Merge tag 'docs-5.2a' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / driver.c
1 /*
2  * Copyright(c) 2015-2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 /*
70  * The size has to be longer than this string, so we can append
71  * board/chip information to it in the initialization code.
72  */
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74
75 DEFINE_MUTEX(hfi1_mutex);       /* general driver use */
76
77 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
78 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
80                  HFI1_DEFAULT_MAX_MTU));
81
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
88 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
89 static const struct kernel_param_ops cap_ops = {
90         .set = hfi1_caps_set,
91         .get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98
99 /*
100  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
101  */
102 #define MAX_PKT_RECV 64
103 /*
104  * MAX_PKT_THREAD_RCV is the max # of packets processed before
105  * the qp_wait_list queue is flushed.
106  */
107 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
108 #define EGR_HEAD_UPDATE_THRESHOLD 16
109
110 struct hfi1_ib_stats hfi1_stats;
111
112 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
113 {
114         int ret = 0;
115         unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
116                 cap_mask = *cap_mask_ptr, value, diff,
117                 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
118                               HFI1_CAP_WRITABLE_MASK);
119
120         ret = kstrtoul(val, 0, &value);
121         if (ret) {
122                 pr_warn("Invalid module parameter value for 'cap_mask'\n");
123                 goto done;
124         }
125         /* Get the changed bits (except the locked bit) */
126         diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
127
128         /* Remove any bits that are not allowed to change after driver load */
129         if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
130                 pr_warn("Ignoring non-writable capability bits %#lx\n",
131                         diff & ~write_mask);
132                 diff &= write_mask;
133         }
134
135         /* Mask off any reserved bits */
136         diff &= ~HFI1_CAP_RESERVED_MASK;
137         /* Clear any previously set and changing bits */
138         cap_mask &= ~diff;
139         /* Update the bits with the new capability */
140         cap_mask |= (value & diff);
141         /* Check for any kernel/user restrictions */
142         diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
143                 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
144         cap_mask &= ~diff;
145         /* Set the bitmask to the final set */
146         *cap_mask_ptr = cap_mask;
147 done:
148         return ret;
149 }
150
151 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
152 {
153         unsigned long cap_mask = *(unsigned long *)kp->arg;
154
155         cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
156         cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
157
158         return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
159 }
160
161 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
162 {
163         struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
164         struct hfi1_devdata *dd = container_of(ibdev,
165                                                struct hfi1_devdata, verbs_dev);
166         return dd->pcidev;
167 }
168
169 /*
170  * Return count of units with at least one port ACTIVE.
171  */
172 int hfi1_count_active_units(void)
173 {
174         struct hfi1_devdata *dd;
175         struct hfi1_pportdata *ppd;
176         unsigned long index, flags;
177         int pidx, nunits_active = 0;
178
179         xa_lock_irqsave(&hfi1_dev_table, flags);
180         xa_for_each(&hfi1_dev_table, index, dd) {
181                 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
182                         continue;
183                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
184                         ppd = dd->pport + pidx;
185                         if (ppd->lid && ppd->linkup) {
186                                 nunits_active++;
187                                 break;
188                         }
189                 }
190         }
191         xa_unlock_irqrestore(&hfi1_dev_table, flags);
192         return nunits_active;
193 }
194
195 /*
196  * Get address of eager buffer from it's index (allocated in chunks, not
197  * contiguous).
198  */
199 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
200                                u8 *update)
201 {
202         u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
203
204         *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
205         return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
206                         (offset * RCV_BUF_BLOCK_SIZE));
207 }
208
209 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
210                                     __le32 *rhf_addr)
211 {
212         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
213
214         return (void *)(rhf_addr - rcd->rhf_offset + offset);
215 }
216
217 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
218                                                    __le32 *rhf_addr)
219 {
220         return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
221 }
222
223 static inline struct hfi1_16b_header
224                 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
225                                      __le32 *rhf_addr)
226 {
227         return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
228 }
229
230 /*
231  * Validate and encode the a given RcvArray Buffer size.
232  * The function will check whether the given size falls within
233  * allowed size ranges for the respective type and, optionally,
234  * return the proper encoding.
235  */
236 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
237 {
238         if (unlikely(!PAGE_ALIGNED(size)))
239                 return 0;
240         if (unlikely(size < MIN_EAGER_BUFFER))
241                 return 0;
242         if (size >
243             (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
244                 return 0;
245         if (encoded)
246                 *encoded = ilog2(size / PAGE_SIZE) + 1;
247         return 1;
248 }
249
250 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
251                        struct hfi1_packet *packet)
252 {
253         struct ib_header *rhdr = packet->hdr;
254         u32 rte = rhf_rcv_type_err(packet->rhf);
255         u32 mlid_base;
256         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
257         struct hfi1_devdata *dd = ppd->dd;
258         struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
259         struct rvt_dev_info *rdi = &verbs_dev->rdi;
260
261         if ((packet->rhf & RHF_DC_ERR) &&
262             hfi1_dbg_fault_suppress_err(verbs_dev))
263                 return;
264
265         if (packet->rhf & RHF_ICRC_ERR)
266                 return;
267
268         if (packet->etype == RHF_RCV_TYPE_BYPASS) {
269                 goto drop;
270         } else {
271                 u8 lnh = ib_get_lnh(rhdr);
272
273                 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
274                 if (lnh == HFI1_LRH_BTH) {
275                         packet->ohdr = &rhdr->u.oth;
276                 } else if (lnh == HFI1_LRH_GRH) {
277                         packet->ohdr = &rhdr->u.l.oth;
278                         packet->grh = &rhdr->u.l.grh;
279                 } else {
280                         goto drop;
281                 }
282         }
283
284         if (packet->rhf & RHF_TID_ERR) {
285                 /* For TIDERR and RC QPs preemptively schedule a NAK */
286                 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
287                 u32 dlid = ib_get_dlid(rhdr);
288                 u32 qp_num;
289
290                 /* Sanity check packet */
291                 if (tlen < 24)
292                         goto drop;
293
294                 /* Check for GRH */
295                 if (packet->grh) {
296                         u32 vtf;
297                         struct ib_grh *grh = packet->grh;
298
299                         if (grh->next_hdr != IB_GRH_NEXT_HDR)
300                                 goto drop;
301                         vtf = be32_to_cpu(grh->version_tclass_flow);
302                         if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
303                                 goto drop;
304                 }
305
306                 /* Get the destination QP number. */
307                 qp_num = ib_bth_get_qpn(packet->ohdr);
308                 if (dlid < mlid_base) {
309                         struct rvt_qp *qp;
310                         unsigned long flags;
311
312                         rcu_read_lock();
313                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
314                         if (!qp) {
315                                 rcu_read_unlock();
316                                 goto drop;
317                         }
318
319                         /*
320                          * Handle only RC QPs - for other QP types drop error
321                          * packet.
322                          */
323                         spin_lock_irqsave(&qp->r_lock, flags);
324
325                         /* Check for valid receive state. */
326                         if (!(ib_rvt_state_ops[qp->state] &
327                               RVT_PROCESS_RECV_OK)) {
328                                 ibp->rvp.n_pkt_drops++;
329                         }
330
331                         switch (qp->ibqp.qp_type) {
332                         case IB_QPT_RC:
333                                 hfi1_rc_hdrerr(rcd, packet, qp);
334                                 break;
335                         default:
336                                 /* For now don't handle any other QP types */
337                                 break;
338                         }
339
340                         spin_unlock_irqrestore(&qp->r_lock, flags);
341                         rcu_read_unlock();
342                 } /* Unicast QP */
343         } /* Valid packet with TIDErr */
344
345         /* handle "RcvTypeErr" flags */
346         switch (rte) {
347         case RHF_RTE_ERROR_OP_CODE_ERR:
348         {
349                 void *ebuf = NULL;
350                 u8 opcode;
351
352                 if (rhf_use_egr_bfr(packet->rhf))
353                         ebuf = packet->ebuf;
354
355                 if (!ebuf)
356                         goto drop; /* this should never happen */
357
358                 opcode = ib_bth_get_opcode(packet->ohdr);
359                 if (opcode == IB_OPCODE_CNP) {
360                         /*
361                          * Only in pre-B0 h/w is the CNP_OPCODE handled
362                          * via this code path.
363                          */
364                         struct rvt_qp *qp = NULL;
365                         u32 lqpn, rqpn;
366                         u16 rlid;
367                         u8 svc_type, sl, sc5;
368
369                         sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
370                         sl = ibp->sc_to_sl[sc5];
371
372                         lqpn = ib_bth_get_qpn(packet->ohdr);
373                         rcu_read_lock();
374                         qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
375                         if (!qp) {
376                                 rcu_read_unlock();
377                                 goto drop;
378                         }
379
380                         switch (qp->ibqp.qp_type) {
381                         case IB_QPT_UD:
382                                 rlid = 0;
383                                 rqpn = 0;
384                                 svc_type = IB_CC_SVCTYPE_UD;
385                                 break;
386                         case IB_QPT_UC:
387                                 rlid = ib_get_slid(rhdr);
388                                 rqpn = qp->remote_qpn;
389                                 svc_type = IB_CC_SVCTYPE_UC;
390                                 break;
391                         default:
392                                 rcu_read_unlock();
393                                 goto drop;
394                         }
395
396                         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
397                         rcu_read_unlock();
398                 }
399
400                 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
401                 break;
402         }
403         default:
404                 break;
405         }
406
407 drop:
408         return;
409 }
410
411 static inline void init_packet(struct hfi1_ctxtdata *rcd,
412                                struct hfi1_packet *packet)
413 {
414         packet->rsize = rcd->rcvhdrqentsize; /* words */
415         packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
416         packet->rcd = rcd;
417         packet->updegr = 0;
418         packet->etail = -1;
419         packet->rhf_addr = get_rhf_addr(rcd);
420         packet->rhf = rhf_to_cpu(packet->rhf_addr);
421         packet->rhqoff = rcd->head;
422         packet->numpkt = 0;
423 }
424
425 /* We support only two types - 9B and 16B for now */
426 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
427         [HFI1_PKT_TYPE_9B] = &return_cnp,
428         [HFI1_PKT_TYPE_16B] = &return_cnp_16B
429 };
430
431 /**
432  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
433  * @qp: The packet's destination QP
434  * @pkt: The packet itself.
435  * @prescan: Is the caller the RXQ prescan
436  *
437  * Process the packet's FECN or BECN bits. By now, the packet
438  * has already been evaluated whether processing of those bit should
439  * be done.
440  * The significance of the @prescan argument is that if the caller
441  * is the RXQ prescan, a CNP will be send out instead of waiting for the
442  * normal packet processing to send an ACK with BECN set (or a CNP).
443  */
444 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
445                                bool prescan)
446 {
447         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
448         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
449         struct ib_other_headers *ohdr = pkt->ohdr;
450         struct ib_grh *grh = pkt->grh;
451         u32 rqpn = 0;
452         u16 pkey;
453         u32 rlid, slid, dlid = 0;
454         u8 hdr_type, sc, svc_type, opcode;
455         bool is_mcast = false, ignore_fecn = false, do_cnp = false,
456                 fecn, becn;
457
458         /* can be called from prescan */
459         if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
460                 pkey = hfi1_16B_get_pkey(pkt->hdr);
461                 sc = hfi1_16B_get_sc(pkt->hdr);
462                 dlid = hfi1_16B_get_dlid(pkt->hdr);
463                 slid = hfi1_16B_get_slid(pkt->hdr);
464                 is_mcast = hfi1_is_16B_mcast(dlid);
465                 opcode = ib_bth_get_opcode(ohdr);
466                 hdr_type = HFI1_PKT_TYPE_16B;
467                 fecn = hfi1_16B_get_fecn(pkt->hdr);
468                 becn = hfi1_16B_get_becn(pkt->hdr);
469         } else {
470                 pkey = ib_bth_get_pkey(ohdr);
471                 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
472                 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
473                         ppd->lid;
474                 slid = ib_get_slid(pkt->hdr);
475                 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
476                            (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
477                 opcode = ib_bth_get_opcode(ohdr);
478                 hdr_type = HFI1_PKT_TYPE_9B;
479                 fecn = ib_bth_get_fecn(ohdr);
480                 becn = ib_bth_get_becn(ohdr);
481         }
482
483         switch (qp->ibqp.qp_type) {
484         case IB_QPT_UD:
485                 rlid = slid;
486                 rqpn = ib_get_sqpn(pkt->ohdr);
487                 svc_type = IB_CC_SVCTYPE_UD;
488                 break;
489         case IB_QPT_SMI:
490         case IB_QPT_GSI:
491                 rlid = slid;
492                 rqpn = ib_get_sqpn(pkt->ohdr);
493                 svc_type = IB_CC_SVCTYPE_UD;
494                 break;
495         case IB_QPT_UC:
496                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
497                 rqpn = qp->remote_qpn;
498                 svc_type = IB_CC_SVCTYPE_UC;
499                 break;
500         case IB_QPT_RC:
501                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
502                 rqpn = qp->remote_qpn;
503                 svc_type = IB_CC_SVCTYPE_RC;
504                 break;
505         default:
506                 return false;
507         }
508
509         ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
510                 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
511         /*
512          * ACKNOWLEDGE packets do not get a CNP but this will be
513          * guarded by ignore_fecn above.
514          */
515         do_cnp = prescan ||
516                 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
517                  opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
518                 opcode == TID_OP(READ_RESP) ||
519                 opcode == TID_OP(ACK);
520
521         /* Call appropriate CNP handler */
522         if (!ignore_fecn && do_cnp && fecn)
523                 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
524                                               dlid, rlid, sc, grh);
525
526         if (becn) {
527                 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
528                 u8 sl = ibp->sc_to_sl[sc];
529
530                 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
531         }
532         return !ignore_fecn && fecn;
533 }
534
535 struct ps_mdata {
536         struct hfi1_ctxtdata *rcd;
537         u32 rsize;
538         u32 maxcnt;
539         u32 ps_head;
540         u32 ps_tail;
541         u32 ps_seq;
542 };
543
544 static inline void init_ps_mdata(struct ps_mdata *mdata,
545                                  struct hfi1_packet *packet)
546 {
547         struct hfi1_ctxtdata *rcd = packet->rcd;
548
549         mdata->rcd = rcd;
550         mdata->rsize = packet->rsize;
551         mdata->maxcnt = packet->maxcnt;
552         mdata->ps_head = packet->rhqoff;
553
554         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
555                 mdata->ps_tail = get_rcvhdrtail(rcd);
556                 if (rcd->ctxt == HFI1_CTRL_CTXT)
557                         mdata->ps_seq = rcd->seq_cnt;
558                 else
559                         mdata->ps_seq = 0; /* not used with DMA_RTAIL */
560         } else {
561                 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
562                 mdata->ps_seq = rcd->seq_cnt;
563         }
564 }
565
566 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
567                           struct hfi1_ctxtdata *rcd)
568 {
569         if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
570                 return mdata->ps_head == mdata->ps_tail;
571         return mdata->ps_seq != rhf_rcv_seq(rhf);
572 }
573
574 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
575                           struct hfi1_ctxtdata *rcd)
576 {
577         /*
578          * Control context can potentially receive an invalid rhf.
579          * Drop such packets.
580          */
581         if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
582                 return mdata->ps_seq != rhf_rcv_seq(rhf);
583
584         return 0;
585 }
586
587 static inline void update_ps_mdata(struct ps_mdata *mdata,
588                                    struct hfi1_ctxtdata *rcd)
589 {
590         mdata->ps_head += mdata->rsize;
591         if (mdata->ps_head >= mdata->maxcnt)
592                 mdata->ps_head = 0;
593
594         /* Control context must do seq counting */
595         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
596             (rcd->ctxt == HFI1_CTRL_CTXT)) {
597                 if (++mdata->ps_seq > 13)
598                         mdata->ps_seq = 1;
599         }
600 }
601
602 /*
603  * prescan_rxq - search through the receive queue looking for packets
604  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
605  * When an ECN is found, process the Congestion Notification, and toggle
606  * it off.
607  * This is declared as a macro to allow quick checking of the port to avoid
608  * the overhead of a function call if not enabled.
609  */
610 #define prescan_rxq(rcd, packet) \
611         do { \
612                 if (rcd->ppd->cc_prescan) \
613                         __prescan_rxq(packet); \
614         } while (0)
615 static void __prescan_rxq(struct hfi1_packet *packet)
616 {
617         struct hfi1_ctxtdata *rcd = packet->rcd;
618         struct ps_mdata mdata;
619
620         init_ps_mdata(&mdata, packet);
621
622         while (1) {
623                 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
624                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
625                                          packet->rcd->rhf_offset;
626                 struct rvt_qp *qp;
627                 struct ib_header *hdr;
628                 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
629                 u64 rhf = rhf_to_cpu(rhf_addr);
630                 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
631                 u8 lnh;
632
633                 if (ps_done(&mdata, rhf, rcd))
634                         break;
635
636                 if (ps_skip(&mdata, rhf, rcd))
637                         goto next;
638
639                 if (etype != RHF_RCV_TYPE_IB)
640                         goto next;
641
642                 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
643                 hdr = packet->hdr;
644                 lnh = ib_get_lnh(hdr);
645
646                 if (lnh == HFI1_LRH_BTH) {
647                         packet->ohdr = &hdr->u.oth;
648                         packet->grh = NULL;
649                 } else if (lnh == HFI1_LRH_GRH) {
650                         packet->ohdr = &hdr->u.l.oth;
651                         packet->grh = &hdr->u.l.grh;
652                 } else {
653                         goto next; /* just in case */
654                 }
655
656                 if (!hfi1_may_ecn(packet))
657                         goto next;
658
659                 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
660                 qpn = bth1 & RVT_QPN_MASK;
661                 rcu_read_lock();
662                 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
663
664                 if (!qp) {
665                         rcu_read_unlock();
666                         goto next;
667                 }
668
669                 hfi1_process_ecn_slowpath(qp, packet, true);
670                 rcu_read_unlock();
671
672                 /* turn off BECN, FECN */
673                 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
674                 packet->ohdr->bth[1] = cpu_to_be32(bth1);
675 next:
676                 update_ps_mdata(&mdata, rcd);
677         }
678 }
679
680 static void process_rcv_qp_work(struct hfi1_packet *packet)
681 {
682         struct rvt_qp *qp, *nqp;
683         struct hfi1_ctxtdata *rcd = packet->rcd;
684
685         /*
686          * Iterate over all QPs waiting to respond.
687          * The list won't change since the IRQ is only run on one CPU.
688          */
689         list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
690                 list_del_init(&qp->rspwait);
691                 if (qp->r_flags & RVT_R_RSP_NAK) {
692                         qp->r_flags &= ~RVT_R_RSP_NAK;
693                         packet->qp = qp;
694                         hfi1_send_rc_ack(packet, 0);
695                 }
696                 if (qp->r_flags & RVT_R_RSP_SEND) {
697                         unsigned long flags;
698
699                         qp->r_flags &= ~RVT_R_RSP_SEND;
700                         spin_lock_irqsave(&qp->s_lock, flags);
701                         if (ib_rvt_state_ops[qp->state] &
702                                         RVT_PROCESS_OR_FLUSH_SEND)
703                                 hfi1_schedule_send(qp);
704                         spin_unlock_irqrestore(&qp->s_lock, flags);
705                 }
706                 rvt_put_qp(qp);
707         }
708 }
709
710 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
711 {
712         if (thread) {
713                 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
714                         /* allow defered processing */
715                         process_rcv_qp_work(packet);
716                 cond_resched();
717                 return RCV_PKT_OK;
718         } else {
719                 this_cpu_inc(*packet->rcd->dd->rcv_limit);
720                 return RCV_PKT_LIMIT;
721         }
722 }
723
724 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
725 {
726         int ret = RCV_PKT_OK;
727
728         if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
729                 ret = max_packet_exceeded(packet, thread);
730         return ret;
731 }
732
733 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
734 {
735         int ret;
736
737         /* Set up for the next packet */
738         packet->rhqoff += packet->rsize;
739         if (packet->rhqoff >= packet->maxcnt)
740                 packet->rhqoff = 0;
741
742         packet->numpkt++;
743         ret = check_max_packet(packet, thread);
744
745         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
746                                      packet->rcd->rhf_offset;
747         packet->rhf = rhf_to_cpu(packet->rhf_addr);
748
749         return ret;
750 }
751
752 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
753 {
754         int ret;
755
756         packet->etype = rhf_rcv_type(packet->rhf);
757
758         /* total length */
759         packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
760         /* retrieve eager buffer details */
761         packet->ebuf = NULL;
762         if (rhf_use_egr_bfr(packet->rhf)) {
763                 packet->etail = rhf_egr_index(packet->rhf);
764                 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
765                                  &packet->updegr);
766                 /*
767                  * Prefetch the contents of the eager buffer.  It is
768                  * OK to send a negative length to prefetch_range().
769                  * The +2 is the size of the RHF.
770                  */
771                 prefetch_range(packet->ebuf,
772                                packet->tlen - ((packet->rcd->rcvhdrqentsize -
773                                                (rhf_hdrq_offset(packet->rhf)
774                                                 + 2)) * 4));
775         }
776
777         /*
778          * Call a type specific handler for the packet. We
779          * should be able to trust that etype won't be beyond
780          * the range of valid indexes. If so something is really
781          * wrong and we can probably just let things come
782          * crashing down. There is no need to eat another
783          * comparison in this performance critical code.
784          */
785         packet->rcd->rhf_rcv_function_map[packet->etype](packet);
786         packet->numpkt++;
787
788         /* Set up for the next packet */
789         packet->rhqoff += packet->rsize;
790         if (packet->rhqoff >= packet->maxcnt)
791                 packet->rhqoff = 0;
792
793         ret = check_max_packet(packet, thread);
794
795         packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
796                                       packet->rcd->rhf_offset;
797         packet->rhf = rhf_to_cpu(packet->rhf_addr);
798
799         return ret;
800 }
801
802 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
803 {
804         /*
805          * Update head regs etc., every 16 packets, if not last pkt,
806          * to help prevent rcvhdrq overflows, when many packets
807          * are processed and queue is nearly full.
808          * Don't request an interrupt for intermediate updates.
809          */
810         if (!last && !(packet->numpkt & 0xf)) {
811                 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
812                                packet->etail, 0, 0);
813                 packet->updegr = 0;
814         }
815         packet->grh = NULL;
816 }
817
818 static inline void finish_packet(struct hfi1_packet *packet)
819 {
820         /*
821          * Nothing we need to free for the packet.
822          *
823          * The only thing we need to do is a final update and call for an
824          * interrupt
825          */
826         update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
827                        packet->etail, rcv_intr_dynamic, packet->numpkt);
828 }
829
830 /*
831  * Handle receive interrupts when using the no dma rtail option.
832  */
833 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
834 {
835         u32 seq;
836         int last = RCV_PKT_OK;
837         struct hfi1_packet packet;
838
839         init_packet(rcd, &packet);
840         seq = rhf_rcv_seq(packet.rhf);
841         if (seq != rcd->seq_cnt) {
842                 last = RCV_PKT_DONE;
843                 goto bail;
844         }
845
846         prescan_rxq(rcd, &packet);
847
848         while (last == RCV_PKT_OK) {
849                 last = process_rcv_packet(&packet, thread);
850                 seq = rhf_rcv_seq(packet.rhf);
851                 if (++rcd->seq_cnt > 13)
852                         rcd->seq_cnt = 1;
853                 if (seq != rcd->seq_cnt)
854                         last = RCV_PKT_DONE;
855                 process_rcv_update(last, &packet);
856         }
857         process_rcv_qp_work(&packet);
858         rcd->head = packet.rhqoff;
859 bail:
860         finish_packet(&packet);
861         return last;
862 }
863
864 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
865 {
866         u32 hdrqtail;
867         int last = RCV_PKT_OK;
868         struct hfi1_packet packet;
869
870         init_packet(rcd, &packet);
871         hdrqtail = get_rcvhdrtail(rcd);
872         if (packet.rhqoff == hdrqtail) {
873                 last = RCV_PKT_DONE;
874                 goto bail;
875         }
876         smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
877
878         prescan_rxq(rcd, &packet);
879
880         while (last == RCV_PKT_OK) {
881                 last = process_rcv_packet(&packet, thread);
882                 if (packet.rhqoff == hdrqtail)
883                         last = RCV_PKT_DONE;
884                 process_rcv_update(last, &packet);
885         }
886         process_rcv_qp_work(&packet);
887         rcd->head = packet.rhqoff;
888 bail:
889         finish_packet(&packet);
890         return last;
891 }
892
893 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
894 {
895         struct hfi1_ctxtdata *rcd;
896         u16 i;
897
898         /*
899          * For dynamically allocated kernel contexts (like vnic) switch
900          * interrupt handler only for that context. Otherwise, switch
901          * interrupt handler for all statically allocated kernel contexts.
902          */
903         if (ctxt >= dd->first_dyn_alloc_ctxt) {
904                 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
905                 if (rcd) {
906                         rcd->do_interrupt =
907                                 &handle_receive_interrupt_nodma_rtail;
908                         hfi1_rcd_put(rcd);
909                 }
910                 return;
911         }
912
913         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
914                 rcd = hfi1_rcd_get_by_index(dd, i);
915                 if (rcd)
916                         rcd->do_interrupt =
917                                 &handle_receive_interrupt_nodma_rtail;
918                 hfi1_rcd_put(rcd);
919         }
920 }
921
922 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
923 {
924         struct hfi1_ctxtdata *rcd;
925         u16 i;
926
927         /*
928          * For dynamically allocated kernel contexts (like vnic) switch
929          * interrupt handler only for that context. Otherwise, switch
930          * interrupt handler for all statically allocated kernel contexts.
931          */
932         if (ctxt >= dd->first_dyn_alloc_ctxt) {
933                 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
934                 if (rcd) {
935                         rcd->do_interrupt =
936                                 &handle_receive_interrupt_dma_rtail;
937                         hfi1_rcd_put(rcd);
938                 }
939                 return;
940         }
941
942         for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
943                 rcd = hfi1_rcd_get_by_index(dd, i);
944                 if (rcd)
945                         rcd->do_interrupt =
946                                 &handle_receive_interrupt_dma_rtail;
947                 hfi1_rcd_put(rcd);
948         }
949 }
950
951 void set_all_slowpath(struct hfi1_devdata *dd)
952 {
953         struct hfi1_ctxtdata *rcd;
954         u16 i;
955
956         /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
957         for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
958                 rcd = hfi1_rcd_get_by_index(dd, i);
959                 if (!rcd)
960                         continue;
961                 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
962                         rcd->do_interrupt = &handle_receive_interrupt;
963
964                 hfi1_rcd_put(rcd);
965         }
966 }
967
968 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
969                                       struct hfi1_packet *packet,
970                                       struct hfi1_devdata *dd)
971 {
972         struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
973         u8 etype = rhf_rcv_type(packet->rhf);
974         u8 sc = SC15_PACKET;
975
976         if (etype == RHF_RCV_TYPE_IB) {
977                 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
978                                                            packet->rhf_addr);
979                 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
980         } else if (etype == RHF_RCV_TYPE_BYPASS) {
981                 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
982                                                 packet->rcd,
983                                                 packet->rhf_addr);
984                 sc = hfi1_16B_get_sc(hdr);
985         }
986         if (sc != SC15_PACKET) {
987                 int hwstate = driver_lstate(rcd->ppd);
988
989                 if (hwstate != IB_PORT_ACTIVE) {
990                         dd_dev_info(dd,
991                                     "Unexpected link state %s\n",
992                                     opa_lstate_name(hwstate));
993                         return 0;
994                 }
995
996                 queue_work(rcd->ppd->link_wq, lsaw);
997                 return 1;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * handle_receive_interrupt - receive a packet
1004  * @rcd: the context
1005  *
1006  * Called from interrupt handler for errors or receive interrupt.
1007  * This is the slow path interrupt handler.
1008  */
1009 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1010 {
1011         struct hfi1_devdata *dd = rcd->dd;
1012         u32 hdrqtail;
1013         int needset, last = RCV_PKT_OK;
1014         struct hfi1_packet packet;
1015         int skip_pkt = 0;
1016
1017         /* Control context will always use the slow path interrupt handler */
1018         needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1019
1020         init_packet(rcd, &packet);
1021
1022         if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1023                 u32 seq = rhf_rcv_seq(packet.rhf);
1024
1025                 if (seq != rcd->seq_cnt) {
1026                         last = RCV_PKT_DONE;
1027                         goto bail;
1028                 }
1029                 hdrqtail = 0;
1030         } else {
1031                 hdrqtail = get_rcvhdrtail(rcd);
1032                 if (packet.rhqoff == hdrqtail) {
1033                         last = RCV_PKT_DONE;
1034                         goto bail;
1035                 }
1036                 smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1037
1038                 /*
1039                  * Control context can potentially receive an invalid
1040                  * rhf. Drop such packets.
1041                  */
1042                 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1043                         u32 seq = rhf_rcv_seq(packet.rhf);
1044
1045                         if (seq != rcd->seq_cnt)
1046                                 skip_pkt = 1;
1047                 }
1048         }
1049
1050         prescan_rxq(rcd, &packet);
1051
1052         while (last == RCV_PKT_OK) {
1053                 if (unlikely(dd->do_drop &&
1054                              atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1055                              DROP_PACKET_ON)) {
1056                         dd->do_drop = 0;
1057
1058                         /* On to the next packet */
1059                         packet.rhqoff += packet.rsize;
1060                         packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1061                                           packet.rhqoff +
1062                                           rcd->rhf_offset;
1063                         packet.rhf = rhf_to_cpu(packet.rhf_addr);
1064
1065                 } else if (skip_pkt) {
1066                         last = skip_rcv_packet(&packet, thread);
1067                         skip_pkt = 0;
1068                 } else {
1069                         /* Auto activate link on non-SC15 packet receive */
1070                         if (unlikely(rcd->ppd->host_link_state ==
1071                                      HLS_UP_ARMED) &&
1072                             set_armed_to_active(rcd, &packet, dd))
1073                                 goto bail;
1074                         last = process_rcv_packet(&packet, thread);
1075                 }
1076
1077                 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1078                         u32 seq = rhf_rcv_seq(packet.rhf);
1079
1080                         if (++rcd->seq_cnt > 13)
1081                                 rcd->seq_cnt = 1;
1082                         if (seq != rcd->seq_cnt)
1083                                 last = RCV_PKT_DONE;
1084                         if (needset) {
1085                                 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1086                                 set_nodma_rtail(dd, rcd->ctxt);
1087                                 needset = 0;
1088                         }
1089                 } else {
1090                         if (packet.rhqoff == hdrqtail)
1091                                 last = RCV_PKT_DONE;
1092                         /*
1093                          * Control context can potentially receive an invalid
1094                          * rhf. Drop such packets.
1095                          */
1096                         if (rcd->ctxt == HFI1_CTRL_CTXT) {
1097                                 u32 seq = rhf_rcv_seq(packet.rhf);
1098
1099                                 if (++rcd->seq_cnt > 13)
1100                                         rcd->seq_cnt = 1;
1101                                 if (!last && (seq != rcd->seq_cnt))
1102                                         skip_pkt = 1;
1103                         }
1104
1105                         if (needset) {
1106                                 dd_dev_info(dd,
1107                                             "Switching to DMA_RTAIL\n");
1108                                 set_dma_rtail(dd, rcd->ctxt);
1109                                 needset = 0;
1110                         }
1111                 }
1112
1113                 process_rcv_update(last, &packet);
1114         }
1115
1116         process_rcv_qp_work(&packet);
1117         rcd->head = packet.rhqoff;
1118
1119 bail:
1120         /*
1121          * Always write head at end, and setup rcv interrupt, even
1122          * if no packets were processed.
1123          */
1124         finish_packet(&packet);
1125         return last;
1126 }
1127
1128 /*
1129  * We may discover in the interrupt that the hardware link state has
1130  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1131  * and we need to update the driver's notion of the link state.  We cannot
1132  * run set_link_state from interrupt context, so we queue this function on
1133  * a workqueue.
1134  *
1135  * We delay the regular interrupt processing until after the state changes
1136  * so that the link will be in the correct state by the time any application
1137  * we wake up attempts to send a reply to any message it received.
1138  * (Subsequent receive interrupts may possibly force the wakeup before we
1139  * update the link state.)
1140  *
1141  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1142  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1143  * so we're safe from use-after-free of the rcd.
1144  */
1145 void receive_interrupt_work(struct work_struct *work)
1146 {
1147         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1148                                                   linkstate_active_work);
1149         struct hfi1_devdata *dd = ppd->dd;
1150         struct hfi1_ctxtdata *rcd;
1151         u16 i;
1152
1153         /* Received non-SC15 packet implies neighbor_normal */
1154         ppd->neighbor_normal = 1;
1155         set_link_state(ppd, HLS_UP_ACTIVE);
1156
1157         /*
1158          * Interrupt all statically allocated kernel contexts that could
1159          * have had an interrupt during auto activation.
1160          */
1161         for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1162                 rcd = hfi1_rcd_get_by_index(dd, i);
1163                 if (rcd)
1164                         force_recv_intr(rcd);
1165                 hfi1_rcd_put(rcd);
1166         }
1167 }
1168
1169 /*
1170  * Convert a given MTU size to the on-wire MAD packet enumeration.
1171  * Return -1 if the size is invalid.
1172  */
1173 int mtu_to_enum(u32 mtu, int default_if_bad)
1174 {
1175         switch (mtu) {
1176         case     0: return OPA_MTU_0;
1177         case   256: return OPA_MTU_256;
1178         case   512: return OPA_MTU_512;
1179         case  1024: return OPA_MTU_1024;
1180         case  2048: return OPA_MTU_2048;
1181         case  4096: return OPA_MTU_4096;
1182         case  8192: return OPA_MTU_8192;
1183         case 10240: return OPA_MTU_10240;
1184         }
1185         return default_if_bad;
1186 }
1187
1188 u16 enum_to_mtu(int mtu)
1189 {
1190         switch (mtu) {
1191         case OPA_MTU_0:     return 0;
1192         case OPA_MTU_256:   return 256;
1193         case OPA_MTU_512:   return 512;
1194         case OPA_MTU_1024:  return 1024;
1195         case OPA_MTU_2048:  return 2048;
1196         case OPA_MTU_4096:  return 4096;
1197         case OPA_MTU_8192:  return 8192;
1198         case OPA_MTU_10240: return 10240;
1199         default: return 0xffff;
1200         }
1201 }
1202
1203 /*
1204  * set_mtu - set the MTU
1205  * @ppd: the per port data
1206  *
1207  * We can handle "any" incoming size, the issue here is whether we
1208  * need to restrict our outgoing size.  We do not deal with what happens
1209  * to programs that are already running when the size changes.
1210  */
1211 int set_mtu(struct hfi1_pportdata *ppd)
1212 {
1213         struct hfi1_devdata *dd = ppd->dd;
1214         int i, drain, ret = 0, is_up = 0;
1215
1216         ppd->ibmtu = 0;
1217         for (i = 0; i < ppd->vls_supported; i++)
1218                 if (ppd->ibmtu < dd->vld[i].mtu)
1219                         ppd->ibmtu = dd->vld[i].mtu;
1220         ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1221
1222         mutex_lock(&ppd->hls_lock);
1223         if (ppd->host_link_state == HLS_UP_INIT ||
1224             ppd->host_link_state == HLS_UP_ARMED ||
1225             ppd->host_link_state == HLS_UP_ACTIVE)
1226                 is_up = 1;
1227
1228         drain = !is_ax(dd) && is_up;
1229
1230         if (drain)
1231                 /*
1232                  * MTU is specified per-VL. To ensure that no packet gets
1233                  * stuck (due, e.g., to the MTU for the packet's VL being
1234                  * reduced), empty the per-VL FIFOs before adjusting MTU.
1235                  */
1236                 ret = stop_drain_data_vls(dd);
1237
1238         if (ret) {
1239                 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1240                            __func__);
1241                 goto err;
1242         }
1243
1244         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1245
1246         if (drain)
1247                 open_fill_data_vls(dd); /* reopen all VLs */
1248
1249 err:
1250         mutex_unlock(&ppd->hls_lock);
1251
1252         return ret;
1253 }
1254
1255 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1256 {
1257         struct hfi1_devdata *dd = ppd->dd;
1258
1259         ppd->lid = lid;
1260         ppd->lmc = lmc;
1261         hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1262
1263         dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1264
1265         return 0;
1266 }
1267
1268 void shutdown_led_override(struct hfi1_pportdata *ppd)
1269 {
1270         struct hfi1_devdata *dd = ppd->dd;
1271
1272         /*
1273          * This pairs with the memory barrier in hfi1_start_led_override to
1274          * ensure that we read the correct state of LED beaconing represented
1275          * by led_override_timer_active
1276          */
1277         smp_rmb();
1278         if (atomic_read(&ppd->led_override_timer_active)) {
1279                 del_timer_sync(&ppd->led_override_timer);
1280                 atomic_set(&ppd->led_override_timer_active, 0);
1281                 /* Ensure the atomic_set is visible to all CPUs */
1282                 smp_wmb();
1283         }
1284
1285         /* Hand control of the LED to the DC for normal operation */
1286         write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1287 }
1288
1289 static void run_led_override(struct timer_list *t)
1290 {
1291         struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1292         struct hfi1_devdata *dd = ppd->dd;
1293         unsigned long timeout;
1294         int phase_idx;
1295
1296         if (!(dd->flags & HFI1_INITTED))
1297                 return;
1298
1299         phase_idx = ppd->led_override_phase & 1;
1300
1301         setextled(dd, phase_idx);
1302
1303         timeout = ppd->led_override_vals[phase_idx];
1304
1305         /* Set up for next phase */
1306         ppd->led_override_phase = !ppd->led_override_phase;
1307
1308         mod_timer(&ppd->led_override_timer, jiffies + timeout);
1309 }
1310
1311 /*
1312  * To have the LED blink in a particular pattern, provide timeon and timeoff
1313  * in milliseconds.
1314  * To turn off custom blinking and return to normal operation, use
1315  * shutdown_led_override()
1316  */
1317 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1318                              unsigned int timeoff)
1319 {
1320         if (!(ppd->dd->flags & HFI1_INITTED))
1321                 return;
1322
1323         /* Convert to jiffies for direct use in timer */
1324         ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1325         ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1326
1327         /* Arbitrarily start from LED on phase */
1328         ppd->led_override_phase = 1;
1329
1330         /*
1331          * If the timer has not already been started, do so. Use a "quick"
1332          * timeout so the handler will be called soon to look at our request.
1333          */
1334         if (!timer_pending(&ppd->led_override_timer)) {
1335                 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1336                 ppd->led_override_timer.expires = jiffies + 1;
1337                 add_timer(&ppd->led_override_timer);
1338                 atomic_set(&ppd->led_override_timer_active, 1);
1339                 /* Ensure the atomic_set is visible to all CPUs */
1340                 smp_wmb();
1341         }
1342 }
1343
1344 /**
1345  * hfi1_reset_device - reset the chip if possible
1346  * @unit: the device to reset
1347  *
1348  * Whether or not reset is successful, we attempt to re-initialize the chip
1349  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1350  * so that the various entry points will fail until we reinitialize.  For
1351  * now, we only allow this if no user contexts are open that use chip resources
1352  */
1353 int hfi1_reset_device(int unit)
1354 {
1355         int ret;
1356         struct hfi1_devdata *dd = hfi1_lookup(unit);
1357         struct hfi1_pportdata *ppd;
1358         int pidx;
1359
1360         if (!dd) {
1361                 ret = -ENODEV;
1362                 goto bail;
1363         }
1364
1365         dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1366
1367         if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1368                 dd_dev_info(dd,
1369                             "Invalid unit number %u or not initialized or not present\n",
1370                             unit);
1371                 ret = -ENXIO;
1372                 goto bail;
1373         }
1374
1375         /* If there are any user/vnic contexts, we cannot reset */
1376         mutex_lock(&hfi1_mutex);
1377         if (dd->rcd)
1378                 if (hfi1_stats.sps_ctxts) {
1379                         mutex_unlock(&hfi1_mutex);
1380                         ret = -EBUSY;
1381                         goto bail;
1382                 }
1383         mutex_unlock(&hfi1_mutex);
1384
1385         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1386                 ppd = dd->pport + pidx;
1387
1388                 shutdown_led_override(ppd);
1389         }
1390         if (dd->flags & HFI1_HAS_SEND_DMA)
1391                 sdma_exit(dd);
1392
1393         hfi1_reset_cpu_counters(dd);
1394
1395         ret = hfi1_init(dd, 1);
1396
1397         if (ret)
1398                 dd_dev_err(dd,
1399                            "Reinitialize unit %u after reset failed with %d\n",
1400                            unit, ret);
1401         else
1402                 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1403                             unit);
1404
1405 bail:
1406         return ret;
1407 }
1408
1409 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1410 {
1411         packet->hdr = (struct hfi1_ib_message_header *)
1412                         hfi1_get_msgheader(packet->rcd,
1413                                            packet->rhf_addr);
1414         packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1415 }
1416
1417 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1418 {
1419         struct hfi1_pportdata *ppd = packet->rcd->ppd;
1420
1421         /* slid and dlid cannot be 0 */
1422         if ((!packet->slid) || (!packet->dlid))
1423                 return -EINVAL;
1424
1425         /* Compare port lid with incoming packet dlid */
1426         if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1427             (packet->dlid !=
1428                 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1429                 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1430                         return -EINVAL;
1431         }
1432
1433         /* No multicast packets with SC15 */
1434         if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1435                 return -EINVAL;
1436
1437         /* Packets with permissive DLID always on SC15 */
1438         if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1439                                          16B)) &&
1440             (packet->sc != 0xF))
1441                 return -EINVAL;
1442
1443         return 0;
1444 }
1445
1446 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1447 {
1448         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1449         struct ib_header *hdr;
1450         u8 lnh;
1451
1452         hfi1_setup_ib_header(packet);
1453         hdr = packet->hdr;
1454
1455         lnh = ib_get_lnh(hdr);
1456         if (lnh == HFI1_LRH_BTH) {
1457                 packet->ohdr = &hdr->u.oth;
1458                 packet->grh = NULL;
1459         } else if (lnh == HFI1_LRH_GRH) {
1460                 u32 vtf;
1461
1462                 packet->ohdr = &hdr->u.l.oth;
1463                 packet->grh = &hdr->u.l.grh;
1464                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1465                         goto drop;
1466                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1467                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1468                         goto drop;
1469         } else {
1470                 goto drop;
1471         }
1472
1473         /* Query commonly used fields from packet header */
1474         packet->payload = packet->ebuf;
1475         packet->opcode = ib_bth_get_opcode(packet->ohdr);
1476         packet->slid = ib_get_slid(hdr);
1477         packet->dlid = ib_get_dlid(hdr);
1478         if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1479                      (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1480                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1481                                 be16_to_cpu(IB_MULTICAST_LID_BASE);
1482         packet->sl = ib_get_sl(hdr);
1483         packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1484         packet->pad = ib_bth_get_pad(packet->ohdr);
1485         packet->extra_byte = 0;
1486         packet->pkey = ib_bth_get_pkey(packet->ohdr);
1487         packet->migrated = ib_bth_is_migration(packet->ohdr);
1488
1489         return 0;
1490 drop:
1491         ibp->rvp.n_pkt_drops++;
1492         return -EINVAL;
1493 }
1494
1495 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1496 {
1497         /*
1498          * Bypass packets have a different header/payload split
1499          * compared to an IB packet.
1500          * Current split is set such that 16 bytes of the actual
1501          * header is in the header buffer and the remining is in
1502          * the eager buffer. We chose 16 since hfi1 driver only
1503          * supports 16B bypass packets and we will be able to
1504          * receive the entire LRH with such a split.
1505          */
1506
1507         struct hfi1_ctxtdata *rcd = packet->rcd;
1508         struct hfi1_pportdata *ppd = rcd->ppd;
1509         struct hfi1_ibport *ibp = &ppd->ibport_data;
1510         u8 l4;
1511
1512         packet->hdr = (struct hfi1_16b_header *)
1513                         hfi1_get_16B_header(packet->rcd,
1514                                             packet->rhf_addr);
1515         l4 = hfi1_16B_get_l4(packet->hdr);
1516         if (l4 == OPA_16B_L4_IB_LOCAL) {
1517                 packet->ohdr = packet->ebuf;
1518                 packet->grh = NULL;
1519                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1520                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1521                 /* hdr_len_by_opcode already has an IB LRH factored in */
1522                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1523                         (LRH_16B_BYTES - LRH_9B_BYTES);
1524                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1525         } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1526                 u32 vtf;
1527                 u8 grh_len = sizeof(struct ib_grh);
1528
1529                 packet->ohdr = packet->ebuf + grh_len;
1530                 packet->grh = packet->ebuf;
1531                 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1532                 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1533                 /* hdr_len_by_opcode already has an IB LRH factored in */
1534                 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1535                         (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1536                 packet->migrated = opa_bth_is_migration(packet->ohdr);
1537
1538                 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1539                         goto drop;
1540                 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1541                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1542                         goto drop;
1543         } else if (l4 == OPA_16B_L4_FM) {
1544                 packet->mgmt = packet->ebuf;
1545                 packet->ohdr = NULL;
1546                 packet->grh = NULL;
1547                 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1548                 packet->pad = OPA_16B_L4_FM_PAD;
1549                 packet->hlen = OPA_16B_L4_FM_HLEN;
1550                 packet->migrated = false;
1551         } else {
1552                 goto drop;
1553         }
1554
1555         /* Query commonly used fields from packet header */
1556         packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1557         packet->slid = hfi1_16B_get_slid(packet->hdr);
1558         packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1559         if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1560                 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1561                                 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1562                                             16B);
1563         packet->sc = hfi1_16B_get_sc(packet->hdr);
1564         packet->sl = ibp->sc_to_sl[packet->sc];
1565         packet->extra_byte = SIZE_OF_LT;
1566         packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1567
1568         if (hfi1_bypass_ingress_pkt_check(packet))
1569                 goto drop;
1570
1571         return 0;
1572 drop:
1573         hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1574         ibp->rvp.n_pkt_drops++;
1575         return -EINVAL;
1576 }
1577
1578 static void show_eflags_errs(struct hfi1_packet *packet)
1579 {
1580         struct hfi1_ctxtdata *rcd = packet->rcd;
1581         u32 rte = rhf_rcv_type_err(packet->rhf);
1582
1583         dd_dev_err(rcd->dd,
1584                    "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1585                    rcd->ctxt, packet->rhf,
1586                    packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1587                    packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1588                    packet->rhf & RHF_DC_ERR ? "dc " : "",
1589                    packet->rhf & RHF_TID_ERR ? "tid " : "",
1590                    packet->rhf & RHF_LEN_ERR ? "len " : "",
1591                    packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1592                    packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1593                    rte);
1594 }
1595
1596 void handle_eflags(struct hfi1_packet *packet)
1597 {
1598         struct hfi1_ctxtdata *rcd = packet->rcd;
1599
1600         rcv_hdrerr(rcd, rcd->ppd, packet);
1601         if (rhf_err_flags(packet->rhf))
1602                 show_eflags_errs(packet);
1603 }
1604
1605 /*
1606  * The following functions are called by the interrupt handler. They are type
1607  * specific handlers for each packet type.
1608  */
1609 static int process_receive_ib(struct hfi1_packet *packet)
1610 {
1611         if (hfi1_setup_9B_packet(packet))
1612                 return RHF_RCV_CONTINUE;
1613
1614         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1615                 return RHF_RCV_CONTINUE;
1616
1617         trace_hfi1_rcvhdr(packet);
1618
1619         if (unlikely(rhf_err_flags(packet->rhf))) {
1620                 handle_eflags(packet);
1621                 return RHF_RCV_CONTINUE;
1622         }
1623
1624         hfi1_ib_rcv(packet);
1625         return RHF_RCV_CONTINUE;
1626 }
1627
1628 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1629 {
1630         /* Packet received in VNIC context via RSM */
1631         if (packet->rcd->is_vnic)
1632                 return true;
1633
1634         if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1635             (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1636                 return true;
1637
1638         return false;
1639 }
1640
1641 static int process_receive_bypass(struct hfi1_packet *packet)
1642 {
1643         struct hfi1_devdata *dd = packet->rcd->dd;
1644
1645         if (hfi1_is_vnic_packet(packet)) {
1646                 hfi1_vnic_bypass_rcv(packet);
1647                 return RHF_RCV_CONTINUE;
1648         }
1649
1650         if (hfi1_setup_bypass_packet(packet))
1651                 return RHF_RCV_CONTINUE;
1652
1653         trace_hfi1_rcvhdr(packet);
1654
1655         if (unlikely(rhf_err_flags(packet->rhf))) {
1656                 handle_eflags(packet);
1657                 return RHF_RCV_CONTINUE;
1658         }
1659
1660         if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1661                 hfi1_16B_rcv(packet);
1662         } else {
1663                 dd_dev_err(dd,
1664                            "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1665                 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1666                 if (!(dd->err_info_rcvport.status_and_code &
1667                       OPA_EI_STATUS_SMASK)) {
1668                         u64 *flits = packet->ebuf;
1669
1670                         if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1671                                 dd->err_info_rcvport.packet_flit1 = flits[0];
1672                                 dd->err_info_rcvport.packet_flit2 =
1673                                         packet->tlen > sizeof(flits[0]) ?
1674                                         flits[1] : 0;
1675                         }
1676                         dd->err_info_rcvport.status_and_code |=
1677                                 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1678                 }
1679         }
1680         return RHF_RCV_CONTINUE;
1681 }
1682
1683 static int process_receive_error(struct hfi1_packet *packet)
1684 {
1685         /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1686         if (unlikely(
1687                  hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1688                  (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1689                   packet->rhf & RHF_DC_ERR)))
1690                 return RHF_RCV_CONTINUE;
1691
1692         hfi1_setup_ib_header(packet);
1693         handle_eflags(packet);
1694
1695         if (unlikely(rhf_err_flags(packet->rhf)))
1696                 dd_dev_err(packet->rcd->dd,
1697                            "Unhandled error packet received. Dropping.\n");
1698
1699         return RHF_RCV_CONTINUE;
1700 }
1701
1702 static int kdeth_process_expected(struct hfi1_packet *packet)
1703 {
1704         hfi1_setup_9B_packet(packet);
1705         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1706                 return RHF_RCV_CONTINUE;
1707
1708         if (unlikely(rhf_err_flags(packet->rhf))) {
1709                 struct hfi1_ctxtdata *rcd = packet->rcd;
1710
1711                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1712                         return RHF_RCV_CONTINUE;
1713         }
1714
1715         hfi1_kdeth_expected_rcv(packet);
1716         return RHF_RCV_CONTINUE;
1717 }
1718
1719 static int kdeth_process_eager(struct hfi1_packet *packet)
1720 {
1721         hfi1_setup_9B_packet(packet);
1722         if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1723                 return RHF_RCV_CONTINUE;
1724
1725         trace_hfi1_rcvhdr(packet);
1726         if (unlikely(rhf_err_flags(packet->rhf))) {
1727                 struct hfi1_ctxtdata *rcd = packet->rcd;
1728
1729                 show_eflags_errs(packet);
1730                 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1731                         return RHF_RCV_CONTINUE;
1732         }
1733
1734         hfi1_kdeth_eager_rcv(packet);
1735         return RHF_RCV_CONTINUE;
1736 }
1737
1738 static int process_receive_invalid(struct hfi1_packet *packet)
1739 {
1740         dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1741                    rhf_rcv_type(packet->rhf));
1742         return RHF_RCV_CONTINUE;
1743 }
1744
1745 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1746 {
1747         struct hfi1_packet packet;
1748         struct ps_mdata mdata;
1749
1750         seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1751                    rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1752                    HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1753                    "dma_rtail" : "nodma_rtail",
1754                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1755                    RCV_HDR_HEAD_HEAD_MASK,
1756                    read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1757
1758         init_packet(rcd, &packet);
1759         init_ps_mdata(&mdata, &packet);
1760
1761         while (1) {
1762                 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1763                                          rcd->rhf_offset;
1764                 struct ib_header *hdr;
1765                 u64 rhf = rhf_to_cpu(rhf_addr);
1766                 u32 etype = rhf_rcv_type(rhf), qpn;
1767                 u8 opcode;
1768                 u32 psn;
1769                 u8 lnh;
1770
1771                 if (ps_done(&mdata, rhf, rcd))
1772                         break;
1773
1774                 if (ps_skip(&mdata, rhf, rcd))
1775                         goto next;
1776
1777                 if (etype > RHF_RCV_TYPE_IB)
1778                         goto next;
1779
1780                 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1781                 hdr = packet.hdr;
1782
1783                 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1784
1785                 if (lnh == HFI1_LRH_BTH)
1786                         packet.ohdr = &hdr->u.oth;
1787                 else if (lnh == HFI1_LRH_GRH)
1788                         packet.ohdr = &hdr->u.l.oth;
1789                 else
1790                         goto next; /* just in case */
1791
1792                 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1793                 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1794                 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1795
1796                 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1797                            mdata.ps_head, opcode, qpn, psn);
1798 next:
1799                 update_ps_mdata(&mdata, rcd);
1800         }
1801 }
1802
1803 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1804         [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1805         [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1806         [RHF_RCV_TYPE_IB] = process_receive_ib,
1807         [RHF_RCV_TYPE_ERROR] = process_receive_error,
1808         [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1809         [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1810         [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1811         [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1812 };