl = ibp->sc_to_sl[sc5];
375
376                         lqpn = ib_bth_get_qpn(packet->ohdr);
377                         rcu_read_lock();
378                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
379                         if (!qp) {
380                                 rcu_read_unlock();
381                                 goto drop;
382                         }
383
384                         switch (qp->ibqp.qp_type) {
385                         case IB_QPT_UD:
386                                 rlid = 0;
387                                 rqpn = 0;
388                                 svc_type = IB_CC_SVCTYPE_UD;
389                                 break;
390                         case IB_QPT_UC:
391                                 rlid = ib_get_slid(rhdr);
392                                 rqpn = qp->remote_qpn;
393                                 svc_type = IB_CC_SVCTYPE_UC;
394                                 break;
395                         default:
396                                 rcu_read_unlock();
397                                 goto drop;
398                         }
399
400                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
401                         rcu_read_unlock();
402                 }
403
404                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
405                 break;
406         }
407         default:
408                 break;
409         }
410
411 drop:
412         return;
413 }
414
415 static inline void init_packet(struct hfi1_ctxtdata *rcd,
416                                struct hfi1_packet *packet)
417 {
418         packet->rsize = get_hdrqentsize(rcd); /* words */
419         packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
420         packet->rcd = rcd;
421         packet->updegr = 0;
422         packet->etail = -1;
423         packet->rhf_addr = get_rhf_addr(rcd);
424         packet->rhf = rhf_to_cpu(packet->rhf_addr);
425         packet->rhqoff = hfi1_rcd_head(rcd);
426         packet->numpkt = 0;
427 }
428
429 /* We support only two types - 9B and 16B for now */
430 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
431         [HFI1_PKT_TYPE_9B] = &return_cnp,
432         [HFI1_PKT_TYPE_16B] = &return_cnp_16B
433 };
434
435 /**
436  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
437  * @qp: The packet's destination QP
438  * @pkt: The packet itself.
439  * @prescan: Is the caller the RXQ prescan
440  *
441  * Process the packet's FECN or BECN bits. By now, the packet
442  * has already been evaluated whether processing of those bit should
443  * be done.
444  * The significance of the @prescan argument is that if the caller
445  * is the RXQ prescan, a CNP will be send out instead of waiting for the
446  * normal packet processing to send an ACK with BECN set (or a CNP).
447  */
448 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
449                                bool prescan)
450 {
451         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
452         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
453         struct ib_other_headers *ohdr = pkt->ohdr;
454         struct ib_grh *grh = pkt->grh;
455         u32 rqpn = 0;
456         u16 pkey;
457         u32 rlid, slid, dlid = 0;
458         u8 hdr_type, sc, svc_type, opcode;
459         bool is_mcast = false, ignore_fecn = false, do_cnp = false,
460                 fecn, becn;
461
462         /* can be called from prescan */
463         if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
464                 pkey = hfi1_16B_get_pkey(pkt->hdr);
465                 sc = hfi1_16B_get_sc(pkt->hdr);
466                 dlid = hfi1_16B_get_dlid(pkt->hdr);
467                 slid = hfi1_16B_get_slid(pkt->hdr);
468                 is_mcast = hfi1_is_16B_mcast(dlid);
469                 opcode = ib_bth_get_opcode(ohdr);
470                 hdr_type = HFI1_PKT_TYPE_16B;
471                 fecn = hfi1_16B_get_fecn(pkt->hdr);
472                 becn = hfi1_16B_get_becn(pkt->hdr);
473         } else {
474                 pkey = ib_bth_get_pkey(ohdr);
475                 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
476                 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
477                         ppd->lid;
478                 slid = ib_get_slid(pkt->hdr);
479                 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
480                            (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
481                 opcode = ib_bth_get_opcode(ohdr);
482                 hdr_type = HFI1_PKT_TYPE_9B;
483                 fecn = ib_bth_get_fecn(ohdr);
484                 becn = ib_bth_get_becn(ohdr);
485         }
486
487         switch (qp->ibqp.qp_type) {
488         case IB_QPT_UD:
489                 rlid = slid;
490                 rqpn = ib_get_sqpn(pkt->ohdr);
491                 svc_type = IB_CC_SVCTYPE_UD;
492                 break;
493         case IB_QPT_SMI:
494         case IB_QPT_GSI:
495                 rlid = slid;
496                 rqpn = ib_get_sqpn(pkt->ohdr);
497                 svc_type = IB_CC_SVCTYPE_UD;
498                 break;
499         case IB_QPT_UC:
500                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
501                 rqpn = qp->remote_qpn;
502                 svc_type = IB_CC_SVCTYPE_UC;
503                 break;
504         case IB_QPT_RC:
505                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
506                 rqpn = qp->remote_qpn;
507                 svc_type = IB_CC_SVCTYPE_RC;
508                 break;
509         default:
510                 return false;
511         }
512
513         ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
514                 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
515         /*
516          * ACKNOWLEDGE packets do not get a CNP but this will be
517          * guarded by ignore_fecn above.
518          */
519         do_cnp = prescan ||
520                 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
521                  opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
522                 opcode == TID_OP(READ_RESP) ||
523                 opcode == TID_OP(ACK);
524
525         /* Call appropriate CNP handler */
526         if (!ignore_fecn && do_cnp && fecn)
527                 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
528                                               dlid, rlid, sc, grh);
529
530         if (becn) {
531                 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
532                 u8 sl = ibp->sc_to_sl[sc];
533
534                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
535         }
536         return !ignore_fecn && fecn;
537 }
538
539 struct ps_mdata {
540         struct hfi1_ctxtdata *rcd;
541         u32 rsize;
542         u32 maxcnt;
543         u32 ps_head;
544         u32 ps_tail;
545         u32 ps_seq;
546 };
547
548 static inline void init_ps_mdata(struct ps_mdata *mdata,
549                                  struct hfi1_packet *packet)
550 {
551         struct hfi1_ctxtdata *rcd = packet->rcd;
552
553         mdata->rcd = rcd;
554         mdata->rsize = packet->rsize;
555         mdata->maxcnt = packet->maxcnt;
556         mdata->ps_head = packet->rhqoff;
557
558         if (get_dma_rtail_setting(rcd)) {
559                 mdata->ps_tail = get_rcvhdrtail(rcd);
560                 if (rcd->ctxt == HFI1_CTRL_CTXT)
561                         mdata->ps_seq = hfi1_seq_cnt(rcd);
562                 else
563                         mdata->ps_seq = 0; /* not used with DMA_RTAIL */
564         } else {
565                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
566                 mdata->ps_seq = hfi1_seq_cnt(rcd);
567         }
568 }
569
570 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
571                           struct hfi1_ctxtdata *rcd)
572 {
573         if (get_dma_rtail_setting(rcd))
574                 return mdata->ps_head == mdata->ps_tail;
575         return mdata->ps_seq != rhf_rcv_seq(rhf);
576 }
577
578 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
579                           struct hfi1_ctxtdata *rcd)
580 {
581         /*
582          * Control context can potentially receive an invalid rhf.
583          * Drop such packets.
584          */
585         if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
586                 return mdata->ps_seq != rhf_rcv_seq(rhf);
587
588         return 0;
589 }
590
591 static inline void update_ps_mdata(struct ps_mdata *mdata,
592                                    struct hfi1_ctxtdata *rcd)
593 {
594         mdata->ps_head += mdata->rsize;
595         if (mdata->ps_head >= mdata->maxcnt)
596                 mdata->ps_head = 0;
597
598         /* Control context must do seq counting */
599         if (!get_dma_rtail_setting(rcd) ||
600             rcd->ctxt == HFI1_CTRL_CTXT)
601                 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
602 }
603
604 /*
605  * prescan_rxq - search through the receive queue looking for packets
606  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
607  * When an ECN is found, process the Congestion Notification, and toggle
608  * it off.
609  * This is declared as a macro to allow quick checking of the port to avoid
610  * the overhead of a function call if not enabled.
611  */
612 #define prescan_rxq(rcd, packet) \
613         do { \
614                 if (rcd->ppd->cc_prescan) \
615                         __prescan_rxq(packet); \
616         } while (0)
617 static void __prescan_rxq(struct hfi1_packet *packet)
618 {
619         struct hfi1_ctxtdata *rcd = packet->rcd;
620         struct ps_mdata mdata;
621
622         init_ps_mdata(&mdata, packet);
623
624         while (1) {
625                 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
626                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
627                                          packet->rcd->rhf_offset;
628                 struct rvt_qp *qp;
629                 struct ib_header *hdr;
630                 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
631                 u64 rhf = rhf_to_cpu(rhf_addr);
632                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
633                 u8 lnh;
634
635                 if (ps_done(&mdata, rhf, rcd))
636                         break;
637
638                 if (ps_skip(&mdata, rhf, rcd))
639                         goto next;
640
641                 if (etype != RHF_RCV_TYPE_IB)
642                         goto next;
643
644                 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
645                 hdr = packet->hdr;
646                 lnh = ib_get_lnh(hdr);
647
648                 if (lnh == HFI1_LRH_BTH) {
649                         packet->ohdr = &hdr->u.oth;
650                         packet->grh = NULL;
651                 } else if (lnh == HFI1_LRH_GRH) {
652                         packet->ohdr = &hdr->u.l.oth;
653                         packet->grh = &hdr->u.l.grh;
654                 } else {
655                         goto next; /* just in case */
656                 }
657
658                 if (!hfi1_may_ecn(packet))
659                         goto next;
660
661                 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
662                 qpn = bth1 & RVT_QPN_MASK;
663                 rcu_read_lock();
664                 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
665
666                 if (!qp) {
667                         rcu_read_unlock();
668                         goto next;
669                 }
670
671                 hfi1_process_ecn_slowpath(qp, packet, true);
672                 rcu_read_unlock();
673
674                 /* turn off BECN, FECN */
675                 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
676                 packet->ohdr->bth[1] = cpu_to_be32(bth1);
677 next:
678                 update_ps_mdata(&mdata, rcd);
679         }
680 }
681
682 static void process_rcv_qp_work(struct hfi1_packet *packet)
683 {
684         struct rvt_qp *qp, *nqp;
685         struct hfi1_ctxtdata *rcd = packet->rcd;
686
687         /*
688          * Iterate over all QPs waiting to respond.
689          * The list won't change since the IRQ is only run on one CPU.
690          */
691         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
692                 list_del_init(&qp->rspwait);
693                 if (qp->r_flags & RVT_R_RSP_NAK) {
694                         qp->r_flags &= ~RVT_R_RSP_NAK;
695                         packet->qp = qp;
696                         hfi1_send_rc_ack(packet, 0);
697                 }
698                 if (qp->r_flags & RVT_R_RSP_SEND) {
699                         unsigned long flags;
700
701                         qp->r_flags &= ~RVT_R_RSP_SEND;
702                         spin_lock_irqsave(&qp->s_lock, flags);
703                         if (ib_rvt_state_ops[qp->state] &
704                                         RVT_PROCESS_OR_FLUSH_SEND)
705                                 hfi1_schedule_send(qp);
706                         spin_unlock_irqrestore(&qp->s_lock, flags);
707                 }
708                 rvt_put_qp(qp);
709         }
710 }
711
712 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
713 {
714         if (thread) {
715                 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
716                         /* allow defered processing */
717                         process_rcv_qp_work(packet);
718                 cond_resched();
719                 return RCV_PKT_OK;
720         } else {
721                 this_cpu_inc(*packet->rcd->dd->rcv_limit);
722                 return RCV_PKT_LIMIT;
723         }
724 }
725
726 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
727 {
728         int ret = RCV_PKT_OK;
729
730         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
731                 ret = max_packet_exceeded(packet, thread);
732         return ret;
733 }
734
735 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
736 {
737         int ret;
738
739         packet->rcd->dd->ctx0_seq_drop++;
740         /* Set up for the next packet */
741         packet->rhqoff += packet->rsize;
742         if (packet->rhqoff >= packet->maxcnt)
743                 packet->rhqoff = 0;
744
745         packet->numpkt++;
746         ret = check_max_packet(packet, thread);
747
748         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
749                                      packet->rcd->rhf_offset;
750         packet->rhf = rhf_to_cpu(packet->rhf_addr);
751
752         return ret;
753 }
754
755 static void process_rcv_packet_napi(struct hfi1_packet *packet)
756 {
757         packet->etype = rhf_rcv_type(packet->rhf);
758
759         /* total length */
760         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
761         /* retrieve eager buffer details */
762         packet->etail = rhf_egr_index(packet->rhf);
763         packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
764                                   &packet->updegr);
765         /*
766          * Prefetch the contents of the eager buffer.  It is
767          * OK to send a negative length to prefetch_range().
768          * The +2 is the size of the RHF.
769          */
770         prefetch_range(packet->ebuf,
771                        packet->tlen - ((packet->rcd->rcvhdrqentsize -
772                                        (rhf_hdrq_offset(packet->rhf)
773                                         + 2)) * 4));
774
775         packet->rcd->rhf_rcv_function_map[packet->etype](packet);
776         packet->numpkt++;
777
778         /* Set up for the next packet */
779         packet->rhqoff += packet->rsize;
780         if (packet->rhqoff >= packet->maxcnt)
781                 packet->rhqoff = 0;
782
783         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
784                                       packet->rcd->rhf_offset;
785         packet->rhf = rhf_to_cpu(packet->rhf_addr);
786 }
787
788 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
789 {
790         int ret;
791
792         packet->etype = rhf_rcv_type(packet->rhf);
793
794         /* total length */
795         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
796         /* retrieve eager buffer details */
797         packet->ebuf = NULL;
798         if (rhf_use_egr_bfr(packet->rhf)) {
799                 packet->etail = rhf_egr_index(packet->rhf);
800                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
801                                  &packet->updegr);
802                 /*
803                  * Prefetch the contents of the eager buffer.  It is
804                  * OK to send a negative length to prefetch_range().
805                  * The +2 is the size of the RHF.
806                  */
807                 prefetch_range(packet->ebuf,
808                                packet->tlen - ((get_hdrqentsize(packet->rcd) -
809                                                (rhf_hdrq_offset(packet->rhf)
810                                                 + 2)) * 4));
811         }
812
813         /*
814          * Call a type specific handler for the packet. We
815          * should be able to trust that etype won't be beyond
816          * the range of valid indexes. If so something is really
817          * wrong and we can probably just let things come
818          * crashing down. There is no need to eat another
819          * comparison in this performance critical code.
820          */
821         packet->rcd->rhf_rcv_function_map[packet->etype](packet);
822         packet->numpkt++;
823
824         /* Set up for the next packet */
825         packet->rhqoff += packet->rsize;
826         if (packet->rhqoff >= packet->maxcnt)
827                 packet->rhqoff = 0;
828
829         ret = check_max_packet(packet, thread);
830
831         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
832                                       packet->rcd->rhf_offset;
833         packet->rhf = rhf_to_cpu(packet->rhf_addr);
834
835         return ret;
836 }
837
838 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
839 {
840         /*
841          * Update head regs etc., every 16 packets, if not last pkt,
842          * to help prevent rcvhdrq overflows, when many packets
843          * are processed and queue is nearly full.
844          * Don't request an interrupt for intermediate updates.
845          */
846         if (!last && !(packet->numpkt & 0xf)) {
847                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
848                                packet->etail, 0, 0);
849                 packet->updegr = 0;
850         }
851         packet->grh = NULL;
852 }
853
854 static inline void finish_packet(struct hfi1_packet *packet)
855 {
856         /*
857          * Nothing we need to free for the packet.
858          *
859          * The only thing we need to do is a final update and call for an
860          * interrupt
861          */
862         update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
863                        packet->etail, rcv_intr_dynamic, packet->numpkt);
864 }
865
866 /*
867  * handle_receive_interrupt_napi_fp - receive a packet
868  * @rcd: the context
869  * @budget: polling budget
870  *
871  * Called from interrupt handler for receive interrupt.
872  * This is the fast path interrupt handler
873  * when executing napi soft irq environment.
874  */
875 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
876 {
877         struct hfi1_packet packet;
878
879         init_packet(rcd, &packet);
880         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
881                 goto bail;
882
883         while (packet.numpkt < budget) {
884                 process_rcv_packet_napi(&packet);
885                 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
886                         break;
887
888                 process_rcv_update(0, &packet);
889         }
890         hfi1_set_rcd_head(rcd, packet.rhqoff);
891 bail:
892         finish_packet(&packet);
893         return packet.numpkt;
894 }
895
896 /*
897  * Handle receive interrupts when using the no dma rtail option.
898  */
899 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
900 {
901         int last = RCV_PKT_OK;
902         struct hfi1_packet packet;
903
904         init_packet(rcd, &packet);
905         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
906                 last = RCV_PKT_DONE;
907                 goto bail;
908         }
909
910         prescan_rxq(rcd, &packet);
911
912         while (last == RCV_PKT_OK) {
913                 last = process_rcv_packet(&packet, thread);
914                 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
915                         last = RCV_PKT_DONE;
916                 process_rcv_update(last, &packet);
917         }
918         process_rcv_qp_work(&packet);
919         hfi1_set_rcd_head(rcd, packet.rhqoff);
920 bail:
921         finish_packet(&packet);
922         return last;
923 }
924
925 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
926 {
927         u32 hdrqtail;
928         int last = RCV_PKT_OK;
929         struct hfi1_packet packet;
930
931         init_packet(rcd, &packet);
932         hdrqtail = get_rcvhdrtail(rcd);
933         if (packet.rhqoff == hdrqtail) {
934                 last = RCV_PKT_DONE;
935                 goto bail;
936         }
937         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
938
939         prescan_rxq(rcd, &packet);
940
941         while (last == RCV_PKT_OK) {
942                 last = process_rcv_packet(&packet, thread);
943                 if (packet.rhqoff == hdrqtail)
944                         last = RCV_PKT_DONE;
945                 process_rcv_update(last, &packet);
946         }
947         process_rcv_qp_work(&packet);
948         hfi1_set_rcd_head(rcd, packet.rhqoff);
949 bail:
950         finish_packet(&packet);
951         return last;
952 }
953
954 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
955 {
956         u16 i;
957
958         /*
959          * For dynamically allocated kernel contexts (like vnic) switch
960          * interrupt handler only for that context. Otherwise, switch
961          * interrupt handler for all statically allocated kernel contexts.
962          */
963         if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
964                 hfi1_rcd_get(rcd);
965                 hfi1_set_fast(rcd);
966                 hfi1_rcd_put(rcd);
967                 return;
968         }
969
970         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
971                 rcd = hfi1_rcd_get_by_index(dd, i);
972                 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
973                         hfi1_set_fast(rcd);
974                 hfi1_rcd_put(rcd);
975         }
976 }
977
978 void set_all_slowpath(struct hfi1_devdata *dd)
979 {
980         struct hfi1_ctxtdata *rcd;
981         u16 i;
982
983         /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
984         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
985                 rcd = hfi1_rcd_get_by_index(dd, i);
986                 if (!rcd)
987                         continue;
988                 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
989                         rcd->do_interrupt = rcd->slow_handler;
990
991                 hfi1_rcd_put(rcd);
992         }
993 }
994
995 static bool __set_armed_to_active(struct hfi1_packet *packet)
996 {
997         u8 etype = rhf_rcv_type(packet->rhf);
998         u8 sc = SC15_PACKET;
999
1000         if (etype == RHF_RCV_TYPE_IB) {
1001                 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
1002                                                            packet->rhf_addr);
1003                 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1004         } else if (etype == RHF_RCV_TYPE_BYPASS) {
1005                 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
1006                                                 packet->rcd,
1007                                                 packet->rhf_addr);
1008                 sc = hfi1_16B_get_sc(hdr);
1009         }
1010         if (sc != SC15_PACKET) {
1011                 int hwstate = driver_lstate(packet->rcd->ppd);
1012                 struct work_struct *lsaw =
1013                                 &packet->rcd->ppd->linkstate_active_work;
1014
1015                 if (hwstate != IB_PORT_ACTIVE) {
1016                         dd_dev_info(packet->rcd->dd,
1017                                     "Unexpected link state %s\n",
1018                                     opa_lstate_name(hwstate));
1019                         return false;
1020                 }
1021
1022                 queue_work(packet->rcd->ppd->link_wq, lsaw);
1023                 return true;
1024         }
1025         return false;
1026 }
1027
1028 /**
1029  * set_armed_to_active  - the fast path for armed to active
1030  * @packet: the packet structure
1031  *
1032  * Return true if packet processing needs to bail.
1033  */
1034 static bool set_armed_to_active(struct hfi1_packet *packet)
1035 {
1036         if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
1037                 return false;
1038         return __set_armed_to_active(packet);
1039 }
1040
1041 /*
1042  * handle_receive_interrupt - receive a packet
1043  * @rcd: the context
1044  *
1045  * Called from interrupt handler for errors or receive interrupt.
1046  * This is the slow path interrupt handler.
1047  */
1048 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1049 {
1050         struct hfi1_devdata *dd = rcd->dd;
1051         u32 hdrqtail;
1052         int needset, last = RCV_PKT_OK;
1053         struct hfi1_packet packet;
1054         int skip_pkt = 0;
1055
1056         /* Control context will always use the slow path interrupt handler */
1057         needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1058
1059         init_packet(rcd, &packet);
1060
1061         if (!get_dma_rtail_setting(rcd)) {
1062                 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1063                         last = RCV_PKT_DONE;
1064                         goto bail;
1065                 }
1066                 hdrqtail = 0;
1067         } else {
1068                 hdrqtail = get_rcvhdrtail(rcd);
1069                 if (packet.rhqoff == hdrqtail) {
1070                         last = RCV_PKT_DONE;
1071                         goto bail;
1072                 }
1073                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1074
1075                 /*
1076                  * Control context can potentially receive an invalid
1077                  * rhf. Drop such packets.
1078                  */
1079                 if (rcd->ctxt == HFI1_CTRL_CTXT)
1080                         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1081                                 skip_pkt = 1;
1082         }
1083
1084         prescan_rxq(rcd, &packet);
1085
1086         while (last == RCV_PKT_OK) {
1087                 if (hfi1_need_drop(dd)) {
1088                         /* On to the next packet */
1089                         packet.rhqoff += packet.rsize;
1090                         packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1091                                           packet.rhqoff +
1092                                           rcd->rhf_offset;
1093                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
1094
1095                 } else if (skip_pkt) {
1096                         last = skip_rcv_packet(&packet, thread);
1097                         skip_pkt = 0;
1098                 } else {
1099                         if (set_armed_to_active(&packet))
1100                                 goto bail;
1101                         last = process_rcv_packet(&packet, thread);
1102                 }
1103
1104                 if (!get_dma_rtail_setting(rcd)) {
1105                         if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1106                                 last = RCV_PKT_DONE;
1107                 } else {
1108                         if (packet.rhqoff == hdrqtail)
1109                                 last = RCV_PKT_DONE;
1110                         /*
1111                          * Control context can potentially receive an invalid
1112                          * rhf. Drop such packets.
1113                          */
1114                         if (rcd->ctxt == HFI1_CTRL_CTXT) {
1115                                 bool lseq;
1116
1117                                 lseq = hfi1_seq_incr(rcd,
1118                                                      rhf_rcv_seq(packet.rhf));
1119                                 if (!last && lseq)
1120                                         skip_pkt = 1;
1121                         }
1122                 }
1123
1124                 if (needset) {
1125                         needset = false;
1126                         set_all_fastpath(dd, rcd);
1127                 }
1128                 process_rcv_update(last, &packet);
1129         }
1130
1131         process_rcv_qp_work(&packet);
1132         hfi1_set_rcd_head(rcd, packet.rhqoff);
1133
1134 bail:
1135         /*
1136          * Always write head at end, and setup rcv interrupt, even
1137          * if no packets were processed.
1138          */
1139         finish_packet(&packet);
1140         return last;
1141 }
1142
1143 /*
1144  * handle_receive_interrupt_napi_sp - receive a packet
1145  * @rcd: the context
1146  * @budget: polling budget
1147  *
1148  * Called from interrupt handler for errors or receive interrupt.
1149  * This is the slow path interrupt handler
1150  * when executing napi soft irq environment.
1151  */
1152 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1153 {
1154         struct hfi1_devdata *dd = rcd->dd;
1155         int last = RCV_PKT_OK;
1156         bool needset = true;
1157         struct hfi1_packet packet;
1158
1159         init_packet(rcd, &packet);
1160         if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1161                 goto bail;
1162
1163         while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1164                 if (hfi1_need_drop(dd)) {
1165                         /* On to the next packet */
1166                         packet.rhqoff += packet.rsize;
1167                         packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1168                                           packet.rhqoff +
1169                                           rcd->rhf_offset;
1170                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
1171
1172                 } else {
1173                         if (set_armed_to_active(&packet))
1174                                 goto bail;
1175                         process_rcv_packet_napi(&packet);
1176                 }
1177
1178                 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1179                         last = RCV_PKT_DONE;
1180
1181                 if (needset) {
1182                         needset = false;
1183                         set_all_fastpath(dd, rcd);
1184                 }
1185
1186                 process_rcv_update(last, &packet);
1187         }
1188
1189         hfi1_set_rcd_head(rcd, packet.rhqoff);
1190
1191 bail:
1192         /*
1193          * Always write head at end, and setup rcv interrupt, even
1194          * if no packets were processed.
1195          */
1196         finish_packet(&packet);
1197         return packet.numpkt;
1198 }
1199
1200 /*
1201  * We may discover in the interrupt that the hardware link state has
1202  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1203  * and we need to update the driver's notion of the link state.  We cannot
1204  * run set_link_state from interrupt context, so we queue this function on
1205  * a workqueue.
1206  *
1207  * We delay the regular interrupt processing until after the state changes
1208  * so that the link will be in the correct state by the time any application
1209  * we wake up attempts to send a reply to any message it received.
1210  * (Subsequent receive interrupts may possibly force the wakeup before we
1211  * update the link state.)
1212  *
1213  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1214  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1215  * so we're safe from use-after-free of the rcd.
1216  */
1217 void receive_interrupt_work(struct work_struct *work)
1218 {
1219         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1220                                                   linkstate_active_work);
1221         struct hfi1_devdata *dd = ppd->dd;
1222         struct hfi1_ctxtdata *rcd;
1223         u16 i;
1224
1225         /* Received non-SC15 packet implies neighbor_normal */
1226         ppd->neighbor_normal = 1;
1227         set_link_state(ppd, HLS_UP_ACTIVE);
1228
1229         /*
1230          * Interrupt all statically allocated kernel contexts that could
1231          * have had an interrupt during auto activation.
1232          */
1233         for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1234                 rcd = hfi1_rcd_get_by_index(dd, i);
1235                 if (rcd)
1236                         force_recv_intr(rcd);
1237                 hfi1_rcd_put(rcd);
1238         }
1239 }
1240
1241 /*
1242  * Convert a given MTU size to the on-wire MAD packet enumeration.
1243  * Return -1 if the size is invalid.
1244  */
1245 int mtu_to_enum(u32 mtu, int default_if_bad)
1246 {
1247         switch (mtu) {
1248         case     0: return OPA_MTU_0;
1249         case   256: return OPA_MTU_256;
1250         case   512: return OPA_MTU_512;
1251         case  1024: return OPA_MTU_1024;
1252         case  2048: return OPA_MTU_2048;
1253         case  4096: return OPA_MTU_4096;
1254         case  8192: return OPA_MTU_8192;
1255         case 10240: return OPA_MTU_10240;
1256         }
1257         return default_if_bad;
1258 }
1259
1260 u16 enum_to_mtu(int mtu)
1261 {
1262         switch (mtu) {
1263         case OPA_MTU_0:     return 0;
1264         case OPA_MTU_256:   return 256;
1265         case OPA_MTU_512:   return 512;
1266         case OPA_MTU_1024:  return 1024;
1267         case OPA_MTU_2048:  return 2048;
1268         case OPA_MTU_4096:  return 4096;
1269         case OPA_MTU_8192:  return 8192;
1270         case OPA_MTU_10240: return 10240;
1271         default: return 0xffff;
1272         }
1273 }
1274
1275 /*
1276  * set_mtu - set the MTU
1277  * @ppd: the per port data
1278  *
1279  * We can handle "any" incoming size, the issue here is whether we
1280  * need to restrict our outgoing size.  We do not deal with what happens
1281  * to programs that are already running when the size changes.
1282  */
1283 int set_mtu(struct hfi1_pportdata *ppd)
1284 {
1285         struct hfi1_devdata *dd = ppd->dd;
1286         int i, drain, ret = 0, is_up = 0;
1287
1288         ppd->ibmtu = 0;
1289         for (i = 0; i < ppd->vls_supported; i++)
1290                 if (ppd->ibmtu < dd->vld[i].mtu)
1291                         ppd->ibmtu = dd->vld[i].mtu;
1292         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1293
1294         mutex_lock(&ppd->hls_lock);
1295         if (ppd->host_link_state == HLS_UP_INIT ||
1296             ppd->host_link_state == HLS_UP_ARMED ||
1297             ppd->host_link_state == HLS_UP_ACTIVE)
1298                 is_up = 1;
1299
1300         drain = !is_ax(dd) && is_up;
1301
1302         if (drain)
1303                 /*
1304                  * MTU is specified per-VL. To ensure that no packet gets
1305                  * stuck (due, e.g., to the MTU for the packet's VL being
1306                  * reduced), empty the per-VL FIFOs before adjusting MTU.
1307                  */
1308                 ret = stop_drain_data_vls(dd);
1309
1310         if (ret) {
1311                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1312                            __func__);
1313                 goto err;
1314         }
1315
1316         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1317
1318         if (drain)
1319                 open_fill_data_vls(dd); /* reopen all VLs */
1320
1321 err:
1322         mutex_unlock(&ppd->hls_lock);
1323
1324         return ret;
1325 }
1326
1327 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1328 {
1329         struct hfi1_devdata *dd = ppd->dd;
1330
1331         ppd->lid = lid;
1332         ppd->lmc = lmc;
1333         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1334
1335         dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1336
1337         return 0;
1338 }
1339
1340 void shutdown_led_override(struct hfi1_pportdata *ppd)
1341 {
1342         struct hfi1_devdata *dd = ppd->dd;
1343
1344         /*
1345          * This pairs with the memory barrier in hfi1_start_led_override to
1346          * ensure that we read the correct state of LED beaconing represented
1347          * by led_override_timer_active
1348          */
1349         smp_rmb();
1350         if (atomic_read(&ppd->led_override_timer_active)) {
1351                 del_timer_sync(&ppd->led_override_timer);
1352                 atomic_set(&ppd->led_override_timer_active, 0);
1353                 /* Ensure the atomic_set is visible to all CPUs */
1354                 smp_wmb();
1355         }
1356
1357         /* Hand control of the LED to the DC for normal operation */
1358         write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1359 }
1360
1361 static void run_led_override(struct timer_list *t)
1362 {
1363         struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1364         struct hfi1_devdata *dd = ppd->dd;
1365         unsigned long timeout;
1366         int phase_idx;
1367
1368         if (!(dd->flags & HFI1_INITTED))
1369                 return;
1370
1371         phase_idx = ppd->led_override_phase & 1;
1372
1373         setextled(dd, phase_idx);
1374
1375         timeout = ppd->led_override_vals[phase_idx];
1376
1377         /* Set up for next phase */
1378         ppd->led_override_phase = !ppd->led_override_phase;
1379
1380         mod_timer(&ppd->led_override_timer, jiffies + timeout);
1381 }
1382
1383 /*
1384  * To have the LED blink in a particular pattern, provide timeon and timeoff
1385  * in milliseconds.
1386  * To turn off custom blinking and return to normal operation, use
1387  * shutdown_led_override()
1388  */
1389 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1390                              unsigned int timeoff)
1391 {
1392         if (!(ppd->dd->flags & HFI1_INITTED))
1393                 return;
1394
1395         /* Convert to jiffies for direct use in timer */
1396         ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1397         ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1398
1399         /* Arbitrarily start from LED on phase */
1400         ppd->led_override_phase = 1;
1401
1402         /*
1403          * If the timer has not already been started, do so. Use a "quick"
1404          * timeout so the handler will be called soon to look at our request.
1405          */
1406         if (!timer_pending(&ppd->led_override_timer)) {
1407                 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1408                 ppd->led_override_timer.expires = jiffies + 1;
1409                 add_timer(&ppd->led_override_timer);
1410                 atomic_set(&ppd->led_override_timer_active, 1);
1411                 /* Ensure the atomic_set is visible to all CPUs */
1412                 smp_wmb();
1413         }
1414 }
1415
1416 /**
1417  * hfi1_reset_device - reset the chip if possible
1418  * @unit: the device to reset
1419  *
1420  * Whether or not reset is successful, we attempt to re-initialize the chip
1421  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1422  * so that the various entry points will fail until we reinitialize.  For
1423  * now, we only allow this if no user contexts are open that use chip resources
1424  */
1425 int hfi1_reset_device(int unit)
1426 {
1427         int ret;
1428         struct hfi1_devdata *dd = hfi1_lookup(unit);
1429         struct hfi1_pportdata *ppd;
1430         int pidx;
1431
1432         if (!dd) {
1433                 ret = -ENODEV;
1434                 goto bail;
1435         }
1436
1437         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1438
1439         if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1440                 dd_dev_info(dd,
1441                             "Invalid unit number %u or not initialized or not present\n",
1442                             unit);
1443                 ret = -ENXIO;
1444                 goto bail;
1445         }
1446
1447         /* If there are any user/vnic contexts, we cannot reset */
1448         mutex_lock(&hfi1_mutex);
1449         if (dd->rcd)
1450                 if (hfi1_stats.sps_ctxts) {
1451                         mutex_unlock(&hfi1_mutex);
1452                         ret = -EBUSY;
1453                         goto bail;
1454                 }
1455         mutex_unlock(&hfi1_mutex);
1456
1457         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1458                 ppd = dd->pport + pidx;
1459
1460                 shutdown_led_override(ppd);
1461         }
1462         if (dd->flags & HFI1_HAS_SEND_DMA)
1463                 sdma_exit(dd);
1464
1465         hfi1_reset_cpu_counters(dd);
1466
1467         ret = hfi1_init(dd, 1);
1468
1469         if (ret)
1470                 dd_dev_err(dd,
1471                            "Reinitialize unit %u after reset failed with %d\n",
1472                            unit, ret);
1473         else
1474                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1475                             unit);
1476
1477 bail:
1478         return ret;
1479 }
1480
1481 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1482 {
1483         packet->hdr = (struct hfi1_ib_message_header *)
1484                         hfi1_get_msgheader(packet->rcd,
1485                                            packet->rhf_addr);
1486         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1487 }
1488
1489 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1490 {
1491         struct hfi1_pportdata *ppd = packet->rcd->ppd;
1492
1493         /* slid and dlid cannot be 0 */
1494         if ((!packet->slid) || (!packet->dlid))
1495                 return -EINVAL;
1496
1497         /* Compare port lid with incoming packet dlid */
1498         if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1499             (packet->dlid !=
1500                 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1501                 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1502                         return -EINVAL;
1503         }
1504
1505         /* No multicast packets with SC15 */
1506         if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1507                 return -EINVAL;
1508
1509         /* Packets with permissive DLID always on SC15 */
1510         if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1511                                          16B)) &&
1512             (packet->sc != 0xF))
1513                 return -EINVAL;
1514
1515         return 0;
1516 }
1517
1518 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1519 {
1520         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1521         struct ib_header *hdr;
1522         u8 lnh;
1523
1524         hfi1_setup_ib_header(packet);
1525         hdr = packet->hdr;
1526
1527         lnh = ib_get_lnh(hdr);
1528         if (lnh == HFI1_LRH_BTH) {
1529                 packet->ohdr = &hdr->u.oth;
1530                 packet->grh = NULL;
1531         } else if (lnh == HFI1_LRH_GRH) {
1532                 u32 vtf;
1533
1534                 packet->ohdr = &hdr->u.l.oth;
1535                 packet->grh = &hdr->u.l.grh;
1536                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1537                         goto drop;
1538                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1539                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1540                         goto drop;
1541         } else {
1542                 goto drop;
1543         }
1544
1545         /* Query commonly used fields from packet header */
1546         packet->payload = packet->ebuf;
1547         packet->opcode = ib_bth_get_opcode(packet->ohdr);
1548         packet->slid = ib_get_slid(hdr);
1549         packet->dlid = ib_get_dlid(hdr);
1550         if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1551                      (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1552                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1553                                 be16_to_cpu(IB_MULTICAST_LID_BASE);
1554         packet->sl = ib_get_sl(hdr);
1555         packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1556         packet->pad = ib_bth_get_pad(packet->ohdr);
1557         packet->extra_byte = 0;
1558         packet->pkey = ib_bth_get_pkey(packet->ohdr);
1559         packet->migrated = ib_bth_is_migration(packet->ohdr);
1560
1561         return 0;
1562 drop:
1563         ibp->rvp.n_pkt_drops++;
1564         return -EINVAL;
1565 }
1566
1567 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1568 {
1569         /*
1570          * Bypass packets have a different header/payload split
1571          * compared to an IB packet.
1572          * Current split is set such that 16 bytes of the actual
1573          * header is in the header buffer and the remining is in
1574          * the eager buffer. We chose 16 since hfi1 driver only
1575          * supports 16B bypass packets and we will be able to
1576          * receive the entire LRH with such a split.
1577          */
1578
1579         struct hfi1_ctxtdata *rcd = packet->rcd;
1580         struct hfi1_pportdata *ppd = rcd->ppd;
1581         struct hfi1_ibport *ibp = &ppd->ibport_data;
1582         u8 l4;
1583
1584         packet->hdr = (struct hfi1_16b_header *)
1585                         hfi1_get_16B_header(packet->rcd,
1586                                             packet->rhf_addr);
1587         l4 = hfi1_16B_get_l4(packet->hdr);
1588         if (l4 == OPA_16B_L4_IB_LOCAL) {
1589                 packet->ohdr = packet->ebuf;
1590                 packet->grh = NULL;
1591                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1592                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1593                 /* hdr_len_by_opcode already has an IB LRH factored in */
1594                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1595                         (LRH_16B_BYTES - LRH_9B_BYTES);
1596                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1597         } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1598                 u32 vtf;
1599                 u8 grh_len = sizeof(struct ib_grh);
1600
1601                 packet->ohdr = packet->ebuf + grh_len;
1602                 packet->grh = packet->ebuf;
1603                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1604                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1605                 /* hdr_len_by_opcode already has an IB LRH factored in */
1606                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1607                         (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1608                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1609
1610                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1611                         goto drop;
1612                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1613                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1614                         goto drop;
1615         } else if (l4 == OPA_16B_L4_FM) {
1616                 packet->mgmt = packet->ebuf;
1617                 packet->ohdr = NULL;
1618                 packet->grh = NULL;
1619                 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1620                 packet->pad = OPA_16B_L4_FM_PAD;
1621                 packet->hlen = OPA_16B_L4_FM_HLEN;
1622                 packet->migrated = false;
1623         } else {
1624                 goto drop;
1625         }
1626
1627         /* Query commonly used fields from packet header */
1628         packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1629         packet->slid = hfi1_16B_get_slid(packet->hdr);
1630         packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1631         if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1632                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1633                                 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1634                                             16B);
1635         packet->sc = hfi1_16B_get_sc(packet->hdr);
1636         packet->sl = ibp->sc_to_sl[packet->sc];
1637         packet->extra_byte = SIZE_OF_LT;
1638         packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1639
1640         if (hfi1_bypass_ingress_pkt_check(packet))
1641                 goto drop;
1642
1643         return 0;
1644 drop:
1645         hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1646         ibp->rvp.n_pkt_drops++;
1647         return -EINVAL;
1648 }
1649
1650 static void show_eflags_errs(struct hfi1_packet *packet)
1651 {
1652         struct hfi1_ctxtdata *rcd = packet->rcd;
1653         u32 rte = rhf_rcv_type_err(packet->rhf);
1654
1655         dd_dev_err(rcd->dd,
1656                    "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1657                    rcd->ctxt, packet->rhf,
1658                    packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1659                    packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1660                    packet->rhf & RHF_DC_ERR ? "dc " : "",
1661                    packet->rhf & RHF_TID_ERR ? "tid " : "",
1662                    packet->rhf & RHF_LEN_ERR ? "len " : "",
1663                    packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1664                    packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1665                    rte);
1666 }
1667
1668 void handle_eflags(struct hfi1_packet *packet)
1669 {
1670         struct hfi1_ctxtdata *rcd = packet->rcd;
1671
1672         rcv_hdrerr(rcd, rcd->ppd, packet);
1673         if (rhf_err_flags(packet->rhf))
1674                 show_eflags_errs(packet);
1675 }
1676
1677 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1678 {
1679         struct hfi1_ibport *ibp;
1680         struct net_device *netdev;
1681         struct hfi1_ctxtdata *rcd = packet->rcd;
1682         struct napi_struct *napi = rcd->napi;
1683         struct sk_buff *skb;
1684         struct hfi1_netdev_rxq *rxq = container_of(napi,
1685                         struct hfi1_netdev_rxq, napi);
1686         u32 extra_bytes;
1687         u32 tlen, qpnum;
1688         bool do_work, do_cnp;
1689
1690         trace_hfi1_rcvhdr(packet);
1691
1692         hfi1_setup_ib_header(packet);
1693
1694         packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1695         packet->grh = NULL;
1696
1697         if (unlikely(rhf_err_flags(packet->rhf))) {
1698                 handle_eflags(packet);
1699                 return;
1700         }
1701
1702         qpnum = ib_bth_get_qpn(packet->ohdr);
1703         netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1704         if (!netdev)
1705                 goto drop_no_nd;
1706
1707         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1708         trace_ctxt_rsm_hist(rcd->ctxt);
1709
1710         /* handle congestion notifications */
1711         do_work = hfi1_may_ecn(packet);
1712         if (unlikely(do_work)) {
1713                 do_cnp = (packet->opcode != IB_OPCODE_CNP);
1714                 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1715                                                  packet, do_cnp);
1716         }
1717
1718         /*
1719          * We have split point after last byte of DETH
1720          * lets strip padding and CRC and ICRC.
1721          * tlen is whole packet len so we need to
1722          * subtract header size as well.
1723          */
1724         tlen = packet->tlen;
1725         extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1726                         packet->hlen;
1727         if (unlikely(tlen < extra_bytes))
1728                 goto drop;
1729
1730         tlen -= extra_bytes;
1731
1732         skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1733         if (unlikely(!skb))
1734                 goto drop;
1735
1736         dev_sw_netstats_rx_add(netdev, skb->len);
1737
1738         skb->dev = netdev;
1739         skb->pkt_type = PACKET_HOST;
1740         netif_receive_skb(skb);
1741
1742         return;
1743
1744 drop:
1745         ++netdev->stats.rx_dropped;
1746 drop_no_nd:
1747         ibp = rcd_to_iport(packet->rcd);
1748         ++ibp->rvp.n_pkt_drops;
1749 }
1750
1751 /*
1752  * The following functions are called by the interrupt handler. They are type
1753  * specific handlers for each packet type.
1754  */
1755 static void process_receive_ib(struct hfi1_packet *packet)
1756 {
1757         if (hfi1_setup_9B_packet(packet))
1758                 return;
1759
1760         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1761                 return;
1762
1763         trace_hfi1_rcvhdr(packet);
1764
1765         if (unlikely(rhf_err_flags(packet->rhf))) {
1766                 handle_eflags(packet);
1767                 return;
1768         }
1769
1770         hfi1_ib_rcv(packet);
1771 }
1772
1773 static void process_receive_bypass(struct hfi1_packet *packet)
1774 {
1775         struct hfi1_devdata *dd = packet->rcd->dd;
1776
1777         if (hfi1_setup_bypass_packet(packet))
1778                 return;
1779
1780         trace_hfi1_rcvhdr(packet);
1781
1782         if (unlikely(rhf_err_flags(packet->rhf))) {
1783                 handle_eflags(packet);
1784                 return;
1785         }
1786
1787         if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1788                 hfi1_16B_rcv(packet);
1789         } else {
1790                 dd_dev_err(dd,
1791                            "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1792                 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1793                 if (!(dd->err_info_rcvport.status_and_code &
1794                       OPA_EI_STATUS_SMASK)) {
1795                         u64 *flits = packet->ebuf;
1796
1797                         if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1798                                 dd->err_info_rcvport.packet_flit1 = flits[0];
1799                                 dd->err_info_rcvport.packet_flit2 =
1800                                         packet->tlen > sizeof(flits[0]) ?
1801                                         flits[1] : 0;
1802                         }
1803                         dd->err_info_rcvport.status_and_code |=
1804                                 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1805                 }
1806         }
1807 }
1808
1809 static void process_receive_error(struct hfi1_packet *packet)
1810 {
1811         /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1812         if (unlikely(
1813                  hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1814                  (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1815                   packet->rhf & RHF_DC_ERR)))
1816                 return;
1817
1818         hfi1_setup_ib_header(packet);
1819         handle_eflags(packet);
1820
1821         if (unlikely(rhf_err_flags(packet->rhf)))
1822                 dd_dev_err(packet->rcd->dd,
1823                            "Unhandled error packet received. Dropping.\n");
1824 }
1825
1826 static void kdeth_process_expected(struct hfi1_packet *packet)
1827 {
1828         hfi1_setup_9B_packet(packet);
1829         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1830                 return;
1831
1832         if (unlikely(rhf_err_flags(packet->rhf))) {
1833                 struct hfi1_ctxtdata *rcd = packet->rcd;
1834
1835                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1836                         return;
1837         }
1838
1839         hfi1_kdeth_expected_rcv(packet);
1840 }
1841
1842 static void kdeth_process_eager(struct hfi1_packet *packet)
1843 {
1844         hfi1_setup_9B_packet(packet);
1845         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1846                 return;
1847
1848         trace_hfi1_rcvhdr(packet);
1849         if (unlikely(rhf_err_flags(packet->rhf))) {
1850                 struct hfi1_ctxtdata *rcd = packet->rcd;
1851
1852                 show_eflags_errs(packet);
1853                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1854                         return;
1855         }
1856
1857         hfi1_kdeth_eager_rcv(packet);
1858 }
1859
1860 static void process_receive_invalid(struct hfi1_packet *packet)
1861 {
1862         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1863                    rhf_rcv_type(packet->rhf));
1864 }
1865
1866 #define HFI1_RCVHDR_DUMP_MAX    5
1867
1868 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1869 {
1870         struct hfi1_packet packet;
1871         struct ps_mdata mdata;
1872         int i;
1873
1874         seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1875                    rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1876                    get_dma_rtail_setting(rcd) ?
1877                    "dma_rtail" : "nodma_rtail",
1878                    read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1879                    read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1880                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1881                    RCV_HDR_HEAD_HEAD_MASK,
1882                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1883                    rcd->head);
1884
1885         init_packet(rcd, &packet);
1886         init_ps_mdata(&mdata, &packet);
1887
1888         for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1889                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1890                                          rcd->rhf_offset;
1891                 struct ib_header *hdr;
1892                 u64 rhf = rhf_to_cpu(rhf_addr);
1893                 u32 etype = rhf_rcv_type(rhf), qpn;
1894                 u8 opcode;
1895                 u32 psn;
1896                 u8 lnh;
1897
1898                 if (ps_done(&mdata, rhf, rcd))
1899                         break;
1900
1901                 if (ps_skip(&mdata, rhf, rcd))
1902                         goto next;
1903
1904                 if (etype > RHF_RCV_TYPE_IB)
1905                         goto next;
1906
1907                 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1908                 hdr = packet.hdr;
1909
1910                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1911
1912                 if (lnh == HFI1_LRH_BTH)
1913                         packet.ohdr = &hdr->u.oth;
1914                 else if (lnh == HFI1_LRH_GRH)
1915                         packet.ohdr = &hdr->u.l.oth;
1916                 else
1917                         goto next; /* just in case */
1918
1919                 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1920                 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1921                 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1922
1923                 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1924                            mdata.ps_head, opcode, qpn, psn);
1925 next:
1926                 update_ps_mdata(&mdata, rcd);
1927         }
1928 }
1929
1930 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1931         [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1932         [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1933         [RHF_RCV_TYPE_IB] = process_receive_ib,
1934         [RHF_RCV_TYPE_ERROR] = process_receive_error,
1935         [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1936         [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1937         [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1938         [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1939 };
1940
1941 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1942         [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1943         [RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1944         [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1945         [RHF_RCV_TYPE_ERROR] = process_receive_error,
1946         [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1947         [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1948         [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1949         [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1950 };