b8ee0e27dae6539fe4452a9447a8cb96665f368b
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109         u64 flag;       /* the flag */
110         char *str;      /* description string */
111         u16 extra;      /* extra information */
112         u16 unused0;
113         u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED       0x1
122 #define SEC_PACKET_DROPPED      0x2
123 #define SEC_SC_HALTED           0x4     /* per-context only */
124 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
125
126 #define DEFAULT_KRCVQS            2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203         num, \
204         sc0, sc0val, \
205         sc1, sc1val, \
206         sc2, sc2val, \
207         sc3, sc3val, \
208         sc4, sc4val, \
209         sc5, sc5val, \
210         sc6, sc6val, \
211         sc7, sc7val) \
212 ( \
213         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222
223 #define DC_SC_VL_VAL( \
224         range, \
225         e0, e0val, \
226         e1, e1val, \
227         e2, e2val, \
228         e3, e3val, \
229         e4, e4val, \
230         e5, e5val, \
231         e6, e6val, \
232         e7, e7val, \
233         e8, e8val, \
234         e9, e9val, \
235         e10, e10val, \
236         e11, e11val, \
237         e12, e12val, \
238         e13, e13val, \
239         e14, e14val, \
240         e15, e15val) \
241 ( \
242         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262                         | CCE_STATUS_RXE_FROZE_SMASK \
263                         | CCE_STATUS_TXE_FROZE_SMASK \
264                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267                         | CCE_STATUS_TXE_PAUSED_SMASK \
268                         | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
280                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
282                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
288                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
290                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
294                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
306                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
308                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
310                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
312                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
314                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
316                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
318                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
320                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
322                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
324                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
326                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
328                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
330                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
332                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
334                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
336                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
338                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/  FLAG_ENTRY0("LATriggered",
342                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
344                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
346                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
352                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
354                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
356                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
358                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
360                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
389         SEC_WRITE_DROPPED,
390         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/  FLAG_ENTRY("PioCsrParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
404         SEC_SPC_FREEZE,
405         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
407         SEC_SPC_FREEZE,
408         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
416         SEC_SPC_FREEZE,
417         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
425         SEC_SPC_FREEZE,
426         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
428         0,
429         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
431         0,
432         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
434         SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
437         SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/  FLAG_ENTRY("PioInitSmIn",
440         0,
441         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
449         0,
450         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/  FLAG_ENTRY("PioWriteDataParity",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/  FLAG_ENTRY("PioStateMachine",
455         SEC_SPC_FREEZE,
456         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
458         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
461         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
464         SEC_SPC_FREEZE,
465         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/  FLAG_ENTRY("PioVlfSopParity",
467         SEC_SPC_FREEZE,
468         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/  FLAG_ENTRY("PioVlFifoParity",
470         SEC_SPC_FREEZE,
471         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
473         SEC_SPC_FREEZE,
474         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
476         SEC_SPC_FREEZE,
477         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
480         SEC_SPC_FREEZE,
481         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
483         SEC_SPC_FREEZE,
484         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
486         SEC_SPC_FREEZE,
487         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
489         SEC_SPC_FREEZE,
490         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
531                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
533                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689         | SEES(TX_LAUNCH_CSR_PARITY) \
690         | SEES(TX_SBRD_CTL_CSR_PARITY) \
691         | SEES(TX_CONFIG_PARITY) \
692         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701         | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/  FLAG_ENTRY("InconsistentSop",
718                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/  FLAG_ENTRY("DisallowedPacket",
721                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
724                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/  FLAG_ENTRY("WriteOverflow",
727                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
730                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763                 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784                 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791                 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793                 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993         FLAG_ENTRY0("Serdes internal loopback failure",
994                     FAILED_SERDES_INTERNAL_LOOPBACK),
995         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004         FLAG_ENTRY0("External Device Request Timeout",
1005                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014         FLAG_ENTRY0("Host request done", 0x0001),
1015         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016         FLAG_ENTRY0("BC SMA message", 0x0004),
1017         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019         FLAG_ENTRY0("External device config request", 0x0020),
1020         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022         FLAG_ENTRY0("Link going down", 0x0100),
1023         FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030                                u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034                                       u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036                                      u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038                                   u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042                             u8 *tx_polarity_inversion,
1043                             u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045                                 unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048                            unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050                            unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062                                           u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064                            u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067
1068 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1069                                   int msecs);
1070 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1071                                    int msecs);
1072 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1073 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1074 static void handle_temp_err(struct hfi1_devdata *dd);
1075 static void dc_shutdown(struct hfi1_devdata *dd);
1076 static void dc_start(struct hfi1_devdata *dd);
1077 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1078                            unsigned int *np);
1079 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1080 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1081 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1082
1083 /*
1084  * Error interrupt table entry.  This is used as input to the interrupt
1085  * "clear down" routine used for all second tier error interrupt register.
1086  * Second tier interrupt registers have a single bit representing them
1087  * in the top-level CceIntStatus.
1088  */
1089 struct err_reg_info {
1090         u32 status;             /* status CSR offset */
1091         u32 clear;              /* clear CSR offset */
1092         u32 mask;               /* mask CSR offset */
1093         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1094         const char *desc;
1095 };
1096
1097 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1098 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1099 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1100
1101 /*
1102  * Helpers for building HFI and DC error interrupt table entries.  Different
1103  * helpers are needed because of inconsistent register names.
1104  */
1105 #define EE(reg, handler, desc) \
1106         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1107                 handler, desc }
1108 #define DC_EE1(reg, handler, desc) \
1109         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1110 #define DC_EE2(reg, handler, desc) \
1111         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1112
1113 /*
1114  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1115  * another register containing more information.
1116  */
1117 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1118 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1119 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1120 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1121 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1122 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1123 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1124 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1125 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1126         /* the rest are reserved */
1127 };
1128
1129 /*
1130  * Index into the Various section of the interrupt sources
1131  * corresponding to the Critical Temperature interrupt.
1132  */
1133 #define TCRIT_INT_SOURCE 4
1134
1135 /*
1136  * SDMA error interrupt entry - refers to another register containing more
1137  * information.
1138  */
1139 static const struct err_reg_info sdma_eng_err =
1140         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1141
1142 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1143 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1144 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1145 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1146 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1147 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1148         /* rest are reserved */
1149 };
1150
1151 /*
1152  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1153  * register can not be derived from the MTU value because 10K is not
1154  * a power of 2. Therefore, we need a constant. Everything else can
1155  * be calculated.
1156  */
1157 #define DCC_CFG_PORT_MTU_CAP_10240 7
1158
1159 /*
1160  * Table of the DC grouping of error interrupts.  Each entry refers to
1161  * another register containing more information.
1162  */
1163 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1164 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1165 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1166 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1167 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1168         /* the rest are reserved */
1169 };
1170
1171 struct cntr_entry {
1172         /*
1173          * counter name
1174          */
1175         char *name;
1176
1177         /*
1178          * csr to read for name (if applicable)
1179          */
1180         u64 csr;
1181
1182         /*
1183          * offset into dd or ppd to store the counter's value
1184          */
1185         int offset;
1186
1187         /*
1188          * flags
1189          */
1190         u8 flags;
1191
1192         /*
1193          * accessor for stat element, context either dd or ppd
1194          */
1195         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1196                        int mode, u64 data);
1197 };
1198
1199 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1200 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1201
1202 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1203 { \
1204         name, \
1205         csr, \
1206         offset, \
1207         flags, \
1208         accessor \
1209 }
1210
1211 /* 32bit RXE */
1212 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1213 CNTR_ELEM(#name, \
1214           (counter * 8 + RCV_COUNTER_ARRAY32), \
1215           0, flags | CNTR_32BIT, \
1216           port_access_u32_csr)
1217
1218 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220           (counter * 8 + RCV_COUNTER_ARRAY32), \
1221           0, flags | CNTR_32BIT, \
1222           dev_access_u32_csr)
1223
1224 /* 64bit RXE */
1225 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1226 CNTR_ELEM(#name, \
1227           (counter * 8 + RCV_COUNTER_ARRAY64), \
1228           0, flags, \
1229           port_access_u64_csr)
1230
1231 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233           (counter * 8 + RCV_COUNTER_ARRAY64), \
1234           0, flags, \
1235           dev_access_u64_csr)
1236
1237 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1238 #define OVR_ELM(ctx) \
1239 CNTR_ELEM("RcvHdrOvr" #ctx, \
1240           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1241           0, CNTR_NORMAL, port_access_u64_csr)
1242
1243 /* 32bit TXE */
1244 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1245 CNTR_ELEM(#name, \
1246           (counter * 8 + SEND_COUNTER_ARRAY32), \
1247           0, flags | CNTR_32BIT, \
1248           port_access_u32_csr)
1249
1250 /* 64bit TXE */
1251 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253           (counter * 8 + SEND_COUNTER_ARRAY64), \
1254           0, flags, \
1255           port_access_u64_csr)
1256
1257 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name,\
1259           counter * 8 + SEND_COUNTER_ARRAY64, \
1260           0, \
1261           flags, \
1262           dev_access_u64_csr)
1263
1264 /* CCE */
1265 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1266 CNTR_ELEM(#name, \
1267           (counter * 8 + CCE_COUNTER_ARRAY32), \
1268           0, flags | CNTR_32BIT, \
1269           dev_access_u32_csr)
1270
1271 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1274           0, flags | CNTR_32BIT, \
1275           dev_access_u32_csr)
1276
1277 /* DC */
1278 #define DC_PERF_CNTR(name, counter, flags) \
1279 CNTR_ELEM(#name, \
1280           counter, \
1281           0, \
1282           flags, \
1283           dev_access_u64_csr)
1284
1285 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1286 CNTR_ELEM(#name, \
1287           counter, \
1288           0, \
1289           flags, \
1290           dc_access_lcb_cntr)
1291
1292 /* ibp counters */
1293 #define SW_IBP_CNTR(name, cntr) \
1294 CNTR_ELEM(#name, \
1295           0, \
1296           0, \
1297           CNTR_SYNTH, \
1298           access_ibp_##cntr)
1299
1300 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1301 {
1302         if (dd->flags & HFI1_PRESENT) {
1303                 return readq((void __iomem *)dd->kregbase + offset);
1304         }
1305         return -1;
1306 }
1307
1308 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1309 {
1310         if (dd->flags & HFI1_PRESENT)
1311                 writeq(value, (void __iomem *)dd->kregbase + offset);
1312 }
1313
1314 void __iomem *get_csr_addr(
1315         struct hfi1_devdata *dd,
1316         u32 offset)
1317 {
1318         return (void __iomem *)dd->kregbase + offset;
1319 }
1320
1321 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1322                                  int mode, u64 value)
1323 {
1324         u64 ret;
1325
1326         if (mode == CNTR_MODE_R) {
1327                 ret = read_csr(dd, csr);
1328         } else if (mode == CNTR_MODE_W) {
1329                 write_csr(dd, csr, value);
1330                 ret = value;
1331         } else {
1332                 dd_dev_err(dd, "Invalid cntr register access mode");
1333                 return 0;
1334         }
1335
1336         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1337         return ret;
1338 }
1339
1340 /* Dev Access */
1341 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1342                               void *context, int vl, int mode, u64 data)
1343 {
1344         struct hfi1_devdata *dd = context;
1345         u64 csr = entry->csr;
1346
1347         if (entry->flags & CNTR_SDMA) {
1348                 if (vl == CNTR_INVALID_VL)
1349                         return 0;
1350                 csr += 0x100 * vl;
1351         } else {
1352                 if (vl != CNTR_INVALID_VL)
1353                         return 0;
1354         }
1355         return read_write_csr(dd, csr, mode, data);
1356 }
1357
1358 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1359                               void *context, int idx, int mode, u64 data)
1360 {
1361         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1362
1363         if (dd->per_sdma && idx < dd->num_sdma)
1364                 return dd->per_sdma[idx].err_cnt;
1365         return 0;
1366 }
1367
1368 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1369                               void *context, int idx, int mode, u64 data)
1370 {
1371         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1372
1373         if (dd->per_sdma && idx < dd->num_sdma)
1374                 return dd->per_sdma[idx].sdma_int_cnt;
1375         return 0;
1376 }
1377
1378 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1379                                    void *context, int idx, int mode, u64 data)
1380 {
1381         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1382
1383         if (dd->per_sdma && idx < dd->num_sdma)
1384                 return dd->per_sdma[idx].idle_int_cnt;
1385         return 0;
1386 }
1387
1388 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1389                                        void *context, int idx, int mode,
1390                                        u64 data)
1391 {
1392         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1393
1394         if (dd->per_sdma && idx < dd->num_sdma)
1395                 return dd->per_sdma[idx].progress_int_cnt;
1396         return 0;
1397 }
1398
1399 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1400                               int vl, int mode, u64 data)
1401 {
1402         struct hfi1_devdata *dd = context;
1403
1404         u64 val = 0;
1405         u64 csr = entry->csr;
1406
1407         if (entry->flags & CNTR_VL) {
1408                 if (vl == CNTR_INVALID_VL)
1409                         return 0;
1410                 csr += 8 * vl;
1411         } else {
1412                 if (vl != CNTR_INVALID_VL)
1413                         return 0;
1414         }
1415
1416         val = read_write_csr(dd, csr, mode, data);
1417         return val;
1418 }
1419
1420 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1421                               int vl, int mode, u64 data)
1422 {
1423         struct hfi1_devdata *dd = context;
1424         u32 csr = entry->csr;
1425         int ret = 0;
1426
1427         if (vl != CNTR_INVALID_VL)
1428                 return 0;
1429         if (mode == CNTR_MODE_R)
1430                 ret = read_lcb_csr(dd, csr, &data);
1431         else if (mode == CNTR_MODE_W)
1432                 ret = write_lcb_csr(dd, csr, data);
1433
1434         if (ret) {
1435                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1436                 return 0;
1437         }
1438
1439         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1440         return data;
1441 }
1442
1443 /* Port Access */
1444 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1445                                int vl, int mode, u64 data)
1446 {
1447         struct hfi1_pportdata *ppd = context;
1448
1449         if (vl != CNTR_INVALID_VL)
1450                 return 0;
1451         return read_write_csr(ppd->dd, entry->csr, mode, data);
1452 }
1453
1454 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1455                                void *context, int vl, int mode, u64 data)
1456 {
1457         struct hfi1_pportdata *ppd = context;
1458         u64 val;
1459         u64 csr = entry->csr;
1460
1461         if (entry->flags & CNTR_VL) {
1462                 if (vl == CNTR_INVALID_VL)
1463                         return 0;
1464                 csr += 8 * vl;
1465         } else {
1466                 if (vl != CNTR_INVALID_VL)
1467                         return 0;
1468         }
1469         val = read_write_csr(ppd->dd, csr, mode, data);
1470         return val;
1471 }
1472
1473 /* Software defined */
1474 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1475                                 u64 data)
1476 {
1477         u64 ret;
1478
1479         if (mode == CNTR_MODE_R) {
1480                 ret = *cntr;
1481         } else if (mode == CNTR_MODE_W) {
1482                 *cntr = data;
1483                 ret = data;
1484         } else {
1485                 dd_dev_err(dd, "Invalid cntr sw access mode");
1486                 return 0;
1487         }
1488
1489         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1490
1491         return ret;
1492 }
1493
1494 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1495                                  int vl, int mode, u64 data)
1496 {
1497         struct hfi1_pportdata *ppd = context;
1498
1499         if (vl != CNTR_INVALID_VL)
1500                 return 0;
1501         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1502 }
1503
1504 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1505                                  int vl, int mode, u64 data)
1506 {
1507         struct hfi1_pportdata *ppd = context;
1508
1509         if (vl != CNTR_INVALID_VL)
1510                 return 0;
1511         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1512 }
1513
1514 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1515                                        void *context, int vl, int mode,
1516                                        u64 data)
1517 {
1518         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1519
1520         if (vl != CNTR_INVALID_VL)
1521                 return 0;
1522         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1523 }
1524
1525 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1526                                    void *context, int vl, int mode, u64 data)
1527 {
1528         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1529         u64 zero = 0;
1530         u64 *counter;
1531
1532         if (vl == CNTR_INVALID_VL)
1533                 counter = &ppd->port_xmit_discards;
1534         else if (vl >= 0 && vl < C_VL_COUNT)
1535                 counter = &ppd->port_xmit_discards_vl[vl];
1536         else
1537                 counter = &zero;
1538
1539         return read_write_sw(ppd->dd, counter, mode, data);
1540 }
1541
1542 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1543                                        void *context, int vl, int mode,
1544                                        u64 data)
1545 {
1546         struct hfi1_pportdata *ppd = context;
1547
1548         if (vl != CNTR_INVALID_VL)
1549                 return 0;
1550
1551         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1552                              mode, data);
1553 }
1554
1555 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1556                                       void *context, int vl, int mode, u64 data)
1557 {
1558         struct hfi1_pportdata *ppd = context;
1559
1560         if (vl != CNTR_INVALID_VL)
1561                 return 0;
1562
1563         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1564                              mode, data);
1565 }
1566
1567 u64 get_all_cpu_total(u64 __percpu *cntr)
1568 {
1569         int cpu;
1570         u64 counter = 0;
1571
1572         for_each_possible_cpu(cpu)
1573                 counter += *per_cpu_ptr(cntr, cpu);
1574         return counter;
1575 }
1576
1577 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1578                           u64 __percpu *cntr,
1579                           int vl, int mode, u64 data)
1580 {
1581         u64 ret = 0;
1582
1583         if (vl != CNTR_INVALID_VL)
1584                 return 0;
1585
1586         if (mode == CNTR_MODE_R) {
1587                 ret = get_all_cpu_total(cntr) - *z_val;
1588         } else if (mode == CNTR_MODE_W) {
1589                 /* A write can only zero the counter */
1590                 if (data == 0)
1591                         *z_val = get_all_cpu_total(cntr);
1592                 else
1593                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1594         } else {
1595                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1596                 return 0;
1597         }
1598
1599         return ret;
1600 }
1601
1602 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1603                               void *context, int vl, int mode, u64 data)
1604 {
1605         struct hfi1_devdata *dd = context;
1606
1607         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1608                               mode, data);
1609 }
1610
1611 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1612                                    void *context, int vl, int mode, u64 data)
1613 {
1614         struct hfi1_devdata *dd = context;
1615
1616         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1617                               mode, data);
1618 }
1619
1620 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1621                               void *context, int vl, int mode, u64 data)
1622 {
1623         struct hfi1_devdata *dd = context;
1624
1625         return dd->verbs_dev.n_piowait;
1626 }
1627
1628 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1629                                void *context, int vl, int mode, u64 data)
1630 {
1631         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1632
1633         return dd->verbs_dev.n_piodrain;
1634 }
1635
1636 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1637                               void *context, int vl, int mode, u64 data)
1638 {
1639         struct hfi1_devdata *dd = context;
1640
1641         return dd->verbs_dev.n_txwait;
1642 }
1643
1644 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1645                                void *context, int vl, int mode, u64 data)
1646 {
1647         struct hfi1_devdata *dd = context;
1648
1649         return dd->verbs_dev.n_kmem_wait;
1650 }
1651
1652 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1653                                    void *context, int vl, int mode, u64 data)
1654 {
1655         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1656
1657         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1658                               mode, data);
1659 }
1660
1661 /* Software counters for the error status bits within MISC_ERR_STATUS */
1662 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1663                                              void *context, int vl, int mode,
1664                                              u64 data)
1665 {
1666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668         return dd->misc_err_status_cnt[12];
1669 }
1670
1671 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1672                                           void *context, int vl, int mode,
1673                                           u64 data)
1674 {
1675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677         return dd->misc_err_status_cnt[11];
1678 }
1679
1680 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1681                                                void *context, int vl, int mode,
1682                                                u64 data)
1683 {
1684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686         return dd->misc_err_status_cnt[10];
1687 }
1688
1689 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1690                                                  void *context, int vl,
1691                                                  int mode, u64 data)
1692 {
1693         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695         return dd->misc_err_status_cnt[9];
1696 }
1697
1698 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1699                                            void *context, int vl, int mode,
1700                                            u64 data)
1701 {
1702         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704         return dd->misc_err_status_cnt[8];
1705 }
1706
1707 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1708                                 const struct cntr_entry *entry,
1709                                 void *context, int vl, int mode, u64 data)
1710 {
1711         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713         return dd->misc_err_status_cnt[7];
1714 }
1715
1716 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1717                                                 void *context, int vl,
1718                                                 int mode, u64 data)
1719 {
1720         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722         return dd->misc_err_status_cnt[6];
1723 }
1724
1725 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1726                                               void *context, int vl, int mode,
1727                                               u64 data)
1728 {
1729         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731         return dd->misc_err_status_cnt[5];
1732 }
1733
1734 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1735                                             void *context, int vl, int mode,
1736                                             u64 data)
1737 {
1738         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739
1740         return dd->misc_err_status_cnt[4];
1741 }
1742
1743 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1744                                                  void *context, int vl,
1745                                                  int mode, u64 data)
1746 {
1747         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1748
1749         return dd->misc_err_status_cnt[3];
1750 }
1751
1752 static u64 access_misc_csr_write_bad_addr_err_cnt(
1753                                 const struct cntr_entry *entry,
1754                                 void *context, int vl, int mode, u64 data)
1755 {
1756         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1757
1758         return dd->misc_err_status_cnt[2];
1759 }
1760
1761 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1762                                                  void *context, int vl,
1763                                                  int mode, u64 data)
1764 {
1765         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1766
1767         return dd->misc_err_status_cnt[1];
1768 }
1769
1770 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1771                                           void *context, int vl, int mode,
1772                                           u64 data)
1773 {
1774         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1775
1776         return dd->misc_err_status_cnt[0];
1777 }
1778
1779 /*
1780  * Software counter for the aggregate of
1781  * individual CceErrStatus counters
1782  */
1783 static u64 access_sw_cce_err_status_aggregated_cnt(
1784                                 const struct cntr_entry *entry,
1785                                 void *context, int vl, int mode, u64 data)
1786 {
1787         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1788
1789         return dd->sw_cce_err_status_aggregate;
1790 }
1791
1792 /*
1793  * Software counters corresponding to each of the
1794  * error status bits within CceErrStatus
1795  */
1796 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1797                                               void *context, int vl, int mode,
1798                                               u64 data)
1799 {
1800         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802         return dd->cce_err_status_cnt[40];
1803 }
1804
1805 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1806                                           void *context, int vl, int mode,
1807                                           u64 data)
1808 {
1809         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811         return dd->cce_err_status_cnt[39];
1812 }
1813
1814 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1815                                           void *context, int vl, int mode,
1816                                           u64 data)
1817 {
1818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820         return dd->cce_err_status_cnt[38];
1821 }
1822
1823 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1824                                              void *context, int vl, int mode,
1825                                              u64 data)
1826 {
1827         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829         return dd->cce_err_status_cnt[37];
1830 }
1831
1832 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1833                                              void *context, int vl, int mode,
1834                                              u64 data)
1835 {
1836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837
1838         return dd->cce_err_status_cnt[36];
1839 }
1840
1841 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1842                                 const struct cntr_entry *entry,
1843                                 void *context, int vl, int mode, u64 data)
1844 {
1845         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1846
1847         return dd->cce_err_status_cnt[35];
1848 }
1849
1850 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1851                                 const struct cntr_entry *entry,
1852                                 void *context, int vl, int mode, u64 data)
1853 {
1854         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1855
1856         return dd->cce_err_status_cnt[34];
1857 }
1858
1859 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1860                                                  void *context, int vl,
1861                                                  int mode, u64 data)
1862 {
1863         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1864
1865         return dd->cce_err_status_cnt[33];
1866 }
1867
1868 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1869                                                 void *context, int vl, int mode,
1870                                                 u64 data)
1871 {
1872         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1873
1874         return dd->cce_err_status_cnt[32];
1875 }
1876
1877 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1878                                    void *context, int vl, int mode, u64 data)
1879 {
1880         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882         return dd->cce_err_status_cnt[31];
1883 }
1884
1885 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1886                                                void *context, int vl, int mode,
1887                                                u64 data)
1888 {
1889         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891         return dd->cce_err_status_cnt[30];
1892 }
1893
1894 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1895                                               void *context, int vl, int mode,
1896                                               u64 data)
1897 {
1898         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900         return dd->cce_err_status_cnt[29];
1901 }
1902
1903 static u64 access_pcic_transmit_back_parity_err_cnt(
1904                                 const struct cntr_entry *entry,
1905                                 void *context, int vl, int mode, u64 data)
1906 {
1907         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909         return dd->cce_err_status_cnt[28];
1910 }
1911
1912 static u64 access_pcic_transmit_front_parity_err_cnt(
1913                                 const struct cntr_entry *entry,
1914                                 void *context, int vl, int mode, u64 data)
1915 {
1916         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918         return dd->cce_err_status_cnt[27];
1919 }
1920
1921 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1922                                              void *context, int vl, int mode,
1923                                              u64 data)
1924 {
1925         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927         return dd->cce_err_status_cnt[26];
1928 }
1929
1930 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1931                                             void *context, int vl, int mode,
1932                                             u64 data)
1933 {
1934         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936         return dd->cce_err_status_cnt[25];
1937 }
1938
1939 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1940                                               void *context, int vl, int mode,
1941                                               u64 data)
1942 {
1943         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945         return dd->cce_err_status_cnt[24];
1946 }
1947
1948 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1949                                              void *context, int vl, int mode,
1950                                              u64 data)
1951 {
1952         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954         return dd->cce_err_status_cnt[23];
1955 }
1956
1957 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1958                                                  void *context, int vl,
1959                                                  int mode, u64 data)
1960 {
1961         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963         return dd->cce_err_status_cnt[22];
1964 }
1965
1966 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1967                                          void *context, int vl, int mode,
1968                                          u64 data)
1969 {
1970         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972         return dd->cce_err_status_cnt[21];
1973 }
1974
1975 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1976                                 const struct cntr_entry *entry,
1977                                 void *context, int vl, int mode, u64 data)
1978 {
1979         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981         return dd->cce_err_status_cnt[20];
1982 }
1983
1984 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1985                                                  void *context, int vl,
1986                                                  int mode, u64 data)
1987 {
1988         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990         return dd->cce_err_status_cnt[19];
1991 }
1992
1993 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1994                                              void *context, int vl, int mode,
1995                                              u64 data)
1996 {
1997         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999         return dd->cce_err_status_cnt[18];
2000 }
2001
2002 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2003                                             void *context, int vl, int mode,
2004                                             u64 data)
2005 {
2006         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008         return dd->cce_err_status_cnt[17];
2009 }
2010
2011 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2012                                               void *context, int vl, int mode,
2013                                               u64 data)
2014 {
2015         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017         return dd->cce_err_status_cnt[16];
2018 }
2019
2020 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2021                                              void *context, int vl, int mode,
2022                                              u64 data)
2023 {
2024         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026         return dd->cce_err_status_cnt[15];
2027 }
2028
2029 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2030                                                  void *context, int vl,
2031                                                  int mode, u64 data)
2032 {
2033         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035         return dd->cce_err_status_cnt[14];
2036 }
2037
2038 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2039                                              void *context, int vl, int mode,
2040                                              u64 data)
2041 {
2042         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044         return dd->cce_err_status_cnt[13];
2045 }
2046
2047 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2048                                 const struct cntr_entry *entry,
2049                                 void *context, int vl, int mode, u64 data)
2050 {
2051         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053         return dd->cce_err_status_cnt[12];
2054 }
2055
2056 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2057                                 const struct cntr_entry *entry,
2058                                 void *context, int vl, int mode, u64 data)
2059 {
2060         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062         return dd->cce_err_status_cnt[11];
2063 }
2064
2065 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2066                                 const struct cntr_entry *entry,
2067                                 void *context, int vl, int mode, u64 data)
2068 {
2069         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071         return dd->cce_err_status_cnt[10];
2072 }
2073
2074 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2075                                 const struct cntr_entry *entry,
2076                                 void *context, int vl, int mode, u64 data)
2077 {
2078         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080         return dd->cce_err_status_cnt[9];
2081 }
2082
2083 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2084                                 const struct cntr_entry *entry,
2085                                 void *context, int vl, int mode, u64 data)
2086 {
2087         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089         return dd->cce_err_status_cnt[8];
2090 }
2091
2092 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2093                                                  void *context, int vl,
2094                                                  int mode, u64 data)
2095 {
2096         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098         return dd->cce_err_status_cnt[7];
2099 }
2100
2101 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2102                                 const struct cntr_entry *entry,
2103                                 void *context, int vl, int mode, u64 data)
2104 {
2105         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107         return dd->cce_err_status_cnt[6];
2108 }
2109
2110 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2111                                                void *context, int vl, int mode,
2112                                                u64 data)
2113 {
2114         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116         return dd->cce_err_status_cnt[5];
2117 }
2118
2119 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2120                                           void *context, int vl, int mode,
2121                                           u64 data)
2122 {
2123         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124
2125         return dd->cce_err_status_cnt[4];
2126 }
2127
2128 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2129                                 const struct cntr_entry *entry,
2130                                 void *context, int vl, int mode, u64 data)
2131 {
2132         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2133
2134         return dd->cce_err_status_cnt[3];
2135 }
2136
2137 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2138                                                  void *context, int vl,
2139                                                  int mode, u64 data)
2140 {
2141         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2142
2143         return dd->cce_err_status_cnt[2];
2144 }
2145
2146 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2147                                                 void *context, int vl,
2148                                                 int mode, u64 data)
2149 {
2150         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2151
2152         return dd->cce_err_status_cnt[1];
2153 }
2154
2155 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2156                                          void *context, int vl, int mode,
2157                                          u64 data)
2158 {
2159         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2160
2161         return dd->cce_err_status_cnt[0];
2162 }
2163
2164 /*
2165  * Software counters corresponding to each of the
2166  * error status bits within RcvErrStatus
2167  */
2168 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2169                                         void *context, int vl, int mode,
2170                                         u64 data)
2171 {
2172         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174         return dd->rcv_err_status_cnt[63];
2175 }
2176
2177 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2178                                                 void *context, int vl,
2179                                                 int mode, u64 data)
2180 {
2181         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183         return dd->rcv_err_status_cnt[62];
2184 }
2185
2186 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2187                                                void *context, int vl, int mode,
2188                                                u64 data)
2189 {
2190         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192         return dd->rcv_err_status_cnt[61];
2193 }
2194
2195 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2196                                          void *context, int vl, int mode,
2197                                          u64 data)
2198 {
2199         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201         return dd->rcv_err_status_cnt[60];
2202 }
2203
2204 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2205                                                  void *context, int vl,
2206                                                  int mode, u64 data)
2207 {
2208         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210         return dd->rcv_err_status_cnt[59];
2211 }
2212
2213 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2214                                                  void *context, int vl,
2215                                                  int mode, u64 data)
2216 {
2217         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219         return dd->rcv_err_status_cnt[58];
2220 }
2221
2222 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2223                                             void *context, int vl, int mode,
2224                                             u64 data)
2225 {
2226         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228         return dd->rcv_err_status_cnt[57];
2229 }
2230
2231 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2232                                            void *context, int vl, int mode,
2233                                            u64 data)
2234 {
2235         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237         return dd->rcv_err_status_cnt[56];
2238 }
2239
2240 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2241                                            void *context, int vl, int mode,
2242                                            u64 data)
2243 {
2244         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246         return dd->rcv_err_status_cnt[55];
2247 }
2248
2249 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2250                                 const struct cntr_entry *entry,
2251                                 void *context, int vl, int mode, u64 data)
2252 {
2253         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255         return dd->rcv_err_status_cnt[54];
2256 }
2257
2258 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2259                                 const struct cntr_entry *entry,
2260                                 void *context, int vl, int mode, u64 data)
2261 {
2262         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264         return dd->rcv_err_status_cnt[53];
2265 }
2266
2267 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2268                                                  void *context, int vl,
2269                                                  int mode, u64 data)
2270 {
2271         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273         return dd->rcv_err_status_cnt[52];
2274 }
2275
2276 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2277                                                  void *context, int vl,
2278                                                  int mode, u64 data)
2279 {
2280         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282         return dd->rcv_err_status_cnt[51];
2283 }
2284
2285 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2286                                                  void *context, int vl,
2287                                                  int mode, u64 data)
2288 {
2289         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291         return dd->rcv_err_status_cnt[50];
2292 }
2293
2294 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2295                                                  void *context, int vl,
2296                                                  int mode, u64 data)
2297 {
2298         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300         return dd->rcv_err_status_cnt[49];
2301 }
2302
2303 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2304                                                  void *context, int vl,
2305                                                  int mode, u64 data)
2306 {
2307         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309         return dd->rcv_err_status_cnt[48];
2310 }
2311
2312 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2313                                                  void *context, int vl,
2314                                                  int mode, u64 data)
2315 {
2316         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318         return dd->rcv_err_status_cnt[47];
2319 }
2320
2321 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2322                                          void *context, int vl, int mode,
2323                                          u64 data)
2324 {
2325         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327         return dd->rcv_err_status_cnt[46];
2328 }
2329
2330 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2331                                 const struct cntr_entry *entry,
2332                                 void *context, int vl, int mode, u64 data)
2333 {
2334         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336         return dd->rcv_err_status_cnt[45];
2337 }
2338
2339 static u64 access_rx_lookup_csr_parity_err_cnt(
2340                                 const struct cntr_entry *entry,
2341                                 void *context, int vl, int mode, u64 data)
2342 {
2343         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345         return dd->rcv_err_status_cnt[44];
2346 }
2347
2348 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2349                                 const struct cntr_entry *entry,
2350                                 void *context, int vl, int mode, u64 data)
2351 {
2352         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354         return dd->rcv_err_status_cnt[43];
2355 }
2356
2357 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2358                                 const struct cntr_entry *entry,
2359                                 void *context, int vl, int mode, u64 data)
2360 {
2361         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363         return dd->rcv_err_status_cnt[42];
2364 }
2365
2366 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2367                                 const struct cntr_entry *entry,
2368                                 void *context, int vl, int mode, u64 data)
2369 {
2370         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372         return dd->rcv_err_status_cnt[41];
2373 }
2374
2375 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2376                                 const struct cntr_entry *entry,
2377                                 void *context, int vl, int mode, u64 data)
2378 {
2379         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381         return dd->rcv_err_status_cnt[40];
2382 }
2383
2384 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2385                                 const struct cntr_entry *entry,
2386                                 void *context, int vl, int mode, u64 data)
2387 {
2388         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390         return dd->rcv_err_status_cnt[39];
2391 }
2392
2393 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2394                                 const struct cntr_entry *entry,
2395                                 void *context, int vl, int mode, u64 data)
2396 {
2397         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399         return dd->rcv_err_status_cnt[38];
2400 }
2401
2402 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2403                                 const struct cntr_entry *entry,
2404                                 void *context, int vl, int mode, u64 data)
2405 {
2406         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408         return dd->rcv_err_status_cnt[37];
2409 }
2410
2411 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2412                                 const struct cntr_entry *entry,
2413                                 void *context, int vl, int mode, u64 data)
2414 {
2415         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417         return dd->rcv_err_status_cnt[36];
2418 }
2419
2420 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2421                                 const struct cntr_entry *entry,
2422                                 void *context, int vl, int mode, u64 data)
2423 {
2424         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426         return dd->rcv_err_status_cnt[35];
2427 }
2428
2429 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2430                                 const struct cntr_entry *entry,
2431                                 void *context, int vl, int mode, u64 data)
2432 {
2433         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435         return dd->rcv_err_status_cnt[34];
2436 }
2437
2438 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2439                                 const struct cntr_entry *entry,
2440                                 void *context, int vl, int mode, u64 data)
2441 {
2442         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444         return dd->rcv_err_status_cnt[33];
2445 }
2446
2447 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2448                                         void *context, int vl, int mode,
2449                                         u64 data)
2450 {
2451         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453         return dd->rcv_err_status_cnt[32];
2454 }
2455
2456 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2457                                        void *context, int vl, int mode,
2458                                        u64 data)
2459 {
2460         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462         return dd->rcv_err_status_cnt[31];
2463 }
2464
2465 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2466                                           void *context, int vl, int mode,
2467                                           u64 data)
2468 {
2469         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471         return dd->rcv_err_status_cnt[30];
2472 }
2473
2474 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2475                                              void *context, int vl, int mode,
2476                                              u64 data)
2477 {
2478         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480         return dd->rcv_err_status_cnt[29];
2481 }
2482
2483 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2484                                                  void *context, int vl,
2485                                                  int mode, u64 data)
2486 {
2487         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489         return dd->rcv_err_status_cnt[28];
2490 }
2491
2492 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2493                                 const struct cntr_entry *entry,
2494                                 void *context, int vl, int mode, u64 data)
2495 {
2496         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498         return dd->rcv_err_status_cnt[27];
2499 }
2500
2501 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2502                                 const struct cntr_entry *entry,
2503                                 void *context, int vl, int mode, u64 data)
2504 {
2505         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507         return dd->rcv_err_status_cnt[26];
2508 }
2509
2510 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2511                                 const struct cntr_entry *entry,
2512                                 void *context, int vl, int mode, u64 data)
2513 {
2514         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516         return dd->rcv_err_status_cnt[25];
2517 }
2518
2519 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2520                                 const struct cntr_entry *entry,
2521                                 void *context, int vl, int mode, u64 data)
2522 {
2523         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525         return dd->rcv_err_status_cnt[24];
2526 }
2527
2528 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2529                                 const struct cntr_entry *entry,
2530                                 void *context, int vl, int mode, u64 data)
2531 {
2532         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534         return dd->rcv_err_status_cnt[23];
2535 }
2536
2537 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2538                                 const struct cntr_entry *entry,
2539                                 void *context, int vl, int mode, u64 data)
2540 {
2541         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543         return dd->rcv_err_status_cnt[22];
2544 }
2545
2546 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2547                                 const struct cntr_entry *entry,
2548                                 void *context, int vl, int mode, u64 data)
2549 {
2550         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552         return dd->rcv_err_status_cnt[21];
2553 }
2554
2555 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2556                                 const struct cntr_entry *entry,
2557                                 void *context, int vl, int mode, u64 data)
2558 {
2559         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561         return dd->rcv_err_status_cnt[20];
2562 }
2563
2564 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2565                                 const struct cntr_entry *entry,
2566                                 void *context, int vl, int mode, u64 data)
2567 {
2568         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570         return dd->rcv_err_status_cnt[19];
2571 }
2572
2573 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2574                                                  void *context, int vl,
2575                                                  int mode, u64 data)
2576 {
2577         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579         return dd->rcv_err_status_cnt[18];
2580 }
2581
2582 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2583                                                  void *context, int vl,
2584                                                  int mode, u64 data)
2585 {
2586         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588         return dd->rcv_err_status_cnt[17];
2589 }
2590
2591 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2592                                 const struct cntr_entry *entry,
2593                                 void *context, int vl, int mode, u64 data)
2594 {
2595         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597         return dd->rcv_err_status_cnt[16];
2598 }
2599
2600 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2601                                 const struct cntr_entry *entry,
2602                                 void *context, int vl, int mode, u64 data)
2603 {
2604         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606         return dd->rcv_err_status_cnt[15];
2607 }
2608
2609 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2610                                                 void *context, int vl,
2611                                                 int mode, u64 data)
2612 {
2613         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615         return dd->rcv_err_status_cnt[14];
2616 }
2617
2618 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2619                                                 void *context, int vl,
2620                                                 int mode, u64 data)
2621 {
2622         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624         return dd->rcv_err_status_cnt[13];
2625 }
2626
2627 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2628                                               void *context, int vl, int mode,
2629                                               u64 data)
2630 {
2631         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633         return dd->rcv_err_status_cnt[12];
2634 }
2635
2636 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2637                                           void *context, int vl, int mode,
2638                                           u64 data)
2639 {
2640         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642         return dd->rcv_err_status_cnt[11];
2643 }
2644
2645 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2646                                           void *context, int vl, int mode,
2647                                           u64 data)
2648 {
2649         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651         return dd->rcv_err_status_cnt[10];
2652 }
2653
2654 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2655                                                void *context, int vl, int mode,
2656                                                u64 data)
2657 {
2658         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660         return dd->rcv_err_status_cnt[9];
2661 }
2662
2663 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2664                                             void *context, int vl, int mode,
2665                                             u64 data)
2666 {
2667         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669         return dd->rcv_err_status_cnt[8];
2670 }
2671
2672 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2673                                 const struct cntr_entry *entry,
2674                                 void *context, int vl, int mode, u64 data)
2675 {
2676         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678         return dd->rcv_err_status_cnt[7];
2679 }
2680
2681 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2682                                 const struct cntr_entry *entry,
2683                                 void *context, int vl, int mode, u64 data)
2684 {
2685         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687         return dd->rcv_err_status_cnt[6];
2688 }
2689
2690 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2691                                           void *context, int vl, int mode,
2692                                           u64 data)
2693 {
2694         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696         return dd->rcv_err_status_cnt[5];
2697 }
2698
2699 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2700                                           void *context, int vl, int mode,
2701                                           u64 data)
2702 {
2703         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704
2705         return dd->rcv_err_status_cnt[4];
2706 }
2707
2708 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2709                                          void *context, int vl, int mode,
2710                                          u64 data)
2711 {
2712         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2713
2714         return dd->rcv_err_status_cnt[3];
2715 }
2716
2717 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2718                                          void *context, int vl, int mode,
2719                                          u64 data)
2720 {
2721         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2722
2723         return dd->rcv_err_status_cnt[2];
2724 }
2725
2726 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2727                                             void *context, int vl, int mode,
2728                                             u64 data)
2729 {
2730         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2731
2732         return dd->rcv_err_status_cnt[1];
2733 }
2734
2735 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2736                                          void *context, int vl, int mode,
2737                                          u64 data)
2738 {
2739         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2740
2741         return dd->rcv_err_status_cnt[0];
2742 }
2743
2744 /*
2745  * Software counters corresponding to each of the
2746  * error status bits within SendPioErrStatus
2747  */
2748 static u64 access_pio_pec_sop_head_parity_err_cnt(
2749                                 const struct cntr_entry *entry,
2750                                 void *context, int vl, int mode, u64 data)
2751 {
2752         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754         return dd->send_pio_err_status_cnt[35];
2755 }
2756
2757 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2758                                 const struct cntr_entry *entry,
2759                                 void *context, int vl, int mode, u64 data)
2760 {
2761         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763         return dd->send_pio_err_status_cnt[34];
2764 }
2765
2766 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2767                                 const struct cntr_entry *entry,
2768                                 void *context, int vl, int mode, u64 data)
2769 {
2770         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772         return dd->send_pio_err_status_cnt[33];
2773 }
2774
2775 static u64 access_pio_current_free_cnt_parity_err_cnt(
2776                                 const struct cntr_entry *entry,
2777                                 void *context, int vl, int mode, u64 data)
2778 {
2779         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781         return dd->send_pio_err_status_cnt[32];
2782 }
2783
2784 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2785                                           void *context, int vl, int mode,
2786                                           u64 data)
2787 {
2788         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790         return dd->send_pio_err_status_cnt[31];
2791 }
2792
2793 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2794                                           void *context, int vl, int mode,
2795                                           u64 data)
2796 {
2797         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799         return dd->send_pio_err_status_cnt[30];
2800 }
2801
2802 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2803                                            void *context, int vl, int mode,
2804                                            u64 data)
2805 {
2806         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808         return dd->send_pio_err_status_cnt[29];
2809 }
2810
2811 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2812                                 const struct cntr_entry *entry,
2813                                 void *context, int vl, int mode, u64 data)
2814 {
2815         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817         return dd->send_pio_err_status_cnt[28];
2818 }
2819
2820 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2821                                              void *context, int vl, int mode,
2822                                              u64 data)
2823 {
2824         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826         return dd->send_pio_err_status_cnt[27];
2827 }
2828
2829 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2830                                              void *context, int vl, int mode,
2831                                              u64 data)
2832 {
2833         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835         return dd->send_pio_err_status_cnt[26];
2836 }
2837
2838 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2839                                                 void *context, int vl,
2840                                                 int mode, u64 data)
2841 {
2842         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844         return dd->send_pio_err_status_cnt[25];
2845 }
2846
2847 static u64 access_pio_block_qw_count_parity_err_cnt(
2848                                 const struct cntr_entry *entry,
2849                                 void *context, int vl, int mode, u64 data)
2850 {
2851         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853         return dd->send_pio_err_status_cnt[24];
2854 }
2855
2856 static u64 access_pio_write_qw_valid_parity_err_cnt(
2857                                 const struct cntr_entry *entry,
2858                                 void *context, int vl, int mode, u64 data)
2859 {
2860         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862         return dd->send_pio_err_status_cnt[23];
2863 }
2864
2865 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2866                                             void *context, int vl, int mode,
2867                                             u64 data)
2868 {
2869         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871         return dd->send_pio_err_status_cnt[22];
2872 }
2873
2874 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2875                                                 void *context, int vl,
2876                                                 int mode, u64 data)
2877 {
2878         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880         return dd->send_pio_err_status_cnt[21];
2881 }
2882
2883 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2884                                                 void *context, int vl,
2885                                                 int mode, u64 data)
2886 {
2887         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889         return dd->send_pio_err_status_cnt[20];
2890 }
2891
2892 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2893                                                 void *context, int vl,
2894                                                 int mode, u64 data)
2895 {
2896         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898         return dd->send_pio_err_status_cnt[19];
2899 }
2900
2901 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2902                                 const struct cntr_entry *entry,
2903                                 void *context, int vl, int mode, u64 data)
2904 {
2905         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907         return dd->send_pio_err_status_cnt[18];
2908 }
2909
2910 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2911                                          void *context, int vl, int mode,
2912                                          u64 data)
2913 {
2914         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916         return dd->send_pio_err_status_cnt[17];
2917 }
2918
2919 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2920                                             void *context, int vl, int mode,
2921                                             u64 data)
2922 {
2923         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925         return dd->send_pio_err_status_cnt[16];
2926 }
2927
2928 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2929                                 const struct cntr_entry *entry,
2930                                 void *context, int vl, int mode, u64 data)
2931 {
2932         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934         return dd->send_pio_err_status_cnt[15];
2935 }
2936
2937 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2938                                 const struct cntr_entry *entry,
2939                                 void *context, int vl, int mode, u64 data)
2940 {
2941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943         return dd->send_pio_err_status_cnt[14];
2944 }
2945
2946 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2947                                 const struct cntr_entry *entry,
2948                                 void *context, int vl, int mode, u64 data)
2949 {
2950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952         return dd->send_pio_err_status_cnt[13];
2953 }
2954
2955 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2956                                 const struct cntr_entry *entry,
2957                                 void *context, int vl, int mode, u64 data)
2958 {
2959         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961         return dd->send_pio_err_status_cnt[12];
2962 }
2963
2964 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2965                                 const struct cntr_entry *entry,
2966                                 void *context, int vl, int mode, u64 data)
2967 {
2968         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970         return dd->send_pio_err_status_cnt[11];
2971 }
2972
2973 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2974                                 const struct cntr_entry *entry,
2975                                 void *context, int vl, int mode, u64 data)
2976 {
2977         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979         return dd->send_pio_err_status_cnt[10];
2980 }
2981
2982 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2983                                 const struct cntr_entry *entry,
2984                                 void *context, int vl, int mode, u64 data)
2985 {
2986         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988         return dd->send_pio_err_status_cnt[9];
2989 }
2990
2991 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2992                                 const struct cntr_entry *entry,
2993                                 void *context, int vl, int mode, u64 data)
2994 {
2995         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997         return dd->send_pio_err_status_cnt[8];
2998 }
2999
3000 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3001                                 const struct cntr_entry *entry,
3002                                 void *context, int vl, int mode, u64 data)
3003 {
3004         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006         return dd->send_pio_err_status_cnt[7];
3007 }
3008
3009 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3010                                               void *context, int vl, int mode,
3011                                               u64 data)
3012 {
3013         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015         return dd->send_pio_err_status_cnt[6];
3016 }
3017
3018 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3019                                               void *context, int vl, int mode,
3020                                               u64 data)
3021 {
3022         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024         return dd->send_pio_err_status_cnt[5];
3025 }
3026
3027 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3028                                            void *context, int vl, int mode,
3029                                            u64 data)
3030 {
3031         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032
3033         return dd->send_pio_err_status_cnt[4];
3034 }
3035
3036 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3037                                            void *context, int vl, int mode,
3038                                            u64 data)
3039 {
3040         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3041
3042         return dd->send_pio_err_status_cnt[3];
3043 }
3044
3045 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3046                                          void *context, int vl, int mode,
3047                                          u64 data)
3048 {
3049         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3050
3051         return dd->send_pio_err_status_cnt[2];
3052 }
3053
3054 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3055                                                 void *context, int vl,
3056                                                 int mode, u64 data)
3057 {
3058         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3059
3060         return dd->send_pio_err_status_cnt[1];
3061 }
3062
3063 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3064                                              void *context, int vl, int mode,
3065                                              u64 data)
3066 {
3067         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3068
3069         return dd->send_pio_err_status_cnt[0];
3070 }
3071
3072 /*
3073  * Software counters corresponding to each of the
3074  * error status bits within SendDmaErrStatus
3075  */
3076 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3077                                 const struct cntr_entry *entry,
3078                                 void *context, int vl, int mode, u64 data)
3079 {
3080         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3081
3082         return dd->send_dma_err_status_cnt[3];
3083 }
3084
3085 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3086                                 const struct cntr_entry *entry,
3087                                 void *context, int vl, int mode, u64 data)
3088 {
3089         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3090
3091         return dd->send_dma_err_status_cnt[2];
3092 }
3093
3094 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3095                                           void *context, int vl, int mode,
3096                                           u64 data)
3097 {
3098         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3099
3100         return dd->send_dma_err_status_cnt[1];
3101 }
3102
3103 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3104                                        void *context, int vl, int mode,
3105                                        u64 data)
3106 {
3107         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3108
3109         return dd->send_dma_err_status_cnt[0];
3110 }
3111
3112 /*
3113  * Software counters corresponding to each of the
3114  * error status bits within SendEgressErrStatus
3115  */
3116 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3117                                 const struct cntr_entry *entry,
3118                                 void *context, int vl, int mode, u64 data)
3119 {
3120         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122         return dd->send_egress_err_status_cnt[63];
3123 }
3124
3125 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3126                                 const struct cntr_entry *entry,
3127                                 void *context, int vl, int mode, u64 data)
3128 {
3129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131         return dd->send_egress_err_status_cnt[62];
3132 }
3133
3134 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3135                                              void *context, int vl, int mode,
3136                                              u64 data)
3137 {
3138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140         return dd->send_egress_err_status_cnt[61];
3141 }
3142
3143 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3144                                                  void *context, int vl,
3145                                                  int mode, u64 data)
3146 {
3147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149         return dd->send_egress_err_status_cnt[60];
3150 }
3151
3152 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3153                                 const struct cntr_entry *entry,
3154                                 void *context, int vl, int mode, u64 data)
3155 {
3156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158         return dd->send_egress_err_status_cnt[59];
3159 }
3160
3161 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3162                                         void *context, int vl, int mode,
3163                                         u64 data)
3164 {
3165         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167         return dd->send_egress_err_status_cnt[58];
3168 }
3169
3170 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3171                                             void *context, int vl, int mode,
3172                                             u64 data)
3173 {
3174         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176         return dd->send_egress_err_status_cnt[57];
3177 }
3178
3179 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3180                                               void *context, int vl, int mode,
3181                                               u64 data)
3182 {
3183         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185         return dd->send_egress_err_status_cnt[56];
3186 }
3187
3188 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3189                                               void *context, int vl, int mode,
3190                                               u64 data)
3191 {
3192         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194         return dd->send_egress_err_status_cnt[55];
3195 }
3196
3197 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3198                                               void *context, int vl, int mode,
3199                                               u64 data)
3200 {
3201         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203         return dd->send_egress_err_status_cnt[54];
3204 }
3205
3206 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3207                                               void *context, int vl, int mode,
3208                                               u64 data)
3209 {
3210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212         return dd->send_egress_err_status_cnt[53];
3213 }
3214
3215 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3216                                               void *context, int vl, int mode,
3217                                               u64 data)
3218 {
3219         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221         return dd->send_egress_err_status_cnt[52];
3222 }
3223
3224 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3225                                               void *context, int vl, int mode,
3226                                               u64 data)
3227 {
3228         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230         return dd->send_egress_err_status_cnt[51];
3231 }
3232
3233 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3234                                               void *context, int vl, int mode,
3235                                               u64 data)
3236 {
3237         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239         return dd->send_egress_err_status_cnt[50];
3240 }
3241
3242 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3243                                               void *context, int vl, int mode,
3244                                               u64 data)
3245 {
3246         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248         return dd->send_egress_err_status_cnt[49];
3249 }
3250
3251 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3252                                               void *context, int vl, int mode,
3253                                               u64 data)
3254 {
3255         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257         return dd->send_egress_err_status_cnt[48];
3258 }
3259
3260 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3261                                               void *context, int vl, int mode,
3262                                               u64 data)
3263 {
3264         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266         return dd->send_egress_err_status_cnt[47];
3267 }
3268
3269 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3270                                             void *context, int vl, int mode,
3271                                             u64 data)
3272 {
3273         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275         return dd->send_egress_err_status_cnt[46];
3276 }
3277
3278 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3279                                              void *context, int vl, int mode,
3280                                              u64 data)
3281 {
3282         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284         return dd->send_egress_err_status_cnt[45];
3285 }
3286
3287 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3288                                                  void *context, int vl,
3289                                                  int mode, u64 data)
3290 {
3291         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293         return dd->send_egress_err_status_cnt[44];
3294 }
3295
3296 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3297                                 const struct cntr_entry *entry,
3298                                 void *context, int vl, int mode, u64 data)
3299 {
3300         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302         return dd->send_egress_err_status_cnt[43];
3303 }
3304
3305 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3306                                         void *context, int vl, int mode,
3307                                         u64 data)
3308 {
3309         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311         return dd->send_egress_err_status_cnt[42];
3312 }
3313
3314 static u64 access_tx_credit_return_partiy_err_cnt(
3315                                 const struct cntr_entry *entry,
3316                                 void *context, int vl, int mode, u64 data)
3317 {
3318         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320         return dd->send_egress_err_status_cnt[41];
3321 }
3322
3323 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3324                                 const struct cntr_entry *entry,
3325                                 void *context, int vl, int mode, u64 data)
3326 {
3327         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329         return dd->send_egress_err_status_cnt[40];
3330 }
3331
3332 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3333                                 const struct cntr_entry *entry,
3334                                 void *context, int vl, int mode, u64 data)
3335 {
3336         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338         return dd->send_egress_err_status_cnt[39];
3339 }
3340
3341 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3342                                 const struct cntr_entry *entry,
3343                                 void *context, int vl, int mode, u64 data)
3344 {
3345         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347         return dd->send_egress_err_status_cnt[38];
3348 }
3349
3350 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3351                                 const struct cntr_entry *entry,
3352                                 void *context, int vl, int mode, u64 data)
3353 {
3354         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356         return dd->send_egress_err_status_cnt[37];
3357 }
3358
3359 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3360                                 const struct cntr_entry *entry,
3361                                 void *context, int vl, int mode, u64 data)
3362 {
3363         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365         return dd->send_egress_err_status_cnt[36];
3366 }
3367
3368 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3369                                 const struct cntr_entry *entry,
3370                                 void *context, int vl, int mode, u64 data)
3371 {
3372         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374         return dd->send_egress_err_status_cnt[35];
3375 }
3376
3377 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3378                                 const struct cntr_entry *entry,
3379                                 void *context, int vl, int mode, u64 data)
3380 {
3381         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383         return dd->send_egress_err_status_cnt[34];
3384 }
3385
3386 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3387                                 const struct cntr_entry *entry,
3388                                 void *context, int vl, int mode, u64 data)
3389 {
3390         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392         return dd->send_egress_err_status_cnt[33];
3393 }
3394
3395 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3396                                 const struct cntr_entry *entry,
3397                                 void *context, int vl, int mode, u64 data)
3398 {
3399         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401         return dd->send_egress_err_status_cnt[32];
3402 }
3403
3404 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3405                                 const struct cntr_entry *entry,
3406                                 void *context, int vl, int mode, u64 data)
3407 {
3408         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410         return dd->send_egress_err_status_cnt[31];
3411 }
3412
3413 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3414                                 const struct cntr_entry *entry,
3415                                 void *context, int vl, int mode, u64 data)
3416 {
3417         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419         return dd->send_egress_err_status_cnt[30];
3420 }
3421
3422 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3423                                 const struct cntr_entry *entry,
3424                                 void *context, int vl, int mode, u64 data)
3425 {
3426         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428         return dd->send_egress_err_status_cnt[29];
3429 }
3430
3431 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3432                                 const struct cntr_entry *entry,
3433                                 void *context, int vl, int mode, u64 data)
3434 {
3435         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437         return dd->send_egress_err_status_cnt[28];
3438 }
3439
3440 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3441                                 const struct cntr_entry *entry,
3442                                 void *context, int vl, int mode, u64 data)
3443 {
3444         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446         return dd->send_egress_err_status_cnt[27];
3447 }
3448
3449 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3450                                 const struct cntr_entry *entry,
3451                                 void *context, int vl, int mode, u64 data)
3452 {
3453         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455         return dd->send_egress_err_status_cnt[26];
3456 }
3457
3458 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3459                                 const struct cntr_entry *entry,
3460                                 void *context, int vl, int mode, u64 data)
3461 {
3462         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464         return dd->send_egress_err_status_cnt[25];
3465 }
3466
3467 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3468                                 const struct cntr_entry *entry,
3469                                 void *context, int vl, int mode, u64 data)
3470 {
3471         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473         return dd->send_egress_err_status_cnt[24];
3474 }
3475
3476 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3477                                 const struct cntr_entry *entry,
3478                                 void *context, int vl, int mode, u64 data)
3479 {
3480         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482         return dd->send_egress_err_status_cnt[23];
3483 }
3484
3485 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3486                                 const struct cntr_entry *entry,
3487                                 void *context, int vl, int mode, u64 data)
3488 {
3489         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491         return dd->send_egress_err_status_cnt[22];
3492 }
3493
3494 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3495                                 const struct cntr_entry *entry,
3496                                 void *context, int vl, int mode, u64 data)
3497 {
3498         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500         return dd->send_egress_err_status_cnt[21];
3501 }
3502
3503 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3504                                 const struct cntr_entry *entry,
3505                                 void *context, int vl, int mode, u64 data)
3506 {
3507         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509         return dd->send_egress_err_status_cnt[20];
3510 }
3511
3512 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3513                                 const struct cntr_entry *entry,
3514                                 void *context, int vl, int mode, u64 data)
3515 {
3516         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518         return dd->send_egress_err_status_cnt[19];
3519 }
3520
3521 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3522                                 const struct cntr_entry *entry,
3523                                 void *context, int vl, int mode, u64 data)
3524 {
3525         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527         return dd->send_egress_err_status_cnt[18];
3528 }
3529
3530 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3531                                 const struct cntr_entry *entry,
3532                                 void *context, int vl, int mode, u64 data)
3533 {
3534         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536         return dd->send_egress_err_status_cnt[17];
3537 }
3538
3539 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3540                                 const struct cntr_entry *entry,
3541                                 void *context, int vl, int mode, u64 data)
3542 {
3543         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545         return dd->send_egress_err_status_cnt[16];
3546 }
3547
3548 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3549                                            void *context, int vl, int mode,
3550                                            u64 data)
3551 {
3552         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554         return dd->send_egress_err_status_cnt[15];
3555 }
3556
3557 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3558                                                  void *context, int vl,
3559                                                  int mode, u64 data)
3560 {
3561         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563         return dd->send_egress_err_status_cnt[14];
3564 }
3565
3566 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3567                                                void *context, int vl, int mode,
3568                                                u64 data)
3569 {
3570         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572         return dd->send_egress_err_status_cnt[13];
3573 }
3574
3575 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3576                                         void *context, int vl, int mode,
3577                                         u64 data)
3578 {
3579         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581         return dd->send_egress_err_status_cnt[12];
3582 }
3583
3584 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3585                                 const struct cntr_entry *entry,
3586                                 void *context, int vl, int mode, u64 data)
3587 {
3588         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590         return dd->send_egress_err_status_cnt[11];
3591 }
3592
3593 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3594                                              void *context, int vl, int mode,
3595                                              u64 data)
3596 {
3597         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599         return dd->send_egress_err_status_cnt[10];
3600 }
3601
3602 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3603                                             void *context, int vl, int mode,
3604                                             u64 data)
3605 {
3606         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608         return dd->send_egress_err_status_cnt[9];
3609 }
3610
3611 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3612                                 const struct cntr_entry *entry,
3613                                 void *context, int vl, int mode, u64 data)
3614 {
3615         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617         return dd->send_egress_err_status_cnt[8];
3618 }
3619
3620 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3621                                 const struct cntr_entry *entry,
3622                                 void *context, int vl, int mode, u64 data)
3623 {
3624         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626         return dd->send_egress_err_status_cnt[7];
3627 }
3628
3629 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3630                                             void *context, int vl, int mode,
3631                                             u64 data)
3632 {
3633         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635         return dd->send_egress_err_status_cnt[6];
3636 }
3637
3638 static u64 access_tx_incorrect_link_state_err_cnt(
3639                                 const struct cntr_entry *entry,
3640                                 void *context, int vl, int mode, u64 data)
3641 {
3642         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644         return dd->send_egress_err_status_cnt[5];
3645 }
3646
3647 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3648                                       void *context, int vl, int mode,
3649                                       u64 data)
3650 {
3651         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652
3653         return dd->send_egress_err_status_cnt[4];
3654 }
3655
3656 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3657                                 const struct cntr_entry *entry,
3658                                 void *context, int vl, int mode, u64 data)
3659 {
3660         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3661
3662         return dd->send_egress_err_status_cnt[3];
3663 }
3664
3665 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3666                                             void *context, int vl, int mode,
3667                                             u64 data)
3668 {
3669         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3670
3671         return dd->send_egress_err_status_cnt[2];
3672 }
3673
3674 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3675                                 const struct cntr_entry *entry,
3676                                 void *context, int vl, int mode, u64 data)
3677 {
3678         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3679
3680         return dd->send_egress_err_status_cnt[1];
3681 }
3682
3683 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3684                                 const struct cntr_entry *entry,
3685                                 void *context, int vl, int mode, u64 data)
3686 {
3687         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3688
3689         return dd->send_egress_err_status_cnt[0];
3690 }
3691
3692 /*
3693  * Software counters corresponding to each of the
3694  * error status bits within SendErrStatus
3695  */
3696 static u64 access_send_csr_write_bad_addr_err_cnt(
3697                                 const struct cntr_entry *entry,
3698                                 void *context, int vl, int mode, u64 data)
3699 {
3700         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3701
3702         return dd->send_err_status_cnt[2];
3703 }
3704
3705 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3706                                                  void *context, int vl,
3707                                                  int mode, u64 data)
3708 {
3709         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3710
3711         return dd->send_err_status_cnt[1];
3712 }
3713
3714 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3715                                       void *context, int vl, int mode,
3716                                       u64 data)
3717 {
3718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3719
3720         return dd->send_err_status_cnt[0];
3721 }
3722
3723 /*
3724  * Software counters corresponding to each of the
3725  * error status bits within SendCtxtErrStatus
3726  */
3727 static u64 access_pio_write_out_of_bounds_err_cnt(
3728                                 const struct cntr_entry *entry,
3729                                 void *context, int vl, int mode, u64 data)
3730 {
3731         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3732
3733         return dd->sw_ctxt_err_status_cnt[4];
3734 }
3735
3736 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3737                                              void *context, int vl, int mode,
3738                                              u64 data)
3739 {
3740         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3741
3742         return dd->sw_ctxt_err_status_cnt[3];
3743 }
3744
3745 static u64 access_pio_write_crosses_boundary_err_cnt(
3746                                 const struct cntr_entry *entry,
3747                                 void *context, int vl, int mode, u64 data)
3748 {
3749         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3750
3751         return dd->sw_ctxt_err_status_cnt[2];
3752 }
3753
3754 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3755                                                 void *context, int vl,
3756                                                 int mode, u64 data)
3757 {
3758         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3759
3760         return dd->sw_ctxt_err_status_cnt[1];
3761 }
3762
3763 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3764                                                void *context, int vl, int mode,
3765                                                u64 data)
3766 {
3767         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768
3769         return dd->sw_ctxt_err_status_cnt[0];
3770 }
3771
3772 /*
3773  * Software counters corresponding to each of the
3774  * error status bits within SendDmaEngErrStatus
3775  */
3776 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3777                                 const struct cntr_entry *entry,
3778                                 void *context, int vl, int mode, u64 data)
3779 {
3780         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782         return dd->sw_send_dma_eng_err_status_cnt[23];
3783 }
3784
3785 static u64 access_sdma_header_storage_cor_err_cnt(
3786                                 const struct cntr_entry *entry,
3787                                 void *context, int vl, int mode, u64 data)
3788 {
3789         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791         return dd->sw_send_dma_eng_err_status_cnt[22];
3792 }
3793
3794 static u64 access_sdma_packet_tracking_cor_err_cnt(
3795                                 const struct cntr_entry *entry,
3796                                 void *context, int vl, int mode, u64 data)
3797 {
3798         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800         return dd->sw_send_dma_eng_err_status_cnt[21];
3801 }
3802
3803 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3804                                             void *context, int vl, int mode,
3805                                             u64 data)
3806 {
3807         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809         return dd->sw_send_dma_eng_err_status_cnt[20];
3810 }
3811
3812 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3813                                               void *context, int vl, int mode,
3814                                               u64 data)
3815 {
3816         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818         return dd->sw_send_dma_eng_err_status_cnt[19];
3819 }
3820
3821 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3822                                 const struct cntr_entry *entry,
3823                                 void *context, int vl, int mode, u64 data)
3824 {
3825         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827         return dd->sw_send_dma_eng_err_status_cnt[18];
3828 }
3829
3830 static u64 access_sdma_header_storage_unc_err_cnt(
3831                                 const struct cntr_entry *entry,
3832                                 void *context, int vl, int mode, u64 data)
3833 {
3834         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836         return dd->sw_send_dma_eng_err_status_cnt[17];
3837 }
3838
3839 static u64 access_sdma_packet_tracking_unc_err_cnt(
3840                                 const struct cntr_entry *entry,
3841                                 void *context, int vl, int mode, u64 data)
3842 {
3843         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845         return dd->sw_send_dma_eng_err_status_cnt[16];
3846 }
3847
3848 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3849                                             void *context, int vl, int mode,
3850                                             u64 data)
3851 {
3852         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854         return dd->sw_send_dma_eng_err_status_cnt[15];
3855 }
3856
3857 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3858                                               void *context, int vl, int mode,
3859                                               u64 data)
3860 {
3861         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863         return dd->sw_send_dma_eng_err_status_cnt[14];
3864 }
3865
3866 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3867                                        void *context, int vl, int mode,
3868                                        u64 data)
3869 {
3870         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872         return dd->sw_send_dma_eng_err_status_cnt[13];
3873 }
3874
3875 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3876                                              void *context, int vl, int mode,
3877                                              u64 data)
3878 {
3879         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881         return dd->sw_send_dma_eng_err_status_cnt[12];
3882 }
3883
3884 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3885                                               void *context, int vl, int mode,
3886                                               u64 data)
3887 {
3888         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889
3890         return dd->sw_send_dma_eng_err_status_cnt[11];
3891 }
3892
3893 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3894                                              void *context, int vl, int mode,
3895                                              u64 data)
3896 {
3897         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3898
3899         return dd->sw_send_dma_eng_err_status_cnt[10];
3900 }
3901
3902 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3903                                           void *context, int vl, int mode,
3904                                           u64 data)
3905 {
3906         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3907
3908         return dd->sw_send_dma_eng_err_status_cnt[9];
3909 }
3910
3911 static u64 access_sdma_packet_desc_overflow_err_cnt(
3912                                 const struct cntr_entry *entry,
3913                                 void *context, int vl, int mode, u64 data)
3914 {
3915         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3916
3917         return dd->sw_send_dma_eng_err_status_cnt[8];
3918 }
3919
3920 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3921                                                void *context, int vl,
3922                                                int mode, u64 data)
3923 {
3924         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3925
3926         return dd->sw_send_dma_eng_err_status_cnt[7];
3927 }
3928
3929 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3930                                     void *context, int vl, int mode, u64 data)
3931 {
3932         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934         return dd->sw_send_dma_eng_err_status_cnt[6];
3935 }
3936
3937 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3938                                         void *context, int vl, int mode,
3939                                         u64 data)
3940 {
3941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943         return dd->sw_send_dma_eng_err_status_cnt[5];
3944 }
3945
3946 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3947                                           void *context, int vl, int mode,
3948                                           u64 data)
3949 {
3950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3951
3952         return dd->sw_send_dma_eng_err_status_cnt[4];
3953 }
3954
3955 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3956                                 const struct cntr_entry *entry,
3957                                 void *context, int vl, int mode, u64 data)
3958 {
3959         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3960
3961         return dd->sw_send_dma_eng_err_status_cnt[3];
3962 }
3963
3964 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3965                                         void *context, int vl, int mode,
3966                                         u64 data)
3967 {
3968         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3969
3970         return dd->sw_send_dma_eng_err_status_cnt[2];
3971 }
3972
3973 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3974                                             void *context, int vl, int mode,
3975                                             u64 data)
3976 {
3977         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3978
3979         return dd->sw_send_dma_eng_err_status_cnt[1];
3980 }
3981
3982 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3983                                         void *context, int vl, int mode,
3984                                         u64 data)
3985 {
3986         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3987
3988         return dd->sw_send_dma_eng_err_status_cnt[0];
3989 }
3990
3991 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3992                                  void *context, int vl, int mode,
3993                                  u64 data)
3994 {
3995         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3996
3997         u64 val = 0;
3998         u64 csr = entry->csr;
3999
4000         val = read_write_csr(dd, csr, mode, data);
4001         if (mode == CNTR_MODE_R) {
4002                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4003                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4004         } else if (mode == CNTR_MODE_W) {
4005                 dd->sw_rcv_bypass_packet_errors = 0;
4006         } else {
4007                 dd_dev_err(dd, "Invalid cntr register access mode");
4008                 return 0;
4009         }
4010         return val;
4011 }
4012
4013 #define def_access_sw_cpu(cntr) \
4014 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4015                               void *context, int vl, int mode, u64 data)      \
4016 {                                                                             \
4017         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4018         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4019                               ppd->ibport_data.rvp.cntr, vl,                  \
4020                               mode, data);                                    \
4021 }
4022
4023 def_access_sw_cpu(rc_acks);
4024 def_access_sw_cpu(rc_qacks);
4025 def_access_sw_cpu(rc_delayed_comp);
4026
4027 #define def_access_ibp_counter(cntr) \
4028 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4029                                 void *context, int vl, int mode, u64 data)    \
4030 {                                                                             \
4031         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4032                                                                               \
4033         if (vl != CNTR_INVALID_VL)                                            \
4034                 return 0;                                                     \
4035                                                                               \
4036         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4037                              mode, data);                                     \
4038 }
4039
4040 def_access_ibp_counter(loop_pkts);
4041 def_access_ibp_counter(rc_resends);
4042 def_access_ibp_counter(rnr_naks);
4043 def_access_ibp_counter(other_naks);
4044 def_access_ibp_counter(rc_timeouts);
4045 def_access_ibp_counter(pkt_drops);
4046 def_access_ibp_counter(dmawait);
4047 def_access_ibp_counter(rc_seqnak);
4048 def_access_ibp_counter(rc_dupreq);
4049 def_access_ibp_counter(rdma_seq);
4050 def_access_ibp_counter(unaligned);
4051 def_access_ibp_counter(seq_naks);
4052
4053 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4054 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4055 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4056                         CNTR_NORMAL),
4057 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4058                         CNTR_NORMAL),
4059 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4060                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4061                         CNTR_NORMAL),
4062 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4063                         CNTR_NORMAL),
4064 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4065                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4066 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4067                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4068 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4069                         CNTR_NORMAL),
4070 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4071                         CNTR_NORMAL),
4072 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4073                         CNTR_NORMAL),
4074 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4075                         CNTR_NORMAL),
4076 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4077                         CNTR_NORMAL),
4078 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4079                         CNTR_NORMAL),
4080 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4081                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4082 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4083                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4084 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4085                               CNTR_SYNTH),
4086 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4087                             access_dc_rcv_err_cnt),
4088 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4089                                  CNTR_SYNTH),
4090 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4091                                   CNTR_SYNTH),
4092 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4093                                   CNTR_SYNTH),
4094 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4095                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4096 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4097                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4098                                   CNTR_SYNTH),
4099 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4100                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4101 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4102                                CNTR_SYNTH),
4103 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4104                               CNTR_SYNTH),
4105 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4106                                CNTR_SYNTH),
4107 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4108                                  CNTR_SYNTH),
4109 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4110                                 CNTR_SYNTH),
4111 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4112                                 CNTR_SYNTH),
4113 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4114                                CNTR_SYNTH),
4115 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4116                                  CNTR_SYNTH | CNTR_VL),
4117 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4118                                 CNTR_SYNTH | CNTR_VL),
4119 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4120 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4121                                  CNTR_SYNTH | CNTR_VL),
4122 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4123 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4124                                  CNTR_SYNTH | CNTR_VL),
4125 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4126                               CNTR_SYNTH),
4127 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4128                                  CNTR_SYNTH | CNTR_VL),
4129 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4130                                 CNTR_SYNTH),
4131 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4132                                    CNTR_SYNTH | CNTR_VL),
4133 [C_DC_TOTAL_CRC] =
4134         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4135                          CNTR_SYNTH),
4136 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4137                                   CNTR_SYNTH),
4138 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4139                                   CNTR_SYNTH),
4140 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4141                                   CNTR_SYNTH),
4142 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4143                                   CNTR_SYNTH),
4144 [C_DC_CRC_MULT_LN] =
4145         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4146                          CNTR_SYNTH),
4147 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4148                                     CNTR_SYNTH),
4149 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4150                                     CNTR_SYNTH),
4151 [C_DC_SEQ_CRC_CNT] =
4152         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4153                          CNTR_SYNTH),
4154 [C_DC_ESC0_ONLY_CNT] =
4155         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4156                          CNTR_SYNTH),
4157 [C_DC_ESC0_PLUS1_CNT] =
4158         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4159                          CNTR_SYNTH),
4160 [C_DC_ESC0_PLUS2_CNT] =
4161         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4162                          CNTR_SYNTH),
4163 [C_DC_REINIT_FROM_PEER_CNT] =
4164         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4165                          CNTR_SYNTH),
4166 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4167                                   CNTR_SYNTH),
4168 [C_DC_MISC_FLG_CNT] =
4169         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4170                          CNTR_SYNTH),
4171 [C_DC_PRF_GOOD_LTP_CNT] =
4172         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4173 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4174         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4175                          CNTR_SYNTH),
4176 [C_DC_PRF_RX_FLIT_CNT] =
4177         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4178 [C_DC_PRF_TX_FLIT_CNT] =
4179         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4180 [C_DC_PRF_CLK_CNTR] =
4181         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4182 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4183         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4184 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4185         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4186                          CNTR_SYNTH),
4187 [C_DC_PG_STS_TX_SBE_CNT] =
4188         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4189 [C_DC_PG_STS_TX_MBE_CNT] =
4190         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4191                          CNTR_SYNTH),
4192 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4193                             access_sw_cpu_intr),
4194 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4195                             access_sw_cpu_rcv_limit),
4196 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4197                             access_sw_vtx_wait),
4198 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4199                             access_sw_pio_wait),
4200 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4201                             access_sw_pio_drain),
4202 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4203                             access_sw_kmem_wait),
4204 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4205                             access_sw_send_schedule),
4206 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4207                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4208                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209                                       dev_access_u32_csr),
4210 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4211                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212                              access_sde_int_cnt),
4213 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4214                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215                              access_sde_err_cnt),
4216 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4217                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218                                   access_sde_idle_int_cnt),
4219 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4220                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4221                                       access_sde_progress_int_cnt),
4222 /* MISC_ERR_STATUS */
4223 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4224                                 CNTR_NORMAL,
4225                                 access_misc_pll_lock_fail_err_cnt),
4226 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4227                                 CNTR_NORMAL,
4228                                 access_misc_mbist_fail_err_cnt),
4229 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4230                                 CNTR_NORMAL,
4231                                 access_misc_invalid_eep_cmd_err_cnt),
4232 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4233                                 CNTR_NORMAL,
4234                                 access_misc_efuse_done_parity_err_cnt),
4235 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4236                                 CNTR_NORMAL,
4237                                 access_misc_efuse_write_err_cnt),
4238 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4239                                 0, CNTR_NORMAL,
4240                                 access_misc_efuse_read_bad_addr_err_cnt),
4241 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4242                                 CNTR_NORMAL,
4243                                 access_misc_efuse_csr_parity_err_cnt),
4244 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4245                                 CNTR_NORMAL,
4246                                 access_misc_fw_auth_failed_err_cnt),
4247 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4248                                 CNTR_NORMAL,
4249                                 access_misc_key_mismatch_err_cnt),
4250 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4251                                 CNTR_NORMAL,
4252                                 access_misc_sbus_write_failed_err_cnt),
4253 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4254                                 CNTR_NORMAL,
4255                                 access_misc_csr_write_bad_addr_err_cnt),
4256 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4257                                 CNTR_NORMAL,
4258                                 access_misc_csr_read_bad_addr_err_cnt),
4259 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4260                                 CNTR_NORMAL,
4261                                 access_misc_csr_parity_err_cnt),
4262 /* CceErrStatus */
4263 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4264                                 CNTR_NORMAL,
4265                                 access_sw_cce_err_status_aggregated_cnt),
4266 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4267                                 CNTR_NORMAL,
4268                                 access_cce_msix_csr_parity_err_cnt),
4269 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4270                                 CNTR_NORMAL,
4271                                 access_cce_int_map_unc_err_cnt),
4272 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4273                                 CNTR_NORMAL,
4274                                 access_cce_int_map_cor_err_cnt),
4275 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4276                                 CNTR_NORMAL,
4277                                 access_cce_msix_table_unc_err_cnt),
4278 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4279                                 CNTR_NORMAL,
4280                                 access_cce_msix_table_cor_err_cnt),
4281 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4282                                 0, CNTR_NORMAL,
4283                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4284 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4285                                 0, CNTR_NORMAL,
4286                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4287 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4288                                 CNTR_NORMAL,
4289                                 access_cce_seg_write_bad_addr_err_cnt),
4290 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4291                                 CNTR_NORMAL,
4292                                 access_cce_seg_read_bad_addr_err_cnt),
4293 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4294                                 CNTR_NORMAL,
4295                                 access_la_triggered_cnt),
4296 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4297                                 CNTR_NORMAL,
4298                                 access_cce_trgt_cpl_timeout_err_cnt),
4299 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4300                                 CNTR_NORMAL,
4301                                 access_pcic_receive_parity_err_cnt),
4302 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4303                                 CNTR_NORMAL,
4304                                 access_pcic_transmit_back_parity_err_cnt),
4305 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4306                                 0, CNTR_NORMAL,
4307                                 access_pcic_transmit_front_parity_err_cnt),
4308 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4309                                 CNTR_NORMAL,
4310                                 access_pcic_cpl_dat_q_unc_err_cnt),
4311 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4312                                 CNTR_NORMAL,
4313                                 access_pcic_cpl_hd_q_unc_err_cnt),
4314 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4315                                 CNTR_NORMAL,
4316                                 access_pcic_post_dat_q_unc_err_cnt),
4317 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4318                                 CNTR_NORMAL,
4319                                 access_pcic_post_hd_q_unc_err_cnt),
4320 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4321                                 CNTR_NORMAL,
4322                                 access_pcic_retry_sot_mem_unc_err_cnt),
4323 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4324                                 CNTR_NORMAL,
4325                                 access_pcic_retry_mem_unc_err),
4326 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4327                                 CNTR_NORMAL,
4328                                 access_pcic_n_post_dat_q_parity_err_cnt),
4329 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4330                                 CNTR_NORMAL,
4331                                 access_pcic_n_post_h_q_parity_err_cnt),
4332 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4333                                 CNTR_NORMAL,
4334                                 access_pcic_cpl_dat_q_cor_err_cnt),
4335 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4336                                 CNTR_NORMAL,
4337                                 access_pcic_cpl_hd_q_cor_err_cnt),
4338 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4339                                 CNTR_NORMAL,
4340                                 access_pcic_post_dat_q_cor_err_cnt),
4341 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4342                                 CNTR_NORMAL,
4343                                 access_pcic_post_hd_q_cor_err_cnt),
4344 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4345                                 CNTR_NORMAL,
4346                                 access_pcic_retry_sot_mem_cor_err_cnt),
4347 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4348                                 CNTR_NORMAL,
4349                                 access_pcic_retry_mem_cor_err_cnt),
4350 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4351                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4352                                 CNTR_NORMAL,
4353                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4354 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4355                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4356                                 CNTR_NORMAL,
4357                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4358                                 ),
4359 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4360                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4361                         CNTR_NORMAL,
4362                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4363 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4364                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4365                         CNTR_NORMAL,
4366                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4367 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4368                         0, CNTR_NORMAL,
4369                         access_cce_cli2_async_fifo_parity_err_cnt),
4370 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4371                         CNTR_NORMAL,
4372                         access_cce_csr_cfg_bus_parity_err_cnt),
4373 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4374                         0, CNTR_NORMAL,
4375                         access_cce_cli0_async_fifo_parity_err_cnt),
4376 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4377                         CNTR_NORMAL,
4378                         access_cce_rspd_data_parity_err_cnt),
4379 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4380                         CNTR_NORMAL,
4381                         access_cce_trgt_access_err_cnt),
4382 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4383                         0, CNTR_NORMAL,
4384                         access_cce_trgt_async_fifo_parity_err_cnt),
4385 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4386                         CNTR_NORMAL,
4387                         access_cce_csr_write_bad_addr_err_cnt),
4388 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4389                         CNTR_NORMAL,
4390                         access_cce_csr_read_bad_addr_err_cnt),
4391 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4392                         CNTR_NORMAL,
4393                         access_ccs_csr_parity_err_cnt),
4394
4395 /* RcvErrStatus */
4396 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4397                         CNTR_NORMAL,
4398                         access_rx_csr_parity_err_cnt),
4399 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4400                         CNTR_NORMAL,
4401                         access_rx_csr_write_bad_addr_err_cnt),
4402 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4403                         CNTR_NORMAL,
4404                         access_rx_csr_read_bad_addr_err_cnt),
4405 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4406                         CNTR_NORMAL,
4407                         access_rx_dma_csr_unc_err_cnt),
4408 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4409                         CNTR_NORMAL,
4410                         access_rx_dma_dq_fsm_encoding_err_cnt),
4411 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4412                         CNTR_NORMAL,
4413                         access_rx_dma_eq_fsm_encoding_err_cnt),
4414 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4415                         CNTR_NORMAL,
4416                         access_rx_dma_csr_parity_err_cnt),
4417 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4418                         CNTR_NORMAL,
4419                         access_rx_rbuf_data_cor_err_cnt),
4420 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4421                         CNTR_NORMAL,
4422                         access_rx_rbuf_data_unc_err_cnt),
4423 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4424                         CNTR_NORMAL,
4425                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4426 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4427                         CNTR_NORMAL,
4428                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4429 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4430                         CNTR_NORMAL,
4431                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4432 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4433                         CNTR_NORMAL,
4434                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4435 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4436                         CNTR_NORMAL,
4437                         access_rx_rbuf_desc_part2_cor_err_cnt),
4438 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4439                         CNTR_NORMAL,
4440                         access_rx_rbuf_desc_part2_unc_err_cnt),
4441 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4442                         CNTR_NORMAL,
4443                         access_rx_rbuf_desc_part1_cor_err_cnt),
4444 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4445                         CNTR_NORMAL,
4446                         access_rx_rbuf_desc_part1_unc_err_cnt),
4447 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4448                         CNTR_NORMAL,
4449                         access_rx_hq_intr_fsm_err_cnt),
4450 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4451                         CNTR_NORMAL,
4452                         access_rx_hq_intr_csr_parity_err_cnt),
4453 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4454                         CNTR_NORMAL,
4455                         access_rx_lookup_csr_parity_err_cnt),
4456 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4457                         CNTR_NORMAL,
4458                         access_rx_lookup_rcv_array_cor_err_cnt),
4459 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4460                         CNTR_NORMAL,
4461                         access_rx_lookup_rcv_array_unc_err_cnt),
4462 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4463                         0, CNTR_NORMAL,
4464                         access_rx_lookup_des_part2_parity_err_cnt),
4465 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4466                         0, CNTR_NORMAL,
4467                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4468 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4469                         CNTR_NORMAL,
4470                         access_rx_lookup_des_part1_unc_err_cnt),
4471 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4472                         CNTR_NORMAL,
4473                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4474 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4475                         CNTR_NORMAL,
4476                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4477 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4478                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4479                         CNTR_NORMAL,
4480                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4481 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4482                         0, CNTR_NORMAL,
4483                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4484 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4485                         0, CNTR_NORMAL,
4486                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4487 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4488                         CNTR_NORMAL,
4489                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4490 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4491                         CNTR_NORMAL,
4492                         access_rx_rbuf_empty_err_cnt),
4493 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4494                         CNTR_NORMAL,
4495                         access_rx_rbuf_full_err_cnt),
4496 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4497                         CNTR_NORMAL,
4498                         access_rbuf_bad_lookup_err_cnt),
4499 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4500                         CNTR_NORMAL,
4501                         access_rbuf_ctx_id_parity_err_cnt),
4502 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4503                         CNTR_NORMAL,
4504                         access_rbuf_csr_qeopdw_parity_err_cnt),
4505 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4506                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4507                         CNTR_NORMAL,
4508                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4509 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4510                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4511                         CNTR_NORMAL,
4512                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4513 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4514                         0, CNTR_NORMAL,
4515                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4516 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4517                         0, CNTR_NORMAL,
4518                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4519 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4520                         0, 0, CNTR_NORMAL,
4521                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4522 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4523                         0, CNTR_NORMAL,
4524                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4525 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4526                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4527                         CNTR_NORMAL,
4528                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4529 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4530                         0, CNTR_NORMAL,
4531                         access_rx_rbuf_block_list_read_cor_err_cnt),
4532 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4533                         0, CNTR_NORMAL,
4534                         access_rx_rbuf_block_list_read_unc_err_cnt),
4535 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4536                         CNTR_NORMAL,
4537                         access_rx_rbuf_lookup_des_cor_err_cnt),
4538 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4539                         CNTR_NORMAL,
4540                         access_rx_rbuf_lookup_des_unc_err_cnt),
4541 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4542                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4543                         CNTR_NORMAL,
4544                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4545 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4546                         CNTR_NORMAL,
4547                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4548 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4549                         CNTR_NORMAL,
4550                         access_rx_rbuf_free_list_cor_err_cnt),
4551 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4552                         CNTR_NORMAL,
4553                         access_rx_rbuf_free_list_unc_err_cnt),
4554 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4555                         CNTR_NORMAL,
4556                         access_rx_rcv_fsm_encoding_err_cnt),
4557 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4558                         CNTR_NORMAL,
4559                         access_rx_dma_flag_cor_err_cnt),
4560 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4561                         CNTR_NORMAL,
4562                         access_rx_dma_flag_unc_err_cnt),
4563 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4564                         CNTR_NORMAL,
4565                         access_rx_dc_sop_eop_parity_err_cnt),
4566 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4567                         CNTR_NORMAL,
4568                         access_rx_rcv_csr_parity_err_cnt),
4569 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4570                         CNTR_NORMAL,
4571                         access_rx_rcv_qp_map_table_cor_err_cnt),
4572 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4573                         CNTR_NORMAL,
4574                         access_rx_rcv_qp_map_table_unc_err_cnt),
4575 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4576                         CNTR_NORMAL,
4577                         access_rx_rcv_data_cor_err_cnt),
4578 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4579                         CNTR_NORMAL,
4580                         access_rx_rcv_data_unc_err_cnt),
4581 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4582                         CNTR_NORMAL,
4583                         access_rx_rcv_hdr_cor_err_cnt),
4584 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4585                         CNTR_NORMAL,
4586                         access_rx_rcv_hdr_unc_err_cnt),
4587 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4588                         CNTR_NORMAL,
4589                         access_rx_dc_intf_parity_err_cnt),
4590 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4591                         CNTR_NORMAL,
4592                         access_rx_dma_csr_cor_err_cnt),
4593 /* SendPioErrStatus */
4594 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4595                         CNTR_NORMAL,
4596                         access_pio_pec_sop_head_parity_err_cnt),
4597 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4598                         CNTR_NORMAL,
4599                         access_pio_pcc_sop_head_parity_err_cnt),
4600 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4601                         0, 0, CNTR_NORMAL,
4602                         access_pio_last_returned_cnt_parity_err_cnt),
4603 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4604                         0, CNTR_NORMAL,
4605                         access_pio_current_free_cnt_parity_err_cnt),
4606 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4607                         CNTR_NORMAL,
4608                         access_pio_reserved_31_err_cnt),
4609 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4610                         CNTR_NORMAL,
4611                         access_pio_reserved_30_err_cnt),
4612 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4613                         CNTR_NORMAL,
4614                         access_pio_ppmc_sop_len_err_cnt),
4615 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4616                         CNTR_NORMAL,
4617                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4618 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4619                         CNTR_NORMAL,
4620                         access_pio_vl_fifo_parity_err_cnt),
4621 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4622                         CNTR_NORMAL,
4623                         access_pio_vlf_sop_parity_err_cnt),
4624 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4625                         CNTR_NORMAL,
4626                         access_pio_vlf_v1_len_parity_err_cnt),
4627 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4628                         CNTR_NORMAL,
4629                         access_pio_block_qw_count_parity_err_cnt),
4630 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4631                         CNTR_NORMAL,
4632                         access_pio_write_qw_valid_parity_err_cnt),
4633 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4634                         CNTR_NORMAL,
4635                         access_pio_state_machine_err_cnt),
4636 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4637                         CNTR_NORMAL,
4638                         access_pio_write_data_parity_err_cnt),
4639 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4640                         CNTR_NORMAL,
4641                         access_pio_host_addr_mem_cor_err_cnt),
4642 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4643                         CNTR_NORMAL,
4644                         access_pio_host_addr_mem_unc_err_cnt),
4645 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4646                         CNTR_NORMAL,
4647                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4648 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4649                         CNTR_NORMAL,
4650                         access_pio_init_sm_in_err_cnt),
4651 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4652                         CNTR_NORMAL,
4653                         access_pio_ppmc_pbl_fifo_err_cnt),
4654 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4655                         0, CNTR_NORMAL,
4656                         access_pio_credit_ret_fifo_parity_err_cnt),
4657 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4658                         CNTR_NORMAL,
4659                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4660 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4661                         CNTR_NORMAL,
4662                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4663 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4664                         CNTR_NORMAL,
4665                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4666 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4667                         CNTR_NORMAL,
4668                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4669 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4670                         CNTR_NORMAL,
4671                         access_pio_sm_pkt_reset_parity_err_cnt),
4672 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4673                         CNTR_NORMAL,
4674                         access_pio_pkt_evict_fifo_parity_err_cnt),
4675 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4676                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4677                         CNTR_NORMAL,
4678                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4679 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4680                         CNTR_NORMAL,
4681                         access_pio_sbrdctl_crrel_parity_err_cnt),
4682 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4683                         CNTR_NORMAL,
4684                         access_pio_pec_fifo_parity_err_cnt),
4685 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4686                         CNTR_NORMAL,
4687                         access_pio_pcc_fifo_parity_err_cnt),
4688 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4689                         CNTR_NORMAL,
4690                         access_pio_sb_mem_fifo1_err_cnt),
4691 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4692                         CNTR_NORMAL,
4693                         access_pio_sb_mem_fifo0_err_cnt),
4694 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4695                         CNTR_NORMAL,
4696                         access_pio_csr_parity_err_cnt),
4697 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4698                         CNTR_NORMAL,
4699                         access_pio_write_addr_parity_err_cnt),
4700 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4701                         CNTR_NORMAL,
4702                         access_pio_write_bad_ctxt_err_cnt),
4703 /* SendDmaErrStatus */
4704 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4705                         0, CNTR_NORMAL,
4706                         access_sdma_pcie_req_tracking_cor_err_cnt),
4707 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4708                         0, CNTR_NORMAL,
4709                         access_sdma_pcie_req_tracking_unc_err_cnt),
4710 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4711                         CNTR_NORMAL,
4712                         access_sdma_csr_parity_err_cnt),
4713 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4714                         CNTR_NORMAL,
4715                         access_sdma_rpy_tag_err_cnt),
4716 /* SendEgressErrStatus */
4717 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4718                         CNTR_NORMAL,
4719                         access_tx_read_pio_memory_csr_unc_err_cnt),
4720 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4721                         0, CNTR_NORMAL,
4722                         access_tx_read_sdma_memory_csr_err_cnt),
4723 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_tx_egress_fifo_cor_err_cnt),
4726 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_tx_read_pio_memory_cor_err_cnt),
4729 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_tx_read_sdma_memory_cor_err_cnt),
4732 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_tx_sb_hdr_cor_err_cnt),
4735 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_tx_credit_overrun_err_cnt),
4738 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4739                         CNTR_NORMAL,
4740                         access_tx_launch_fifo8_cor_err_cnt),
4741 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4742                         CNTR_NORMAL,
4743                         access_tx_launch_fifo7_cor_err_cnt),
4744 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4745                         CNTR_NORMAL,
4746                         access_tx_launch_fifo6_cor_err_cnt),
4747 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4748                         CNTR_NORMAL,
4749                         access_tx_launch_fifo5_cor_err_cnt),
4750 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4751                         CNTR_NORMAL,
4752                         access_tx_launch_fifo4_cor_err_cnt),
4753 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4754                         CNTR_NORMAL,
4755                         access_tx_launch_fifo3_cor_err_cnt),
4756 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4757                         CNTR_NORMAL,
4758                         access_tx_launch_fifo2_cor_err_cnt),
4759 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4760                         CNTR_NORMAL,
4761                         access_tx_launch_fifo1_cor_err_cnt),
4762 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4763                         CNTR_NORMAL,
4764                         access_tx_launch_fifo0_cor_err_cnt),
4765 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4766                         CNTR_NORMAL,
4767                         access_tx_credit_return_vl_err_cnt),
4768 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4769                         CNTR_NORMAL,
4770                         access_tx_hcrc_insertion_err_cnt),
4771 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4772                         CNTR_NORMAL,
4773                         access_tx_egress_fifo_unc_err_cnt),
4774 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4775                         CNTR_NORMAL,
4776                         access_tx_read_pio_memory_unc_err_cnt),
4777 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4778                         CNTR_NORMAL,
4779                         access_tx_read_sdma_memory_unc_err_cnt),
4780 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4781                         CNTR_NORMAL,
4782                         access_tx_sb_hdr_unc_err_cnt),
4783 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4784                         CNTR_NORMAL,
4785                         access_tx_credit_return_partiy_err_cnt),
4786 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4787                         0, 0, CNTR_NORMAL,
4788                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4789 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4790                         0, 0, CNTR_NORMAL,
4791                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4792 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4793                         0, 0, CNTR_NORMAL,
4794                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4795 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4796                         0, 0, CNTR_NORMAL,
4797                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4798 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4799                         0, 0, CNTR_NORMAL,
4800                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4801 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4802                         0, 0, CNTR_NORMAL,
4803                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4804 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4805                         0, 0, CNTR_NORMAL,
4806                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4807 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4808                         0, 0, CNTR_NORMAL,
4809                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4810 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4811                         0, 0, CNTR_NORMAL,
4812                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4813 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4814                         0, 0, CNTR_NORMAL,
4815                         access_tx_sdma15_disallowed_packet_err_cnt),
4816 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4817                         0, 0, CNTR_NORMAL,
4818                         access_tx_sdma14_disallowed_packet_err_cnt),
4819 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4820                         0, 0, CNTR_NORMAL,
4821                         access_tx_sdma13_disallowed_packet_err_cnt),
4822 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4823                         0, 0, CNTR_NORMAL,
4824                         access_tx_sdma12_disallowed_packet_err_cnt),
4825 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4826                         0, 0, CNTR_NORMAL,
4827                         access_tx_sdma11_disallowed_packet_err_cnt),
4828 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4829                         0, 0, CNTR_NORMAL,
4830                         access_tx_sdma10_disallowed_packet_err_cnt),
4831 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4832                         0, 0, CNTR_NORMAL,
4833                         access_tx_sdma9_disallowed_packet_err_cnt),
4834 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4835                         0, 0, CNTR_NORMAL,
4836                         access_tx_sdma8_disallowed_packet_err_cnt),
4837 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4838                         0, 0, CNTR_NORMAL,
4839                         access_tx_sdma7_disallowed_packet_err_cnt),
4840 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4841                         0, 0, CNTR_NORMAL,
4842                         access_tx_sdma6_disallowed_packet_err_cnt),
4843 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4844                         0, 0, CNTR_NORMAL,
4845                         access_tx_sdma5_disallowed_packet_err_cnt),
4846 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4847                         0, 0, CNTR_NORMAL,
4848                         access_tx_sdma4_disallowed_packet_err_cnt),
4849 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4850                         0, 0, CNTR_NORMAL,
4851                         access_tx_sdma3_disallowed_packet_err_cnt),
4852 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4853                         0, 0, CNTR_NORMAL,
4854                         access_tx_sdma2_disallowed_packet_err_cnt),
4855 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4856                         0, 0, CNTR_NORMAL,
4857                         access_tx_sdma1_disallowed_packet_err_cnt),
4858 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4859                         0, 0, CNTR_NORMAL,
4860                         access_tx_sdma0_disallowed_packet_err_cnt),
4861 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4862                         CNTR_NORMAL,
4863                         access_tx_config_parity_err_cnt),
4864 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4865                         CNTR_NORMAL,
4866                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4867 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4868                         CNTR_NORMAL,
4869                         access_tx_launch_csr_parity_err_cnt),
4870 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4871                         CNTR_NORMAL,
4872                         access_tx_illegal_vl_err_cnt),
4873 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4874                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4875                         CNTR_NORMAL,
4876                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4877 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4878                         CNTR_NORMAL,
4879                         access_egress_reserved_10_err_cnt),
4880 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4881                         CNTR_NORMAL,
4882                         access_egress_reserved_9_err_cnt),
4883 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4884                         0, 0, CNTR_NORMAL,
4885                         access_tx_sdma_launch_intf_parity_err_cnt),
4886 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4887                         CNTR_NORMAL,
4888                         access_tx_pio_launch_intf_parity_err_cnt),
4889 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4890                         CNTR_NORMAL,
4891                         access_egress_reserved_6_err_cnt),
4892 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4893                         CNTR_NORMAL,
4894                         access_tx_incorrect_link_state_err_cnt),
4895 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4896                         CNTR_NORMAL,
4897                         access_tx_linkdown_err_cnt),
4898 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4899                         "EgressFifoUnderrunOrParityErr", 0, 0,
4900                         CNTR_NORMAL,
4901                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4902 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4903                         CNTR_NORMAL,
4904                         access_egress_reserved_2_err_cnt),
4905 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4906                         CNTR_NORMAL,
4907                         access_tx_pkt_integrity_mem_unc_err_cnt),
4908 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4909                         CNTR_NORMAL,
4910                         access_tx_pkt_integrity_mem_cor_err_cnt),
4911 /* SendErrStatus */
4912 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4913                         CNTR_NORMAL,
4914                         access_send_csr_write_bad_addr_err_cnt),
4915 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4916                         CNTR_NORMAL,
4917                         access_send_csr_read_bad_addr_err_cnt),
4918 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4919                         CNTR_NORMAL,
4920                         access_send_csr_parity_cnt),
4921 /* SendCtxtErrStatus */
4922 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4923                         CNTR_NORMAL,
4924                         access_pio_write_out_of_bounds_err_cnt),
4925 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4926                         CNTR_NORMAL,
4927                         access_pio_write_overflow_err_cnt),
4928 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4929                         0, 0, CNTR_NORMAL,
4930                         access_pio_write_crosses_boundary_err_cnt),
4931 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4932                         CNTR_NORMAL,
4933                         access_pio_disallowed_packet_err_cnt),
4934 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4935                         CNTR_NORMAL,
4936                         access_pio_inconsistent_sop_err_cnt),
4937 /* SendDmaEngErrStatus */
4938 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4939                         0, 0, CNTR_NORMAL,
4940                         access_sdma_header_request_fifo_cor_err_cnt),
4941 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4942                         CNTR_NORMAL,
4943                         access_sdma_header_storage_cor_err_cnt),
4944 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4945                         CNTR_NORMAL,
4946                         access_sdma_packet_tracking_cor_err_cnt),
4947 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4948                         CNTR_NORMAL,
4949                         access_sdma_assembly_cor_err_cnt),
4950 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4951                         CNTR_NORMAL,
4952                         access_sdma_desc_table_cor_err_cnt),
4953 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4954                         0, 0, CNTR_NORMAL,
4955                         access_sdma_header_request_fifo_unc_err_cnt),
4956 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4957                         CNTR_NORMAL,
4958                         access_sdma_header_storage_unc_err_cnt),
4959 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4960                         CNTR_NORMAL,
4961                         access_sdma_packet_tracking_unc_err_cnt),
4962 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4963                         CNTR_NORMAL,
4964                         access_sdma_assembly_unc_err_cnt),
4965 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4966                         CNTR_NORMAL,
4967                         access_sdma_desc_table_unc_err_cnt),
4968 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4969                         CNTR_NORMAL,
4970                         access_sdma_timeout_err_cnt),
4971 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4972                         CNTR_NORMAL,
4973                         access_sdma_header_length_err_cnt),
4974 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4975                         CNTR_NORMAL,
4976                         access_sdma_header_address_err_cnt),
4977 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4978                         CNTR_NORMAL,
4979                         access_sdma_header_select_err_cnt),
4980 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4981                         CNTR_NORMAL,
4982                         access_sdma_reserved_9_err_cnt),
4983 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4984                         CNTR_NORMAL,
4985                         access_sdma_packet_desc_overflow_err_cnt),
4986 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4987                         CNTR_NORMAL,
4988                         access_sdma_length_mismatch_err_cnt),
4989 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4990                         CNTR_NORMAL,
4991                         access_sdma_halt_err_cnt),
4992 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4993                         CNTR_NORMAL,
4994                         access_sdma_mem_read_err_cnt),
4995 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4996                         CNTR_NORMAL,
4997                         access_sdma_first_desc_err_cnt),
4998 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4999                         CNTR_NORMAL,
5000                         access_sdma_tail_out_of_bounds_err_cnt),
5001 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5002                         CNTR_NORMAL,
5003                         access_sdma_too_long_err_cnt),
5004 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5005                         CNTR_NORMAL,
5006                         access_sdma_gen_mismatch_err_cnt),
5007 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5008                         CNTR_NORMAL,
5009                         access_sdma_wrong_dw_err_cnt),
5010 };
5011
5012 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5013 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5014                         CNTR_NORMAL),
5015 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5016                         CNTR_NORMAL),
5017 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5018                         CNTR_NORMAL),
5019 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5020                         CNTR_NORMAL),
5021 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5022                         CNTR_NORMAL),
5023 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5024                         CNTR_NORMAL),
5025 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5026                         CNTR_NORMAL),
5027 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5028 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5029 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5030 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5031                                       CNTR_SYNTH | CNTR_VL),
5032 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5033                                      CNTR_SYNTH | CNTR_VL),
5034 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5035                                       CNTR_SYNTH | CNTR_VL),
5036 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5037 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5038 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5039                              access_sw_link_dn_cnt),
5040 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5041                            access_sw_link_up_cnt),
5042 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5043                                  access_sw_unknown_frame_cnt),
5044 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5045                              access_sw_xmit_discards),
5046 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5047                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5048                                 access_sw_xmit_discards),
5049 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5050                                  access_xmit_constraint_errs),
5051 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5052                                 access_rcv_constraint_errs),
5053 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5054 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5055 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5056 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5057 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5058 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5059 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5060 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5061 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5062 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5063 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5064 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5065 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5066                                access_sw_cpu_rc_acks),
5067 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5068                                 access_sw_cpu_rc_qacks),
5069 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5070                                        access_sw_cpu_rc_delayed_comp),
5071 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5072 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5073 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5074 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5075 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5076 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5077 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5078 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5079 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5080 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5081 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5082 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5083 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5084 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5085 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5086 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5087 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5088 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5089 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5090 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5091 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5092 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5093 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5094 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5095 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5096 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5097 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5098 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5099 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5100 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5101 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5102 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5103 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5104 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5105 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5106 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5107 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5108 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5109 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5110 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5111 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5112 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5113 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5114 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5115 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5116 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5117 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5118 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5119 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5120 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5121 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5122 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5123 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5124 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5125 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5126 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5127 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5128 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5129 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5130 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5131 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5132 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5133 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5134 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5135 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5136 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5137 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5138 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5139 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5140 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5141 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5142 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5143 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5144 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5145 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5146 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5147 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5148 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5149 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5150 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5151 };
5152
5153 /* ======================================================================== */
5154
5155 /* return true if this is chip revision revision a */
5156 int is_ax(struct hfi1_devdata *dd)
5157 {
5158         u8 chip_rev_minor =
5159                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5160                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5161         return (chip_rev_minor & 0xf0) == 0;
5162 }
5163
5164 /* return true if this is chip revision revision b */
5165 int is_bx(struct hfi1_devdata *dd)
5166 {
5167         u8 chip_rev_minor =
5168                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5169                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5170         return (chip_rev_minor & 0xF0) == 0x10;
5171 }
5172
5173 /*
5174  * Append string s to buffer buf.  Arguments curp and len are the current
5175  * position and remaining length, respectively.
5176  *
5177  * return 0 on success, 1 on out of room
5178  */
5179 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5180 {
5181         char *p = *curp;
5182         int len = *lenp;
5183         int result = 0; /* success */
5184         char c;
5185
5186         /* add a comma, if first in the buffer */
5187         if (p != buf) {
5188                 if (len == 0) {
5189                         result = 1; /* out of room */
5190                         goto done;
5191                 }
5192                 *p++ = ',';
5193                 len--;
5194         }
5195
5196         /* copy the string */
5197         while ((c = *s++) != 0) {
5198                 if (len == 0) {
5199                         result = 1; /* out of room */
5200                         goto done;
5201                 }
5202                 *p++ = c;
5203                 len--;
5204         }
5205
5206 done:
5207         /* write return values */
5208         *curp = p;
5209         *lenp = len;
5210
5211         return result;
5212 }
5213
5214 /*
5215  * Using the given flag table, print a comma separated string into
5216  * the buffer.  End in '*' if the buffer is too short.
5217  */
5218 static char *flag_string(char *buf, int buf_len, u64 flags,
5219                          struct flag_table *table, int table_size)
5220 {
5221         char extra[32];
5222         char *p = buf;
5223         int len = buf_len;
5224         int no_room = 0;
5225         int i;
5226
5227         /* make sure there is at least 2 so we can form "*" */
5228         if (len < 2)
5229                 return "";
5230
5231         len--;  /* leave room for a nul */
5232         for (i = 0; i < table_size; i++) {
5233                 if (flags & table[i].flag) {
5234                         no_room = append_str(buf, &p, &len, table[i].str);
5235                         if (no_room)
5236                                 break;
5237                         flags &= ~table[i].flag;
5238                 }
5239         }
5240
5241         /* any undocumented bits left? */
5242         if (!no_room && flags) {
5243                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5244                 no_room = append_str(buf, &p, &len, extra);
5245         }
5246
5247         /* add * if ran out of room */
5248         if (no_room) {
5249                 /* may need to back up to add space for a '*' */
5250                 if (len == 0)
5251                         --p;
5252                 *p++ = '*';
5253         }
5254
5255         /* add final nul - space already allocated above */
5256         *p = 0;
5257         return buf;
5258 }
5259
5260 /* first 8 CCE error interrupt source names */
5261 static const char * const cce_misc_names[] = {
5262         "CceErrInt",            /* 0 */
5263         "RxeErrInt",            /* 1 */
5264         "MiscErrInt",           /* 2 */
5265         "Reserved3",            /* 3 */
5266         "PioErrInt",            /* 4 */
5267         "SDmaErrInt",           /* 5 */
5268         "EgressErrInt",         /* 6 */
5269         "TxeErrInt"             /* 7 */
5270 };
5271
5272 /*
5273  * Return the miscellaneous error interrupt name.
5274  */
5275 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5276 {
5277         if (source < ARRAY_SIZE(cce_misc_names))
5278                 strncpy(buf, cce_misc_names[source], bsize);
5279         else
5280                 snprintf(buf, bsize, "Reserved%u",
5281                          source + IS_GENERAL_ERR_START);
5282
5283         return buf;
5284 }
5285
5286 /*
5287  * Return the SDMA engine error interrupt name.
5288  */
5289 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5290 {
5291         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5292         return buf;
5293 }
5294
5295 /*
5296  * Return the send context error interrupt name.
5297  */
5298 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5299 {
5300         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5301         return buf;
5302 }
5303
5304 static const char * const various_names[] = {
5305         "PbcInt",
5306         "GpioAssertInt",
5307         "Qsfp1Int",
5308         "Qsfp2Int",
5309         "TCritInt"
5310 };
5311
5312 /*
5313  * Return the various interrupt name.
5314  */
5315 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5316 {
5317         if (source < ARRAY_SIZE(various_names))
5318                 strncpy(buf, various_names[source], bsize);
5319         else
5320                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5321         return buf;
5322 }
5323
5324 /*
5325  * Return the DC interrupt name.
5326  */
5327 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5328 {
5329         static const char * const dc_int_names[] = {
5330                 "common",
5331                 "lcb",
5332                 "8051",
5333                 "lbm"   /* local block merge */
5334         };
5335
5336         if (source < ARRAY_SIZE(dc_int_names))
5337                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5338         else
5339                 snprintf(buf, bsize, "DCInt%u", source);
5340         return buf;
5341 }
5342
5343 static const char * const sdma_int_names[] = {
5344         "SDmaInt",
5345         "SdmaIdleInt",
5346         "SdmaProgressInt",
5347 };
5348
5349 /*
5350  * Return the SDMA engine interrupt name.
5351  */
5352 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5353 {
5354         /* what interrupt */
5355         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5356         /* which engine */
5357         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5358
5359         if (likely(what < 3))
5360                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5361         else
5362                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5363         return buf;
5364 }
5365
5366 /*
5367  * Return the receive available interrupt name.
5368  */
5369 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5370 {
5371         snprintf(buf, bsize, "RcvAvailInt%u", source);
5372         return buf;
5373 }
5374
5375 /*
5376  * Return the receive urgent interrupt name.
5377  */
5378 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5381         return buf;
5382 }
5383
5384 /*
5385  * Return the send credit interrupt name.
5386  */
5387 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5388 {
5389         snprintf(buf, bsize, "SendCreditInt%u", source);
5390         return buf;
5391 }
5392
5393 /*
5394  * Return the reserved interrupt name.
5395  */
5396 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5397 {
5398         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5399         return buf;
5400 }
5401
5402 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5403 {
5404         return flag_string(buf, buf_len, flags,
5405                            cce_err_status_flags,
5406                            ARRAY_SIZE(cce_err_status_flags));
5407 }
5408
5409 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5410 {
5411         return flag_string(buf, buf_len, flags,
5412                            rxe_err_status_flags,
5413                            ARRAY_SIZE(rxe_err_status_flags));
5414 }
5415
5416 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5417 {
5418         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5419                            ARRAY_SIZE(misc_err_status_flags));
5420 }
5421
5422 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5423 {
5424         return flag_string(buf, buf_len, flags,
5425                            pio_err_status_flags,
5426                            ARRAY_SIZE(pio_err_status_flags));
5427 }
5428
5429 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5430 {
5431         return flag_string(buf, buf_len, flags,
5432                            sdma_err_status_flags,
5433                            ARRAY_SIZE(sdma_err_status_flags));
5434 }
5435
5436 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5437 {
5438         return flag_string(buf, buf_len, flags,
5439                            egress_err_status_flags,
5440                            ARRAY_SIZE(egress_err_status_flags));
5441 }
5442
5443 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5444 {
5445         return flag_string(buf, buf_len, flags,
5446                            egress_err_info_flags,
5447                            ARRAY_SIZE(egress_err_info_flags));
5448 }
5449
5450 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5451 {
5452         return flag_string(buf, buf_len, flags,
5453                            send_err_status_flags,
5454                            ARRAY_SIZE(send_err_status_flags));
5455 }
5456
5457 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5458 {
5459         char buf[96];
5460         int i = 0;
5461
5462         /*
5463          * For most these errors, there is nothing that can be done except
5464          * report or record it.
5465          */
5466         dd_dev_info(dd, "CCE Error: %s\n",
5467                     cce_err_status_string(buf, sizeof(buf), reg));
5468
5469         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5470             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5471                 /* this error requires a manual drop into SPC freeze mode */
5472                 /* then a fix up */
5473                 start_freeze_handling(dd->pport, FREEZE_SELF);
5474         }
5475
5476         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5477                 if (reg & (1ull << i)) {
5478                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5479                         /* maintain a counter over all cce_err_status errors */
5480                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5481                 }
5482         }
5483 }
5484
5485 /*
5486  * Check counters for receive errors that do not have an interrupt
5487  * associated with them.
5488  */
5489 #define RCVERR_CHECK_TIME 10
5490 static void update_rcverr_timer(unsigned long opaque)
5491 {
5492         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5493         struct hfi1_pportdata *ppd = dd->pport;
5494         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5495
5496         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5497             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5498                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5499                 set_link_down_reason(
5500                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5501                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5502                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5503         }
5504         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5505
5506         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5507 }
5508
5509 static int init_rcverr(struct hfi1_devdata *dd)
5510 {
5511         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5512         /* Assume the hardware counter has been reset */
5513         dd->rcv_ovfl_cnt = 0;
5514         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5515 }
5516
5517 static void free_rcverr(struct hfi1_devdata *dd)
5518 {
5519         if (dd->rcverr_timer.data)
5520                 del_timer_sync(&dd->rcverr_timer);
5521         dd->rcverr_timer.data = 0;
5522 }
5523
5524 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5525 {
5526         char buf[96];
5527         int i = 0;
5528
5529         dd_dev_info(dd, "Receive Error: %s\n",
5530                     rxe_err_status_string(buf, sizeof(buf), reg));
5531
5532         if (reg & ALL_RXE_FREEZE_ERR) {
5533                 int flags = 0;
5534
5535                 /*
5536                  * Freeze mode recovery is disabled for the errors
5537                  * in RXE_FREEZE_ABORT_MASK
5538                  */
5539                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5540                         flags = FREEZE_ABORT;
5541
5542                 start_freeze_handling(dd->pport, flags);
5543         }
5544
5545         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5546                 if (reg & (1ull << i))
5547                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5548         }
5549 }
5550
5551 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5552 {
5553         char buf[96];
5554         int i = 0;
5555
5556         dd_dev_info(dd, "Misc Error: %s",
5557                     misc_err_status_string(buf, sizeof(buf), reg));
5558         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5559                 if (reg & (1ull << i))
5560                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5561         }
5562 }
5563
5564 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5565 {
5566         char buf[96];
5567         int i = 0;
5568
5569         dd_dev_info(dd, "PIO Error: %s\n",
5570                     pio_err_status_string(buf, sizeof(buf), reg));
5571
5572         if (reg & ALL_PIO_FREEZE_ERR)
5573                 start_freeze_handling(dd->pport, 0);
5574
5575         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5576                 if (reg & (1ull << i))
5577                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5578         }
5579 }
5580
5581 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5582 {
5583         char buf[96];
5584         int i = 0;
5585
5586         dd_dev_info(dd, "SDMA Error: %s\n",
5587                     sdma_err_status_string(buf, sizeof(buf), reg));
5588
5589         if (reg & ALL_SDMA_FREEZE_ERR)
5590                 start_freeze_handling(dd->pport, 0);
5591
5592         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5593                 if (reg & (1ull << i))
5594                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5595         }
5596 }
5597
5598 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5599 {
5600         incr_cntr64(&ppd->port_xmit_discards);
5601 }
5602
5603 static void count_port_inactive(struct hfi1_devdata *dd)
5604 {
5605         __count_port_discards(dd->pport);
5606 }
5607
5608 /*
5609  * We have had a "disallowed packet" error during egress. Determine the
5610  * integrity check which failed, and update relevant error counter, etc.
5611  *
5612  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5613  * bit of state per integrity check, and so we can miss the reason for an
5614  * egress error if more than one packet fails the same integrity check
5615  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5616  */
5617 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5618                                         int vl)
5619 {
5620         struct hfi1_pportdata *ppd = dd->pport;
5621         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5622         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5623         char buf[96];
5624
5625         /* clear down all observed info as quickly as possible after read */
5626         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5627
5628         dd_dev_info(dd,
5629                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5630                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5631
5632         /* Eventually add other counters for each bit */
5633         if (info & PORT_DISCARD_EGRESS_ERRS) {
5634                 int weight, i;
5635
5636                 /*
5637                  * Count all applicable bits as individual errors and
5638                  * attribute them to the packet that triggered this handler.
5639                  * This may not be completely accurate due to limitations
5640                  * on the available hardware error information.  There is
5641                  * a single information register and any number of error
5642                  * packets may have occurred and contributed to it before
5643                  * this routine is called.  This means that:
5644                  * a) If multiple packets with the same error occur before
5645                  *    this routine is called, earlier packets are missed.
5646                  *    There is only a single bit for each error type.
5647                  * b) Errors may not be attributed to the correct VL.
5648                  *    The driver is attributing all bits in the info register
5649                  *    to the packet that triggered this call, but bits
5650                  *    could be an accumulation of different packets with
5651                  *    different VLs.
5652                  * c) A single error packet may have multiple counts attached
5653                  *    to it.  There is no way for the driver to know if
5654                  *    multiple bits set in the info register are due to a
5655                  *    single packet or multiple packets.  The driver assumes
5656                  *    multiple packets.
5657                  */
5658                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5659                 for (i = 0; i < weight; i++) {
5660                         __count_port_discards(ppd);
5661                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5662                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5663                         else if (vl == 15)
5664                                 incr_cntr64(&ppd->port_xmit_discards_vl
5665                                             [C_VL_15]);
5666                 }
5667         }
5668 }
5669
5670 /*
5671  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5672  * register. Does it represent a 'port inactive' error?
5673  */
5674 static inline int port_inactive_err(u64 posn)
5675 {
5676         return (posn >= SEES(TX_LINKDOWN) &&
5677                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5678 }
5679
5680 /*
5681  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5682  * register. Does it represent a 'disallowed packet' error?
5683  */
5684 static inline int disallowed_pkt_err(int posn)
5685 {
5686         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5687                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5688 }
5689
5690 /*
5691  * Input value is a bit position of one of the SDMA engine disallowed
5692  * packet errors.  Return which engine.  Use of this must be guarded by
5693  * disallowed_pkt_err().
5694  */
5695 static inline int disallowed_pkt_engine(int posn)
5696 {
5697         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5698 }
5699
5700 /*
5701  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5702  * be done.
5703  */
5704 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5705 {
5706         struct sdma_vl_map *m;
5707         int vl;
5708
5709         /* range check */
5710         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5711                 return -1;
5712
5713         rcu_read_lock();
5714         m = rcu_dereference(dd->sdma_map);
5715         vl = m->engine_to_vl[engine];
5716         rcu_read_unlock();
5717
5718         return vl;
5719 }
5720
5721 /*
5722  * Translate the send context (sofware index) into a VL.  Return -1 if the
5723  * translation cannot be done.
5724  */
5725 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5726 {
5727         struct send_context_info *sci;
5728         struct send_context *sc;
5729         int i;
5730
5731         sci = &dd->send_contexts[sw_index];
5732
5733         /* there is no information for user (PSM) and ack contexts */
5734         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5735                 return -1;
5736
5737         sc = sci->sc;
5738         if (!sc)
5739                 return -1;
5740         if (dd->vld[15].sc == sc)
5741                 return 15;
5742         for (i = 0; i < num_vls; i++)
5743                 if (dd->vld[i].sc == sc)
5744                         return i;
5745
5746         return -1;
5747 }
5748
5749 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5750 {
5751         u64 reg_copy = reg, handled = 0;
5752         char buf[96];
5753         int i = 0;
5754
5755         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5756                 start_freeze_handling(dd->pport, 0);
5757         else if (is_ax(dd) &&
5758                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5759                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5760                 start_freeze_handling(dd->pport, 0);
5761
5762         while (reg_copy) {
5763                 int posn = fls64(reg_copy);
5764                 /* fls64() returns a 1-based offset, we want it zero based */
5765                 int shift = posn - 1;
5766                 u64 mask = 1ULL << shift;
5767
5768                 if (port_inactive_err(shift)) {
5769                         count_port_inactive(dd);
5770                         handled |= mask;
5771                 } else if (disallowed_pkt_err(shift)) {
5772                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5773
5774                         handle_send_egress_err_info(dd, vl);
5775                         handled |= mask;
5776                 }
5777                 reg_copy &= ~mask;
5778         }
5779
5780         reg &= ~handled;
5781
5782         if (reg)
5783                 dd_dev_info(dd, "Egress Error: %s\n",
5784                             egress_err_status_string(buf, sizeof(buf), reg));
5785
5786         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5787                 if (reg & (1ull << i))
5788                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5789         }
5790 }
5791
5792 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5793 {
5794         char buf[96];
5795         int i = 0;
5796
5797         dd_dev_info(dd, "Send Error: %s\n",
5798                     send_err_status_string(buf, sizeof(buf), reg));
5799
5800         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5801                 if (reg & (1ull << i))
5802                         incr_cntr64(&dd->send_err_status_cnt[i]);
5803         }
5804 }
5805
5806 /*
5807  * The maximum number of times the error clear down will loop before
5808  * blocking a repeating error.  This value is arbitrary.
5809  */
5810 #define MAX_CLEAR_COUNT 20
5811
5812 /*
5813  * Clear and handle an error register.  All error interrupts are funneled
5814  * through here to have a central location to correctly handle single-
5815  * or multi-shot errors.
5816  *
5817  * For non per-context registers, call this routine with a context value
5818  * of 0 so the per-context offset is zero.
5819  *
5820  * If the handler loops too many times, assume that something is wrong
5821  * and can't be fixed, so mask the error bits.
5822  */
5823 static void interrupt_clear_down(struct hfi1_devdata *dd,
5824                                  u32 context,
5825                                  const struct err_reg_info *eri)
5826 {
5827         u64 reg;
5828         u32 count;
5829
5830         /* read in a loop until no more errors are seen */
5831         count = 0;
5832         while (1) {
5833                 reg = read_kctxt_csr(dd, context, eri->status);
5834                 if (reg == 0)
5835                         break;
5836                 write_kctxt_csr(dd, context, eri->clear, reg);
5837                 if (likely(eri->handler))
5838                         eri->handler(dd, context, reg);
5839                 count++;
5840                 if (count > MAX_CLEAR_COUNT) {
5841                         u64 mask;
5842
5843                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5844                                    eri->desc, reg);
5845                         /*
5846                          * Read-modify-write so any other masked bits
5847                          * remain masked.
5848                          */
5849                         mask = read_kctxt_csr(dd, context, eri->mask);
5850                         mask &= ~reg;
5851                         write_kctxt_csr(dd, context, eri->mask, mask);
5852                         break;
5853                 }
5854         }
5855 }
5856
5857 /*
5858  * CCE block "misc" interrupt.  Source is < 16.
5859  */
5860 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5861 {
5862         const struct err_reg_info *eri = &misc_errs[source];
5863
5864         if (eri->handler) {
5865                 interrupt_clear_down(dd, 0, eri);
5866         } else {
5867                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5868                            source);
5869         }
5870 }
5871
5872 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5873 {
5874         return flag_string(buf, buf_len, flags,
5875                            sc_err_status_flags,
5876                            ARRAY_SIZE(sc_err_status_flags));
5877 }
5878
5879 /*
5880  * Send context error interrupt.  Source (hw_context) is < 160.
5881  *
5882  * All send context errors cause the send context to halt.  The normal
5883  * clear-down mechanism cannot be used because we cannot clear the
5884  * error bits until several other long-running items are done first.
5885  * This is OK because with the context halted, nothing else is going
5886  * to happen on it anyway.
5887  */
5888 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5889                                 unsigned int hw_context)
5890 {
5891         struct send_context_info *sci;
5892         struct send_context *sc;
5893         char flags[96];
5894         u64 status;
5895         u32 sw_index;
5896         int i = 0;
5897
5898         sw_index = dd->hw_to_sw[hw_context];
5899         if (sw_index >= dd->num_send_contexts) {
5900                 dd_dev_err(dd,
5901                            "out of range sw index %u for send context %u\n",
5902                            sw_index, hw_context);
5903                 return;
5904         }
5905         sci = &dd->send_contexts[sw_index];
5906         sc = sci->sc;
5907         if (!sc) {
5908                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5909                            sw_index, hw_context);
5910                 return;
5911         }
5912
5913         /* tell the software that a halt has begun */
5914         sc_stop(sc, SCF_HALTED);
5915
5916         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5917
5918         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5919                     send_context_err_status_string(flags, sizeof(flags),
5920                                                    status));
5921
5922         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5923                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5924
5925         /*
5926          * Automatically restart halted kernel contexts out of interrupt
5927          * context.  User contexts must ask the driver to restart the context.
5928          */
5929         if (sc->type != SC_USER)
5930                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5931
5932         /*
5933          * Update the counters for the corresponding status bits.
5934          * Note that these particular counters are aggregated over all
5935          * 160 contexts.
5936          */
5937         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5938                 if (status & (1ull << i))
5939                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5940         }
5941 }
5942
5943 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5944                                 unsigned int source, u64 status)
5945 {
5946         struct sdma_engine *sde;
5947         int i = 0;
5948
5949         sde = &dd->per_sdma[source];
5950 #ifdef CONFIG_SDMA_VERBOSITY
5951         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5952                    slashstrip(__FILE__), __LINE__, __func__);
5953         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5954                    sde->this_idx, source, (unsigned long long)status);
5955 #endif
5956         sde->err_cnt++;
5957         sdma_engine_error(sde, status);
5958
5959         /*
5960         * Update the counters for the corresponding status bits.
5961         * Note that these particular counters are aggregated over
5962         * all 16 DMA engines.
5963         */
5964         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5965                 if (status & (1ull << i))
5966                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5967         }
5968 }
5969
5970 /*
5971  * CCE block SDMA error interrupt.  Source is < 16.
5972  */
5973 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5974 {
5975 #ifdef CONFIG_SDMA_VERBOSITY
5976         struct sdma_engine *sde = &dd->per_sdma[source];
5977
5978         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5979                    slashstrip(__FILE__), __LINE__, __func__);
5980         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5981                    source);
5982         sdma_dumpstate(sde);
5983 #endif
5984         interrupt_clear_down(dd, source, &sdma_eng_err);
5985 }
5986
5987 /*
5988  * CCE block "various" interrupt.  Source is < 8.
5989  */
5990 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5991 {
5992         const struct err_reg_info *eri = &various_err[source];
5993
5994         /*
5995          * TCritInt cannot go through interrupt_clear_down()
5996          * because it is not a second tier interrupt. The handler
5997          * should be called directly.
5998          */
5999         if (source == TCRIT_INT_SOURCE)
6000                 handle_temp_err(dd);
6001         else if (eri->handler)
6002                 interrupt_clear_down(dd, 0, eri);
6003         else
6004                 dd_dev_info(dd,
6005                             "%s: Unimplemented/reserved interrupt %d\n",
6006                             __func__, source);
6007 }
6008
6009 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6010 {
6011         /* src_ctx is always zero */
6012         struct hfi1_pportdata *ppd = dd->pport;
6013         unsigned long flags;
6014         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6015
6016         if (reg & QSFP_HFI0_MODPRST_N) {
6017                 if (!qsfp_mod_present(ppd)) {
6018                         dd_dev_info(dd, "%s: QSFP module removed\n",
6019                                     __func__);
6020
6021                         ppd->driver_link_ready = 0;
6022                         /*
6023                          * Cable removed, reset all our information about the
6024                          * cache and cable capabilities
6025                          */
6026
6027                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6028                         /*
6029                          * We don't set cache_refresh_required here as we expect
6030                          * an interrupt when a cable is inserted
6031                          */
6032                         ppd->qsfp_info.cache_valid = 0;
6033                         ppd->qsfp_info.reset_needed = 0;
6034                         ppd->qsfp_info.limiting_active = 0;
6035                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6036                                                flags);
6037                         /* Invert the ModPresent pin now to detect plug-in */
6038                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6039                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6040
6041                         if ((ppd->offline_disabled_reason >
6042                           HFI1_ODR_MASK(
6043                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6044                           (ppd->offline_disabled_reason ==
6045                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6046                                 ppd->offline_disabled_reason =
6047                                 HFI1_ODR_MASK(
6048                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6049
6050                         if (ppd->host_link_state == HLS_DN_POLL) {
6051                                 /*
6052                                  * The link is still in POLL. This means
6053                                  * that the normal link down processing
6054                                  * will not happen. We have to do it here
6055                                  * before turning the DC off.
6056                                  */
6057                                 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6058                         }
6059                 } else {
6060                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6061                                     __func__);
6062
6063                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6064                         ppd->qsfp_info.cache_valid = 0;
6065                         ppd->qsfp_info.cache_refresh_required = 1;
6066                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6067                                                flags);
6068
6069                         /*
6070                          * Stop inversion of ModPresent pin to detect
6071                          * removal of the cable
6072                          */
6073                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6074                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6075                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6076
6077                         ppd->offline_disabled_reason =
6078                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6079                 }
6080         }
6081
6082         if (reg & QSFP_HFI0_INT_N) {
6083                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6084                             __func__);
6085                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6086                 ppd->qsfp_info.check_interrupt_flags = 1;
6087                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6088         }
6089
6090         /* Schedule the QSFP work only if there is a cable attached. */
6091         if (qsfp_mod_present(ppd))
6092                 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6093 }
6094
6095 static int request_host_lcb_access(struct hfi1_devdata *dd)
6096 {
6097         int ret;
6098
6099         ret = do_8051_command(dd, HCMD_MISC,
6100                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6101                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6102         if (ret != HCMD_SUCCESS) {
6103                 dd_dev_err(dd, "%s: command failed with error %d\n",
6104                            __func__, ret);
6105         }
6106         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6107 }
6108
6109 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6110 {
6111         int ret;
6112
6113         ret = do_8051_command(dd, HCMD_MISC,
6114                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6115                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6116         if (ret != HCMD_SUCCESS) {
6117                 dd_dev_err(dd, "%s: command failed with error %d\n",
6118                            __func__, ret);
6119         }
6120         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6121 }
6122
6123 /*
6124  * Set the LCB selector - allow host access.  The DCC selector always
6125  * points to the host.
6126  */
6127 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6128 {
6129         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6130                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6131                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6132 }
6133
6134 /*
6135  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6136  * points to the host.
6137  */
6138 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6139 {
6140         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6141                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6142 }
6143
6144 /*
6145  * Acquire LCB access from the 8051.  If the host already has access,
6146  * just increment a counter.  Otherwise, inform the 8051 that the
6147  * host is taking access.
6148  *
6149  * Returns:
6150  *      0 on success
6151  *      -EBUSY if the 8051 has control and cannot be disturbed
6152  *      -errno if unable to acquire access from the 8051
6153  */
6154 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6155 {
6156         struct hfi1_pportdata *ppd = dd->pport;
6157         int ret = 0;
6158
6159         /*
6160          * Use the host link state lock so the operation of this routine
6161          * { link state check, selector change, count increment } can occur
6162          * as a unit against a link state change.  Otherwise there is a
6163          * race between the state change and the count increment.
6164          */
6165         if (sleep_ok) {
6166                 mutex_lock(&ppd->hls_lock);
6167         } else {
6168                 while (!mutex_trylock(&ppd->hls_lock))
6169                         udelay(1);
6170         }
6171
6172         /* this access is valid only when the link is up */
6173         if (ppd->host_link_state & HLS_DOWN) {
6174                 dd_dev_info(dd, "%s: link state %s not up\n",
6175                             __func__, link_state_name(ppd->host_link_state));
6176                 ret = -EBUSY;
6177                 goto done;
6178         }
6179
6180         if (dd->lcb_access_count == 0) {
6181                 ret = request_host_lcb_access(dd);
6182                 if (ret) {
6183                         dd_dev_err(dd,
6184                                    "%s: unable to acquire LCB access, err %d\n",
6185                                    __func__, ret);
6186                         goto done;
6187                 }
6188                 set_host_lcb_access(dd);
6189         }
6190         dd->lcb_access_count++;
6191 done:
6192         mutex_unlock(&ppd->hls_lock);
6193         return ret;
6194 }
6195
6196 /*
6197  * Release LCB access by decrementing the use count.  If the count is moving
6198  * from 1 to 0, inform 8051 that it has control back.
6199  *
6200  * Returns:
6201  *      0 on success
6202  *      -errno if unable to release access to the 8051
6203  */
6204 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6205 {
6206         int ret = 0;
6207
6208         /*
6209          * Use the host link state lock because the acquire needed it.
6210          * Here, we only need to keep { selector change, count decrement }
6211          * as a unit.
6212          */
6213         if (sleep_ok) {
6214                 mutex_lock(&dd->pport->hls_lock);
6215         } else {
6216                 while (!mutex_trylock(&dd->pport->hls_lock))
6217                         udelay(1);
6218         }
6219
6220         if (dd->lcb_access_count == 0) {
6221                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6222                            __func__);
6223                 goto done;
6224         }
6225
6226         if (dd->lcb_access_count == 1) {
6227                 set_8051_lcb_access(dd);
6228                 ret = request_8051_lcb_access(dd);
6229                 if (ret) {
6230                         dd_dev_err(dd,
6231                                    "%s: unable to release LCB access, err %d\n",
6232                                    __func__, ret);
6233                         /* restore host access if the grant didn't work */
6234                         set_host_lcb_access(dd);
6235                         goto done;
6236                 }
6237         }
6238         dd->lcb_access_count--;
6239 done:
6240         mutex_unlock(&dd->pport->hls_lock);
6241         return ret;
6242 }
6243
6244 /*
6245  * Initialize LCB access variables and state.  Called during driver load,
6246  * after most of the initialization is finished.
6247  *
6248  * The DC default is LCB access on for the host.  The driver defaults to
6249  * leaving access to the 8051.  Assign access now - this constrains the call
6250  * to this routine to be after all LCB set-up is done.  In particular, after
6251  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6252  */
6253 static void init_lcb_access(struct hfi1_devdata *dd)
6254 {
6255         dd->lcb_access_count = 0;
6256 }
6257
6258 /*
6259  * Write a response back to a 8051 request.
6260  */
6261 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6262 {
6263         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6264                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6265                   (u64)return_code <<
6266                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6267                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6268 }
6269
6270 /*
6271  * Handle host requests from the 8051.
6272  */
6273 static void handle_8051_request(struct hfi1_pportdata *ppd)
6274 {
6275         struct hfi1_devdata *dd = ppd->dd;
6276         u64 reg;
6277         u16 data = 0;
6278         u8 type;
6279
6280         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6281         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6282                 return; /* no request */
6283
6284         /* zero out COMPLETED so the response is seen */
6285         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6286
6287         /* extract request details */
6288         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6289                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6290         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6291                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6292
6293         switch (type) {
6294         case HREQ_LOAD_CONFIG:
6295         case HREQ_SAVE_CONFIG:
6296         case HREQ_READ_CONFIG:
6297         case HREQ_SET_TX_EQ_ABS:
6298         case HREQ_SET_TX_EQ_REL:
6299         case HREQ_ENABLE:
6300                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6301                             type);
6302                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6303                 break;
6304         case HREQ_CONFIG_DONE:
6305                 hreq_response(dd, HREQ_SUCCESS, 0);
6306                 break;
6307
6308         case HREQ_INTERFACE_TEST:
6309                 hreq_response(dd, HREQ_SUCCESS, data);
6310                 break;
6311         default:
6312                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6313                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6314                 break;
6315         }
6316 }
6317
6318 /*
6319  * Set up allocation unit vaulue.
6320  */
6321 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6322 {
6323         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6324
6325         /* do not modify other values in the register */
6326         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6327         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6328         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6329 }
6330
6331 /*
6332  * Set up initial VL15 credits of the remote.  Assumes the rest of
6333  * the CM credit registers are zero from a previous global or credit reset.
6334  * Shared limit for VL15 will always be 0.
6335  */
6336 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6337 {
6338         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6339
6340         /* set initial values for total and shared credit limit */
6341         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6342                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6343
6344         /*
6345          * Set total limit to be equal to VL15 credits.
6346          * Leave shared limit at 0.
6347          */
6348         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6349         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6350
6351         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6352                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6353 }
6354
6355 /*
6356  * Zero all credit details from the previous connection and
6357  * reset the CM manager's internal counters.
6358  */
6359 void reset_link_credits(struct hfi1_devdata *dd)
6360 {
6361         int i;
6362
6363         /* remove all previous VL credit limits */
6364         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6365                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6366         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6367         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6368         /* reset the CM block */
6369         pio_send_control(dd, PSC_CM_RESET);
6370         /* reset cached value */
6371         dd->vl15buf_cached = 0;
6372 }
6373
6374 /* convert a vCU to a CU */
6375 static u32 vcu_to_cu(u8 vcu)
6376 {
6377         return 1 << vcu;
6378 }
6379
6380 /* convert a CU to a vCU */
6381 static u8 cu_to_vcu(u32 cu)
6382 {
6383         return ilog2(cu);
6384 }
6385
6386 /* convert a vAU to an AU */
6387 static u32 vau_to_au(u8 vau)
6388 {
6389         return 8 * (1 << vau);
6390 }
6391
6392 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6393 {
6394         ppd->sm_trap_qp = 0x0;
6395         ppd->sa_qp = 0x1;
6396 }
6397
6398 /*
6399  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6400  */
6401 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6402 {
6403         u64 reg;
6404
6405         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6406         write_csr(dd, DC_LCB_CFG_RUN, 0);
6407         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6408         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6409                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6410         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6411         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6412         reg = read_csr(dd, DCC_CFG_RESET);
6413         write_csr(dd, DCC_CFG_RESET, reg |
6414                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6415                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6416         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6417         if (!abort) {
6418                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6419                 write_csr(dd, DCC_CFG_RESET, reg);
6420                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6421         }
6422 }
6423
6424 /*
6425  * This routine should be called after the link has been transitioned to
6426  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6427  * reset).
6428  *
6429  * The expectation is that the caller of this routine would have taken
6430  * care of properly transitioning the link into the correct state.
6431  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6432  *       before calling this function.
6433  */
6434 static void _dc_shutdown(struct hfi1_devdata *dd)
6435 {
6436         lockdep_assert_held(&dd->dc8051_lock);
6437
6438         if (dd->dc_shutdown)
6439                 return;
6440
6441         dd->dc_shutdown = 1;
6442         /* Shutdown the LCB */
6443         lcb_shutdown(dd, 1);
6444         /*
6445          * Going to OFFLINE would have causes the 8051 to put the
6446          * SerDes into reset already. Just need to shut down the 8051,
6447          * itself.
6448          */
6449         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6450 }
6451
6452 static void dc_shutdown(struct hfi1_devdata *dd)
6453 {
6454         mutex_lock(&dd->dc8051_lock);
6455         _dc_shutdown(dd);
6456         mutex_unlock(&dd->dc8051_lock);
6457 }
6458
6459 /*
6460  * Calling this after the DC has been brought out of reset should not
6461  * do any damage.
6462  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6463  *       before calling this function.
6464  */
6465 static void _dc_start(struct hfi1_devdata *dd)
6466 {
6467         lockdep_assert_held(&dd->dc8051_lock);
6468
6469         if (!dd->dc_shutdown)
6470                 return;
6471
6472         /* Take the 8051 out of reset */
6473         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6474         /* Wait until 8051 is ready */
6475         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6476                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6477                            __func__);
6478
6479         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6480         write_csr(dd, DCC_CFG_RESET, 0x10);
6481         /* lcb_shutdown() with abort=1 does not restore these */
6482         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6483         dd->dc_shutdown = 0;
6484 }
6485
6486 static void dc_start(struct hfi1_devdata *dd)
6487 {
6488         mutex_lock(&dd->dc8051_lock);
6489         _dc_start(dd);
6490         mutex_unlock(&dd->dc8051_lock);
6491 }
6492
6493 /*
6494  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6495  */
6496 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6497 {
6498         u64 rx_radr, tx_radr;
6499         u32 version;
6500
6501         if (dd->icode != ICODE_FPGA_EMULATION)
6502                 return;
6503
6504         /*
6505          * These LCB defaults on emulator _s are good, nothing to do here:
6506          *      LCB_CFG_TX_FIFOS_RADR
6507          *      LCB_CFG_RX_FIFOS_RADR
6508          *      LCB_CFG_LN_DCLK
6509          *      LCB_CFG_IGNORE_LOST_RCLK
6510          */
6511         if (is_emulator_s(dd))
6512                 return;
6513         /* else this is _p */
6514
6515         version = emulator_rev(dd);
6516         if (!is_ax(dd))
6517                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6518
6519         if (version <= 0x12) {
6520                 /* release 0x12 and below */
6521
6522                 /*
6523                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6524                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6525                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6526                  */
6527                 rx_radr =
6528                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6529                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6530                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6531                 /*
6532                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6533                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6534                  */
6535                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6536         } else if (version <= 0x18) {
6537                 /* release 0x13 up to 0x18 */
6538                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6539                 rx_radr =
6540                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6541                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6542                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6543                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6544         } else if (version == 0x19) {
6545                 /* release 0x19 */
6546                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6547                 rx_radr =
6548                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6549                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6550                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6551                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6552         } else if (version == 0x1a) {
6553                 /* release 0x1a */
6554                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6555                 rx_radr =
6556                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6557                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6558                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6559                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6560                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6561         } else {
6562                 /* release 0x1b and higher */
6563                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6564                 rx_radr =
6565                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6566                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6567                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6568                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6569         }
6570
6571         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6572         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6573         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6574                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6575         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6576 }
6577
6578 /*
6579  * Handle a SMA idle message
6580  *
6581  * This is a work-queue function outside of the interrupt.
6582  */
6583 void handle_sma_message(struct work_struct *work)
6584 {
6585         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6586                                                         sma_message_work);
6587         struct hfi1_devdata *dd = ppd->dd;
6588         u64 msg;
6589         int ret;
6590
6591         /*
6592          * msg is bytes 1-4 of the 40-bit idle message - the command code
6593          * is stripped off
6594          */
6595         ret = read_idle_sma(dd, &msg);
6596         if (ret)
6597                 return;
6598         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6599         /*
6600          * React to the SMA message.  Byte[1] (0 for us) is the command.
6601          */
6602         switch (msg & 0xff) {
6603         case SMA_IDLE_ARM:
6604                 /*
6605                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6606                  * State Transitions
6607                  *
6608                  * Only expected in INIT or ARMED, discard otherwise.
6609                  */
6610                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6611                         ppd->neighbor_normal = 1;
6612                 break;
6613         case SMA_IDLE_ACTIVE:
6614                 /*
6615                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6616                  * State Transitions
6617                  *
6618                  * Can activate the node.  Discard otherwise.
6619                  */
6620                 if (ppd->host_link_state == HLS_UP_ARMED &&
6621                     ppd->is_active_optimize_enabled) {
6622                         ppd->neighbor_normal = 1;
6623                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6624                         if (ret)
6625                                 dd_dev_err(
6626                                         dd,
6627                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6628                                         __func__);
6629                 }
6630                 break;
6631         default:
6632                 dd_dev_err(dd,
6633                            "%s: received unexpected SMA idle message 0x%llx\n",
6634                            __func__, msg);
6635                 break;
6636         }
6637 }
6638
6639 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6640 {
6641         u64 rcvctrl;
6642         unsigned long flags;
6643
6644         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6645         rcvctrl = read_csr(dd, RCV_CTRL);
6646         rcvctrl |= add;
6647         rcvctrl &= ~clear;
6648         write_csr(dd, RCV_CTRL, rcvctrl);
6649         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6650 }
6651
6652 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6653 {
6654         adjust_rcvctrl(dd, add, 0);
6655 }
6656
6657 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6658 {
6659         adjust_rcvctrl(dd, 0, clear);
6660 }
6661
6662 /*
6663  * Called from all interrupt handlers to start handling an SPC freeze.
6664  */
6665 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6666 {
6667         struct hfi1_devdata *dd = ppd->dd;
6668         struct send_context *sc;
6669         int i;
6670
6671         if (flags & FREEZE_SELF)
6672                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6673
6674         /* enter frozen mode */
6675         dd->flags |= HFI1_FROZEN;
6676
6677         /* notify all SDMA engines that they are going into a freeze */
6678         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6679
6680         /* do halt pre-handling on all enabled send contexts */
6681         for (i = 0; i < dd->num_send_contexts; i++) {
6682                 sc = dd->send_contexts[i].sc;
6683                 if (sc && (sc->flags & SCF_ENABLED))
6684                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6685         }
6686
6687         /* Send context are frozen. Notify user space */
6688         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6689
6690         if (flags & FREEZE_ABORT) {
6691                 dd_dev_err(dd,
6692                            "Aborted freeze recovery. Please REBOOT system\n");
6693                 return;
6694         }
6695         /* queue non-interrupt handler */
6696         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6697 }
6698
6699 /*
6700  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6701  * depending on the "freeze" parameter.
6702  *
6703  * No need to return an error if it times out, our only option
6704  * is to proceed anyway.
6705  */
6706 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6707 {
6708         unsigned long timeout;
6709         u64 reg;
6710
6711         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6712         while (1) {
6713                 reg = read_csr(dd, CCE_STATUS);
6714                 if (freeze) {
6715                         /* waiting until all indicators are set */
6716                         if ((reg & ALL_FROZE) == ALL_FROZE)
6717                                 return; /* all done */
6718                 } else {
6719                         /* waiting until all indicators are clear */
6720                         if ((reg & ALL_FROZE) == 0)
6721                                 return; /* all done */
6722                 }
6723
6724                 if (time_after(jiffies, timeout)) {
6725                         dd_dev_err(dd,
6726                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6727                                    freeze ? "" : "un", reg & ALL_FROZE,
6728                                    freeze ? ALL_FROZE : 0ull);
6729                         return;
6730                 }
6731                 usleep_range(80, 120);
6732         }
6733 }
6734
6735 /*
6736  * Do all freeze handling for the RXE block.
6737  */
6738 static void rxe_freeze(struct hfi1_devdata *dd)
6739 {
6740         int i;
6741
6742         /* disable port */
6743         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6744
6745         /* disable all receive contexts */
6746         for (i = 0; i < dd->num_rcv_contexts; i++)
6747                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6748 }
6749
6750 /*
6751  * Unfreeze handling for the RXE block - kernel contexts only.
6752  * This will also enable the port.  User contexts will do unfreeze
6753  * handling on a per-context basis as they call into the driver.
6754  *
6755  */
6756 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6757 {
6758         u32 rcvmask;
6759         int i;
6760
6761         /* enable all kernel contexts */
6762         for (i = 0; i < dd->num_rcv_contexts; i++) {
6763                 struct hfi1_ctxtdata *rcd = dd->rcd[i];
6764
6765                 /* Ensure all non-user contexts(including vnic) are enabled */
6766                 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6767                         continue;
6768
6769                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6770                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6771                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6772                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6773                 hfi1_rcvctrl(dd, rcvmask, i);
6774         }
6775
6776         /* enable port */
6777         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6778 }
6779
6780 /*
6781  * Non-interrupt SPC freeze handling.
6782  *
6783  * This is a work-queue function outside of the triggering interrupt.
6784  */
6785 void handle_freeze(struct work_struct *work)
6786 {
6787         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6788                                                                 freeze_work);
6789         struct hfi1_devdata *dd = ppd->dd;
6790
6791         /* wait for freeze indicators on all affected blocks */
6792         wait_for_freeze_status(dd, 1);
6793
6794         /* SPC is now frozen */
6795
6796         /* do send PIO freeze steps */
6797         pio_freeze(dd);
6798
6799         /* do send DMA freeze steps */
6800         sdma_freeze(dd);
6801
6802         /* do send egress freeze steps - nothing to do */
6803
6804         /* do receive freeze steps */
6805         rxe_freeze(dd);
6806
6807         /*
6808          * Unfreeze the hardware - clear the freeze, wait for each
6809          * block's frozen bit to clear, then clear the frozen flag.
6810          */
6811         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6812         wait_for_freeze_status(dd, 0);
6813
6814         if (is_ax(dd)) {
6815                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6816                 wait_for_freeze_status(dd, 1);
6817                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6818                 wait_for_freeze_status(dd, 0);
6819         }
6820
6821         /* do send PIO unfreeze steps for kernel contexts */
6822         pio_kernel_unfreeze(dd);
6823
6824         /* do send DMA unfreeze steps */
6825         sdma_unfreeze(dd);
6826
6827         /* do send egress unfreeze steps - nothing to do */
6828
6829         /* do receive unfreeze steps for kernel contexts */
6830         rxe_kernel_unfreeze(dd);
6831
6832         /*
6833          * The unfreeze procedure touches global device registers when
6834          * it disables and re-enables RXE. Mark the device unfrozen
6835          * after all that is done so other parts of the driver waiting
6836          * for the device to unfreeze don't do things out of order.
6837          *
6838          * The above implies that the meaning of HFI1_FROZEN flag is
6839          * "Device has gone into freeze mode and freeze mode handling
6840          * is still in progress."
6841          *
6842          * The flag will be removed when freeze mode processing has
6843          * completed.
6844          */
6845         dd->flags &= ~HFI1_FROZEN;
6846         wake_up(&dd->event_queue);
6847
6848         /* no longer frozen */
6849 }
6850
6851 /*
6852  * Handle a link up interrupt from the 8051.
6853  *
6854  * This is a work-queue function outside of the interrupt.
6855  */
6856 void handle_link_up(struct work_struct *work)
6857 {
6858         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6859                                                   link_up_work);
6860         struct hfi1_devdata *dd = ppd->dd;
6861
6862         set_link_state(ppd, HLS_UP_INIT);
6863
6864         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6865         read_ltp_rtt(dd);
6866         /*
6867          * OPA specifies that certain counters are cleared on a transition
6868          * to link up, so do that.
6869          */
6870         clear_linkup_counters(dd);
6871         /*
6872          * And (re)set link up default values.
6873          */
6874         set_linkup_defaults(ppd);
6875
6876         /*
6877          * Set VL15 credits. Use cached value from verify cap interrupt.
6878          * In case of quick linkup or simulator, vl15 value will be set by
6879          * handle_linkup_change. VerifyCap interrupt handler will not be
6880          * called in those scenarios.
6881          */
6882         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6883                 set_up_vl15(dd, dd->vl15buf_cached);
6884
6885         /* enforce link speed enabled */
6886         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6887                 /* oops - current speed is not enabled, bounce */
6888                 dd_dev_err(dd,
6889                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6890                            ppd->link_speed_active, ppd->link_speed_enabled);
6891                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6892                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6893                 set_link_state(ppd, HLS_DN_OFFLINE);
6894                 start_link(ppd);
6895         }
6896 }
6897
6898 /*
6899  * Several pieces of LNI information were cached for SMA in ppd.
6900  * Reset these on link down
6901  */
6902 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6903 {
6904         ppd->neighbor_guid = 0;
6905         ppd->neighbor_port_number = 0;
6906         ppd->neighbor_type = 0;
6907         ppd->neighbor_fm_security = 0;
6908 }
6909
6910 static const char * const link_down_reason_strs[] = {
6911         [OPA_LINKDOWN_REASON_NONE] = "None",
6912         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6913         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6914         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6915         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6916         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6917         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6918         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6919         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6920         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6921         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6922         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6923         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6924         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6925         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6926         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6927         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6928         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6929         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6930         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6931         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6932         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6933         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6934         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6935         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6936         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6937         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6938         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6939         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6940         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6941         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6942         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6943         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6944                                         "Excessive buffer overrun",
6945         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6946         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6947         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6948         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6949         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6950         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6951         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6952         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6953                                         "Local media not installed",
6954         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6955         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6956         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6957                                         "End to end not installed",
6958         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6959         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6960         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6961         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6962         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6963         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6964 };
6965
6966 /* return the neighbor link down reason string */
6967 static const char *link_down_reason_str(u8 reason)
6968 {
6969         const char *str = NULL;
6970
6971         if (reason < ARRAY_SIZE(link_down_reason_strs))
6972                 str = link_down_reason_strs[reason];
6973         if (!str)
6974                 str = "(invalid)";
6975
6976         return str;
6977 }
6978
6979 /*
6980  * Handle a link down interrupt from the 8051.
6981  *
6982  * This is a work-queue function outside of the interrupt.
6983  */
6984 void handle_link_down(struct work_struct *work)
6985 {
6986         u8 lcl_reason, neigh_reason = 0;
6987         u8 link_down_reason;
6988         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6989                                                   link_down_work);
6990         int was_up;
6991         static const char ldr_str[] = "Link down reason: ";
6992
6993         if ((ppd->host_link_state &
6994              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6995              ppd->port_type == PORT_TYPE_FIXED)
6996                 ppd->offline_disabled_reason =
6997                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6998
6999         /* Go offline first, then deal with reading/writing through 8051 */
7000         was_up = !!(ppd->host_link_state & HLS_UP);
7001         set_link_state(ppd, HLS_DN_OFFLINE);
7002
7003         if (was_up) {
7004                 lcl_reason = 0;
7005                 /* link down reason is only valid if the link was up */
7006                 read_link_down_reason(ppd->dd, &link_down_reason);
7007                 switch (link_down_reason) {
7008                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7009                         /* the link went down, no idle message reason */
7010                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7011                                     ldr_str);
7012                         break;
7013                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7014                         /*
7015                          * The neighbor reason is only valid if an idle message
7016                          * was received for it.
7017                          */
7018                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7019                         dd_dev_info(ppd->dd,
7020                                     "%sNeighbor link down message %d, %s\n",
7021                                     ldr_str, neigh_reason,
7022                                     link_down_reason_str(neigh_reason));
7023                         break;
7024                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7025                         dd_dev_info(ppd->dd,
7026                                     "%sHost requested link to go offline\n",
7027                                     ldr_str);
7028                         break;
7029                 default:
7030                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7031                                     ldr_str, link_down_reason);
7032                         break;
7033                 }
7034
7035                 /*
7036                  * If no reason, assume peer-initiated but missed
7037                  * LinkGoingDown idle flits.
7038                  */
7039                 if (neigh_reason == 0)
7040                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7041         } else {
7042                 /* went down while polling or going up */
7043                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7044         }
7045
7046         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7047
7048         /* inform the SMA when the link transitions from up to down */
7049         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7050             ppd->neigh_link_down_reason.sma == 0) {
7051                 ppd->local_link_down_reason.sma =
7052                                         ppd->local_link_down_reason.latest;
7053                 ppd->neigh_link_down_reason.sma =
7054                                         ppd->neigh_link_down_reason.latest;
7055         }
7056
7057         reset_neighbor_info(ppd);
7058
7059         /* disable the port */
7060         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7061
7062         /*
7063          * If there is no cable attached, turn the DC off. Otherwise,
7064          * start the link bring up.
7065          */
7066         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7067                 dc_shutdown(ppd->dd);
7068         else
7069                 start_link(ppd);
7070 }
7071
7072 void handle_link_bounce(struct work_struct *work)
7073 {
7074         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7075                                                         link_bounce_work);
7076
7077         /*
7078          * Only do something if the link is currently up.
7079          */
7080         if (ppd->host_link_state & HLS_UP) {
7081                 set_link_state(ppd, HLS_DN_OFFLINE);
7082                 start_link(ppd);
7083         } else {
7084                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7085                             __func__, link_state_name(ppd->host_link_state));
7086         }
7087 }
7088
7089 /*
7090  * Mask conversion: Capability exchange to Port LTP.  The capability
7091  * exchange has an implicit 16b CRC that is mandatory.
7092  */
7093 static int cap_to_port_ltp(int cap)
7094 {
7095         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7096
7097         if (cap & CAP_CRC_14B)
7098                 port_ltp |= PORT_LTP_CRC_MODE_14;
7099         if (cap & CAP_CRC_48B)
7100                 port_ltp |= PORT_LTP_CRC_MODE_48;
7101         if (cap & CAP_CRC_12B_16B_PER_LANE)
7102                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7103
7104         return port_ltp;
7105 }
7106
7107 /*
7108  * Convert an OPA Port LTP mask to capability mask
7109  */
7110 int port_ltp_to_cap(int port_ltp)
7111 {
7112         int cap_mask = 0;
7113
7114         if (port_ltp & PORT_LTP_CRC_MODE_14)
7115                 cap_mask |= CAP_CRC_14B;
7116         if (port_ltp & PORT_LTP_CRC_MODE_48)
7117                 cap_mask |= CAP_CRC_48B;
7118         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7119                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7120
7121         return cap_mask;
7122 }
7123
7124 /*
7125  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7126  */
7127 static int lcb_to_port_ltp(int lcb_crc)
7128 {
7129         int port_ltp = 0;
7130
7131         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7132                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7133         else if (lcb_crc == LCB_CRC_48B)
7134                 port_ltp = PORT_LTP_CRC_MODE_48;
7135         else if (lcb_crc == LCB_CRC_14B)
7136                 port_ltp = PORT_LTP_CRC_MODE_14;
7137         else
7138                 port_ltp = PORT_LTP_CRC_MODE_16;
7139
7140         return port_ltp;
7141 }
7142
7143 /*
7144  * Our neighbor has indicated that we are allowed to act as a fabric
7145  * manager, so place the full management partition key in the second
7146  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7147  * that we should already have the limited management partition key in
7148  * array element 1, and also that the port is not yet up when
7149  * add_full_mgmt_pkey() is invoked.
7150  */
7151 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7152 {
7153         struct hfi1_devdata *dd = ppd->dd;
7154
7155         /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7156         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7157                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7158                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7159         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7160         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7161         hfi1_event_pkey_change(ppd->dd, ppd->port);
7162 }
7163
7164 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7165 {
7166         if (ppd->pkeys[2] != 0) {
7167                 ppd->pkeys[2] = 0;
7168                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7169                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7170         }
7171 }
7172
7173 /*
7174  * Convert the given link width to the OPA link width bitmask.
7175  */
7176 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7177 {
7178         switch (width) {
7179         case 0:
7180                 /*
7181                  * Simulator and quick linkup do not set the width.
7182                  * Just set it to 4x without complaint.
7183                  */
7184                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7185                         return OPA_LINK_WIDTH_4X;
7186                 return 0; /* no lanes up */
7187         case 1: return OPA_LINK_WIDTH_1X;
7188         case 2: return OPA_LINK_WIDTH_2X;
7189         case 3: return OPA_LINK_WIDTH_3X;
7190         default:
7191                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7192                             __func__, width);
7193                 /* fall through */
7194         case 4: return OPA_LINK_WIDTH_4X;
7195         }
7196 }
7197
7198 /*
7199  * Do a population count on the bottom nibble.
7200  */
7201 static const u8 bit_counts[16] = {
7202         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7203 };
7204
7205 static inline u8 nibble_to_count(u8 nibble)
7206 {
7207         return bit_counts[nibble & 0xf];
7208 }
7209
7210 /*
7211  * Read the active lane information from the 8051 registers and return
7212  * their widths.
7213  *
7214  * Active lane information is found in these 8051 registers:
7215  *      enable_lane_tx
7216  *      enable_lane_rx
7217  */
7218 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7219                             u16 *rx_width)
7220 {
7221         u16 tx, rx;
7222         u8 enable_lane_rx;
7223         u8 enable_lane_tx;
7224         u8 tx_polarity_inversion;
7225         u8 rx_polarity_inversion;
7226         u8 max_rate;
7227
7228         /* read the active lanes */
7229         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7230                          &rx_polarity_inversion, &max_rate);
7231         read_local_lni(dd, &enable_lane_rx);
7232
7233         /* convert to counts */
7234         tx = nibble_to_count(enable_lane_tx);
7235         rx = nibble_to_count(enable_lane_rx);
7236
7237         /*
7238          * Set link_speed_active here, overriding what was set in
7239          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7240          * set the max_rate field in handle_verify_cap until v0.19.
7241          */
7242         if ((dd->icode == ICODE_RTL_SILICON) &&
7243             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7244                 /* max_rate: 0 = 12.5G, 1 = 25G */
7245                 switch (max_rate) {
7246                 case 0:
7247                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7248                         break;
7249                 default:
7250                         dd_dev_err(dd,
7251                                    "%s: unexpected max rate %d, using 25Gb\n",
7252                                    __func__, (int)max_rate);
7253                         /* fall through */
7254                 case 1:
7255                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7256                         break;
7257                 }
7258         }
7259
7260         dd_dev_info(dd,
7261                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7262                     enable_lane_tx, tx, enable_lane_rx, rx);
7263         *tx_width = link_width_to_bits(dd, tx);
7264         *rx_width = link_width_to_bits(dd, rx);
7265 }
7266
7267 /*
7268  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7269  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7270  * after link up.  I.e. look elsewhere for downgrade information.
7271  *
7272  * Bits are:
7273  *      + bits [7:4] contain the number of active transmitters
7274  *      + bits [3:0] contain the number of active receivers
7275  * These are numbers 1 through 4 and can be different values if the
7276  * link is asymmetric.
7277  *
7278  * verify_cap_local_fm_link_width[0] retains its original value.
7279  */
7280 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7281                               u16 *rx_width)
7282 {
7283         u16 widths, tx, rx;
7284         u8 misc_bits, local_flags;
7285         u16 active_tx, active_rx;
7286
7287         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7288         tx = widths >> 12;
7289         rx = (widths >> 8) & 0xf;
7290
7291         *tx_width = link_width_to_bits(dd, tx);
7292         *rx_width = link_width_to_bits(dd, rx);
7293
7294         /* print the active widths */
7295         get_link_widths(dd, &active_tx, &active_rx);
7296 }
7297
7298 /*
7299  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7300  * hardware information when the link first comes up.
7301  *
7302  * The link width is not available until after VerifyCap.AllFramesReceived
7303  * (the trigger for handle_verify_cap), so this is outside that routine
7304  * and should be called when the 8051 signals linkup.
7305  */
7306 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7307 {
7308         u16 tx_width, rx_width;
7309
7310         /* get end-of-LNI link widths */
7311         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7312
7313         /* use tx_width as the link is supposed to be symmetric on link up */
7314         ppd->link_width_active = tx_width;
7315         /* link width downgrade active (LWD.A) starts out matching LW.A */
7316         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7317         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7318         /* per OPA spec, on link up LWD.E resets to LWD.S */
7319         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7320         /* cache the active egress rate (units {10^6 bits/sec]) */
7321         ppd->current_egress_rate = active_egress_rate(ppd);
7322 }
7323
7324 /*
7325  * Handle a verify capabilities interrupt from the 8051.
7326  *
7327  * This is a work-queue function outside of the interrupt.
7328  */
7329 void handle_verify_cap(struct work_struct *work)
7330 {
7331         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7332                                                                 link_vc_work);
7333         struct hfi1_devdata *dd = ppd->dd;
7334         u64 reg;
7335         u8 power_management;
7336         u8 continious;
7337         u8 vcu;
7338         u8 vau;
7339         u8 z;
7340         u16 vl15buf;
7341         u16 link_widths;
7342         u16 crc_mask;
7343         u16 crc_val;
7344         u16 device_id;
7345         u16 active_tx, active_rx;
7346         u8 partner_supported_crc;
7347         u8 remote_tx_rate;
7348         u8 device_rev;
7349
7350         set_link_state(ppd, HLS_VERIFY_CAP);
7351
7352         lcb_shutdown(dd, 0);
7353         adjust_lcb_for_fpga_serdes(dd);
7354
7355         read_vc_remote_phy(dd, &power_management, &continious);
7356         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7357                               &partner_supported_crc);
7358         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7359         read_remote_device_id(dd, &device_id, &device_rev);
7360         /*
7361          * And the 'MgmtAllowed' information, which is exchanged during
7362          * LNI, is also be available at this point.
7363          */
7364         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7365         /* print the active widths */
7366         get_link_widths(dd, &active_tx, &active_rx);
7367         dd_dev_info(dd,
7368                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7369                     (int)power_management, (int)continious);
7370         dd_dev_info(dd,
7371                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7372                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7373                     (int)partner_supported_crc);
7374         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7375                     (u32)remote_tx_rate, (u32)link_widths);
7376         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7377                     (u32)device_id, (u32)device_rev);
7378         /*
7379          * The peer vAU value just read is the peer receiver value.  HFI does
7380          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7381          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7382          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7383          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7384          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7385          * subject to the Z value exception.
7386          */
7387         if (vau == 0)
7388                 vau = 1;
7389         set_up_vau(dd, vau);
7390
7391         /*
7392          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7393          * credits value and wait for link-up interrupt ot set it.
7394          */
7395         set_up_vl15(dd, 0);
7396         dd->vl15buf_cached = vl15buf;
7397
7398         /* set up the LCB CRC mode */
7399         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7400
7401         /* order is important: use the lowest bit in common */
7402         if (crc_mask & CAP_CRC_14B)
7403                 crc_val = LCB_CRC_14B;
7404         else if (crc_mask & CAP_CRC_48B)
7405                 crc_val = LCB_CRC_48B;
7406         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7407                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7408         else
7409                 crc_val = LCB_CRC_16B;
7410
7411         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7412         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7413                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7414
7415         /* set (14b only) or clear sideband credit */
7416         reg = read_csr(dd, SEND_CM_CTRL);
7417         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7418                 write_csr(dd, SEND_CM_CTRL,
7419                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7420         } else {
7421                 write_csr(dd, SEND_CM_CTRL,
7422                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7423         }
7424
7425         ppd->link_speed_active = 0;     /* invalid value */
7426         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7427                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7428                 switch (remote_tx_rate) {
7429                 case 0:
7430                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7431                         break;
7432                 case 1:
7433                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7434                         break;
7435                 }
7436         } else {
7437                 /* actual rate is highest bit of the ANDed rates */
7438                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7439
7440                 if (rate & 2)
7441                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7442                 else if (rate & 1)
7443                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7444         }
7445         if (ppd->link_speed_active == 0) {
7446                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7447                            __func__, (int)remote_tx_rate);
7448                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7449         }
7450
7451         /*
7452          * Cache the values of the supported, enabled, and active
7453          * LTP CRC modes to return in 'portinfo' queries. But the bit
7454          * flags that are returned in the portinfo query differ from
7455          * what's in the link_crc_mask, crc_sizes, and crc_val
7456          * variables. Convert these here.
7457          */
7458         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7459                 /* supported crc modes */
7460         ppd->port_ltp_crc_mode |=
7461                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7462                 /* enabled crc modes */
7463         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7464                 /* active crc mode */
7465
7466         /* set up the remote credit return table */
7467         assign_remote_cm_au_table(dd, vcu);
7468
7469         /*
7470          * The LCB is reset on entry to handle_verify_cap(), so this must
7471          * be applied on every link up.
7472          *
7473          * Adjust LCB error kill enable to kill the link if
7474          * these RBUF errors are seen:
7475          *      REPLAY_BUF_MBE_SMASK
7476          *      FLIT_INPUT_BUF_MBE_SMASK
7477          */
7478         if (is_ax(dd)) {                        /* fixed in B0 */
7479                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7480                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7481                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7482                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7483         }
7484
7485         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7486         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7487
7488         /* give 8051 access to the LCB CSRs */
7489         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7490         set_8051_lcb_access(dd);
7491
7492         if (ppd->mgmt_allowed)
7493                 add_full_mgmt_pkey(ppd);
7494
7495         /* tell the 8051 to go to LinkUp */
7496         set_link_state(ppd, HLS_GOING_UP);
7497 }
7498
7499 /*
7500  * Apply the link width downgrade enabled policy against the current active
7501  * link widths.
7502  *
7503  * Called when the enabled policy changes or the active link widths change.
7504  */
7505 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7506 {
7507         int do_bounce = 0;
7508         int tries;
7509         u16 lwde;
7510         u16 tx, rx;
7511
7512         /* use the hls lock to avoid a race with actual link up */
7513         tries = 0;
7514 retry:
7515         mutex_lock(&ppd->hls_lock);
7516         /* only apply if the link is up */
7517         if (ppd->host_link_state & HLS_DOWN) {
7518                 /* still going up..wait and retry */
7519                 if (ppd->host_link_state & HLS_GOING_UP) {
7520                         if (++tries < 1000) {
7521                                 mutex_unlock(&ppd->hls_lock);
7522                                 usleep_range(100, 120); /* arbitrary */
7523                                 goto retry;
7524                         }
7525                         dd_dev_err(ppd->dd,
7526                                    "%s: giving up waiting for link state change\n",
7527                                    __func__);
7528                 }
7529                 goto done;
7530         }
7531
7532         lwde = ppd->link_width_downgrade_enabled;
7533
7534         if (refresh_widths) {
7535                 get_link_widths(ppd->dd, &tx, &rx);
7536                 ppd->link_width_downgrade_tx_active = tx;
7537                 ppd->link_width_downgrade_rx_active = rx;
7538         }
7539
7540         if (ppd->link_width_downgrade_tx_active == 0 ||
7541             ppd->link_width_downgrade_rx_active == 0) {
7542                 /* the 8051 reported a dead link as a downgrade */
7543                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7544         } else if (lwde == 0) {
7545                 /* downgrade is disabled */
7546
7547                 /* bounce if not at starting active width */
7548                 if ((ppd->link_width_active !=
7549                      ppd->link_width_downgrade_tx_active) ||
7550                     (ppd->link_width_active !=
7551                      ppd->link_width_downgrade_rx_active)) {
7552                         dd_dev_err(ppd->dd,
7553                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7554                         dd_dev_err(ppd->dd,
7555                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7556                                    ppd->link_width_active,
7557                                    ppd->link_width_downgrade_tx_active,
7558                                    ppd->link_width_downgrade_rx_active);
7559                         do_bounce = 1;
7560                 }
7561         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7562                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7563                 /* Tx or Rx is outside the enabled policy */
7564                 dd_dev_err(ppd->dd,
7565                            "Link is outside of downgrade allowed, downing link\n");
7566                 dd_dev_err(ppd->dd,
7567                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7568                            lwde, ppd->link_width_downgrade_tx_active,
7569                            ppd->link_width_downgrade_rx_active);
7570                 do_bounce = 1;
7571         }
7572
7573 done:
7574         mutex_unlock(&ppd->hls_lock);
7575
7576         if (do_bounce) {
7577                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7578                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7579                 set_link_state(ppd, HLS_DN_OFFLINE);
7580                 start_link(ppd);
7581         }
7582 }
7583
7584 /*
7585  * Handle a link downgrade interrupt from the 8051.
7586  *
7587  * This is a work-queue function outside of the interrupt.
7588  */
7589 void handle_link_downgrade(struct work_struct *work)
7590 {
7591         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7592                                                         link_downgrade_work);
7593
7594         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7595         apply_link_downgrade_policy(ppd, 1);
7596 }
7597
7598 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7599 {
7600         return flag_string(buf, buf_len, flags, dcc_err_flags,
7601                 ARRAY_SIZE(dcc_err_flags));
7602 }
7603
7604 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7605 {
7606         return flag_string(buf, buf_len, flags, lcb_err_flags,
7607                 ARRAY_SIZE(lcb_err_flags));
7608 }
7609
7610 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7611 {
7612         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7613                 ARRAY_SIZE(dc8051_err_flags));
7614 }
7615
7616 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7617 {
7618         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7619                 ARRAY_SIZE(dc8051_info_err_flags));
7620 }
7621
7622 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7623 {
7624         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7625                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7626 }
7627
7628 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7629 {
7630         struct hfi1_pportdata *ppd = dd->pport;
7631         u64 info, err, host_msg;
7632         int queue_link_down = 0;
7633         char buf[96];
7634
7635         /* look at the flags */
7636         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7637                 /* 8051 information set by firmware */
7638                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7639                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7640                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7641                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7642                 host_msg = (info >>
7643                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7644                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7645
7646                 /*
7647                  * Handle error flags.
7648                  */
7649                 if (err & FAILED_LNI) {
7650                         /*
7651                          * LNI error indications are cleared by the 8051
7652                          * only when starting polling.  Only pay attention
7653                          * to them when in the states that occur during
7654                          * LNI.
7655                          */
7656                         if (ppd->host_link_state
7657                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7658                                 queue_link_down = 1;
7659                                 dd_dev_info(dd, "Link error: %s\n",
7660                                             dc8051_info_err_string(buf,
7661                                                                    sizeof(buf),
7662                                                                    err &
7663                                                                    FAILED_LNI));
7664                         }
7665                         err &= ~(u64)FAILED_LNI;
7666                 }
7667                 /* unknown frames can happen durning LNI, just count */
7668                 if (err & UNKNOWN_FRAME) {
7669                         ppd->unknown_frame_count++;
7670                         err &= ~(u64)UNKNOWN_FRAME;
7671                 }
7672                 if (err) {
7673                         /* report remaining errors, but do not do anything */
7674                         dd_dev_err(dd, "8051 info error: %s\n",
7675                                    dc8051_info_err_string(buf, sizeof(buf),
7676                                                           err));
7677                 }
7678
7679                 /*
7680                  * Handle host message flags.
7681                  */
7682                 if (host_msg & HOST_REQ_DONE) {
7683                         /*
7684                          * Presently, the driver does a busy wait for
7685                          * host requests to complete.  This is only an
7686                          * informational message.
7687                          * NOTE: The 8051 clears the host message
7688                          * information *on the next 8051 command*.
7689                          * Therefore, when linkup is achieved,
7690                          * this flag will still be set.
7691                          */
7692                         host_msg &= ~(u64)HOST_REQ_DONE;
7693                 }
7694                 if (host_msg & BC_SMA_MSG) {
7695                         queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7696                         host_msg &= ~(u64)BC_SMA_MSG;
7697                 }
7698                 if (host_msg & LINKUP_ACHIEVED) {
7699                         dd_dev_info(dd, "8051: Link up\n");
7700                         queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7701                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7702                 }
7703                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7704                         handle_8051_request(ppd);
7705                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7706                 }
7707                 if (host_msg & VERIFY_CAP_FRAME) {
7708                         queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7709                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7710                 }
7711                 if (host_msg & LINK_GOING_DOWN) {
7712                         const char *extra = "";
7713                         /* no downgrade action needed if going down */
7714                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7715                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7716                                 extra = " (ignoring downgrade)";
7717                         }
7718                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7719                         queue_link_down = 1;
7720                         host_msg &= ~(u64)LINK_GOING_DOWN;
7721                 }
7722                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7723                         queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7724                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7725                 }
7726                 if (host_msg) {
7727                         /* report remaining messages, but do not do anything */
7728                         dd_dev_info(dd, "8051 info host message: %s\n",
7729                                     dc8051_info_host_msg_string(buf,
7730                                                                 sizeof(buf),
7731                                                                 host_msg));
7732                 }
7733
7734                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7735         }
7736         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7737                 /*
7738                  * Lost the 8051 heartbeat.  If this happens, we
7739                  * receive constant interrupts about it.  Disable
7740                  * the interrupt after the first.
7741                  */
7742                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7743                 write_csr(dd, DC_DC8051_ERR_EN,
7744                           read_csr(dd, DC_DC8051_ERR_EN) &
7745                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7746
7747                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7748         }
7749         if (reg) {
7750                 /* report the error, but do not do anything */
7751                 dd_dev_err(dd, "8051 error: %s\n",
7752                            dc8051_err_string(buf, sizeof(buf), reg));
7753         }
7754
7755         if (queue_link_down) {
7756                 /*
7757                  * if the link is already going down or disabled, do not
7758                  * queue another
7759                  */
7760                 if ((ppd->host_link_state &
7761                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7762                     ppd->link_enabled == 0) {
7763                         dd_dev_info(dd, "%s: not queuing link down\n",
7764                                     __func__);
7765                 } else {
7766                         queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7767                 }
7768         }
7769 }
7770
7771 static const char * const fm_config_txt[] = {
7772 [0] =
7773         "BadHeadDist: Distance violation between two head flits",
7774 [1] =
7775         "BadTailDist: Distance violation between two tail flits",
7776 [2] =
7777         "BadCtrlDist: Distance violation between two credit control flits",
7778 [3] =
7779         "BadCrdAck: Credits return for unsupported VL",
7780 [4] =
7781         "UnsupportedVLMarker: Received VL Marker",
7782 [5] =
7783         "BadPreempt: Exceeded the preemption nesting level",
7784 [6] =
7785         "BadControlFlit: Received unsupported control flit",
7786 /* no 7 */
7787 [8] =
7788         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7789 };
7790
7791 static const char * const port_rcv_txt[] = {
7792 [1] =
7793         "BadPktLen: Illegal PktLen",
7794 [2] =
7795         "PktLenTooLong: Packet longer than PktLen",
7796 [3] =
7797         "PktLenTooShort: Packet shorter than PktLen",
7798 [4] =
7799         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7800 [5] =
7801         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7802 [6] =
7803         "BadL2: Illegal L2 opcode",
7804 [7] =
7805         "BadSC: Unsupported SC",
7806 [9] =
7807         "BadRC: Illegal RC",
7808 [11] =
7809         "PreemptError: Preempting with same VL",
7810 [12] =
7811         "PreemptVL15: Preempting a VL15 packet",
7812 };
7813
7814 #define OPA_LDR_FMCONFIG_OFFSET 16
7815 #define OPA_LDR_PORTRCV_OFFSET 0
7816 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7817 {
7818         u64 info, hdr0, hdr1;
7819         const char *extra;
7820         char buf[96];
7821         struct hfi1_pportdata *ppd = dd->pport;
7822         u8 lcl_reason = 0;
7823         int do_bounce = 0;
7824
7825         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7826                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7827                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7828                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7829                         /* set status bit */
7830                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7831                 }
7832                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7833         }
7834
7835         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7836                 struct hfi1_pportdata *ppd = dd->pport;
7837                 /* this counter saturates at (2^32) - 1 */
7838                 if (ppd->link_downed < (u32)UINT_MAX)
7839                         ppd->link_downed++;
7840                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7841         }
7842
7843         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7844                 u8 reason_valid = 1;
7845
7846                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7847                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7848                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7849                         /* set status bit */
7850                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7851                 }
7852                 switch (info) {
7853                 case 0:
7854                 case 1:
7855                 case 2:
7856                 case 3:
7857                 case 4:
7858                 case 5:
7859                 case 6:
7860                         extra = fm_config_txt[info];
7861                         break;
7862                 case 8:
7863                         extra = fm_config_txt[info];
7864                         if (ppd->port_error_action &
7865                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7866                                 do_bounce = 1;
7867                                 /*
7868                                  * lcl_reason cannot be derived from info
7869                                  * for this error
7870                                  */
7871                                 lcl_reason =
7872                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7873                         }
7874                         break;
7875                 default:
7876                         reason_valid = 0;
7877                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7878                         extra = buf;
7879                         break;
7880                 }
7881
7882                 if (reason_valid && !do_bounce) {
7883                         do_bounce = ppd->port_error_action &
7884                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7885                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7886                 }
7887
7888                 /* just report this */
7889                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7890                                         extra);
7891                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7892         }
7893
7894         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7895                 u8 reason_valid = 1;
7896
7897                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7898                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7899                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7900                 if (!(dd->err_info_rcvport.status_and_code &
7901                       OPA_EI_STATUS_SMASK)) {
7902                         dd->err_info_rcvport.status_and_code =
7903                                 info & OPA_EI_CODE_SMASK;
7904                         /* set status bit */
7905                         dd->err_info_rcvport.status_and_code |=
7906                                 OPA_EI_STATUS_SMASK;
7907                         /*
7908                          * save first 2 flits in the packet that caused
7909                          * the error
7910                          */
7911                         dd->err_info_rcvport.packet_flit1 = hdr0;
7912                         dd->err_info_rcvport.packet_flit2 = hdr1;
7913                 }
7914                 switch (info) {
7915                 case 1:
7916                 case 2:
7917                 case 3:
7918                 case 4:
7919                 case 5:
7920                 case 6:
7921                 case 7:
7922                 case 9:
7923                 case 11:
7924                 case 12:
7925                         extra = port_rcv_txt[info];
7926                         break;
7927                 default:
7928                         reason_valid = 0;
7929                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7930                         extra = buf;
7931                         break;
7932                 }
7933
7934                 if (reason_valid && !do_bounce) {
7935                         do_bounce = ppd->port_error_action &
7936                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7937                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7938                 }
7939
7940                 /* just report this */
7941                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7942                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
7943                                         extra, hdr0, hdr1);
7944
7945                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7946         }
7947
7948         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7949                 /* informative only */
7950                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7951                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7952         }
7953         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7954                 /* informative only */
7955                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7956                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7957         }
7958
7959         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7960                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7961
7962         /* report any remaining errors */
7963         if (reg)
7964                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7965                                         dcc_err_string(buf, sizeof(buf), reg));
7966
7967         if (lcl_reason == 0)
7968                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7969
7970         if (do_bounce) {
7971                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7972                                         __func__);
7973                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7974                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7975         }
7976 }
7977
7978 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7979 {
7980         char buf[96];
7981
7982         dd_dev_info(dd, "LCB Error: %s\n",
7983                     lcb_err_string(buf, sizeof(buf), reg));
7984 }
7985
7986 /*
7987  * CCE block DC interrupt.  Source is < 8.
7988  */
7989 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7990 {
7991         const struct err_reg_info *eri = &dc_errs[source];
7992
7993         if (eri->handler) {
7994                 interrupt_clear_down(dd, 0, eri);
7995         } else if (source == 3 /* dc_lbm_int */) {
7996                 /*
7997                  * This indicates that a parity error has occurred on the
7998                  * address/control lines presented to the LBM.  The error
7999                  * is a single pulse, there is no associated error flag,
8000                  * and it is non-maskable.  This is because if a parity
8001                  * error occurs on the request the request is dropped.
8002                  * This should never occur, but it is nice to know if it
8003                  * ever does.
8004                  */
8005                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8006         } else {
8007                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8008         }
8009 }
8010
8011 /*
8012  * TX block send credit interrupt.  Source is < 160.
8013  */
8014 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8015 {
8016         sc_group_release_update(dd, source);
8017 }
8018
8019 /*
8020  * TX block SDMA interrupt.  Source is < 48.
8021  *
8022  * SDMA interrupts are grouped by type:
8023  *
8024  *       0 -  N-1 = SDma
8025  *       N - 2N-1 = SDmaProgress
8026  *      2N - 3N-1 = SDmaIdle
8027  */
8028 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8029 {
8030         /* what interrupt */
8031         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8032         /* which engine */
8033         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8034
8035 #ifdef CONFIG_SDMA_VERBOSITY
8036         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8037                    slashstrip(__FILE__), __LINE__, __func__);
8038         sdma_dumpstate(&dd->per_sdma[which]);
8039 #endif
8040
8041         if (likely(what < 3 && which < dd->num_sdma)) {
8042                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8043         } else {
8044                 /* should not happen */
8045                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8046         }
8047 }
8048
8049 /*
8050  * RX block receive available interrupt.  Source is < 160.
8051  */
8052 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8053 {
8054         struct hfi1_ctxtdata *rcd;
8055         char *err_detail;
8056
8057         if (likely(source < dd->num_rcv_contexts)) {
8058                 rcd = dd->rcd[source];
8059                 if (rcd) {
8060                         /* Check for non-user contexts, including vnic */
8061                         if ((source < dd->first_dyn_alloc_ctxt) ||
8062                             (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8063                                 rcd->do_interrupt(rcd, 0);
8064                         else
8065                                 handle_user_interrupt(rcd);
8066                         return; /* OK */
8067                 }
8068                 /* received an interrupt, but no rcd */
8069                 err_detail = "dataless";
8070         } else {
8071                 /* received an interrupt, but are not using that context */
8072                 err_detail = "out of range";
8073         }
8074         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8075                    err_detail, source);
8076 }
8077
8078 /*
8079  * RX block receive urgent interrupt.  Source is < 160.
8080  */
8081 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8082 {
8083         struct hfi1_ctxtdata *rcd;
8084         char *err_detail;
8085
8086         if (likely(source < dd->num_rcv_contexts)) {
8087                 rcd = dd->rcd[source];
8088                 if (rcd) {
8089                         /* only pay attention to user urgent interrupts */
8090                         if ((source >= dd->first_dyn_alloc_ctxt) &&
8091                             (!rcd->sc || (rcd->sc->type == SC_USER)))
8092                                 handle_user_interrupt(rcd);
8093                         return; /* OK */
8094                 }
8095                 /* received an interrupt, but no rcd */
8096                 err_detail = "dataless";
8097         } else {
8098                 /* received an interrupt, but are not using that context */
8099                 err_detail = "out of range";
8100         }
8101         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8102                    err_detail, source);
8103 }
8104
8105 /*
8106  * Reserved range interrupt.  Should not be called in normal operation.
8107  */
8108 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8109 {
8110         char name[64];
8111
8112         dd_dev_err(dd, "unexpected %s interrupt\n",
8113                    is_reserved_name(name, sizeof(name), source));
8114 }
8115
8116 static const struct is_table is_table[] = {
8117 /*
8118  * start                 end
8119  *                              name func               interrupt func
8120  */
8121 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8122                                 is_misc_err_name,       is_misc_err_int },
8123 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8124                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8125 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8126                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8127 { IS_SDMA_START,             IS_SDMA_END,
8128                                 is_sdma_eng_name,       is_sdma_eng_int },
8129 { IS_VARIOUS_START,          IS_VARIOUS_END,
8130                                 is_various_name,        is_various_int },
8131 { IS_DC_START,       IS_DC_END,
8132                                 is_dc_name,             is_dc_int },
8133 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8134                                 is_rcv_avail_name,      is_rcv_avail_int },
8135 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8136                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8137 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8138                                 is_send_credit_name,    is_send_credit_int},
8139 { IS_RESERVED_START,     IS_RESERVED_END,
8140                                 is_reserved_name,       is_reserved_int},
8141 };
8142
8143 /*
8144  * Interrupt source interrupt - called when the given source has an interrupt.
8145  * Source is a bit index into an array of 64-bit integers.
8146  */
8147 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8148 {
8149         const struct is_table *entry;
8150
8151         /* avoids a double compare by walking the table in-order */
8152         for (entry = &is_table[0]; entry->is_name; entry++) {
8153                 if (source < entry->end) {
8154                         trace_hfi1_interrupt(dd, entry, source);
8155                         entry->is_int(dd, source - entry->start);
8156                         return;
8157                 }
8158         }
8159         /* fell off the end */
8160         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8161 }
8162
8163 /*
8164  * General interrupt handler.  This is able to correctly handle
8165  * all interrupts in case INTx is used.
8166  */
8167 static irqreturn_t general_interrupt(int irq, void *data)
8168 {
8169         struct hfi1_devdata *dd = data;
8170         u64 regs[CCE_NUM_INT_CSRS];
8171         u32 bit;
8172         int i;
8173
8174         this_cpu_inc(*dd->int_counter);
8175
8176         /* phase 1: scan and clear all handled interrupts */
8177         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8178                 if (dd->gi_mask[i] == 0) {
8179                         regs[i] = 0;    /* used later */
8180                         continue;
8181                 }
8182                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8183                                 dd->gi_mask[i];
8184                 /* only clear if anything is set */
8185                 if (regs[i])
8186                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8187         }
8188
8189         /* phase 2: call the appropriate handler */
8190         for_each_set_bit(bit, (unsigned long *)&regs[0],
8191                          CCE_NUM_INT_CSRS * 64) {
8192                 is_interrupt(dd, bit);
8193         }
8194
8195         return IRQ_HANDLED;
8196 }
8197
8198 static irqreturn_t sdma_interrupt(int irq, void *data)
8199 {
8200         struct sdma_engine *sde = data;
8201         struct hfi1_devdata *dd = sde->dd;
8202         u64 status;
8203
8204 #ifdef CONFIG_SDMA_VERBOSITY
8205         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8206                    slashstrip(__FILE__), __LINE__, __func__);
8207         sdma_dumpstate(sde);
8208 #endif
8209
8210         this_cpu_inc(*dd->int_counter);
8211
8212         /* This read_csr is really bad in the hot path */
8213         status = read_csr(dd,
8214                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8215                           & sde->imask;
8216         if (likely(status)) {
8217                 /* clear the interrupt(s) */
8218                 write_csr(dd,
8219                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8220                           status);
8221
8222                 /* handle the interrupt(s) */
8223                 sdma_engine_interrupt(sde, status);
8224         } else {
8225                 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8226                            sde->this_idx);
8227         }
8228         return IRQ_HANDLED;
8229 }
8230
8231 /*
8232  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8233  * to insure that the write completed.  This does NOT guarantee that
8234  * queued DMA writes to memory from the chip are pushed.
8235  */
8236 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8237 {
8238         struct hfi1_devdata *dd = rcd->dd;
8239         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8240
8241         mmiowb();       /* make sure everything before is written */
8242         write_csr(dd, addr, rcd->imask);
8243         /* force the above write on the chip and get a value back */
8244         (void)read_csr(dd, addr);
8245 }
8246
8247 /* force the receive interrupt */
8248 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8249 {
8250         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8251 }
8252
8253 /*
8254  * Return non-zero if a packet is present.
8255  *
8256  * This routine is called when rechecking for packets after the RcvAvail
8257  * interrupt has been cleared down.  First, do a quick check of memory for
8258  * a packet present.  If not found, use an expensive CSR read of the context
8259  * tail to determine the actual tail.  The CSR read is necessary because there
8260  * is no method to push pending DMAs to memory other than an interrupt and we
8261  * are trying to determine if we need to force an interrupt.
8262  */
8263 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8264 {
8265         u32 tail;
8266         int present;
8267
8268         if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8269                 present = (rcd->seq_cnt ==
8270                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8271         else /* is RDMA rtail */
8272                 present = (rcd->head != get_rcvhdrtail(rcd));
8273
8274         if (present)
8275                 return 1;
8276
8277         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8278         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8279         return rcd->head != tail;
8280 }
8281
8282 /*
8283  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8284  * This routine will try to handle packets immediately (latency), but if
8285  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8286  * chip receive interrupt is *not* cleared down until this or the thread (if
8287  * invoked) is finished.  The intent is to avoid extra interrupts while we
8288  * are processing packets anyway.
8289  */
8290 static irqreturn_t receive_context_interrupt(int irq, void *data)
8291 {
8292         struct hfi1_ctxtdata *rcd = data;
8293         struct hfi1_devdata *dd = rcd->dd;
8294         int disposition;
8295         int present;
8296
8297         trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8298         this_cpu_inc(*dd->int_counter);
8299         aspm_ctx_disable(rcd);
8300
8301         /* receive interrupt remains blocked while processing packets */
8302         disposition = rcd->do_interrupt(rcd, 0);
8303
8304         /*
8305          * Too many packets were seen while processing packets in this
8306          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8307          * remains blocked.
8308          */
8309         if (disposition == RCV_PKT_LIMIT)
8310                 return IRQ_WAKE_THREAD;
8311
8312         /*
8313          * The packet processor detected no more packets.  Clear the receive
8314          * interrupt and recheck for a packet packet that may have arrived
8315          * after the previous check and interrupt clear.  If a packet arrived,
8316          * force another interrupt.
8317          */
8318         clear_recv_intr(rcd);
8319         present = check_packet_present(rcd);
8320         if (present)
8321                 force_recv_intr(rcd);
8322
8323         return IRQ_HANDLED;
8324 }
8325
8326 /*
8327  * Receive packet thread handler.  This expects to be invoked with the
8328  * receive interrupt still blocked.
8329  */
8330 static irqreturn_t receive_context_thread(int irq, void *data)
8331 {
8332         struct hfi1_ctxtdata *rcd = data;
8333         int present;
8334
8335         /* receive interrupt is still blocked from the IRQ handler */
8336         (void)rcd->do_interrupt(rcd, 1);
8337
8338         /*
8339          * The packet processor will only return if it detected no more
8340          * packets.  Hold IRQs here so we can safely clear the interrupt and
8341          * recheck for a packet that may have arrived after the previous
8342          * check and the interrupt clear.  If a packet arrived, force another
8343          * interrupt.
8344          */
8345         local_irq_disable();
8346         clear_recv_intr(rcd);
8347         present = check_packet_present(rcd);
8348         if (present)
8349                 force_recv_intr(rcd);
8350         local_irq_enable();
8351
8352         return IRQ_HANDLED;
8353 }
8354
8355 /* ========================================================================= */
8356
8357 u32 read_physical_state(struct hfi1_devdata *dd)
8358 {
8359         u64 reg;
8360
8361         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8362         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8363                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8364 }
8365
8366 u32 read_logical_state(struct hfi1_devdata *dd)
8367 {
8368         u64 reg;
8369
8370         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8371         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8372                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8373 }
8374
8375 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8376 {
8377         u64 reg;
8378
8379         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8380         /* clear current state, set new state */
8381         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8382         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8383         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8384 }
8385
8386 /*
8387  * Use the 8051 to read a LCB CSR.
8388  */
8389 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8390 {
8391         u32 regno;
8392         int ret;
8393
8394         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8395                 if (acquire_lcb_access(dd, 0) == 0) {
8396                         *data = read_csr(dd, addr);
8397                         release_lcb_access(dd, 0);
8398                         return 0;
8399                 }
8400                 return -EBUSY;
8401         }
8402
8403         /* register is an index of LCB registers: (offset - base) / 8 */
8404         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8405         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8406         if (ret != HCMD_SUCCESS)
8407                 return -EBUSY;
8408         return 0;
8409 }
8410
8411 /*
8412  * Provide a cache for some of the LCB registers in case the LCB is
8413  * unavailable.
8414  * (The LCB is unavailable in certain link states, for example.)
8415  */
8416 struct lcb_datum {
8417         u32 off;
8418         u64 val;
8419 };
8420
8421 static struct lcb_datum lcb_cache[] = {
8422         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8423         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8424         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8425 };
8426
8427 static void update_lcb_cache(struct hfi1_devdata *dd)
8428 {
8429         int i;
8430         int ret;
8431         u64 val;
8432
8433         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8434                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8435
8436                 /* Update if we get good data */
8437                 if (likely(ret != -EBUSY))
8438                         lcb_cache[i].val = val;
8439         }
8440 }
8441
8442 static int read_lcb_cache(u32 off, u64 *val)
8443 {
8444         int i;
8445
8446         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8447                 if (lcb_cache[i].off == off) {
8448                         *val = lcb_cache[i].val;
8449                         return 0;
8450                 }
8451         }
8452
8453         pr_warn("%s bad offset 0x%x\n", __func__, off);
8454         return -1;
8455 }
8456
8457 /*
8458  * Read an LCB CSR.  Access may not be in host control, so check.
8459  * Return 0 on success, -EBUSY on failure.
8460  */
8461 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8462 {
8463         struct hfi1_pportdata *ppd = dd->pport;
8464
8465         /* if up, go through the 8051 for the value */
8466         if (ppd->host_link_state & HLS_UP)
8467                 return read_lcb_via_8051(dd, addr, data);
8468         /* if going up or down, check the cache, otherwise, no access */
8469         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8470                 if (read_lcb_cache(addr, data))
8471                         return -EBUSY;
8472                 return 0;
8473         }
8474
8475         /* otherwise, host has access */
8476         *data = read_csr(dd, addr);
8477         return 0;
8478 }
8479
8480 /*
8481  * Use the 8051 to write a LCB CSR.
8482  */
8483 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8484 {
8485         u32 regno;
8486         int ret;
8487
8488         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8489             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8490                 if (acquire_lcb_access(dd, 0) == 0) {
8491                         write_csr(dd, addr, data);
8492                         release_lcb_access(dd, 0);
8493                         return 0;
8494                 }
8495                 return -EBUSY;
8496         }
8497
8498         /* register is an index of LCB registers: (offset - base) / 8 */
8499         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8500         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8501         if (ret != HCMD_SUCCESS)
8502                 return -EBUSY;
8503         return 0;
8504 }
8505
8506 /*
8507  * Write an LCB CSR.  Access may not be in host control, so check.
8508  * Return 0 on success, -EBUSY on failure.
8509  */
8510 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8511 {
8512         struct hfi1_pportdata *ppd = dd->pport;
8513
8514         /* if up, go through the 8051 for the value */
8515         if (ppd->host_link_state & HLS_UP)
8516                 return write_lcb_via_8051(dd, addr, data);
8517         /* if going up or down, no access */
8518         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8519                 return -EBUSY;
8520         /* otherwise, host has access */
8521         write_csr(dd, addr, data);
8522         return 0;
8523 }
8524
8525 /*
8526  * Returns:
8527  *      < 0 = Linux error, not able to get access
8528  *      > 0 = 8051 command RETURN_CODE
8529  */
8530 static int do_8051_command(
8531         struct hfi1_devdata *dd,
8532         u32 type,
8533         u64 in_data,
8534         u64 *out_data)
8535 {
8536         u64 reg, completed;
8537         int return_code;
8538         unsigned long timeout;
8539
8540         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8541
8542         mutex_lock(&dd->dc8051_lock);
8543
8544         /* We can't send any commands to the 8051 if it's in reset */
8545         if (dd->dc_shutdown) {
8546                 return_code = -ENODEV;
8547                 goto fail;
8548         }
8549
8550         /*
8551          * If an 8051 host command timed out previously, then the 8051 is
8552          * stuck.
8553          *
8554          * On first timeout, attempt to reset and restart the entire DC
8555          * block (including 8051). (Is this too big of a hammer?)
8556          *
8557          * If the 8051 times out a second time, the reset did not bring it
8558          * back to healthy life. In that case, fail any subsequent commands.
8559          */
8560         if (dd->dc8051_timed_out) {
8561                 if (dd->dc8051_timed_out > 1) {
8562                         dd_dev_err(dd,
8563                                    "Previous 8051 host command timed out, skipping command %u\n",
8564                                    type);
8565                         return_code = -ENXIO;
8566                         goto fail;
8567                 }
8568                 _dc_shutdown(dd);
8569                 _dc_start(dd);
8570         }
8571
8572         /*
8573          * If there is no timeout, then the 8051 command interface is
8574          * waiting for a command.
8575          */
8576
8577         /*
8578          * When writing a LCB CSR, out_data contains the full value to
8579          * to be written, while in_data contains the relative LCB
8580          * address in 7:0.  Do the work here, rather than the caller,
8581          * of distrubting the write data to where it needs to go:
8582          *
8583          * Write data
8584          *   39:00 -> in_data[47:8]
8585          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8586          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8587          */
8588         if (type == HCMD_WRITE_LCB_CSR) {
8589                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8590                 /* must preserve COMPLETED - it is tied to hardware */
8591                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8592                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8593                 reg |= ((((*out_data) >> 40) & 0xff) <<
8594                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8595                       | ((((*out_data) >> 48) & 0xffff) <<
8596                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8597                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8598         }
8599
8600         /*
8601          * Do two writes: the first to stabilize the type and req_data, the
8602          * second to activate.
8603          */
8604         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8605                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8606                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8607                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8608         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8609         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8610         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8611
8612         /* wait for completion, alternate: interrupt */
8613         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8614         while (1) {
8615                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8616                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8617                 if (completed)
8618                         break;
8619                 if (time_after(jiffies, timeout)) {
8620                         dd->dc8051_timed_out++;
8621                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8622                         if (out_data)
8623                                 *out_data = 0;
8624                         return_code = -ETIMEDOUT;
8625                         goto fail;
8626                 }
8627                 udelay(2);
8628         }
8629
8630         if (out_data) {
8631                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8632                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8633                 if (type == HCMD_READ_LCB_CSR) {
8634                         /* top 16 bits are in a different register */
8635                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8636                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8637                                 << (48
8638                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8639                 }
8640         }
8641         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8642                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8643         dd->dc8051_timed_out = 0;
8644         /*
8645          * Clear command for next user.
8646          */
8647         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8648
8649 fail:
8650         mutex_unlock(&dd->dc8051_lock);
8651         return return_code;
8652 }
8653
8654 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8655 {
8656         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8657 }
8658
8659 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8660                      u8 lane_id, u32 config_data)
8661 {
8662         u64 data;
8663         int ret;
8664
8665         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8666                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8667                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8668         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8669         if (ret != HCMD_SUCCESS) {
8670                 dd_dev_err(dd,
8671                            "load 8051 config: field id %d, lane %d, err %d\n",
8672                            (int)field_id, (int)lane_id, ret);
8673         }
8674         return ret;
8675 }
8676
8677 /*
8678  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8679  * set the result, even on error.
8680  * Return 0 on success, -errno on failure
8681  */
8682 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8683                      u32 *result)
8684 {
8685         u64 big_data;
8686         u32 addr;
8687         int ret;
8688
8689         /* address start depends on the lane_id */
8690         if (lane_id < 4)
8691                 addr = (4 * NUM_GENERAL_FIELDS)
8692                         + (lane_id * 4 * NUM_LANE_FIELDS);
8693         else
8694                 addr = 0;
8695         addr += field_id * 4;
8696
8697         /* read is in 8-byte chunks, hardware will truncate the address down */
8698         ret = read_8051_data(dd, addr, 8, &big_data);
8699
8700         if (ret == 0) {
8701                 /* extract the 4 bytes we want */
8702                 if (addr & 0x4)
8703                         *result = (u32)(big_data >> 32);
8704                 else
8705                         *result = (u32)big_data;
8706         } else {
8707                 *result = 0;
8708                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8709                            __func__, lane_id, field_id);
8710         }
8711
8712         return ret;
8713 }
8714
8715 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8716                               u8 continuous)
8717 {
8718         u32 frame;
8719
8720         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8721                 | power_management << POWER_MANAGEMENT_SHIFT;
8722         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8723                                 GENERAL_CONFIG, frame);
8724 }
8725
8726 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8727                                  u16 vl15buf, u8 crc_sizes)
8728 {
8729         u32 frame;
8730
8731         frame = (u32)vau << VAU_SHIFT
8732                 | (u32)z << Z_SHIFT
8733                 | (u32)vcu << VCU_SHIFT
8734                 | (u32)vl15buf << VL15BUF_SHIFT
8735                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8736         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8737                                 GENERAL_CONFIG, frame);
8738 }
8739
8740 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8741                                      u8 *flag_bits, u16 *link_widths)
8742 {
8743         u32 frame;
8744
8745         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8746                          &frame);
8747         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8748         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8749         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8750 }
8751
8752 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8753                                      u8 misc_bits,
8754                                      u8 flag_bits,
8755                                      u16 link_widths)
8756 {
8757         u32 frame;
8758
8759         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8760                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8761                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8762         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8763                      frame);
8764 }
8765
8766 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8767                                  u8 device_rev)
8768 {
8769         u32 frame;
8770
8771         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8772                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8773         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8774 }
8775
8776 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8777                                   u8 *device_rev)
8778 {
8779         u32 frame;
8780
8781         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8782         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8783         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8784                         & REMOTE_DEVICE_REV_MASK;
8785 }
8786
8787 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8788                       u8 *ver_patch)
8789 {
8790         u32 frame;
8791
8792         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8793         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8794                 STS_FM_VERSION_MAJOR_MASK;
8795         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8796                 STS_FM_VERSION_MINOR_MASK;
8797
8798         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8799         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8800                 STS_FM_VERSION_PATCH_MASK;
8801 }
8802
8803 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8804                                u8 *continuous)
8805 {
8806         u32 frame;
8807
8808         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8809         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8810                                         & POWER_MANAGEMENT_MASK;
8811         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8812                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8813 }
8814
8815 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8816                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8817 {
8818         u32 frame;
8819
8820         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8821         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8822         *z = (frame >> Z_SHIFT) & Z_MASK;
8823         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8824         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8825         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8826 }
8827
8828 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8829                                       u8 *remote_tx_rate,
8830                                       u16 *link_widths)
8831 {
8832         u32 frame;
8833
8834         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8835                          &frame);
8836         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8837                                 & REMOTE_TX_RATE_MASK;
8838         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8839 }
8840
8841 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8842 {
8843         u32 frame;
8844
8845         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8846         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8847 }
8848
8849 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8850 {
8851         u32 frame;
8852
8853         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8854         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8855 }
8856
8857 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8858 {
8859         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8860 }
8861
8862 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8863 {
8864         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8865 }
8866
8867 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8868 {
8869         u32 frame;
8870         int ret;
8871
8872         *link_quality = 0;
8873         if (dd->pport->host_link_state & HLS_UP) {
8874                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8875                                        &frame);
8876                 if (ret == 0)
8877                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8878                                                 & LINK_QUALITY_MASK;
8879         }
8880 }
8881
8882 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8883 {
8884         u32 frame;
8885
8886         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8887         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8888 }
8889
8890 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8891 {
8892         u32 frame;
8893
8894         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8895         *ldr = (frame & 0xff);
8896 }
8897
8898 static int read_tx_settings(struct hfi1_devdata *dd,
8899                             u8 *enable_lane_tx,
8900                             u8 *tx_polarity_inversion,
8901                             u8 *rx_polarity_inversion,
8902                             u8 *max_rate)
8903 {
8904         u32 frame;
8905         int ret;
8906
8907         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8908         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8909                                 & ENABLE_LANE_TX_MASK;
8910         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8911                                 & TX_POLARITY_INVERSION_MASK;
8912         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8913                                 & RX_POLARITY_INVERSION_MASK;
8914         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8915         return ret;
8916 }
8917
8918 static int write_tx_settings(struct hfi1_devdata *dd,
8919                              u8 enable_lane_tx,
8920                              u8 tx_polarity_inversion,
8921                              u8 rx_polarity_inversion,
8922                              u8 max_rate)
8923 {
8924         u32 frame;
8925
8926         /* no need to mask, all variable sizes match field widths */
8927         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8928                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8929                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8930                 | max_rate << MAX_RATE_SHIFT;
8931         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8932 }
8933
8934 /*
8935  * Read an idle LCB message.
8936  *
8937  * Returns 0 on success, -EINVAL on error
8938  */
8939 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8940 {
8941         int ret;
8942
8943         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8944         if (ret != HCMD_SUCCESS) {
8945                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8946                            (u32)type, ret);
8947                 return -EINVAL;
8948         }
8949         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8950         /* return only the payload as we already know the type */
8951         *data_out >>= IDLE_PAYLOAD_SHIFT;
8952         return 0;
8953 }
8954
8955 /*
8956  * Read an idle SMA message.  To be done in response to a notification from
8957  * the 8051.
8958  *
8959  * Returns 0 on success, -EINVAL on error
8960  */
8961 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8962 {
8963         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8964                                  data);
8965 }
8966
8967 /*
8968  * Send an idle LCB message.
8969  *
8970  * Returns 0 on success, -EINVAL on error
8971  */
8972 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8973 {
8974         int ret;
8975
8976         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8977         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8978         if (ret != HCMD_SUCCESS) {
8979                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8980                            data, ret);
8981                 return -EINVAL;
8982         }
8983         return 0;
8984 }
8985
8986 /*
8987  * Send an idle SMA message.
8988  *
8989  * Returns 0 on success, -EINVAL on error
8990  */
8991 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8992 {
8993         u64 data;
8994
8995         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8996                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8997         return send_idle_message(dd, data);
8998 }
8999
9000 /*
9001  * Initialize the LCB then do a quick link up.  This may or may not be
9002  * in loopback.
9003  *
9004  * return 0 on success, -errno on error
9005  */
9006 static int do_quick_linkup(struct hfi1_devdata *dd)
9007 {
9008         int ret;
9009
9010         lcb_shutdown(dd, 0);
9011
9012         if (loopback) {
9013                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9014                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9015                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9016                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9017                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9018         }
9019
9020         /* start the LCBs */
9021         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9022         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9023
9024         /* simulator only loopback steps */
9025         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9026                 /* LCB_CFG_RUN.EN = 1 */
9027                 write_csr(dd, DC_LCB_CFG_RUN,
9028                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9029
9030                 ret = wait_link_transfer_active(dd, 10);
9031                 if (ret)
9032                         return ret;
9033
9034                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9035                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9036         }
9037
9038         if (!loopback) {
9039                 /*
9040                  * When doing quick linkup and not in loopback, both
9041                  * sides must be done with LCB set-up before either
9042                  * starts the quick linkup.  Put a delay here so that
9043                  * both sides can be started and have a chance to be
9044                  * done with LCB set up before resuming.
9045                  */
9046                 dd_dev_err(dd,
9047                            "Pausing for peer to be finished with LCB set up\n");
9048                 msleep(5000);
9049                 dd_dev_err(dd, "Continuing with quick linkup\n");
9050         }
9051
9052         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9053         set_8051_lcb_access(dd);
9054
9055         /*
9056          * State "quick" LinkUp request sets the physical link state to
9057          * LinkUp without a verify capability sequence.
9058          * This state is in simulator v37 and later.
9059          */
9060         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9061         if (ret != HCMD_SUCCESS) {
9062                 dd_dev_err(dd,
9063                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9064                            __func__, ret);
9065
9066                 set_host_lcb_access(dd);
9067                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9068
9069                 if (ret >= 0)
9070                         ret = -EINVAL;
9071                 return ret;
9072         }
9073
9074         return 0; /* success */
9075 }
9076
9077 /*
9078  * Set the SerDes to internal loopback mode.
9079  * Returns 0 on success, -errno on error.
9080  */
9081 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9082 {
9083         int ret;
9084
9085         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9086         if (ret == HCMD_SUCCESS)
9087                 return 0;
9088         dd_dev_err(dd,
9089                    "Set physical link state to SerDes Loopback failed with return %d\n",
9090                    ret);
9091         if (ret >= 0)
9092                 ret = -EINVAL;
9093         return ret;
9094 }
9095
9096 /*
9097  * Do all special steps to set up loopback.
9098  */
9099 static int init_loopback(struct hfi1_devdata *dd)
9100 {
9101         dd_dev_info(dd, "Entering loopback mode\n");
9102
9103         /* all loopbacks should disable self GUID check */
9104         write_csr(dd, DC_DC8051_CFG_MODE,
9105                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9106
9107         /*
9108          * The simulator has only one loopback option - LCB.  Switch
9109          * to that option, which includes quick link up.
9110          *
9111          * Accept all valid loopback values.
9112          */
9113         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9114             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9115              loopback == LOOPBACK_CABLE)) {
9116                 loopback = LOOPBACK_LCB;
9117                 quick_linkup = 1;
9118                 return 0;
9119         }
9120
9121         /* handle serdes loopback */
9122         if (loopback == LOOPBACK_SERDES) {
9123                 /* internal serdes loopack needs quick linkup on RTL */
9124                 if (dd->icode == ICODE_RTL_SILICON)
9125                         quick_linkup = 1;
9126                 return set_serdes_loopback_mode(dd);
9127         }
9128
9129         /* LCB loopback - handled at poll time */
9130         if (loopback == LOOPBACK_LCB) {
9131                 quick_linkup = 1; /* LCB is always quick linkup */
9132
9133                 /* not supported in emulation due to emulation RTL changes */
9134                 if (dd->icode == ICODE_FPGA_EMULATION) {
9135                         dd_dev_err(dd,
9136                                    "LCB loopback not supported in emulation\n");
9137                         return -EINVAL;
9138                 }
9139                 return 0;
9140         }
9141
9142         /* external cable loopback requires no extra steps */
9143         if (loopback == LOOPBACK_CABLE)
9144                 return 0;
9145
9146         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9147         return -EINVAL;
9148 }
9149
9150 /*
9151  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9152  * used in the Verify Capability link width attribute.
9153  */
9154 static u16 opa_to_vc_link_widths(u16 opa_widths)
9155 {
9156         int i;
9157         u16 result = 0;
9158
9159         static const struct link_bits {
9160                 u16 from;
9161                 u16 to;
9162         } opa_link_xlate[] = {
9163                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9164                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9165                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9166                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9167         };
9168
9169         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9170                 if (opa_widths & opa_link_xlate[i].from)
9171                         result |= opa_link_xlate[i].to;
9172         }
9173         return result;
9174 }
9175
9176 /*
9177  * Set link attributes before moving to polling.
9178  */
9179 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9180 {
9181         struct hfi1_devdata *dd = ppd->dd;
9182         u8 enable_lane_tx;
9183         u8 tx_polarity_inversion;
9184         u8 rx_polarity_inversion;
9185         int ret;
9186
9187         /* reset our fabric serdes to clear any lingering problems */
9188         fabric_serdes_reset(dd);
9189
9190         /* set the local tx rate - need to read-modify-write */
9191         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9192                                &rx_polarity_inversion, &ppd->local_tx_rate);
9193         if (ret)
9194                 goto set_local_link_attributes_fail;
9195
9196         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9197                 /* set the tx rate to the fastest enabled */
9198                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9199                         ppd->local_tx_rate = 1;
9200                 else
9201                         ppd->local_tx_rate = 0;
9202         } else {
9203                 /* set the tx rate to all enabled */
9204                 ppd->local_tx_rate = 0;
9205                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9206                         ppd->local_tx_rate |= 2;
9207                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9208                         ppd->local_tx_rate |= 1;
9209         }
9210
9211         enable_lane_tx = 0xF; /* enable all four lanes */
9212         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9213                                 rx_polarity_inversion, ppd->local_tx_rate);
9214         if (ret != HCMD_SUCCESS)
9215                 goto set_local_link_attributes_fail;
9216
9217         /*
9218          * DC supports continuous updates.
9219          */
9220         ret = write_vc_local_phy(dd,
9221                                  0 /* no power management */,
9222                                  1 /* continuous updates */);
9223         if (ret != HCMD_SUCCESS)
9224                 goto set_local_link_attributes_fail;
9225
9226         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9227         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9228                                     ppd->port_crc_mode_enabled);
9229         if (ret != HCMD_SUCCESS)
9230                 goto set_local_link_attributes_fail;
9231
9232         ret = write_vc_local_link_width(dd, 0, 0,
9233                                         opa_to_vc_link_widths(
9234                                                 ppd->link_width_enabled));
9235         if (ret != HCMD_SUCCESS)
9236                 goto set_local_link_attributes_fail;
9237
9238         /* let peer know who we are */
9239         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9240         if (ret == HCMD_SUCCESS)
9241                 return 0;
9242
9243 set_local_link_attributes_fail:
9244         dd_dev_err(dd,
9245                    "Failed to set local link attributes, return 0x%x\n",
9246                    ret);
9247         return ret;
9248 }
9249
9250 /*
9251  * Call this to start the link.
9252  * Do not do anything if the link is disabled.
9253  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9254  */
9255 int start_link(struct hfi1_pportdata *ppd)
9256 {
9257         /*
9258          * Tune the SerDes to a ballpark setting for optimal signal and bit
9259          * error rate.  Needs to be done before starting the link.
9260          */
9261         tune_serdes(ppd);
9262
9263         if (!ppd->link_enabled) {
9264                 dd_dev_info(ppd->dd,
9265                             "%s: stopping link start because link is disabled\n",
9266                             __func__);
9267                 return 0;
9268         }
9269         if (!ppd->driver_link_ready) {
9270                 dd_dev_info(ppd->dd,
9271                             "%s: stopping link start because driver is not ready\n",
9272                             __func__);
9273                 return 0;
9274         }
9275
9276         /*
9277          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9278          * pkey table can be configured properly if the HFI unit is connected
9279          * to switch port with MgmtAllowed=NO
9280          */
9281         clear_full_mgmt_pkey(ppd);
9282
9283         return set_link_state(ppd, HLS_DN_POLL);
9284 }
9285
9286 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9287 {
9288         struct hfi1_devdata *dd = ppd->dd;
9289         u64 mask;
9290         unsigned long timeout;
9291
9292         /*
9293          * Some QSFP cables have a quirk that asserts the IntN line as a side
9294          * effect of power up on plug-in. We ignore this false positive
9295          * interrupt until the module has finished powering up by waiting for
9296          * a minimum timeout of the module inrush initialization time of
9297          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9298          * module have stabilized.
9299          */
9300         msleep(500);
9301
9302         /*
9303          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9304          */
9305         timeout = jiffies + msecs_to_jiffies(2000);
9306         while (1) {
9307                 mask = read_csr(dd, dd->hfi1_id ?
9308                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9309                 if (!(mask & QSFP_HFI0_INT_N))
9310                         break;
9311                 if (time_after(jiffies, timeout)) {
9312                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9313                                     __func__);
9314                         break;
9315                 }
9316                 udelay(2);
9317         }
9318 }
9319
9320 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9321 {
9322         struct hfi1_devdata *dd = ppd->dd;
9323         u64 mask;
9324
9325         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9326         if (enable) {
9327                 /*
9328                  * Clear the status register to avoid an immediate interrupt
9329                  * when we re-enable the IntN pin
9330                  */
9331                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9332                           QSFP_HFI0_INT_N);
9333                 mask |= (u64)QSFP_HFI0_INT_N;
9334         } else {
9335                 mask &= ~(u64)QSFP_HFI0_INT_N;
9336         }
9337         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9338 }
9339
9340 void reset_qsfp(struct hfi1_pportdata *ppd)
9341 {
9342         struct hfi1_devdata *dd = ppd->dd;
9343         u64 mask, qsfp_mask;
9344
9345         /* Disable INT_N from triggering QSFP interrupts */
9346         set_qsfp_int_n(ppd, 0);
9347
9348         /* Reset the QSFP */
9349         mask = (u64)QSFP_HFI0_RESET_N;
9350
9351         qsfp_mask = read_csr(dd,
9352                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9353         qsfp_mask &= ~mask;
9354         write_csr(dd,
9355                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9356
9357         udelay(10);
9358
9359         qsfp_mask |= mask;
9360         write_csr(dd,
9361                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9362
9363         wait_for_qsfp_init(ppd);
9364
9365         /*
9366          * Allow INT_N to trigger the QSFP interrupt to watch
9367          * for alarms and warnings
9368          */
9369         set_qsfp_int_n(ppd, 1);
9370 }
9371
9372 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9373                                         u8 *qsfp_interrupt_status)
9374 {
9375         struct hfi1_devdata *dd = ppd->dd;
9376
9377         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9378             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9379                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9380                            __func__);
9381
9382         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9383             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9384                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9385                            __func__);
9386
9387         /*
9388          * The remaining alarms/warnings don't matter if the link is down.
9389          */
9390         if (ppd->host_link_state & HLS_DOWN)
9391                 return 0;
9392
9393         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9394             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9395                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9396                            __func__);
9397
9398         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9399             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9400                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9401                            __func__);
9402
9403         /* Byte 2 is vendor specific */
9404
9405         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9406             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9407                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9408                            __func__);
9409
9410         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9411             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9412                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9413                            __func__);
9414
9415         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9416             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9417                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9418                            __func__);
9419
9420         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9421             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9422                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9423                            __func__);
9424
9425         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9426             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9427                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9428                            __func__);
9429
9430         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9431             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9432                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9433                            __func__);
9434
9435         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9436             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9437                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9438                            __func__);
9439
9440         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9441             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9442                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9443                            __func__);
9444
9445         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9446             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9447                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9448                            __func__);
9449
9450         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9451             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9452                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9453                            __func__);
9454
9455         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9456             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9457                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9458                            __func__);
9459
9460         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9461             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9462                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9463                            __func__);
9464
9465         /* Bytes 9-10 and 11-12 are reserved */
9466         /* Bytes 13-15 are vendor specific */
9467
9468         return 0;
9469 }
9470
9471 /* This routine will only be scheduled if the QSFP module present is asserted */
9472 void qsfp_event(struct work_struct *work)
9473 {
9474         struct qsfp_data *qd;
9475         struct hfi1_pportdata *ppd;
9476         struct hfi1_devdata *dd;
9477
9478         qd = container_of(work, struct qsfp_data, qsfp_work);
9479         ppd = qd->ppd;
9480         dd = ppd->dd;
9481
9482         /* Sanity check */
9483         if (!qsfp_mod_present(ppd))
9484                 return;
9485
9486         /*
9487          * Turn DC back on after cable has been re-inserted. Up until
9488          * now, the DC has been in reset to save power.
9489          */
9490         dc_start(dd);
9491
9492         if (qd->cache_refresh_required) {
9493                 set_qsfp_int_n(ppd, 0);
9494
9495                 wait_for_qsfp_init(ppd);
9496
9497                 /*
9498                  * Allow INT_N to trigger the QSFP interrupt to watch
9499                  * for alarms and warnings
9500                  */
9501                 set_qsfp_int_n(ppd, 1);
9502
9503                 start_link(ppd);
9504         }
9505
9506         if (qd->check_interrupt_flags) {
9507                 u8 qsfp_interrupt_status[16] = {0,};
9508
9509                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9510                                   &qsfp_interrupt_status[0], 16) != 16) {
9511                         dd_dev_info(dd,
9512                                     "%s: Failed to read status of QSFP module\n",
9513                                     __func__);
9514                 } else {
9515                         unsigned long flags;
9516
9517                         handle_qsfp_error_conditions(
9518                                         ppd, qsfp_interrupt_status);
9519                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9520                         ppd->qsfp_info.check_interrupt_flags = 0;
9521                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9522                                                flags);
9523                 }
9524         }
9525 }
9526
9527 static void init_qsfp_int(struct hfi1_devdata *dd)
9528 {
9529         struct hfi1_pportdata *ppd = dd->pport;
9530         u64 qsfp_mask, cce_int_mask;
9531         const int qsfp1_int_smask = QSFP1_INT % 64;
9532         const int qsfp2_int_smask = QSFP2_INT % 64;
9533
9534         /*
9535          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9536          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9537          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9538          * the index of the appropriate CSR in the CCEIntMask CSR array
9539          */
9540         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9541                                 (8 * (QSFP1_INT / 64)));
9542         if (dd->hfi1_id) {
9543                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9544                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9545                           cce_int_mask);
9546         } else {
9547                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9548                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9549                           cce_int_mask);
9550         }
9551
9552         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9553         /* Clear current status to avoid spurious interrupts */
9554         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9555                   qsfp_mask);
9556         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9557                   qsfp_mask);
9558
9559         set_qsfp_int_n(ppd, 0);
9560
9561         /* Handle active low nature of INT_N and MODPRST_N pins */
9562         if (qsfp_mod_present(ppd))
9563                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9564         write_csr(dd,
9565                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9566                   qsfp_mask);
9567 }
9568
9569 /*
9570  * Do a one-time initialize of the LCB block.
9571  */
9572 static void init_lcb(struct hfi1_devdata *dd)
9573 {
9574         /* simulator does not correctly handle LCB cclk loopback, skip */
9575         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9576                 return;
9577
9578         /* the DC has been reset earlier in the driver load */
9579
9580         /* set LCB for cclk loopback on the port */
9581         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9582         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9583         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9584         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9585         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9586         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9587         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9588 }
9589
9590 /*
9591  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9592  * on error.
9593  */
9594 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9595 {
9596         int ret;
9597         u8 status;
9598
9599         /*
9600          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9601          * not present
9602          */
9603         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9604                 return 0;
9605
9606         /* read byte 2, the status byte */
9607         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9608         if (ret < 0)
9609                 return ret;
9610         if (ret != 1)
9611                 return -EIO;
9612
9613         return 0; /* success */
9614 }
9615
9616 /*
9617  * Values for QSFP retry.
9618  *
9619  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9620  * arrived at from experience on a large cluster.
9621  */
9622 #define MAX_QSFP_RETRIES 20
9623 #define QSFP_RETRY_WAIT 500 /* msec */
9624
9625 /*
9626  * Try a QSFP read.  If it fails, schedule a retry for later.
9627  * Called on first link activation after driver load.
9628  */
9629 static void try_start_link(struct hfi1_pportdata *ppd)
9630 {
9631         if (test_qsfp_read(ppd)) {
9632                 /* read failed */
9633                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9634                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9635                         return;
9636                 }
9637                 dd_dev_info(ppd->dd,
9638                             "QSFP not responding, waiting and retrying %d\n",
9639                             (int)ppd->qsfp_retry_count);
9640                 ppd->qsfp_retry_count++;
9641                 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9642                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9643                 return;
9644         }
9645         ppd->qsfp_retry_count = 0;
9646
9647         start_link(ppd);
9648 }
9649
9650 /*
9651  * Workqueue function to start the link after a delay.
9652  */
9653 void handle_start_link(struct work_struct *work)
9654 {
9655         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9656                                                   start_link_work.work);
9657         try_start_link(ppd);
9658 }
9659
9660 int bringup_serdes(struct hfi1_pportdata *ppd)
9661 {
9662         struct hfi1_devdata *dd = ppd->dd;
9663         u64 guid;
9664         int ret;
9665
9666         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9667                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9668
9669         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9670         if (!guid) {
9671                 if (dd->base_guid)
9672                         guid = dd->base_guid + ppd->port - 1;
9673                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9674         }
9675
9676         /* Set linkinit_reason on power up per OPA spec */
9677         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9678
9679         /* one-time init of the LCB */
9680         init_lcb(dd);
9681
9682         if (loopback) {
9683                 ret = init_loopback(dd);
9684                 if (ret < 0)
9685                         return ret;
9686         }
9687
9688         get_port_type(ppd);
9689         if (ppd->port_type == PORT_TYPE_QSFP) {
9690                 set_qsfp_int_n(ppd, 0);
9691                 wait_for_qsfp_init(ppd);
9692                 set_qsfp_int_n(ppd, 1);
9693         }
9694
9695         try_start_link(ppd);
9696         return 0;
9697 }
9698
9699 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9700 {
9701         struct hfi1_devdata *dd = ppd->dd;
9702
9703         /*
9704          * Shut down the link and keep it down.   First turn off that the
9705          * driver wants to allow the link to be up (driver_link_ready).
9706          * Then make sure the link is not automatically restarted
9707          * (link_enabled).  Cancel any pending restart.  And finally
9708          * go offline.
9709          */
9710         ppd->driver_link_ready = 0;
9711         ppd->link_enabled = 0;
9712
9713         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9714         flush_delayed_work(&ppd->start_link_work);
9715         cancel_delayed_work_sync(&ppd->start_link_work);
9716
9717         ppd->offline_disabled_reason =
9718                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9719         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9720                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9721         set_link_state(ppd, HLS_DN_OFFLINE);
9722
9723         /* disable the port */
9724         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9725 }
9726
9727 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9728 {
9729         struct hfi1_pportdata *ppd;
9730         int i;
9731
9732         ppd = (struct hfi1_pportdata *)(dd + 1);
9733         for (i = 0; i < dd->num_pports; i++, ppd++) {
9734                 ppd->ibport_data.rvp.rc_acks = NULL;
9735                 ppd->ibport_data.rvp.rc_qacks = NULL;
9736                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9737                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9738                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9739                 if (!ppd->ibport_data.rvp.rc_acks ||
9740                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9741                     !ppd->ibport_data.rvp.rc_qacks)
9742                         return -ENOMEM;
9743         }
9744
9745         return 0;
9746 }
9747
9748 static const char * const pt_names[] = {
9749         "expected",
9750         "eager",
9751         "invalid"
9752 };
9753
9754 static const char *pt_name(u32 type)
9755 {
9756         return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9757 }
9758
9759 /*
9760  * index is the index into the receive array
9761  */
9762 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9763                   u32 type, unsigned long pa, u16 order)
9764 {
9765         u64 reg;
9766         void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9767                               (dd->kregbase + RCV_ARRAY));
9768
9769         if (!(dd->flags & HFI1_PRESENT))
9770                 goto done;
9771
9772         if (type == PT_INVALID) {
9773                 pa = 0;
9774         } else if (type > PT_INVALID) {
9775                 dd_dev_err(dd,
9776                            "unexpected receive array type %u for index %u, not handled\n",
9777                            type, index);
9778                 goto done;
9779         }
9780
9781         hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9782                   pt_name(type), index, pa, (unsigned long)order);
9783
9784 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9785         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9786                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9787                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9788                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9789         writeq(reg, base + (index * 8));
9790
9791         if (type == PT_EAGER)
9792                 /*
9793                  * Eager entries are written one-by-one so we have to push them
9794                  * after we write the entry.
9795                  */
9796                 flush_wc();
9797 done:
9798         return;
9799 }
9800
9801 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9802 {
9803         struct hfi1_devdata *dd = rcd->dd;
9804         u32 i;
9805
9806         /* this could be optimized */
9807         for (i = rcd->eager_base; i < rcd->eager_base +
9808                      rcd->egrbufs.alloced; i++)
9809                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9810
9811         for (i = rcd->expected_base;
9812                         i < rcd->expected_base + rcd->expected_count; i++)
9813                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9814 }
9815
9816 static const char * const ib_cfg_name_strings[] = {
9817         "HFI1_IB_CFG_LIDLMC",
9818         "HFI1_IB_CFG_LWID_DG_ENB",
9819         "HFI1_IB_CFG_LWID_ENB",
9820         "HFI1_IB_CFG_LWID",
9821         "HFI1_IB_CFG_SPD_ENB",
9822         "HFI1_IB_CFG_SPD",
9823         "HFI1_IB_CFG_RXPOL_ENB",
9824         "HFI1_IB_CFG_LREV_ENB",
9825         "HFI1_IB_CFG_LINKLATENCY",
9826         "HFI1_IB_CFG_HRTBT",
9827         "HFI1_IB_CFG_OP_VLS",
9828         "HFI1_IB_CFG_VL_HIGH_CAP",
9829         "HFI1_IB_CFG_VL_LOW_CAP",
9830         "HFI1_IB_CFG_OVERRUN_THRESH",
9831         "HFI1_IB_CFG_PHYERR_THRESH",
9832         "HFI1_IB_CFG_LINKDEFAULT",
9833         "HFI1_IB_CFG_PKEYS",
9834         "HFI1_IB_CFG_MTU",
9835         "HFI1_IB_CFG_LSTATE",
9836         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9837         "HFI1_IB_CFG_PMA_TICKS",
9838         "HFI1_IB_CFG_PORT"
9839 };
9840
9841 static const char *ib_cfg_name(int which)
9842 {
9843         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9844                 return "invalid";
9845         return ib_cfg_name_strings[which];
9846 }
9847
9848 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9849 {
9850         struct hfi1_devdata *dd = ppd->dd;
9851         int val = 0;
9852
9853         switch (which) {
9854         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9855                 val = ppd->link_width_enabled;
9856                 break;
9857         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9858                 val = ppd->link_width_active;
9859                 break;
9860         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9861                 val = ppd->link_speed_enabled;
9862                 break;
9863         case HFI1_IB_CFG_SPD: /* current Link speed */
9864                 val = ppd->link_speed_active;
9865                 break;
9866
9867         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9868         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9869         case HFI1_IB_CFG_LINKLATENCY:
9870                 goto unimplemented;
9871
9872         case HFI1_IB_CFG_OP_VLS:
9873                 val = ppd->vls_operational;
9874                 break;
9875         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9876                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9877                 break;
9878         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9879                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9880                 break;
9881         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9882                 val = ppd->overrun_threshold;
9883                 break;
9884         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9885                 val = ppd->phy_error_threshold;
9886                 break;
9887         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9888                 val = dd->link_default;
9889                 break;
9890
9891         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9892         case HFI1_IB_CFG_PMA_TICKS:
9893         default:
9894 unimplemented:
9895                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9896                         dd_dev_info(
9897                                 dd,
9898                                 "%s: which %s: not implemented\n",
9899                                 __func__,
9900                                 ib_cfg_name(which));
9901                 break;
9902         }
9903
9904         return val;
9905 }
9906
9907 /*
9908  * The largest MAD packet size.
9909  */
9910 #define MAX_MAD_PACKET 2048
9911
9912 /*
9913  * Return the maximum header bytes that can go on the _wire_
9914  * for this device. This count includes the ICRC which is
9915  * not part of the packet held in memory but it is appended
9916  * by the HW.
9917  * This is dependent on the device's receive header entry size.
9918  * HFI allows this to be set per-receive context, but the
9919  * driver presently enforces a global value.
9920  */
9921 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9922 {
9923         /*
9924          * The maximum non-payload (MTU) bytes in LRH.PktLen are
9925          * the Receive Header Entry Size minus the PBC (or RHF) size
9926          * plus one DW for the ICRC appended by HW.
9927          *
9928          * dd->rcd[0].rcvhdrqentsize is in DW.
9929          * We use rcd[0] as all context will have the same value. Also,
9930          * the first kernel context would have been allocated by now so
9931          * we are guaranteed a valid value.
9932          */
9933         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9934 }
9935
9936 /*
9937  * Set Send Length
9938  * @ppd - per port data
9939  *
9940  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9941  * registers compare against LRH.PktLen, so use the max bytes included
9942  * in the LRH.
9943  *
9944  * This routine changes all VL values except VL15, which it maintains at
9945  * the same value.
9946  */
9947 static void set_send_length(struct hfi1_pportdata *ppd)
9948 {
9949         struct hfi1_devdata *dd = ppd->dd;
9950         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9951         u32 maxvlmtu = dd->vld[15].mtu;
9952         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9953                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9954                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9955         int i, j;
9956         u32 thres;
9957
9958         for (i = 0; i < ppd->vls_supported; i++) {
9959                 if (dd->vld[i].mtu > maxvlmtu)
9960                         maxvlmtu = dd->vld[i].mtu;
9961                 if (i <= 3)
9962                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9963                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9964                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9965                 else
9966                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9967                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9968                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9969         }
9970         write_csr(dd, SEND_LEN_CHECK0, len1);
9971         write_csr(dd, SEND_LEN_CHECK1, len2);
9972         /* adjust kernel credit return thresholds based on new MTUs */
9973         /* all kernel receive contexts have the same hdrqentsize */
9974         for (i = 0; i < ppd->vls_supported; i++) {
9975                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9976                             sc_mtu_to_threshold(dd->vld[i].sc,
9977                                                 dd->vld[i].mtu,
9978                                                 dd->rcd[0]->rcvhdrqentsize));
9979                 for (j = 0; j < INIT_SC_PER_VL; j++)
9980                         sc_set_cr_threshold(
9981                                         pio_select_send_context_vl(dd, j, i),
9982                                             thres);
9983         }
9984         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9985                     sc_mtu_to_threshold(dd->vld[15].sc,
9986                                         dd->vld[15].mtu,
9987                                         dd->rcd[0]->rcvhdrqentsize));
9988         sc_set_cr_threshold(dd->vld[15].sc, thres);
9989
9990         /* Adjust maximum MTU for the port in DC */
9991         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9992                 (ilog2(maxvlmtu >> 8) + 1);
9993         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9994         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9995         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9996                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9997         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9998 }
9999
10000 static void set_lidlmc(struct hfi1_pportdata *ppd)
10001 {
10002         int i;
10003         u64 sreg = 0;
10004         struct hfi1_devdata *dd = ppd->dd;
10005         u32 mask = ~((1U << ppd->lmc) - 1);
10006         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10007
10008         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10009                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10010         c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10011                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10012               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10013                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10014         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10015
10016         /*
10017          * Iterate over all the send contexts and set their SLID check
10018          */
10019         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10020                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10021                (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10022                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10023
10024         for (i = 0; i < dd->chip_send_contexts; i++) {
10025                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10026                           i, (u32)sreg);
10027                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10028         }
10029
10030         /* Now we have to do the same thing for the sdma engines */
10031         sdma_update_lmc(dd, mask, ppd->lid);
10032 }
10033
10034 static const char *state_completed_string(u32 completed)
10035 {
10036         static const char * const state_completed[] = {
10037                 "EstablishComm",
10038                 "OptimizeEQ",
10039                 "VerifyCap"
10040         };
10041
10042         if (completed < ARRAY_SIZE(state_completed))
10043                 return state_completed[completed];
10044
10045         return "unknown";
10046 }
10047
10048 static const char all_lanes_dead_timeout_expired[] =
10049         "All lanes were inactive â€“ was the interconnect media removed?";
10050 static const char tx_out_of_policy[] =
10051         "Passing lanes on local port do not meet the local link width policy";
10052 static const char no_state_complete[] =
10053         "State timeout occurred before link partner completed the state";
10054 static const char * const state_complete_reasons[] = {
10055         [0x00] = "Reason unknown",
10056         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10057         [0x02] = "Link partner reported failure",
10058         [0x10] = "Unable to achieve frame sync on any lane",
10059         [0x11] =
10060           "Unable to find a common bit rate with the link partner",
10061         [0x12] =
10062           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10063         [0x13] =
10064           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10065         [0x14] = no_state_complete,
10066         [0x15] =
10067           "State timeout occurred before link partner identified equalization presets",
10068         [0x16] =
10069           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10070         [0x17] = tx_out_of_policy,
10071         [0x20] = all_lanes_dead_timeout_expired,
10072         [0x21] =
10073           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10074         [0x22] = no_state_complete,
10075         [0x23] =
10076           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10077         [0x24] = tx_out_of_policy,
10078         [0x30] = all_lanes_dead_timeout_expired,
10079         [0x31] =
10080           "State timeout occurred waiting for host to process received frames",
10081         [0x32] = no_state_complete,
10082         [0x33] =
10083           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10084         [0x34] = tx_out_of_policy,
10085 };
10086
10087 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10088                                                      u32 code)
10089 {
10090         const char *str = NULL;
10091
10092         if (code < ARRAY_SIZE(state_complete_reasons))
10093                 str = state_complete_reasons[code];
10094
10095         if (str)
10096                 return str;
10097         return "Reserved";
10098 }
10099
10100 /* describe the given last state complete frame */
10101 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10102                                   const char *prefix)
10103 {
10104         struct hfi1_devdata *dd = ppd->dd;
10105         u32 success;
10106         u32 state;
10107         u32 reason;
10108         u32 lanes;
10109
10110         /*
10111          * Decode frame:
10112          *  [ 0: 0] - success
10113          *  [ 3: 1] - state
10114          *  [ 7: 4] - next state timeout
10115          *  [15: 8] - reason code
10116          *  [31:16] - lanes
10117          */
10118         success = frame & 0x1;
10119         state = (frame >> 1) & 0x7;
10120         reason = (frame >> 8) & 0xff;
10121         lanes = (frame >> 16) & 0xffff;
10122
10123         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10124                    prefix, frame);
10125         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10126                    state_completed_string(state), state);
10127         dd_dev_err(dd, "    state successfully completed: %s\n",
10128                    success ? "yes" : "no");
10129         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10130                    reason, state_complete_reason_code_string(ppd, reason));
10131         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10132 }
10133
10134 /*
10135  * Read the last state complete frames and explain them.  This routine
10136  * expects to be called if the link went down during link negotiation
10137  * and initialization (LNI).  That is, anywhere between polling and link up.
10138  */
10139 static void check_lni_states(struct hfi1_pportdata *ppd)
10140 {
10141         u32 last_local_state;
10142         u32 last_remote_state;
10143
10144         read_last_local_state(ppd->dd, &last_local_state);
10145         read_last_remote_state(ppd->dd, &last_remote_state);
10146
10147         /*
10148          * Don't report anything if there is nothing to report.  A value of
10149          * 0 means the link was taken down while polling and there was no
10150          * training in-process.
10151          */
10152         if (last_local_state == 0 && last_remote_state == 0)
10153                 return;
10154
10155         decode_state_complete(ppd, last_local_state, "transmitted");
10156         decode_state_complete(ppd, last_remote_state, "received");
10157 }
10158
10159 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10160 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10161 {
10162         u64 reg;
10163         unsigned long timeout;
10164
10165         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10166         timeout = jiffies + msecs_to_jiffies(wait_ms);
10167         while (1) {
10168                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10169                 if (reg)
10170                         break;
10171                 if (time_after(jiffies, timeout)) {
10172                         dd_dev_err(dd,
10173                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10174                         return -ETIMEDOUT;
10175                 }
10176                 udelay(2);
10177         }
10178         return 0;
10179 }
10180
10181 /* called when the logical link state is not down as it should be */
10182 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10183 {
10184         struct hfi1_devdata *dd = ppd->dd;
10185
10186         /*
10187          * Bring link up in LCB loopback
10188          */
10189         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10190         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10191                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10192
10193         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10194         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10195         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10196         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10197
10198         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10199         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10200         udelay(3);
10201         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10202         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10203
10204         wait_link_transfer_active(dd, 100);
10205
10206         /*
10207          * Bring the link down again.
10208          */
10209         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10210         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10211         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10212
10213         /* call again to adjust ppd->statusp, if needed */
10214         get_logical_state(ppd);
10215 }
10216
10217 /*
10218  * Helper for set_link_state().  Do not call except from that routine.
10219  * Expects ppd->hls_mutex to be held.
10220  *
10221  * @rem_reason value to be sent to the neighbor
10222  *
10223  * LinkDownReasons only set if transition succeeds.
10224  */
10225 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10226 {
10227         struct hfi1_devdata *dd = ppd->dd;
10228         u32 pstate, previous_state;
10229         int ret;
10230         int do_transition;
10231         int do_wait;
10232
10233         update_lcb_cache(dd);
10234
10235         previous_state = ppd->host_link_state;
10236         ppd->host_link_state = HLS_GOING_OFFLINE;
10237         pstate = read_physical_state(dd);
10238         if (pstate == PLS_OFFLINE) {
10239                 do_transition = 0;      /* in right state */
10240                 do_wait = 0;            /* ...no need to wait */
10241         } else if ((pstate & 0xf0) == PLS_OFFLINE) {
10242                 do_transition = 0;      /* in an offline transient state */
10243                 do_wait = 1;            /* ...wait for it to settle */
10244         } else {
10245                 do_transition = 1;      /* need to move to offline */
10246                 do_wait = 1;            /* ...will need to wait */
10247         }
10248
10249         if (do_transition) {
10250                 ret = set_physical_link_state(dd,
10251                                               (rem_reason << 8) | PLS_OFFLINE);
10252
10253                 if (ret != HCMD_SUCCESS) {
10254                         dd_dev_err(dd,
10255                                    "Failed to transition to Offline link state, return %d\n",
10256                                    ret);
10257                         return -EINVAL;
10258                 }
10259                 if (ppd->offline_disabled_reason ==
10260                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10261                         ppd->offline_disabled_reason =
10262                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10263         }
10264
10265         if (do_wait) {
10266                 /* it can take a while for the link to go down */
10267                 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 10000);
10268                 if (ret < 0)
10269                         return ret;
10270         }
10271
10272         /*
10273          * Now in charge of LCB - must be after the physical state is
10274          * offline.quiet and before host_link_state is changed.
10275          */
10276         set_host_lcb_access(dd);
10277         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10278
10279         /* make sure the logical state is also down */
10280         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10281         if (ret)
10282                 force_logical_link_state_down(ppd);
10283
10284         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10285
10286         if (ppd->port_type == PORT_TYPE_QSFP &&
10287             ppd->qsfp_info.limiting_active &&
10288             qsfp_mod_present(ppd)) {
10289                 int ret;
10290
10291                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10292                 if (ret == 0) {
10293                         set_qsfp_tx(ppd, 0);
10294                         release_chip_resource(dd, qsfp_resource(dd));
10295                 } else {
10296                         /* not fatal, but should warn */
10297                         dd_dev_err(dd,
10298                                    "Unable to acquire lock to turn off QSFP TX\n");
10299                 }
10300         }
10301
10302         /*
10303          * The LNI has a mandatory wait time after the physical state
10304          * moves to Offline.Quiet.  The wait time may be different
10305          * depending on how the link went down.  The 8051 firmware
10306          * will observe the needed wait time and only move to ready
10307          * when that is completed.  The largest of the quiet timeouts
10308          * is 6s, so wait that long and then at least 0.5s more for
10309          * other transitions, and another 0.5s for a buffer.
10310          */
10311         ret = wait_fm_ready(dd, 7000);
10312         if (ret) {
10313                 dd_dev_err(dd,
10314                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10315                 /* state is really offline, so make it so */
10316                 ppd->host_link_state = HLS_DN_OFFLINE;
10317                 return ret;
10318         }
10319
10320         /*
10321          * The state is now offline and the 8051 is ready to accept host
10322          * requests.
10323          *      - change our state
10324          *      - notify others if we were previously in a linkup state
10325          */
10326         ppd->host_link_state = HLS_DN_OFFLINE;
10327         if (previous_state & HLS_UP) {
10328                 /* went down while link was up */
10329                 handle_linkup_change(dd, 0);
10330         } else if (previous_state
10331                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10332                 /* went down while attempting link up */
10333                 check_lni_states(ppd);
10334         }
10335
10336         /* the active link width (downgrade) is 0 on link down */
10337         ppd->link_width_active = 0;
10338         ppd->link_width_downgrade_tx_active = 0;
10339         ppd->link_width_downgrade_rx_active = 0;
10340         ppd->current_egress_rate = 0;
10341         return 0;
10342 }
10343
10344 /* return the link state name */
10345 static const char *link_state_name(u32 state)
10346 {
10347         const char *name;
10348         int n = ilog2(state);
10349         static const char * const names[] = {
10350                 [__HLS_UP_INIT_BP]       = "INIT",
10351                 [__HLS_UP_ARMED_BP]      = "ARMED",
10352                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10353                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10354                 [__HLS_DN_POLL_BP]       = "POLL",
10355                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10356                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10357                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10358                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10359                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10360                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10361         };
10362
10363         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10364         return name ? name : "unknown";
10365 }
10366
10367 /* return the link state reason name */
10368 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10369 {
10370         if (state == HLS_UP_INIT) {
10371                 switch (ppd->linkinit_reason) {
10372                 case OPA_LINKINIT_REASON_LINKUP:
10373                         return "(LINKUP)";
10374                 case OPA_LINKINIT_REASON_FLAPPING:
10375                         return "(FLAPPING)";
10376                 case OPA_LINKINIT_OUTSIDE_POLICY:
10377                         return "(OUTSIDE_POLICY)";
10378                 case OPA_LINKINIT_QUARANTINED:
10379                         return "(QUARANTINED)";
10380                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10381                         return "(INSUFIC_CAPABILITY)";
10382                 default:
10383                         break;
10384                 }
10385         }
10386         return "";
10387 }
10388
10389 /*
10390  * driver_physical_state - convert the driver's notion of a port's
10391  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10392  * Return -1 (converted to a u32) to indicate error.
10393  */
10394 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10395 {
10396         switch (ppd->host_link_state) {
10397         case HLS_UP_INIT:
10398         case HLS_UP_ARMED:
10399         case HLS_UP_ACTIVE:
10400                 return IB_PORTPHYSSTATE_LINKUP;
10401         case HLS_DN_POLL:
10402                 return IB_PORTPHYSSTATE_POLLING;
10403         case HLS_DN_DISABLE:
10404                 return IB_PORTPHYSSTATE_DISABLED;
10405         case HLS_DN_OFFLINE:
10406                 return OPA_PORTPHYSSTATE_OFFLINE;
10407         case HLS_VERIFY_CAP:
10408                 return IB_PORTPHYSSTATE_POLLING;
10409         case HLS_GOING_UP:
10410                 return IB_PORTPHYSSTATE_POLLING;
10411         case HLS_GOING_OFFLINE:
10412                 return OPA_PORTPHYSSTATE_OFFLINE;
10413         case HLS_LINK_COOLDOWN:
10414                 return OPA_PORTPHYSSTATE_OFFLINE;
10415         case HLS_DN_DOWNDEF:
10416         default:
10417                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10418                            ppd->host_link_state);
10419                 return  -1;
10420         }
10421 }
10422
10423 /*
10424  * driver_logical_state - convert the driver's notion of a port's
10425  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10426  * (converted to a u32) to indicate error.
10427  */
10428 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10429 {
10430         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10431                 return IB_PORT_DOWN;
10432
10433         switch (ppd->host_link_state & HLS_UP) {
10434         case HLS_UP_INIT:
10435                 return IB_PORT_INIT;
10436         case HLS_UP_ARMED:
10437                 return IB_PORT_ARMED;
10438         case HLS_UP_ACTIVE:
10439                 return IB_PORT_ACTIVE;
10440         default:
10441                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10442                            ppd->host_link_state);
10443         return -1;
10444         }
10445 }
10446
10447 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10448                           u8 neigh_reason, u8 rem_reason)
10449 {
10450         if (ppd->local_link_down_reason.latest == 0 &&
10451             ppd->neigh_link_down_reason.latest == 0) {
10452                 ppd->local_link_down_reason.latest = lcl_reason;
10453                 ppd->neigh_link_down_reason.latest = neigh_reason;
10454                 ppd->remote_link_down_reason = rem_reason;
10455         }
10456 }
10457
10458 /*
10459  * Change the physical and/or logical link state.
10460  *
10461  * Do not call this routine while inside an interrupt.  It contains
10462  * calls to routines that can take multiple seconds to finish.
10463  *
10464  * Returns 0 on success, -errno on failure.
10465  */
10466 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10467 {
10468         struct hfi1_devdata *dd = ppd->dd;
10469         struct ib_event event = {.device = NULL};
10470         int ret1, ret = 0;
10471         int orig_new_state, poll_bounce;
10472
10473         mutex_lock(&ppd->hls_lock);
10474
10475         orig_new_state = state;
10476         if (state == HLS_DN_DOWNDEF)
10477                 state = dd->link_default;
10478
10479         /* interpret poll -> poll as a link bounce */
10480         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10481                       state == HLS_DN_POLL;
10482
10483         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10484                     link_state_name(ppd->host_link_state),
10485                     link_state_name(orig_new_state),
10486                     poll_bounce ? "(bounce) " : "",
10487                     link_state_reason_name(ppd, state));
10488
10489         /*
10490          * If we're going to a (HLS_*) link state that implies the logical
10491          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10492          * reset is_sm_config_started to 0.
10493          */
10494         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10495                 ppd->is_sm_config_started = 0;
10496
10497         /*
10498          * Do nothing if the states match.  Let a poll to poll link bounce
10499          * go through.
10500          */
10501         if (ppd->host_link_state == state && !poll_bounce)
10502                 goto done;
10503
10504         switch (state) {
10505         case HLS_UP_INIT:
10506                 if (ppd->host_link_state == HLS_DN_POLL &&
10507                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10508                         /*
10509                          * Quick link up jumps from polling to here.
10510                          *
10511                          * Whether in normal or loopback mode, the
10512                          * simulator jumps from polling to link up.
10513                          * Accept that here.
10514                          */
10515                         /* OK */
10516                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10517                         goto unexpected;
10518                 }
10519
10520                 /*
10521                  * Wait for Link_Up physical state.
10522                  * Physical and Logical states should already be
10523                  * be transitioned to LinkUp and LinkInit respectively.
10524                  */
10525                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10526                 if (ret) {
10527                         dd_dev_err(dd,
10528                                    "%s: physical state did not change to LINK-UP\n",
10529                                    __func__);
10530                         break;
10531                 }
10532
10533                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10534                 if (ret) {
10535                         dd_dev_err(dd,
10536                                    "%s: logical state did not change to INIT\n",
10537                                    __func__);
10538                 } else {
10539                         /* clear old transient LINKINIT_REASON code */
10540                         if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10541                                 ppd->linkinit_reason =
10542                                         OPA_LINKINIT_REASON_LINKUP;
10543
10544                         /* enable the port */
10545                         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10546
10547                         handle_linkup_change(dd, 1);
10548                         ppd->host_link_state = HLS_UP_INIT;
10549                 }
10550                 break;
10551         case HLS_UP_ARMED:
10552                 if (ppd->host_link_state != HLS_UP_INIT)
10553                         goto unexpected;
10554
10555                 ppd->host_link_state = HLS_UP_ARMED;
10556                 set_logical_state(dd, LSTATE_ARMED);
10557                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10558                 if (ret) {
10559                         /* logical state didn't change, stay at init */
10560                         ppd->host_link_state = HLS_UP_INIT;
10561                         dd_dev_err(dd,
10562                                    "%s: logical state did not change to ARMED\n",
10563                                    __func__);
10564                 }
10565                 /*
10566                  * The simulator does not currently implement SMA messages,
10567                  * so neighbor_normal is not set.  Set it here when we first
10568                  * move to Armed.
10569                  */
10570                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10571                         ppd->neighbor_normal = 1;
10572                 break;
10573         case HLS_UP_ACTIVE:
10574                 if (ppd->host_link_state != HLS_UP_ARMED)
10575                         goto unexpected;
10576
10577                 ppd->host_link_state = HLS_UP_ACTIVE;
10578                 set_logical_state(dd, LSTATE_ACTIVE);
10579                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10580                 if (ret) {
10581                         /* logical state didn't change, stay at armed */
10582                         ppd->host_link_state = HLS_UP_ARMED;
10583                         dd_dev_err(dd,
10584                                    "%s: logical state did not change to ACTIVE\n",
10585                                    __func__);
10586                 } else {
10587                         /* tell all engines to go running */
10588                         sdma_all_running(dd);
10589
10590                         /* Signal the IB layer that the port has went active */
10591                         event.device = &dd->verbs_dev.rdi.ibdev;
10592                         event.element.port_num = ppd->port;
10593                         event.event = IB_EVENT_PORT_ACTIVE;
10594                 }
10595                 break;
10596         case HLS_DN_POLL:
10597                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10598                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10599                     dd->dc_shutdown)
10600                         dc_start(dd);
10601                 /* Hand LED control to the DC */
10602                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10603
10604                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10605                         u8 tmp = ppd->link_enabled;
10606
10607                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10608                         if (ret) {
10609                                 ppd->link_enabled = tmp;
10610                                 break;
10611                         }
10612                         ppd->remote_link_down_reason = 0;
10613
10614                         if (ppd->driver_link_ready)
10615                                 ppd->link_enabled = 1;
10616                 }
10617
10618                 set_all_slowpath(ppd->dd);
10619                 ret = set_local_link_attributes(ppd);
10620                 if (ret)
10621                         break;
10622
10623                 ppd->port_error_action = 0;
10624                 ppd->host_link_state = HLS_DN_POLL;
10625
10626                 if (quick_linkup) {
10627                         /* quick linkup does not go into polling */
10628                         ret = do_quick_linkup(dd);
10629                 } else {
10630                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10631                         if (ret1 != HCMD_SUCCESS) {
10632                                 dd_dev_err(dd,
10633                                            "Failed to transition to Polling link state, return 0x%x\n",
10634                                            ret1);
10635                                 ret = -EINVAL;
10636                         }
10637                 }
10638                 ppd->offline_disabled_reason =
10639                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10640                 /*
10641                  * If an error occurred above, go back to offline.  The
10642                  * caller may reschedule another attempt.
10643                  */
10644                 if (ret)
10645                         goto_offline(ppd, 0);
10646                 else
10647                         cache_physical_state(ppd);
10648                 break;
10649         case HLS_DN_DISABLE:
10650                 /* link is disabled */
10651                 ppd->link_enabled = 0;
10652
10653                 /* allow any state to transition to disabled */
10654
10655                 /* must transition to offline first */
10656                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10657                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10658                         if (ret)
10659                                 break;
10660                         ppd->remote_link_down_reason = 0;
10661                 }
10662
10663                 if (!dd->dc_shutdown) {
10664                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10665                         if (ret1 != HCMD_SUCCESS) {
10666                                 dd_dev_err(dd,
10667                                            "Failed to transition to Disabled link state, return 0x%x\n",
10668                                            ret1);
10669                                 ret = -EINVAL;
10670                                 break;
10671                         }
10672                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10673                         if (ret) {
10674                                 dd_dev_err(dd,
10675                                            "%s: physical state did not change to DISABLED\n",
10676                                            __func__);
10677                                 break;
10678                         }
10679                         dc_shutdown(dd);
10680                 }
10681                 ppd->host_link_state = HLS_DN_DISABLE;
10682                 break;
10683         case HLS_DN_OFFLINE:
10684                 if (ppd->host_link_state == HLS_DN_DISABLE)
10685                         dc_start(dd);
10686
10687                 /* allow any state to transition to offline */
10688                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10689                 if (!ret)
10690                         ppd->remote_link_down_reason = 0;
10691                 break;
10692         case HLS_VERIFY_CAP:
10693                 if (ppd->host_link_state != HLS_DN_POLL)
10694                         goto unexpected;
10695                 ppd->host_link_state = HLS_VERIFY_CAP;
10696                 cache_physical_state(ppd);
10697                 break;
10698         case HLS_GOING_UP:
10699                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10700                         goto unexpected;
10701
10702                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10703                 if (ret1 != HCMD_SUCCESS) {
10704                         dd_dev_err(dd,
10705                                    "Failed to transition to link up state, return 0x%x\n",
10706                                    ret1);
10707                         ret = -EINVAL;
10708                         break;
10709                 }
10710                 ppd->host_link_state = HLS_GOING_UP;
10711                 break;
10712
10713         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10714         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10715         default:
10716                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10717                             __func__, state);
10718                 ret = -EINVAL;
10719                 break;
10720         }
10721
10722         goto done;
10723
10724 unexpected:
10725         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10726                    __func__, link_state_name(ppd->host_link_state),
10727                    link_state_name(state));
10728         ret = -EINVAL;
10729
10730 done:
10731         mutex_unlock(&ppd->hls_lock);
10732
10733         if (event.device)
10734                 ib_dispatch_event(&event);
10735
10736         return ret;
10737 }
10738
10739 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10740 {
10741         u64 reg;
10742         int ret = 0;
10743
10744         switch (which) {
10745         case HFI1_IB_CFG_LIDLMC:
10746                 set_lidlmc(ppd);
10747                 break;
10748         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10749                 /*
10750                  * The VL Arbitrator high limit is sent in units of 4k
10751                  * bytes, while HFI stores it in units of 64 bytes.
10752                  */
10753                 val *= 4096 / 64;
10754                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10755                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10756                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10757                 break;
10758         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10759                 /* HFI only supports POLL as the default link down state */
10760                 if (val != HLS_DN_POLL)
10761                         ret = -EINVAL;
10762                 break;
10763         case HFI1_IB_CFG_OP_VLS:
10764                 if (ppd->vls_operational != val) {
10765                         ppd->vls_operational = val;
10766                         if (!ppd->port)
10767                                 ret = -EINVAL;
10768                 }
10769                 break;
10770         /*
10771          * For link width, link width downgrade, and speed enable, always AND
10772          * the setting with what is actually supported.  This has two benefits.
10773          * First, enabled can't have unsupported values, no matter what the
10774          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10775          * "fill in with your supported value" have all the bits in the
10776          * field set, so simply ANDing with supported has the desired result.
10777          */
10778         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10779                 ppd->link_width_enabled = val & ppd->link_width_supported;
10780                 break;
10781         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10782                 ppd->link_width_downgrade_enabled =
10783                                 val & ppd->link_width_downgrade_supported;
10784                 break;
10785         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10786                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10787                 break;
10788         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10789                 /*
10790                  * HFI does not follow IB specs, save this value
10791                  * so we can report it, if asked.
10792                  */
10793                 ppd->overrun_threshold = val;
10794                 break;
10795         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10796                 /*
10797                  * HFI does not follow IB specs, save this value
10798                  * so we can report it, if asked.
10799                  */
10800                 ppd->phy_error_threshold = val;
10801                 break;
10802
10803         case HFI1_IB_CFG_MTU:
10804                 set_send_length(ppd);
10805                 break;
10806
10807         case HFI1_IB_CFG_PKEYS:
10808                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10809                         set_partition_keys(ppd);
10810                 break;
10811
10812         default:
10813                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10814                         dd_dev_info(ppd->dd,
10815                                     "%s: which %s, val 0x%x: not implemented\n",
10816                                     __func__, ib_cfg_name(which), val);
10817                 break;
10818         }
10819         return ret;
10820 }
10821
10822 /* begin functions related to vl arbitration table caching */
10823 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10824 {
10825         int i;
10826
10827         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10828                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10829         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10830                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10831
10832         /*
10833          * Note that we always return values directly from the
10834          * 'vl_arb_cache' (and do no CSR reads) in response to a
10835          * 'Get(VLArbTable)'. This is obviously correct after a
10836          * 'Set(VLArbTable)', since the cache will then be up to
10837          * date. But it's also correct prior to any 'Set(VLArbTable)'
10838          * since then both the cache, and the relevant h/w registers
10839          * will be zeroed.
10840          */
10841
10842         for (i = 0; i < MAX_PRIO_TABLE; i++)
10843                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10844 }
10845
10846 /*
10847  * vl_arb_lock_cache
10848  *
10849  * All other vl_arb_* functions should be called only after locking
10850  * the cache.
10851  */
10852 static inline struct vl_arb_cache *
10853 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10854 {
10855         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10856                 return NULL;
10857         spin_lock(&ppd->vl_arb_cache[idx].lock);
10858         return &ppd->vl_arb_cache[idx];
10859 }
10860
10861 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10862 {
10863         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10864 }
10865
10866 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10867                              struct ib_vl_weight_elem *vl)
10868 {
10869         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10870 }
10871
10872 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10873                              struct ib_vl_weight_elem *vl)
10874 {
10875         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10876 }
10877
10878 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10879                               struct ib_vl_weight_elem *vl)
10880 {
10881         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10882 }
10883
10884 /* end functions related to vl arbitration table caching */
10885
10886 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10887                           u32 size, struct ib_vl_weight_elem *vl)
10888 {
10889         struct hfi1_devdata *dd = ppd->dd;
10890         u64 reg;
10891         unsigned int i, is_up = 0;
10892         int drain, ret = 0;
10893
10894         mutex_lock(&ppd->hls_lock);
10895
10896         if (ppd->host_link_state & HLS_UP)
10897                 is_up = 1;
10898
10899         drain = !is_ax(dd) && is_up;
10900
10901         if (drain)
10902                 /*
10903                  * Before adjusting VL arbitration weights, empty per-VL
10904                  * FIFOs, otherwise a packet whose VL weight is being
10905                  * set to 0 could get stuck in a FIFO with no chance to
10906                  * egress.
10907                  */
10908                 ret = stop_drain_data_vls(dd);
10909
10910         if (ret) {
10911                 dd_dev_err(
10912                         dd,
10913                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10914                         __func__);
10915                 goto err;
10916         }
10917
10918         for (i = 0; i < size; i++, vl++) {
10919                 /*
10920                  * NOTE: The low priority shift and mask are used here, but
10921                  * they are the same for both the low and high registers.
10922                  */
10923                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10924                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10925                       | (((u64)vl->weight
10926                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10927                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10928                 write_csr(dd, target + (i * 8), reg);
10929         }
10930         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10931
10932         if (drain)
10933                 open_fill_data_vls(dd); /* reopen all VLs */
10934
10935 err:
10936         mutex_unlock(&ppd->hls_lock);
10937
10938         return ret;
10939 }
10940
10941 /*
10942  * Read one credit merge VL register.
10943  */
10944 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10945                            struct vl_limit *vll)
10946 {
10947         u64 reg = read_csr(dd, csr);
10948
10949         vll->dedicated = cpu_to_be16(
10950                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10951                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10952         vll->shared = cpu_to_be16(
10953                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10954                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10955 }
10956
10957 /*
10958  * Read the current credit merge limits.
10959  */
10960 static int get_buffer_control(struct hfi1_devdata *dd,
10961                               struct buffer_control *bc, u16 *overall_limit)
10962 {
10963         u64 reg;
10964         int i;
10965
10966         /* not all entries are filled in */
10967         memset(bc, 0, sizeof(*bc));
10968
10969         /* OPA and HFI have a 1-1 mapping */
10970         for (i = 0; i < TXE_NUM_DATA_VL; i++)
10971                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10972
10973         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10974         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10975
10976         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10977         bc->overall_shared_limit = cpu_to_be16(
10978                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10979                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10980         if (overall_limit)
10981                 *overall_limit = (reg
10982                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10983                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10984         return sizeof(struct buffer_control);
10985 }
10986
10987 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10988 {
10989         u64 reg;
10990         int i;
10991
10992         /* each register contains 16 SC->VLnt mappings, 4 bits each */
10993         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10994         for (i = 0; i < sizeof(u64); i++) {
10995                 u8 byte = *(((u8 *)&reg) + i);
10996
10997                 dp->vlnt[2 * i] = byte & 0xf;
10998                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10999         }
11000
11001         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11002         for (i = 0; i < sizeof(u64); i++) {
11003                 u8 byte = *(((u8 *)&reg) + i);
11004
11005                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11006                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11007         }
11008         return sizeof(struct sc2vlnt);
11009 }
11010
11011 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11012                               struct ib_vl_weight_elem *vl)
11013 {
11014         unsigned int i;
11015
11016         for (i = 0; i < nelems; i++, vl++) {
11017                 vl->vl = 0xf;
11018                 vl->weight = 0;
11019         }
11020 }
11021
11022 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11023 {
11024         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11025                   DC_SC_VL_VAL(15_0,
11026                                0, dp->vlnt[0] & 0xf,
11027                                1, dp->vlnt[1] & 0xf,
11028                                2, dp->vlnt[2] & 0xf,
11029                                3, dp->vlnt[3] & 0xf,
11030                                4, dp->vlnt[4] & 0xf,
11031                                5, dp->vlnt[5] & 0xf,
11032                                6, dp->vlnt[6] & 0xf,
11033                                7, dp->vlnt[7] & 0xf,
11034                                8, dp->vlnt[8] & 0xf,
11035                                9, dp->vlnt[9] & 0xf,
11036                                10, dp->vlnt[10] & 0xf,
11037                                11, dp->vlnt[11] & 0xf,
11038                                12, dp->vlnt[12] & 0xf,
11039                                13, dp->vlnt[13] & 0xf,
11040                                14, dp->vlnt[14] & 0xf,
11041                                15, dp->vlnt[15] & 0xf));
11042         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11043                   DC_SC_VL_VAL(31_16,
11044                                16, dp->vlnt[16] & 0xf,
11045                                17, dp->vlnt[17] & 0xf,
11046                                18, dp->vlnt[18] & 0xf,
11047                                19, dp->vlnt[19] & 0xf,
11048                                20, dp->vlnt[20] & 0xf,
11049                                21, dp->vlnt[21] & 0xf,
11050                                22, dp->vlnt[22] & 0xf,
11051                                23, dp->vlnt[23] & 0xf,
11052                                24, dp->vlnt[24] & 0xf,
11053                                25, dp->vlnt[25] & 0xf,
11054                                26, dp->vlnt[26] & 0xf,
11055                                27, dp->vlnt[27] & 0xf,
11056                                28, dp->vlnt[28] & 0xf,
11057                                29, dp->vlnt[29] & 0xf,
11058                                30, dp->vlnt[30] & 0xf,
11059                                31, dp->vlnt[31] & 0xf));
11060 }
11061
11062 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11063                         u16 limit)
11064 {
11065         if (limit != 0)
11066                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11067                             what, (int)limit, idx);
11068 }
11069
11070 /* change only the shared limit portion of SendCmGLobalCredit */
11071 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11072 {
11073         u64 reg;
11074
11075         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11076         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11077         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11078         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11079 }
11080
11081 /* change only the total credit limit portion of SendCmGLobalCredit */
11082 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11083 {
11084         u64 reg;
11085
11086         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11087         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11088         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11089         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11090 }
11091
11092 /* set the given per-VL shared limit */
11093 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11094 {
11095         u64 reg;
11096         u32 addr;
11097
11098         if (vl < TXE_NUM_DATA_VL)
11099                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11100         else
11101                 addr = SEND_CM_CREDIT_VL15;
11102
11103         reg = read_csr(dd, addr);
11104         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11105         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11106         write_csr(dd, addr, reg);
11107 }
11108
11109 /* set the given per-VL dedicated limit */
11110 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11111 {
11112         u64 reg;
11113         u32 addr;
11114
11115         if (vl < TXE_NUM_DATA_VL)
11116                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11117         else
11118                 addr = SEND_CM_CREDIT_VL15;
11119
11120         reg = read_csr(dd, addr);
11121         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11122         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11123         write_csr(dd, addr, reg);
11124 }
11125
11126 /* spin until the given per-VL status mask bits clear */
11127 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11128                                      const char *which)
11129 {
11130         unsigned long timeout;
11131         u64 reg;
11132
11133         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11134         while (1) {
11135                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11136
11137                 if (reg == 0)
11138                         return; /* success */
11139                 if (time_after(jiffies, timeout))
11140                         break;          /* timed out */
11141                 udelay(1);
11142         }
11143
11144         dd_dev_err(dd,
11145                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11146                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11147         /*
11148          * If this occurs, it is likely there was a credit loss on the link.
11149          * The only recovery from that is a link bounce.
11150          */
11151         dd_dev_err(dd,
11152                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11153 }
11154
11155 /*
11156  * The number of credits on the VLs may be changed while everything
11157  * is "live", but the following algorithm must be followed due to
11158  * how the hardware is actually implemented.  In particular,
11159  * Return_Credit_Status[] is the only correct status check.
11160  *
11161  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11162  *     set Global_Shared_Credit_Limit = 0
11163  *     use_all_vl = 1
11164  * mask0 = all VLs that are changing either dedicated or shared limits
11165  * set Shared_Limit[mask0] = 0
11166  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11167  * if (changing any dedicated limit)
11168  *     mask1 = all VLs that are lowering dedicated limits
11169  *     lower Dedicated_Limit[mask1]
11170  *     spin until Return_Credit_Status[mask1] == 0
11171  *     raise Dedicated_Limits
11172  * raise Shared_Limits
11173  * raise Global_Shared_Credit_Limit
11174  *
11175  * lower = if the new limit is lower, set the limit to the new value
11176  * raise = if the new limit is higher than the current value (may be changed
11177  *      earlier in the algorithm), set the new limit to the new value
11178  */
11179 int set_buffer_control(struct hfi1_pportdata *ppd,
11180                        struct buffer_control *new_bc)
11181 {
11182         struct hfi1_devdata *dd = ppd->dd;
11183         u64 changing_mask, ld_mask, stat_mask;
11184         int change_count;
11185         int i, use_all_mask;
11186         int this_shared_changing;
11187         int vl_count = 0, ret;
11188         /*
11189          * A0: add the variable any_shared_limit_changing below and in the
11190          * algorithm above.  If removing A0 support, it can be removed.
11191          */
11192         int any_shared_limit_changing;
11193         struct buffer_control cur_bc;
11194         u8 changing[OPA_MAX_VLS];
11195         u8 lowering_dedicated[OPA_MAX_VLS];
11196         u16 cur_total;
11197         u32 new_total = 0;
11198         const u64 all_mask =
11199         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11200          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11201          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11202          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11203          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11204          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11205          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11206          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11207          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11208
11209 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11210 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11211
11212         /* find the new total credits, do sanity check on unused VLs */
11213         for (i = 0; i < OPA_MAX_VLS; i++) {
11214                 if (valid_vl(i)) {
11215                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11216                         continue;
11217                 }
11218                 nonzero_msg(dd, i, "dedicated",
11219                             be16_to_cpu(new_bc->vl[i].dedicated));
11220                 nonzero_msg(dd, i, "shared",
11221                             be16_to_cpu(new_bc->vl[i].shared));
11222                 new_bc->vl[i].dedicated = 0;
11223                 new_bc->vl[i].shared = 0;
11224         }
11225         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11226
11227         /* fetch the current values */
11228         get_buffer_control(dd, &cur_bc, &cur_total);
11229
11230         /*
11231          * Create the masks we will use.
11232          */
11233         memset(changing, 0, sizeof(changing));
11234         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11235         /*
11236          * NOTE: Assumes that the individual VL bits are adjacent and in
11237          * increasing order
11238          */
11239         stat_mask =
11240                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11241         changing_mask = 0;
11242         ld_mask = 0;
11243         change_count = 0;
11244         any_shared_limit_changing = 0;
11245         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11246                 if (!valid_vl(i))
11247                         continue;
11248                 this_shared_changing = new_bc->vl[i].shared
11249                                                 != cur_bc.vl[i].shared;
11250                 if (this_shared_changing)
11251                         any_shared_limit_changing = 1;
11252                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11253                     this_shared_changing) {
11254                         changing[i] = 1;
11255                         changing_mask |= stat_mask;
11256                         change_count++;
11257                 }
11258                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11259                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11260                         lowering_dedicated[i] = 1;
11261                         ld_mask |= stat_mask;
11262                 }
11263         }
11264
11265         /* bracket the credit change with a total adjustment */
11266         if (new_total > cur_total)
11267                 set_global_limit(dd, new_total);
11268
11269         /*
11270          * Start the credit change algorithm.
11271          */
11272         use_all_mask = 0;
11273         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11274              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11275             (is_ax(dd) && any_shared_limit_changing)) {
11276                 set_global_shared(dd, 0);
11277                 cur_bc.overall_shared_limit = 0;
11278                 use_all_mask = 1;
11279         }
11280
11281         for (i = 0; i < NUM_USABLE_VLS; i++) {
11282                 if (!valid_vl(i))
11283                         continue;
11284
11285                 if (changing[i]) {
11286                         set_vl_shared(dd, i, 0);
11287                         cur_bc.vl[i].shared = 0;
11288                 }
11289         }
11290
11291         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11292                                  "shared");
11293
11294         if (change_count > 0) {
11295                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11296                         if (!valid_vl(i))
11297                                 continue;
11298
11299                         if (lowering_dedicated[i]) {
11300                                 set_vl_dedicated(dd, i,
11301                                                  be16_to_cpu(new_bc->
11302                                                              vl[i].dedicated));
11303                                 cur_bc.vl[i].dedicated =
11304                                                 new_bc->vl[i].dedicated;
11305                         }
11306                 }
11307
11308                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11309
11310                 /* now raise all dedicated that are going up */
11311                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11312                         if (!valid_vl(i))
11313                                 continue;
11314
11315                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11316                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11317                                 set_vl_dedicated(dd, i,
11318                                                  be16_to_cpu(new_bc->
11319                                                              vl[i].dedicated));
11320                 }
11321         }
11322
11323         /* next raise all shared that are going up */
11324         for (i = 0; i < NUM_USABLE_VLS; i++) {
11325                 if (!valid_vl(i))
11326                         continue;
11327
11328                 if (be16_to_cpu(new_bc->vl[i].shared) >
11329                                 be16_to_cpu(cur_bc.vl[i].shared))
11330                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11331         }
11332
11333         /* finally raise the global shared */
11334         if (be16_to_cpu(new_bc->overall_shared_limit) >
11335             be16_to_cpu(cur_bc.overall_shared_limit))
11336                 set_global_shared(dd,
11337                                   be16_to_cpu(new_bc->overall_shared_limit));
11338
11339         /* bracket the credit change with a total adjustment */
11340         if (new_total < cur_total)
11341                 set_global_limit(dd, new_total);
11342
11343         /*
11344          * Determine the actual number of operational VLS using the number of
11345          * dedicated and shared credits for each VL.
11346          */
11347         if (change_count > 0) {
11348                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11349                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11350                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11351                                 vl_count++;
11352                 ppd->actual_vls_operational = vl_count;
11353                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11354                                     ppd->actual_vls_operational :
11355                                     ppd->vls_operational,
11356                                     NULL);
11357                 if (ret == 0)
11358                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11359                                            ppd->actual_vls_operational :
11360                                            ppd->vls_operational, NULL);
11361                 if (ret)
11362                         return ret;
11363         }
11364         return 0;
11365 }
11366
11367 /*
11368  * Read the given fabric manager table. Return the size of the
11369  * table (in bytes) on success, and a negative error code on
11370  * failure.
11371  */
11372 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11373
11374 {
11375         int size;
11376         struct vl_arb_cache *vlc;
11377
11378         switch (which) {
11379         case FM_TBL_VL_HIGH_ARB:
11380                 size = 256;
11381                 /*
11382                  * OPA specifies 128 elements (of 2 bytes each), though
11383                  * HFI supports only 16 elements in h/w.
11384                  */
11385                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11386                 vl_arb_get_cache(vlc, t);
11387                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11388                 break;
11389         case FM_TBL_VL_LOW_ARB:
11390                 size = 256;
11391                 /*
11392                  * OPA specifies 128 elements (of 2 bytes each), though
11393                  * HFI supports only 16 elements in h/w.
11394                  */
11395                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11396                 vl_arb_get_cache(vlc, t);
11397                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11398                 break;
11399         case FM_TBL_BUFFER_CONTROL:
11400                 size = get_buffer_control(ppd->dd, t, NULL);
11401                 break;
11402         case FM_TBL_SC2VLNT:
11403                 size = get_sc2vlnt(ppd->dd, t);
11404                 break;
11405         case FM_TBL_VL_PREEMPT_ELEMS:
11406                 size = 256;
11407                 /* OPA specifies 128 elements, of 2 bytes each */
11408                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11409                 break;
11410         case FM_TBL_VL_PREEMPT_MATRIX:
11411                 size = 256;
11412                 /*
11413                  * OPA specifies that this is the same size as the VL
11414                  * arbitration tables (i.e., 256 bytes).
11415                  */
11416                 break;
11417         default:
11418                 return -EINVAL;
11419         }
11420         return size;
11421 }
11422
11423 /*
11424  * Write the given fabric manager table.
11425  */
11426 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11427 {
11428         int ret = 0;
11429         struct vl_arb_cache *vlc;
11430
11431         switch (which) {
11432         case FM_TBL_VL_HIGH_ARB:
11433                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11434                 if (vl_arb_match_cache(vlc, t)) {
11435                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11436                         break;
11437                 }
11438                 vl_arb_set_cache(vlc, t);
11439                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11440                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11441                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11442                 break;
11443         case FM_TBL_VL_LOW_ARB:
11444                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11445                 if (vl_arb_match_cache(vlc, t)) {
11446                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11447                         break;
11448                 }
11449                 vl_arb_set_cache(vlc, t);
11450                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11451                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11452                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11453                 break;
11454         case FM_TBL_BUFFER_CONTROL:
11455                 ret = set_buffer_control(ppd, t);
11456                 break;
11457         case FM_TBL_SC2VLNT:
11458                 set_sc2vlnt(ppd->dd, t);
11459                 break;
11460         default:
11461                 ret = -EINVAL;
11462         }
11463         return ret;
11464 }
11465
11466 /*
11467  * Disable all data VLs.
11468  *
11469  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11470  */
11471 static int disable_data_vls(struct hfi1_devdata *dd)
11472 {
11473         if (is_ax(dd))
11474                 return 1;
11475
11476         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11477
11478         return 0;
11479 }
11480
11481 /*
11482  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11483  * Just re-enables all data VLs (the "fill" part happens
11484  * automatically - the name was chosen for symmetry with
11485  * stop_drain_data_vls()).
11486  *
11487  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11488  */
11489 int open_fill_data_vls(struct hfi1_devdata *dd)
11490 {
11491         if (is_ax(dd))
11492                 return 1;
11493
11494         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11495
11496         return 0;
11497 }
11498
11499 /*
11500  * drain_data_vls() - assumes that disable_data_vls() has been called,
11501  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11502  * engines to drop to 0.
11503  */
11504 static void drain_data_vls(struct hfi1_devdata *dd)
11505 {
11506         sc_wait(dd);
11507         sdma_wait(dd);
11508         pause_for_credit_return(dd);
11509 }
11510
11511 /*
11512  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11513  *
11514  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11515  * meant to be used like this:
11516  *
11517  * stop_drain_data_vls(dd);
11518  * // do things with per-VL resources
11519  * open_fill_data_vls(dd);
11520  */
11521 int stop_drain_data_vls(struct hfi1_devdata *dd)
11522 {
11523         int ret;
11524
11525         ret = disable_data_vls(dd);
11526         if (ret == 0)
11527                 drain_data_vls(dd);
11528
11529         return ret;
11530 }
11531
11532 /*
11533  * Convert a nanosecond time to a cclock count.  No matter how slow
11534  * the cclock, a non-zero ns will always have a non-zero result.
11535  */
11536 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11537 {
11538         u32 cclocks;
11539
11540         if (dd->icode == ICODE_FPGA_EMULATION)
11541                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11542         else  /* simulation pretends to be ASIC */
11543                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11544         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11545                 cclocks = 1;
11546         return cclocks;
11547 }
11548
11549 /*
11550  * Convert a cclock count to nanoseconds. Not matter how slow
11551  * the cclock, a non-zero cclocks will always have a non-zero result.
11552  */
11553 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11554 {
11555         u32 ns;
11556
11557         if (dd->icode == ICODE_FPGA_EMULATION)
11558                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11559         else  /* simulation pretends to be ASIC */
11560                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11561         if (cclocks && !ns)
11562                 ns = 1;
11563         return ns;
11564 }
11565
11566 /*
11567  * Dynamically adjust the receive interrupt timeout for a context based on
11568  * incoming packet rate.
11569  *
11570  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11571  */
11572 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11573 {
11574         struct hfi1_devdata *dd = rcd->dd;
11575         u32 timeout = rcd->rcvavail_timeout;
11576
11577         /*
11578          * This algorithm doubles or halves the timeout depending on whether
11579          * the number of packets received in this interrupt were less than or
11580          * greater equal the interrupt count.
11581          *
11582          * The calculations below do not allow a steady state to be achieved.
11583          * Only at the endpoints it is possible to have an unchanging
11584          * timeout.
11585          */
11586         if (npkts < rcv_intr_count) {
11587                 /*
11588                  * Not enough packets arrived before the timeout, adjust
11589                  * timeout downward.
11590                  */
11591                 if (timeout < 2) /* already at minimum? */
11592                         return;
11593                 timeout >>= 1;
11594         } else {
11595                 /*
11596                  * More than enough packets arrived before the timeout, adjust
11597                  * timeout upward.
11598                  */
11599                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11600                         return;
11601                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11602         }
11603
11604         rcd->rcvavail_timeout = timeout;
11605         /*
11606          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11607          * been verified to be in range
11608          */
11609         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11610                         (u64)timeout <<
11611                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11612 }
11613
11614 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11615                     u32 intr_adjust, u32 npkts)
11616 {
11617         struct hfi1_devdata *dd = rcd->dd;
11618         u64 reg;
11619         u32 ctxt = rcd->ctxt;
11620
11621         /*
11622          * Need to write timeout register before updating RcvHdrHead to ensure
11623          * that a new value is used when the HW decides to restart counting.
11624          */
11625         if (intr_adjust)
11626                 adjust_rcv_timeout(rcd, npkts);
11627         if (updegr) {
11628                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11629                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11630                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11631         }
11632         mmiowb();
11633         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11634                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11635                         << RCV_HDR_HEAD_HEAD_SHIFT);
11636         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11637         mmiowb();
11638 }
11639
11640 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11641 {
11642         u32 head, tail;
11643
11644         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11645                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11646
11647         if (rcd->rcvhdrtail_kvaddr)
11648                 tail = get_rcvhdrtail(rcd);
11649         else
11650                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11651
11652         return head == tail;
11653 }
11654
11655 /*
11656  * Context Control and Receive Array encoding for buffer size:
11657  *      0x0 invalid
11658  *      0x1   4 KB
11659  *      0x2   8 KB
11660  *      0x3  16 KB
11661  *      0x4  32 KB
11662  *      0x5  64 KB
11663  *      0x6 128 KB
11664  *      0x7 256 KB
11665  *      0x8 512 KB (Receive Array only)
11666  *      0x9   1 MB (Receive Array only)
11667  *      0xa   2 MB (Receive Array only)
11668  *
11669  *      0xB-0xF - reserved (Receive Array only)
11670  *
11671  *
11672  * This routine assumes that the value has already been sanity checked.
11673  */
11674 static u32 encoded_size(u32 size)
11675 {
11676         switch (size) {
11677         case   4 * 1024: return 0x1;
11678         case   8 * 1024: return 0x2;
11679         case  16 * 1024: return 0x3;
11680         case  32 * 1024: return 0x4;
11681         case  64 * 1024: return 0x5;
11682         case 128 * 1024: return 0x6;
11683         case 256 * 1024: return 0x7;
11684         case 512 * 1024: return 0x8;
11685         case   1 * 1024 * 1024: return 0x9;
11686         case   2 * 1024 * 1024: return 0xa;
11687         }
11688         return 0x1;     /* if invalid, go with the minimum size */
11689 }
11690
11691 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11692 {
11693         struct hfi1_ctxtdata *rcd;
11694         u64 rcvctrl, reg;
11695         int did_enable = 0;
11696
11697         rcd = dd->rcd[ctxt];
11698         if (!rcd)
11699                 return;
11700
11701         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11702
11703         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11704         /* if the context already enabled, don't do the extra steps */
11705         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11706             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11707                 /* reset the tail and hdr addresses, and sequence count */
11708                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11709                                 rcd->rcvhdrq_dma);
11710                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11711                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11712                                         rcd->rcvhdrqtailaddr_dma);
11713                 rcd->seq_cnt = 1;
11714
11715                 /* reset the cached receive header queue head value */
11716                 rcd->head = 0;
11717
11718                 /*
11719                  * Zero the receive header queue so we don't get false
11720                  * positives when checking the sequence number.  The
11721                  * sequence numbers could land exactly on the same spot.
11722                  * E.g. a rcd restart before the receive header wrapped.
11723                  */
11724                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11725
11726                 /* starting timeout */
11727                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11728
11729                 /* enable the context */
11730                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11731
11732                 /* clean the egr buffer size first */
11733                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11734                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11735                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11736                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11737
11738                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11739                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11740                 did_enable = 1;
11741
11742                 /* zero RcvEgrIndexHead */
11743                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11744
11745                 /* set eager count and base index */
11746                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11747                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11748                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11749                         (((rcd->eager_base >> RCV_SHIFT)
11750                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11751                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11752                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11753
11754                 /*
11755                  * Set TID (expected) count and base index.
11756                  * rcd->expected_count is set to individual RcvArray entries,
11757                  * not pairs, and the CSR takes a pair-count in groups of
11758                  * four, so divide by 8.
11759                  */
11760                 reg = (((rcd->expected_count >> RCV_SHIFT)
11761                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11762                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11763                       (((rcd->expected_base >> RCV_SHIFT)
11764                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11765                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11766                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11767                 if (ctxt == HFI1_CTRL_CTXT)
11768                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11769         }
11770         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11771                 write_csr(dd, RCV_VL15, 0);
11772                 /*
11773                  * When receive context is being disabled turn on tail
11774                  * update with a dummy tail address and then disable
11775                  * receive context.
11776                  */
11777                 if (dd->rcvhdrtail_dummy_dma) {
11778                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11779                                         dd->rcvhdrtail_dummy_dma);
11780                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11781                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11782                 }
11783
11784                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11785         }
11786         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11787                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11788         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11789                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11790         if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11791                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11792         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11793                 /* See comment on RcvCtxtCtrl.TailUpd above */
11794                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11795                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11796         }
11797         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11798                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11799         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11800                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11801         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11802                 /*
11803                  * In one-packet-per-eager mode, the size comes from
11804                  * the RcvArray entry.
11805                  */
11806                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11807                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11808         }
11809         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11810                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11811         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11812                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11813         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11814                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11815         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11816                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11817         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11818                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11819         rcd->rcvctrl = rcvctrl;
11820         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11821         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11822
11823         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11824         if (did_enable &&
11825             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11826                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11827                 if (reg != 0) {
11828                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11829                                     ctxt, reg);
11830                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11831                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11832                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11833                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11834                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11835                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11836                                     ctxt, reg, reg == 0 ? "not" : "still");
11837                 }
11838         }
11839
11840         if (did_enable) {
11841                 /*
11842                  * The interrupt timeout and count must be set after
11843                  * the context is enabled to take effect.
11844                  */
11845                 /* set interrupt timeout */
11846                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11847                                 (u64)rcd->rcvavail_timeout <<
11848                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11849
11850                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11851                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11852                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11853         }
11854
11855         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11856                 /*
11857                  * If the context has been disabled and the Tail Update has
11858                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11859                  * so it doesn't contain an address that is invalid.
11860                  */
11861                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11862                                 dd->rcvhdrtail_dummy_dma);
11863 }
11864
11865 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11866 {
11867         int ret;
11868         u64 val = 0;
11869
11870         if (namep) {
11871                 ret = dd->cntrnameslen;
11872                 *namep = dd->cntrnames;
11873         } else {
11874                 const struct cntr_entry *entry;
11875                 int i, j;
11876
11877                 ret = (dd->ndevcntrs) * sizeof(u64);
11878
11879                 /* Get the start of the block of counters */
11880                 *cntrp = dd->cntrs;
11881
11882                 /*
11883                  * Now go and fill in each counter in the block.
11884                  */
11885                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11886                         entry = &dev_cntrs[i];
11887                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11888                         if (entry->flags & CNTR_DISABLED) {
11889                                 /* Nothing */
11890                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11891                         } else {
11892                                 if (entry->flags & CNTR_VL) {
11893                                         hfi1_cdbg(CNTR, "\tPer VL\n");
11894                                         for (j = 0; j < C_VL_COUNT; j++) {
11895                                                 val = entry->rw_cntr(entry,
11896                                                                   dd, j,
11897                                                                   CNTR_MODE_R,
11898                                                                   0);
11899                                                 hfi1_cdbg(
11900                                                    CNTR,
11901                                                    "\t\tRead 0x%llx for %d\n",
11902                                                    val, j);
11903                                                 dd->cntrs[entry->offset + j] =
11904                                                                             val;
11905                                         }
11906                                 } else if (entry->flags & CNTR_SDMA) {
11907                                         hfi1_cdbg(CNTR,
11908                                                   "\t Per SDMA Engine\n");
11909                                         for (j = 0; j < dd->chip_sdma_engines;
11910                                              j++) {
11911                                                 val =
11912                                                 entry->rw_cntr(entry, dd, j,
11913                                                                CNTR_MODE_R, 0);
11914                                                 hfi1_cdbg(CNTR,
11915                                                           "\t\tRead 0x%llx for %d\n",
11916                                                           val, j);
11917                                                 dd->cntrs[entry->offset + j] =
11918                                                                         val;
11919                                         }
11920                                 } else {
11921                                         val = entry->rw_cntr(entry, dd,
11922                                                         CNTR_INVALID_VL,
11923                                                         CNTR_MODE_R, 0);
11924                                         dd->cntrs[entry->offset] = val;
11925                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11926                                 }
11927                         }
11928                 }
11929         }
11930         return ret;
11931 }
11932
11933 /*
11934  * Used by sysfs to create files for hfi stats to read
11935  */
11936 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11937 {
11938         int ret;
11939         u64 val = 0;
11940
11941         if (namep) {
11942                 ret = ppd->dd->portcntrnameslen;
11943                 *namep = ppd->dd->portcntrnames;
11944         } else {
11945                 const struct cntr_entry *entry;
11946                 int i, j;
11947
11948                 ret = ppd->dd->nportcntrs * sizeof(u64);
11949                 *cntrp = ppd->cntrs;
11950
11951                 for (i = 0; i < PORT_CNTR_LAST; i++) {
11952                         entry = &port_cntrs[i];
11953                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11954                         if (entry->flags & CNTR_DISABLED) {
11955                                 /* Nothing */
11956                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11957                                 continue;
11958                         }
11959
11960                         if (entry->flags & CNTR_VL) {
11961                                 hfi1_cdbg(CNTR, "\tPer VL");
11962                                 for (j = 0; j < C_VL_COUNT; j++) {
11963                                         val = entry->rw_cntr(entry, ppd, j,
11964                                                                CNTR_MODE_R,
11965                                                                0);
11966                                         hfi1_cdbg(
11967                                            CNTR,
11968                                            "\t\tRead 0x%llx for %d",
11969                                            val, j);
11970                                         ppd->cntrs[entry->offset + j] = val;
11971                                 }
11972                         } else {
11973                                 val = entry->rw_cntr(entry, ppd,
11974                                                        CNTR_INVALID_VL,
11975                                                        CNTR_MODE_R,
11976                                                        0);
11977                                 ppd->cntrs[entry->offset] = val;
11978                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11979                         }
11980                 }
11981         }
11982         return ret;
11983 }
11984
11985 static void free_cntrs(struct hfi1_devdata *dd)
11986 {
11987         struct hfi1_pportdata *ppd;
11988         int i;
11989
11990         if (dd->synth_stats_timer.data)
11991                 del_timer_sync(&dd->synth_stats_timer);
11992         dd->synth_stats_timer.data = 0;
11993         ppd = (struct hfi1_pportdata *)(dd + 1);
11994         for (i = 0; i < dd->num_pports; i++, ppd++) {
11995                 kfree(ppd->cntrs);
11996                 kfree(ppd->scntrs);
11997                 free_percpu(ppd->ibport_data.rvp.rc_acks);
11998                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11999                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12000                 ppd->cntrs = NULL;
12001                 ppd->scntrs = NULL;
12002                 ppd->ibport_data.rvp.rc_acks = NULL;
12003                 ppd->ibport_data.rvp.rc_qacks = NULL;
12004                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12005         }
12006         kfree(dd->portcntrnames);
12007         dd->portcntrnames = NULL;
12008         kfree(dd->cntrs);
12009         dd->cntrs = NULL;
12010         kfree(dd->scntrs);
12011         dd->scntrs = NULL;
12012         kfree(dd->cntrnames);
12013         dd->cntrnames = NULL;
12014         if (dd->update_cntr_wq) {
12015                 destroy_workqueue(dd->update_cntr_wq);
12016                 dd->update_cntr_wq = NULL;
12017         }
12018 }
12019
12020 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12021                               u64 *psval, void *context, int vl)
12022 {
12023         u64 val;
12024         u64 sval = *psval;
12025
12026         if (entry->flags & CNTR_DISABLED) {
12027                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12028                 return 0;
12029         }
12030
12031         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12032
12033         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12034
12035         /* If its a synthetic counter there is more work we need to do */
12036         if (entry->flags & CNTR_SYNTH) {
12037                 if (sval == CNTR_MAX) {
12038                         /* No need to read already saturated */
12039                         return CNTR_MAX;
12040                 }
12041
12042                 if (entry->flags & CNTR_32BIT) {
12043                         /* 32bit counters can wrap multiple times */
12044                         u64 upper = sval >> 32;
12045                         u64 lower = (sval << 32) >> 32;
12046
12047                         if (lower > val) { /* hw wrapped */
12048                                 if (upper == CNTR_32BIT_MAX)
12049                                         val = CNTR_MAX;
12050                                 else
12051                                         upper++;
12052                         }
12053
12054                         if (val != CNTR_MAX)
12055                                 val = (upper << 32) | val;
12056
12057                 } else {
12058                         /* If we rolled we are saturated */
12059                         if ((val < sval) || (val > CNTR_MAX))
12060                                 val = CNTR_MAX;
12061                 }
12062         }
12063
12064         *psval = val;
12065
12066         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12067
12068         return val;
12069 }
12070
12071 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12072                                struct cntr_entry *entry,
12073                                u64 *psval, void *context, int vl, u64 data)
12074 {
12075         u64 val;
12076
12077         if (entry->flags & CNTR_DISABLED) {
12078                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12079                 return 0;
12080         }
12081
12082         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12083
12084         if (entry->flags & CNTR_SYNTH) {
12085                 *psval = data;
12086                 if (entry->flags & CNTR_32BIT) {
12087                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12088                                              (data << 32) >> 32);
12089                         val = data; /* return the full 64bit value */
12090                 } else {
12091                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12092                                              data);
12093                 }
12094         } else {
12095                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12096         }
12097
12098         *psval = val;
12099
12100         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12101
12102         return val;
12103 }
12104
12105 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12106 {
12107         struct cntr_entry *entry;
12108         u64 *sval;
12109
12110         entry = &dev_cntrs[index];
12111         sval = dd->scntrs + entry->offset;
12112
12113         if (vl != CNTR_INVALID_VL)
12114                 sval += vl;
12115
12116         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12117 }
12118
12119 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12120 {
12121         struct cntr_entry *entry;
12122         u64 *sval;
12123
12124         entry = &dev_cntrs[index];
12125         sval = dd->scntrs + entry->offset;
12126
12127         if (vl != CNTR_INVALID_VL)
12128                 sval += vl;
12129
12130         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12131 }
12132
12133 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12134 {
12135         struct cntr_entry *entry;
12136         u64 *sval;
12137
12138         entry = &port_cntrs[index];
12139         sval = ppd->scntrs + entry->offset;
12140
12141         if (vl != CNTR_INVALID_VL)
12142                 sval += vl;
12143
12144         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12145             (index <= C_RCV_HDR_OVF_LAST)) {
12146                 /* We do not want to bother for disabled contexts */
12147                 return 0;
12148         }
12149
12150         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12151 }
12152
12153 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12154 {
12155         struct cntr_entry *entry;
12156         u64 *sval;
12157
12158         entry = &port_cntrs[index];
12159         sval = ppd->scntrs + entry->offset;
12160
12161         if (vl != CNTR_INVALID_VL)
12162                 sval += vl;
12163
12164         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12165             (index <= C_RCV_HDR_OVF_LAST)) {
12166                 /* We do not want to bother for disabled contexts */
12167                 return 0;
12168         }
12169
12170         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12171 }
12172
12173 static void do_update_synth_timer(struct work_struct *work)
12174 {
12175         u64 cur_tx;
12176         u64 cur_rx;
12177         u64 total_flits;
12178         u8 update = 0;
12179         int i, j, vl;
12180         struct hfi1_pportdata *ppd;
12181         struct cntr_entry *entry;
12182         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12183                                                update_cntr_work);
12184
12185         /*
12186          * Rather than keep beating on the CSRs pick a minimal set that we can
12187          * check to watch for potential roll over. We can do this by looking at
12188          * the number of flits sent/recv. If the total flits exceeds 32bits then
12189          * we have to iterate all the counters and update.
12190          */
12191         entry = &dev_cntrs[C_DC_RCV_FLITS];
12192         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12193
12194         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12195         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12196
12197         hfi1_cdbg(
12198             CNTR,
12199             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12200             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12201
12202         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12203                 /*
12204                  * May not be strictly necessary to update but it won't hurt and
12205                  * simplifies the logic here.
12206                  */
12207                 update = 1;
12208                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12209                           dd->unit);
12210         } else {
12211                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12212                 hfi1_cdbg(CNTR,
12213                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12214                           total_flits, (u64)CNTR_32BIT_MAX);
12215                 if (total_flits >= CNTR_32BIT_MAX) {
12216                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12217                                   dd->unit);
12218                         update = 1;
12219                 }
12220         }
12221
12222         if (update) {
12223                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12224                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12225                         entry = &dev_cntrs[i];
12226                         if (entry->flags & CNTR_VL) {
12227                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12228                                         read_dev_cntr(dd, i, vl);
12229                         } else {
12230                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12231                         }
12232                 }
12233                 ppd = (struct hfi1_pportdata *)(dd + 1);
12234                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12235                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12236                                 entry = &port_cntrs[j];
12237                                 if (entry->flags & CNTR_VL) {
12238                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12239                                                 read_port_cntr(ppd, j, vl);
12240                                 } else {
12241                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12242                                 }
12243                         }
12244                 }
12245
12246                 /*
12247                  * We want the value in the register. The goal is to keep track
12248                  * of the number of "ticks" not the counter value. In other
12249                  * words if the register rolls we want to notice it and go ahead
12250                  * and force an update.
12251                  */
12252                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12253                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12254                                                 CNTR_MODE_R, 0);
12255
12256                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12257                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12258                                                 CNTR_MODE_R, 0);
12259
12260                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12261                           dd->unit, dd->last_tx, dd->last_rx);
12262
12263         } else {
12264                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12265         }
12266 }
12267
12268 static void update_synth_timer(unsigned long opaque)
12269 {
12270         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12271
12272         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12273         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12274 }
12275
12276 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12277 static int init_cntrs(struct hfi1_devdata *dd)
12278 {
12279         int i, rcv_ctxts, j;
12280         size_t sz;
12281         char *p;
12282         char name[C_MAX_NAME];
12283         struct hfi1_pportdata *ppd;
12284         const char *bit_type_32 = ",32";
12285         const int bit_type_32_sz = strlen(bit_type_32);
12286
12287         /* set up the stats timer; the add_timer is done at the end */
12288         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12289                     (unsigned long)dd);
12290
12291         /***********************/
12292         /* per device counters */
12293         /***********************/
12294
12295         /* size names and determine how many we have*/
12296         dd->ndevcntrs = 0;
12297         sz = 0;
12298
12299         for (i = 0; i < DEV_CNTR_LAST; i++) {
12300                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12301                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12302                         continue;
12303                 }
12304
12305                 if (dev_cntrs[i].flags & CNTR_VL) {
12306                         dev_cntrs[i].offset = dd->ndevcntrs;
12307                         for (j = 0; j < C_VL_COUNT; j++) {
12308                                 snprintf(name, C_MAX_NAME, "%s%d",
12309                                          dev_cntrs[i].name, vl_from_idx(j));
12310                                 sz += strlen(name);
12311                                 /* Add ",32" for 32-bit counters */
12312                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12313                                         sz += bit_type_32_sz;
12314                                 sz++;
12315                                 dd->ndevcntrs++;
12316                         }
12317                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12318                         dev_cntrs[i].offset = dd->ndevcntrs;
12319                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12320                                 snprintf(name, C_MAX_NAME, "%s%d",
12321                                          dev_cntrs[i].name, j);
12322                                 sz += strlen(name);
12323                                 /* Add ",32" for 32-bit counters */
12324                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12325                                         sz += bit_type_32_sz;
12326                                 sz++;
12327                                 dd->ndevcntrs++;
12328                         }
12329                 } else {
12330                         /* +1 for newline. */
12331                         sz += strlen(dev_cntrs[i].name) + 1;
12332                         /* Add ",32" for 32-bit counters */
12333                         if (dev_cntrs[i].flags & CNTR_32BIT)
12334                                 sz += bit_type_32_sz;
12335                         dev_cntrs[i].offset = dd->ndevcntrs;
12336                         dd->ndevcntrs++;
12337                 }
12338         }
12339
12340         /* allocate space for the counter values */
12341         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12342         if (!dd->cntrs)
12343                 goto bail;
12344
12345         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12346         if (!dd->scntrs)
12347                 goto bail;
12348
12349         /* allocate space for the counter names */
12350         dd->cntrnameslen = sz;
12351         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12352         if (!dd->cntrnames)
12353                 goto bail;
12354
12355         /* fill in the names */
12356         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12357                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12358                         /* Nothing */
12359                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12360                         for (j = 0; j < C_VL_COUNT; j++) {
12361                                 snprintf(name, C_MAX_NAME, "%s%d",
12362                                          dev_cntrs[i].name,
12363                                          vl_from_idx(j));
12364                                 memcpy(p, name, strlen(name));
12365                                 p += strlen(name);
12366
12367                                 /* Counter is 32 bits */
12368                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12369                                         memcpy(p, bit_type_32, bit_type_32_sz);
12370                                         p += bit_type_32_sz;
12371                                 }
12372
12373                                 *p++ = '\n';
12374                         }
12375                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12376                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12377                                 snprintf(name, C_MAX_NAME, "%s%d",
12378                                          dev_cntrs[i].name, j);
12379                                 memcpy(p, name, strlen(name));
12380                                 p += strlen(name);
12381
12382                                 /* Counter is 32 bits */
12383                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12384                                         memcpy(p, bit_type_32, bit_type_32_sz);
12385                                         p += bit_type_32_sz;
12386                                 }
12387
12388                                 *p++ = '\n';
12389                         }
12390                 } else {
12391                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12392                         p += strlen(dev_cntrs[i].name);
12393
12394                         /* Counter is 32 bits */
12395                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12396                                 memcpy(p, bit_type_32, bit_type_32_sz);
12397                                 p += bit_type_32_sz;
12398                         }
12399
12400                         *p++ = '\n';
12401                 }
12402         }
12403
12404         /*********************/
12405         /* per port counters */
12406         /*********************/
12407
12408         /*
12409          * Go through the counters for the overflows and disable the ones we
12410          * don't need. This varies based on platform so we need to do it
12411          * dynamically here.
12412          */
12413         rcv_ctxts = dd->num_rcv_contexts;
12414         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12415              i <= C_RCV_HDR_OVF_LAST; i++) {
12416                 port_cntrs[i].flags |= CNTR_DISABLED;
12417         }
12418
12419         /* size port counter names and determine how many we have*/
12420         sz = 0;
12421         dd->nportcntrs = 0;
12422         for (i = 0; i < PORT_CNTR_LAST; i++) {
12423                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12424                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12425                         continue;
12426                 }
12427
12428                 if (port_cntrs[i].flags & CNTR_VL) {
12429                         port_cntrs[i].offset = dd->nportcntrs;
12430                         for (j = 0; j < C_VL_COUNT; j++) {
12431                                 snprintf(name, C_MAX_NAME, "%s%d",
12432                                          port_cntrs[i].name, vl_from_idx(j));
12433                                 sz += strlen(name);
12434                                 /* Add ",32" for 32-bit counters */
12435                                 if (port_cntrs[i].flags & CNTR_32BIT)
12436                                         sz += bit_type_32_sz;
12437                                 sz++;
12438                                 dd->nportcntrs++;
12439                         }
12440                 } else {
12441                         /* +1 for newline */
12442                         sz += strlen(port_cntrs[i].name) + 1;
12443                         /* Add ",32" for 32-bit counters */
12444                         if (port_cntrs[i].flags & CNTR_32BIT)
12445                                 sz += bit_type_32_sz;
12446                         port_cntrs[i].offset = dd->nportcntrs;
12447                         dd->nportcntrs++;
12448                 }
12449         }
12450
12451         /* allocate space for the counter names */
12452         dd->portcntrnameslen = sz;
12453         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12454         if (!dd->portcntrnames)
12455                 goto bail;
12456
12457         /* fill in port cntr names */
12458         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12459                 if (port_cntrs[i].flags & CNTR_DISABLED)
12460                         continue;
12461
12462                 if (port_cntrs[i].flags & CNTR_VL) {
12463                         for (j = 0; j < C_VL_COUNT; j++) {
12464                                 snprintf(name, C_MAX_NAME, "%s%d",
12465                                          port_cntrs[i].name, vl_from_idx(j));
12466                                 memcpy(p, name, strlen(name));
12467                                 p += strlen(name);
12468
12469                                 /* Counter is 32 bits */
12470                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12471                                         memcpy(p, bit_type_32, bit_type_32_sz);
12472                                         p += bit_type_32_sz;
12473                                 }
12474
12475                                 *p++ = '\n';
12476                         }
12477                 } else {
12478                         memcpy(p, port_cntrs[i].name,
12479                                strlen(port_cntrs[i].name));
12480                         p += strlen(port_cntrs[i].name);
12481
12482                         /* Counter is 32 bits */
12483                         if (port_cntrs[i].flags & CNTR_32BIT) {
12484                                 memcpy(p, bit_type_32, bit_type_32_sz);
12485                                 p += bit_type_32_sz;
12486                         }
12487
12488                         *p++ = '\n';
12489                 }
12490         }
12491
12492         /* allocate per port storage for counter values */
12493         ppd = (struct hfi1_pportdata *)(dd + 1);
12494         for (i = 0; i < dd->num_pports; i++, ppd++) {
12495                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12496                 if (!ppd->cntrs)
12497                         goto bail;
12498
12499                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12500                 if (!ppd->scntrs)
12501                         goto bail;
12502         }
12503
12504         /* CPU counters need to be allocated and zeroed */
12505         if (init_cpu_counters(dd))
12506                 goto bail;
12507
12508         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12509                                                      WQ_MEM_RECLAIM, dd->unit);
12510         if (!dd->update_cntr_wq)
12511                 goto bail;
12512
12513         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12514
12515         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12516         return 0;
12517 bail:
12518         free_cntrs(dd);
12519         return -ENOMEM;
12520 }
12521
12522 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12523 {
12524         switch (chip_lstate) {
12525         default:
12526                 dd_dev_err(dd,
12527                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12528                            chip_lstate);
12529                 /* fall through */
12530         case LSTATE_DOWN:
12531                 return IB_PORT_DOWN;
12532         case LSTATE_INIT:
12533                 return IB_PORT_INIT;
12534         case LSTATE_ARMED:
12535                 return IB_PORT_ARMED;
12536         case LSTATE_ACTIVE:
12537                 return IB_PORT_ACTIVE;
12538         }
12539 }
12540
12541 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12542 {
12543         /* look at the HFI meta-states only */
12544         switch (chip_pstate & 0xf0) {
12545         default:
12546                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12547                            chip_pstate);
12548                 /* fall through */
12549         case PLS_DISABLED:
12550                 return IB_PORTPHYSSTATE_DISABLED;
12551         case PLS_OFFLINE:
12552                 return OPA_PORTPHYSSTATE_OFFLINE;
12553         case PLS_POLLING:
12554                 return IB_PORTPHYSSTATE_POLLING;
12555         case PLS_CONFIGPHY:
12556                 return IB_PORTPHYSSTATE_TRAINING;
12557         case PLS_LINKUP:
12558                 return IB_PORTPHYSSTATE_LINKUP;
12559         case PLS_PHYTEST:
12560                 return IB_PORTPHYSSTATE_PHY_TEST;
12561         }
12562 }
12563
12564 /* return the OPA port logical state name */
12565 const char *opa_lstate_name(u32 lstate)
12566 {
12567         static const char * const port_logical_names[] = {
12568                 "PORT_NOP",
12569                 "PORT_DOWN",
12570                 "PORT_INIT",
12571                 "PORT_ARMED",
12572                 "PORT_ACTIVE",
12573                 "PORT_ACTIVE_DEFER",
12574         };
12575         if (lstate < ARRAY_SIZE(port_logical_names))
12576                 return port_logical_names[lstate];
12577         return "unknown";
12578 }
12579
12580 /* return the OPA port physical state name */
12581 const char *opa_pstate_name(u32 pstate)
12582 {
12583         static const char * const port_physical_names[] = {
12584                 "PHYS_NOP",
12585                 "reserved1",
12586                 "PHYS_POLL",
12587                 "PHYS_DISABLED",
12588                 "PHYS_TRAINING",
12589                 "PHYS_LINKUP",
12590                 "PHYS_LINK_ERR_RECOVER",
12591                 "PHYS_PHY_TEST",
12592                 "reserved8",
12593                 "PHYS_OFFLINE",
12594                 "PHYS_GANGED",
12595                 "PHYS_TEST",
12596         };
12597         if (pstate < ARRAY_SIZE(port_physical_names))
12598                 return port_physical_names[pstate];
12599         return "unknown";
12600 }
12601
12602 /*
12603  * Read the hardware link state and set the driver's cached value of it.
12604  * Return the (new) current value.
12605  */
12606 u32 get_logical_state(struct hfi1_pportdata *ppd)
12607 {
12608         u32 new_state;
12609
12610         new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12611         if (new_state != ppd->lstate) {
12612                 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12613                             opa_lstate_name(new_state), new_state);
12614                 ppd->lstate = new_state;
12615         }
12616         /*
12617          * Set port status flags in the page mapped into userspace
12618          * memory. Do it here to ensure a reliable state - this is
12619          * the only function called by all state handling code.
12620          * Always set the flags due to the fact that the cache value
12621          * might have been changed explicitly outside of this
12622          * function.
12623          */
12624         if (ppd->statusp) {
12625                 switch (ppd->lstate) {
12626                 case IB_PORT_DOWN:
12627                 case IB_PORT_INIT:
12628                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12629                                            HFI1_STATUS_IB_READY);
12630                         break;
12631                 case IB_PORT_ARMED:
12632                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12633                         break;
12634                 case IB_PORT_ACTIVE:
12635                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12636                         break;
12637                 }
12638         }
12639         return ppd->lstate;
12640 }
12641
12642 /**
12643  * wait_logical_linkstate - wait for an IB link state change to occur
12644  * @ppd: port device
12645  * @state: the state to wait for
12646  * @msecs: the number of milliseconds to wait
12647  *
12648  * Wait up to msecs milliseconds for IB link state change to occur.
12649  * For now, take the easy polling route.
12650  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12651  */
12652 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12653                                   int msecs)
12654 {
12655         unsigned long timeout;
12656
12657         timeout = jiffies + msecs_to_jiffies(msecs);
12658         while (1) {
12659                 if (get_logical_state(ppd) == state)
12660                         return 0;
12661                 if (time_after(jiffies, timeout))
12662                         break;
12663                 msleep(20);
12664         }
12665         dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12666
12667         return -ETIMEDOUT;
12668 }
12669
12670 /*
12671  * Read the physical hardware link state and set the driver's cached value
12672  * of it.
12673  */
12674 void cache_physical_state(struct hfi1_pportdata *ppd)
12675 {
12676         u32 read_pstate;
12677         u32 ib_pstate;
12678
12679         read_pstate = read_physical_state(ppd->dd);
12680         ib_pstate = chip_to_opa_pstate(ppd->dd, read_pstate);
12681         /* check if OPA pstate changed */
12682         if (chip_to_opa_pstate(ppd->dd, ppd->pstate) != ib_pstate) {
12683                 dd_dev_info(ppd->dd,
12684                             "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12685                             __func__, opa_pstate_name(ib_pstate), ib_pstate,
12686                             read_pstate);
12687         }
12688         ppd->pstate = read_pstate;
12689 }
12690
12691 /*
12692  * wait_physical_linkstate - wait for an physical link state change to occur
12693  * @ppd: port device
12694  * @state: the state to wait for
12695  * @msecs: the number of milliseconds to wait
12696  *
12697  * Wait up to msecs milliseconds for physical link state change to occur.
12698  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12699  */
12700 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12701                                    int msecs)
12702 {
12703         unsigned long timeout;
12704
12705         timeout = jiffies + msecs_to_jiffies(msecs);
12706         while (1) {
12707                 cache_physical_state(ppd);
12708                 if (ppd->pstate == state)
12709                         break;
12710                 if (time_after(jiffies, timeout)) {
12711                         dd_dev_err(ppd->dd,
12712                                    "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
12713                                    state, ppd->pstate);
12714                         return -ETIMEDOUT;
12715                 }
12716                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12717         }
12718
12719         return 0;
12720 }
12721
12722 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12723 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12724
12725 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12726 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12727
12728 void hfi1_init_ctxt(struct send_context *sc)
12729 {
12730         if (sc) {
12731                 struct hfi1_devdata *dd = sc->dd;
12732                 u64 reg;
12733                 u8 set = (sc->type == SC_USER ?
12734                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12735                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12736                 reg = read_kctxt_csr(dd, sc->hw_context,
12737                                      SEND_CTXT_CHECK_ENABLE);
12738                 if (set)
12739                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12740                 else
12741                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12742                 write_kctxt_csr(dd, sc->hw_context,
12743                                 SEND_CTXT_CHECK_ENABLE, reg);
12744         }
12745 }
12746
12747 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12748 {
12749         int ret = 0;
12750         u64 reg;
12751
12752         if (dd->icode != ICODE_RTL_SILICON) {
12753                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12754                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12755                                     __func__);
12756                 return -EINVAL;
12757         }
12758         reg = read_csr(dd, ASIC_STS_THERM);
12759         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12760                       ASIC_STS_THERM_CURR_TEMP_MASK);
12761         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12762                         ASIC_STS_THERM_LO_TEMP_MASK);
12763         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12764                         ASIC_STS_THERM_HI_TEMP_MASK);
12765         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12766                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12767         /* triggers is a 3-bit value - 1 bit per trigger. */
12768         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12769
12770         return ret;
12771 }
12772
12773 /* ========================================================================= */
12774
12775 /*
12776  * Enable/disable chip from delivering interrupts.
12777  */
12778 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12779 {
12780         int i;
12781
12782         /*
12783          * In HFI, the mask needs to be 1 to allow interrupts.
12784          */
12785         if (enable) {
12786                 /* enable all interrupts */
12787                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12788                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12789
12790                 init_qsfp_int(dd);
12791         } else {
12792                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12793                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12794         }
12795 }
12796
12797 /*
12798  * Clear all interrupt sources on the chip.
12799  */
12800 static void clear_all_interrupts(struct hfi1_devdata *dd)
12801 {
12802         int i;
12803
12804         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12805                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12806
12807         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12808         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12809         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12810         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12811         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12812         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12813         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12814         for (i = 0; i < dd->chip_send_contexts; i++)
12815                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12816         for (i = 0; i < dd->chip_sdma_engines; i++)
12817                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12818
12819         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12820         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12821         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12822 }
12823
12824 /* Move to pcie.c? */
12825 static void disable_intx(struct pci_dev *pdev)
12826 {
12827         pci_intx(pdev, 0);
12828 }
12829
12830 static void clean_up_interrupts(struct hfi1_devdata *dd)
12831 {
12832         int i;
12833
12834         /* remove irqs - must happen before disabling/turning off */
12835         if (dd->num_msix_entries) {
12836                 /* MSI-X */
12837                 struct hfi1_msix_entry *me = dd->msix_entries;
12838
12839                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12840                         if (!me->arg) /* => no irq, no affinity */
12841                                 continue;
12842                         hfi1_put_irq_affinity(dd, me);
12843                         free_irq(me->irq, me->arg);
12844                 }
12845
12846                 /* clean structures */
12847                 kfree(dd->msix_entries);
12848                 dd->msix_entries = NULL;
12849                 dd->num_msix_entries = 0;
12850         } else {
12851                 /* INTx */
12852                 if (dd->requested_intx_irq) {
12853                         free_irq(dd->pcidev->irq, dd);
12854                         dd->requested_intx_irq = 0;
12855                 }
12856                 disable_intx(dd->pcidev);
12857         }
12858
12859         pci_free_irq_vectors(dd->pcidev);
12860 }
12861
12862 /*
12863  * Remap the interrupt source from the general handler to the given MSI-X
12864  * interrupt.
12865  */
12866 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12867 {
12868         u64 reg;
12869         int m, n;
12870
12871         /* clear from the handled mask of the general interrupt */
12872         m = isrc / 64;
12873         n = isrc % 64;
12874         if (likely(m < CCE_NUM_INT_CSRS)) {
12875                 dd->gi_mask[m] &= ~((u64)1 << n);
12876         } else {
12877                 dd_dev_err(dd, "remap interrupt err\n");
12878                 return;
12879         }
12880
12881         /* direct the chip source to the given MSI-X interrupt */
12882         m = isrc / 8;
12883         n = isrc % 8;
12884         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12885         reg &= ~((u64)0xff << (8 * n));
12886         reg |= ((u64)msix_intr & 0xff) << (8 * n);
12887         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12888 }
12889
12890 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12891                                   int engine, int msix_intr)
12892 {
12893         /*
12894          * SDMA engine interrupt sources grouped by type, rather than
12895          * engine.  Per-engine interrupts are as follows:
12896          *      SDMA
12897          *      SDMAProgress
12898          *      SDMAIdle
12899          */
12900         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12901                    msix_intr);
12902         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12903                    msix_intr);
12904         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12905                    msix_intr);
12906 }
12907
12908 static int request_intx_irq(struct hfi1_devdata *dd)
12909 {
12910         int ret;
12911
12912         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12913                  dd->unit);
12914         ret = request_irq(dd->pcidev->irq, general_interrupt,
12915                           IRQF_SHARED, dd->intx_name, dd);
12916         if (ret)
12917                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12918                            ret);
12919         else
12920                 dd->requested_intx_irq = 1;
12921         return ret;
12922 }
12923
12924 static int request_msix_irqs(struct hfi1_devdata *dd)
12925 {
12926         int first_general, last_general;
12927         int first_sdma, last_sdma;
12928         int first_rx, last_rx;
12929         int i, ret = 0;
12930
12931         /* calculate the ranges we are going to use */
12932         first_general = 0;
12933         last_general = first_general + 1;
12934         first_sdma = last_general;
12935         last_sdma = first_sdma + dd->num_sdma;
12936         first_rx = last_sdma;
12937         last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12938
12939         /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12940         dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
12941
12942         /*
12943          * Sanity check - the code expects all SDMA chip source
12944          * interrupts to be in the same CSR, starting at bit 0.  Verify
12945          * that this is true by checking the bit location of the start.
12946          */
12947         BUILD_BUG_ON(IS_SDMA_START % 64);
12948
12949         for (i = 0; i < dd->num_msix_entries; i++) {
12950                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12951                 const char *err_info;
12952                 irq_handler_t handler;
12953                 irq_handler_t thread = NULL;
12954                 void *arg = NULL;
12955                 int idx;
12956                 struct hfi1_ctxtdata *rcd = NULL;
12957                 struct sdma_engine *sde = NULL;
12958
12959                 /* obtain the arguments to request_irq */
12960                 if (first_general <= i && i < last_general) {
12961                         idx = i - first_general;
12962                         handler = general_interrupt;
12963                         arg = dd;
12964                         snprintf(me->name, sizeof(me->name),
12965                                  DRIVER_NAME "_%d", dd->unit);
12966                         err_info = "general";
12967                         me->type = IRQ_GENERAL;
12968                 } else if (first_sdma <= i && i < last_sdma) {
12969                         idx = i - first_sdma;
12970                         sde = &dd->per_sdma[idx];
12971                         handler = sdma_interrupt;
12972                         arg = sde;
12973                         snprintf(me->name, sizeof(me->name),
12974                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12975                         err_info = "sdma";
12976                         remap_sdma_interrupts(dd, idx, i);
12977                         me->type = IRQ_SDMA;
12978                 } else if (first_rx <= i && i < last_rx) {
12979                         idx = i - first_rx;
12980                         rcd = dd->rcd[idx];
12981                         if (rcd) {
12982                                 /*
12983                                  * Set the interrupt register and mask for this
12984                                  * context's interrupt.
12985                                  */
12986                                 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12987                                 rcd->imask = ((u64)1) <<
12988                                           ((IS_RCVAVAIL_START + idx) % 64);
12989                                 handler = receive_context_interrupt;
12990                                 thread = receive_context_thread;
12991                                 arg = rcd;
12992                                 snprintf(me->name, sizeof(me->name),
12993                                          DRIVER_NAME "_%d kctxt%d",
12994                                          dd->unit, idx);
12995                                 err_info = "receive context";
12996                                 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12997                                 me->type = IRQ_RCVCTXT;
12998                                 rcd->msix_intr = i;
12999                         }
13000                 } else {
13001                         /* not in our expected range - complain, then
13002                          * ignore it
13003                          */
13004                         dd_dev_err(dd,
13005                                    "Unexpected extra MSI-X interrupt %d\n", i);
13006                         continue;
13007                 }
13008                 /* no argument, no interrupt */
13009                 if (!arg)
13010                         continue;
13011                 /* make sure the name is terminated */
13012                 me->name[sizeof(me->name) - 1] = 0;
13013                 me->irq = pci_irq_vector(dd->pcidev, i);
13014                 /*
13015                  * On err return me->irq.  Don't need to clear this
13016                  * because 'arg' has not been set, and cleanup will
13017                  * do the right thing.
13018                  */
13019                 if (me->irq < 0)
13020                         return me->irq;
13021
13022                 ret = request_threaded_irq(me->irq, handler, thread, 0,
13023                                            me->name, arg);
13024                 if (ret) {
13025                         dd_dev_err(dd,
13026                                    "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13027                                    err_info, me->irq, idx, ret);
13028                         return ret;
13029                 }
13030                 /*
13031                  * assign arg after request_irq call, so it will be
13032                  * cleaned up
13033                  */
13034                 me->arg = arg;
13035
13036                 ret = hfi1_get_irq_affinity(dd, me);
13037                 if (ret)
13038                         dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13039         }
13040
13041         return ret;
13042 }
13043
13044 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13045 {
13046         int i;
13047
13048         if (!dd->num_msix_entries) {
13049                 synchronize_irq(dd->pcidev->irq);
13050                 return;
13051         }
13052
13053         for (i = 0; i < dd->vnic.num_ctxt; i++) {
13054                 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13055                 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13056
13057                 synchronize_irq(me->irq);
13058         }
13059 }
13060
13061 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13062 {
13063         struct hfi1_devdata *dd = rcd->dd;
13064         struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13065
13066         if (!me->arg) /* => no irq, no affinity */
13067                 return;
13068
13069         hfi1_put_irq_affinity(dd, me);
13070         free_irq(me->irq, me->arg);
13071
13072         me->arg = NULL;
13073 }
13074
13075 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13076 {
13077         struct hfi1_devdata *dd = rcd->dd;
13078         struct hfi1_msix_entry *me;
13079         int idx = rcd->ctxt;
13080         void *arg = rcd;
13081         int ret;
13082
13083         rcd->msix_intr = dd->vnic.msix_idx++;
13084         me = &dd->msix_entries[rcd->msix_intr];
13085
13086         /*
13087          * Set the interrupt register and mask for this
13088          * context's interrupt.
13089          */
13090         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13091         rcd->imask = ((u64)1) <<
13092                   ((IS_RCVAVAIL_START + idx) % 64);
13093
13094         snprintf(me->name, sizeof(me->name),
13095                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13096         me->name[sizeof(me->name) - 1] = 0;
13097         me->type = IRQ_RCVCTXT;
13098         me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13099         if (me->irq < 0) {
13100                 dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13101                            idx, me->irq);
13102                 return;
13103         }
13104         remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13105
13106         ret = request_threaded_irq(me->irq, receive_context_interrupt,
13107                                    receive_context_thread, 0, me->name, arg);
13108         if (ret) {
13109                 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13110                            me->irq, idx, ret);
13111                 return;
13112         }
13113         /*
13114          * assign arg after request_irq call, so it will be
13115          * cleaned up
13116          */
13117         me->arg = arg;
13118
13119         ret = hfi1_get_irq_affinity(dd, me);
13120         if (ret) {
13121                 dd_dev_err(dd,
13122                            "unable to pin IRQ %d\n", ret);
13123                 free_irq(me->irq, me->arg);
13124         }
13125 }
13126
13127 /*
13128  * Set the general handler to accept all interrupts, remap all
13129  * chip interrupts back to MSI-X 0.
13130  */
13131 static void reset_interrupts(struct hfi1_devdata *dd)
13132 {
13133         int i;
13134
13135         /* all interrupts handled by the general handler */
13136         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13137                 dd->gi_mask[i] = ~(u64)0;
13138
13139         /* all chip interrupts map to MSI-X 0 */
13140         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13141                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13142 }
13143
13144 static int set_up_interrupts(struct hfi1_devdata *dd)
13145 {
13146         u32 total;
13147         int ret, request;
13148         int single_interrupt = 0; /* we expect to have all the interrupts */
13149
13150         /*
13151          * Interrupt count:
13152          *      1 general, "slow path" interrupt (includes the SDMA engines
13153          *              slow source, SDMACleanupDone)
13154          *      N interrupts - one per used SDMA engine
13155          *      M interrupt - one per kernel receive context
13156          */
13157         total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13158
13159         /* ask for MSI-X interrupts */
13160         request = request_msix(dd, total);
13161         if (request < 0) {
13162                 ret = request;
13163                 goto fail;
13164         } else if (request == 0) {
13165                 /* using INTx */
13166                 /* dd->num_msix_entries already zero */
13167                 single_interrupt = 1;
13168                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13169         } else if (request < total) {
13170                 /* using MSI-X, with reduced interrupts */
13171                 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13172                            total, request);
13173                 ret = -EINVAL;
13174                 goto fail;
13175         } else {
13176                 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13177                                            GFP_KERNEL);
13178                 if (!dd->msix_entries) {
13179                         ret = -ENOMEM;
13180                         goto fail;
13181                 }
13182                 /* using MSI-X */
13183                 dd->num_msix_entries = total;
13184                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13185         }
13186
13187         /* mask all interrupts */
13188         set_intr_state(dd, 0);
13189         /* clear all pending interrupts */
13190         clear_all_interrupts(dd);
13191
13192         /* reset general handler mask, chip MSI-X mappings */
13193         reset_interrupts(dd);
13194
13195         if (single_interrupt)
13196                 ret = request_intx_irq(dd);
13197         else
13198                 ret = request_msix_irqs(dd);
13199         if (ret)
13200                 goto fail;
13201
13202         return 0;
13203
13204 fail:
13205         clean_up_interrupts(dd);
13206         return ret;
13207 }
13208
13209 /*
13210  * Set up context values in dd.  Sets:
13211  *
13212  *      num_rcv_contexts - number of contexts being used
13213  *      n_krcv_queues - number of kernel contexts
13214  *      first_dyn_alloc_ctxt - first dynamically allocated context
13215  *                             in array of contexts
13216  *      freectxts  - number of free user contexts
13217  *      num_send_contexts - number of PIO send contexts being used
13218  */
13219 static int set_up_context_variables(struct hfi1_devdata *dd)
13220 {
13221         unsigned long num_kernel_contexts;
13222         int total_contexts;
13223         int ret;
13224         unsigned ngroups;
13225         int qos_rmt_count;
13226         int user_rmt_reduced;
13227
13228         /*
13229          * Kernel receive contexts:
13230          * - Context 0 - control context (VL15/multicast/error)
13231          * - Context 1 - first kernel context
13232          * - Context 2 - second kernel context
13233          * ...
13234          */
13235         if (n_krcvqs)
13236                 /*
13237                  * n_krcvqs is the sum of module parameter kernel receive
13238                  * contexts, krcvqs[].  It does not include the control
13239                  * context, so add that.
13240                  */
13241                 num_kernel_contexts = n_krcvqs + 1;
13242         else
13243                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13244         /*
13245          * Every kernel receive context needs an ACK send context.
13246          * one send context is allocated for each VL{0-7} and VL15
13247          */
13248         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13249                 dd_dev_err(dd,
13250                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13251                            (int)(dd->chip_send_contexts - num_vls - 1),
13252                            num_kernel_contexts);
13253                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13254         }
13255         /*
13256          * User contexts:
13257          *      - default to 1 user context per real (non-HT) CPU core if
13258          *        num_user_contexts is negative
13259          */
13260         if (num_user_contexts < 0)
13261                 num_user_contexts =
13262                         cpumask_weight(&node_affinity.real_cpu_mask);
13263
13264         total_contexts = num_kernel_contexts + num_user_contexts;
13265
13266         /*
13267          * Adjust the counts given a global max.
13268          */
13269         if (total_contexts > dd->chip_rcv_contexts) {
13270                 dd_dev_err(dd,
13271                            "Reducing # user receive contexts to: %d, from %d\n",
13272                            (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13273                            (int)num_user_contexts);
13274                 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13275                 /* recalculate */
13276                 total_contexts = num_kernel_contexts + num_user_contexts;
13277         }
13278
13279         /* each user context requires an entry in the RMT */
13280         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13281         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13282                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13283                 dd_dev_err(dd,
13284                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13285                            (int)num_user_contexts,
13286                            user_rmt_reduced);
13287                 /* recalculate */
13288                 num_user_contexts = user_rmt_reduced;
13289                 total_contexts = num_kernel_contexts + num_user_contexts;
13290         }
13291
13292         /* Accommodate VNIC contexts */
13293         if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13294                 total_contexts += HFI1_NUM_VNIC_CTXT;
13295
13296         /* the first N are kernel contexts, the rest are user/vnic contexts */
13297         dd->num_rcv_contexts = total_contexts;
13298         dd->n_krcv_queues = num_kernel_contexts;
13299         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13300         dd->num_user_contexts = num_user_contexts;
13301         dd->freectxts = num_user_contexts;
13302         dd_dev_info(dd,
13303                     "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13304                     (int)dd->chip_rcv_contexts,
13305                     (int)dd->num_rcv_contexts,
13306                     (int)dd->n_krcv_queues,
13307                     (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13308
13309         /*
13310          * Receive array allocation:
13311          *   All RcvArray entries are divided into groups of 8. This
13312          *   is required by the hardware and will speed up writes to
13313          *   consecutive entries by using write-combining of the entire
13314          *   cacheline.
13315          *
13316          *   The number of groups are evenly divided among all contexts.
13317          *   any left over groups will be given to the first N user
13318          *   contexts.
13319          */
13320         dd->rcv_entries.group_size = RCV_INCREMENT;
13321         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13322         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13323         dd->rcv_entries.nctxt_extra = ngroups -
13324                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13325         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13326                     dd->rcv_entries.ngroups,
13327                     dd->rcv_entries.nctxt_extra);
13328         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13329             MAX_EAGER_ENTRIES * 2) {
13330                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13331                         dd->rcv_entries.group_size;
13332                 dd_dev_info(dd,
13333                             "RcvArray group count too high, change to %u\n",
13334                             dd->rcv_entries.ngroups);
13335                 dd->rcv_entries.nctxt_extra = 0;
13336         }
13337         /*
13338          * PIO send contexts
13339          */
13340         ret = init_sc_pools_and_sizes(dd);
13341         if (ret >= 0) { /* success */
13342                 dd->num_send_contexts = ret;
13343                 dd_dev_info(
13344                         dd,
13345                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13346                         dd->chip_send_contexts,
13347                         dd->num_send_contexts,
13348                         dd->sc_sizes[SC_KERNEL].count,
13349                         dd->sc_sizes[SC_ACK].count,
13350                         dd->sc_sizes[SC_USER].count,
13351                         dd->sc_sizes[SC_VL15].count);
13352                 ret = 0;        /* success */
13353         }
13354
13355         return ret;
13356 }
13357
13358 /*
13359  * Set the device/port partition key table. The MAD code
13360  * will ensure that, at least, the partial management
13361  * partition key is present in the table.
13362  */
13363 static void set_partition_keys(struct hfi1_pportdata *ppd)
13364 {
13365         struct hfi1_devdata *dd = ppd->dd;
13366         u64 reg = 0;
13367         int i;
13368
13369         dd_dev_info(dd, "Setting partition keys\n");
13370         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13371                 reg |= (ppd->pkeys[i] &
13372                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13373                         ((i % 4) *
13374                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13375                 /* Each register holds 4 PKey values. */
13376                 if ((i % 4) == 3) {
13377                         write_csr(dd, RCV_PARTITION_KEY +
13378                                   ((i - 3) * 2), reg);
13379                         reg = 0;
13380                 }
13381         }
13382
13383         /* Always enable HW pkeys check when pkeys table is set */
13384         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13385 }
13386
13387 /*
13388  * These CSRs and memories are uninitialized on reset and must be
13389  * written before reading to set the ECC/parity bits.
13390  *
13391  * NOTE: All user context CSRs that are not mmaped write-only
13392  * (e.g. the TID flows) must be initialized even if the driver never
13393  * reads them.
13394  */
13395 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13396 {
13397         int i, j;
13398
13399         /* CceIntMap */
13400         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13401                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13402
13403         /* SendCtxtCreditReturnAddr */
13404         for (i = 0; i < dd->chip_send_contexts; i++)
13405                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13406
13407         /* PIO Send buffers */
13408         /* SDMA Send buffers */
13409         /*
13410          * These are not normally read, and (presently) have no method
13411          * to be read, so are not pre-initialized
13412          */
13413
13414         /* RcvHdrAddr */
13415         /* RcvHdrTailAddr */
13416         /* RcvTidFlowTable */
13417         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13418                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13419                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13420                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13421                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13422         }
13423
13424         /* RcvArray */
13425         for (i = 0; i < dd->chip_rcv_array_count; i++)
13426                 write_csr(dd, RCV_ARRAY + (8 * i),
13427                           RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13428
13429         /* RcvQPMapTable */
13430         for (i = 0; i < 32; i++)
13431                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13432 }
13433
13434 /*
13435  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13436  */
13437 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13438                              u64 ctrl_bits)
13439 {
13440         unsigned long timeout;
13441         u64 reg;
13442
13443         /* is the condition present? */
13444         reg = read_csr(dd, CCE_STATUS);
13445         if ((reg & status_bits) == 0)
13446                 return;
13447
13448         /* clear the condition */
13449         write_csr(dd, CCE_CTRL, ctrl_bits);
13450
13451         /* wait for the condition to clear */
13452         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13453         while (1) {
13454                 reg = read_csr(dd, CCE_STATUS);
13455                 if ((reg & status_bits) == 0)
13456                         return;
13457                 if (time_after(jiffies, timeout)) {
13458                         dd_dev_err(dd,
13459                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13460                                    status_bits, reg & status_bits);
13461                         return;
13462                 }
13463                 udelay(1);
13464         }
13465 }
13466
13467 /* set CCE CSRs to chip reset defaults */
13468 static void reset_cce_csrs(struct hfi1_devdata *dd)
13469 {
13470         int i;
13471
13472         /* CCE_REVISION read-only */
13473         /* CCE_REVISION2 read-only */
13474         /* CCE_CTRL - bits clear automatically */
13475         /* CCE_STATUS read-only, use CceCtrl to clear */
13476         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13477         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13478         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13479         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13480                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13481         /* CCE_ERR_STATUS read-only */
13482         write_csr(dd, CCE_ERR_MASK, 0);
13483         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13484         /* CCE_ERR_FORCE leave alone */
13485         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13486                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13487         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13488         /* CCE_PCIE_CTRL leave alone */
13489         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13490                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13491                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13492                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13493         }
13494         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13495                 /* CCE_MSIX_PBA read-only */
13496                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13497                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13498         }
13499         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13500                 write_csr(dd, CCE_INT_MAP, 0);
13501         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13502                 /* CCE_INT_STATUS read-only */
13503                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13504                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13505                 /* CCE_INT_FORCE leave alone */
13506                 /* CCE_INT_BLOCKED read-only */
13507         }
13508         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13509                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13510 }
13511
13512 /* set MISC CSRs to chip reset defaults */
13513 static void reset_misc_csrs(struct hfi1_devdata *dd)
13514 {
13515         int i;
13516
13517         for (i = 0; i < 32; i++) {
13518                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13519                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13520                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13521         }
13522         /*
13523          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13524          * only be written 128-byte chunks
13525          */
13526         /* init RSA engine to clear lingering errors */
13527         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13528         write_csr(dd, MISC_CFG_RSA_MU, 0);
13529         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13530         /* MISC_STS_8051_DIGEST read-only */
13531         /* MISC_STS_SBM_DIGEST read-only */
13532         /* MISC_STS_PCIE_DIGEST read-only */
13533         /* MISC_STS_FAB_DIGEST read-only */
13534         /* MISC_ERR_STATUS read-only */
13535         write_csr(dd, MISC_ERR_MASK, 0);
13536         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13537         /* MISC_ERR_FORCE leave alone */
13538 }
13539
13540 /* set TXE CSRs to chip reset defaults */
13541 static void reset_txe_csrs(struct hfi1_devdata *dd)
13542 {
13543         int i;
13544
13545         /*
13546          * TXE Kernel CSRs
13547          */
13548         write_csr(dd, SEND_CTRL, 0);
13549         __cm_reset(dd, 0);      /* reset CM internal state */
13550         /* SEND_CONTEXTS read-only */
13551         /* SEND_DMA_ENGINES read-only */
13552         /* SEND_PIO_MEM_SIZE read-only */
13553         /* SEND_DMA_MEM_SIZE read-only */
13554         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13555         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13556         /* SEND_PIO_ERR_STATUS read-only */
13557         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13558         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13559         /* SEND_PIO_ERR_FORCE leave alone */
13560         /* SEND_DMA_ERR_STATUS read-only */
13561         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13562         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13563         /* SEND_DMA_ERR_FORCE leave alone */
13564         /* SEND_EGRESS_ERR_STATUS read-only */
13565         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13566         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13567         /* SEND_EGRESS_ERR_FORCE leave alone */
13568         write_csr(dd, SEND_BTH_QP, 0);
13569         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13570         write_csr(dd, SEND_SC2VLT0, 0);
13571         write_csr(dd, SEND_SC2VLT1, 0);
13572         write_csr(dd, SEND_SC2VLT2, 0);
13573         write_csr(dd, SEND_SC2VLT3, 0);
13574         write_csr(dd, SEND_LEN_CHECK0, 0);
13575         write_csr(dd, SEND_LEN_CHECK1, 0);
13576         /* SEND_ERR_STATUS read-only */
13577         write_csr(dd, SEND_ERR_MASK, 0);
13578         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13579         /* SEND_ERR_FORCE read-only */
13580         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13581                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13582         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13583                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13584         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13585                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13586         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13587                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13588         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13589                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13590         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13591         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13592         /* SEND_CM_CREDIT_USED_STATUS read-only */
13593         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13594         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13595         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13596         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13597         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13598         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13599                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13600         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13601         /* SEND_CM_CREDIT_USED_VL read-only */
13602         /* SEND_CM_CREDIT_USED_VL15 read-only */
13603         /* SEND_EGRESS_CTXT_STATUS read-only */
13604         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13605         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13606         /* SEND_EGRESS_ERR_INFO read-only */
13607         /* SEND_EGRESS_ERR_SOURCE read-only */
13608
13609         /*
13610          * TXE Per-Context CSRs
13611          */
13612         for (i = 0; i < dd->chip_send_contexts; i++) {
13613                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13614                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13615                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13616                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13617                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13618                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13619                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13620                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13621                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13622                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13623                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13624                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13625         }
13626
13627         /*
13628          * TXE Per-SDMA CSRs
13629          */
13630         for (i = 0; i < dd->chip_sdma_engines; i++) {
13631                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13632                 /* SEND_DMA_STATUS read-only */
13633                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13634                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13635                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13636                 /* SEND_DMA_HEAD read-only */
13637                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13638                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13639                 /* SEND_DMA_IDLE_CNT read-only */
13640                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13641                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13642                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13643                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13644                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13645                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13646                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13647                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13648                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13649                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13650                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13651                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13652                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13653                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13654         }
13655 }
13656
13657 /*
13658  * Expect on entry:
13659  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13660  */
13661 static void init_rbufs(struct hfi1_devdata *dd)
13662 {
13663         u64 reg;
13664         int count;
13665
13666         /*
13667          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13668          * clear.
13669          */
13670         count = 0;
13671         while (1) {
13672                 reg = read_csr(dd, RCV_STATUS);
13673                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13674                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13675                         break;
13676                 /*
13677                  * Give up after 1ms - maximum wait time.
13678                  *
13679                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13680                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13681                  *      136 KB / (66% * 250MB/s) = 844us
13682                  */
13683                 if (count++ > 500) {
13684                         dd_dev_err(dd,
13685                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13686                                    __func__, reg);
13687                         break;
13688                 }
13689                 udelay(2); /* do not busy-wait the CSR */
13690         }
13691
13692         /* start the init - expect RcvCtrl to be 0 */
13693         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13694
13695         /*
13696          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13697          * period after the write before RcvStatus.RxRbufInitDone is valid.
13698          * The delay in the first run through the loop below is sufficient and
13699          * required before the first read of RcvStatus.RxRbufInintDone.
13700          */
13701         read_csr(dd, RCV_CTRL);
13702
13703         /* wait for the init to finish */
13704         count = 0;
13705         while (1) {
13706                 /* delay is required first time through - see above */
13707                 udelay(2); /* do not busy-wait the CSR */
13708                 reg = read_csr(dd, RCV_STATUS);
13709                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13710                         break;
13711
13712                 /* give up after 100us - slowest possible at 33MHz is 73us */
13713                 if (count++ > 50) {
13714                         dd_dev_err(dd,
13715                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13716                                    __func__);
13717                         break;
13718                 }
13719         }
13720 }
13721
13722 /* set RXE CSRs to chip reset defaults */
13723 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13724 {
13725         int i, j;
13726
13727         /*
13728          * RXE Kernel CSRs
13729          */
13730         write_csr(dd, RCV_CTRL, 0);
13731         init_rbufs(dd);
13732         /* RCV_STATUS read-only */
13733         /* RCV_CONTEXTS read-only */
13734         /* RCV_ARRAY_CNT read-only */
13735         /* RCV_BUF_SIZE read-only */
13736         write_csr(dd, RCV_BTH_QP, 0);
13737         write_csr(dd, RCV_MULTICAST, 0);
13738         write_csr(dd, RCV_BYPASS, 0);
13739         write_csr(dd, RCV_VL15, 0);
13740         /* this is a clear-down */
13741         write_csr(dd, RCV_ERR_INFO,
13742                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13743         /* RCV_ERR_STATUS read-only */
13744         write_csr(dd, RCV_ERR_MASK, 0);
13745         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13746         /* RCV_ERR_FORCE leave alone */
13747         for (i = 0; i < 32; i++)
13748                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13749         for (i = 0; i < 4; i++)
13750                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13751         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13752                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13753         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13754                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13755         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13756                 clear_rsm_rule(dd, i);
13757         for (i = 0; i < 32; i++)
13758                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13759
13760         /*
13761          * RXE Kernel and User Per-Context CSRs
13762          */
13763         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13764                 /* kernel */
13765                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13766                 /* RCV_CTXT_STATUS read-only */
13767                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13768                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13769                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13770                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13771                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13772                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13773                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13774                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13775                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13776                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13777
13778                 /* user */
13779                 /* RCV_HDR_TAIL read-only */
13780                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13781                 /* RCV_EGR_INDEX_TAIL read-only */
13782                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13783                 /* RCV_EGR_OFFSET_TAIL read-only */
13784                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13785                         write_uctxt_csr(dd, i,
13786                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13787                 }
13788         }
13789 }
13790
13791 /*
13792  * Set sc2vl tables.
13793  *
13794  * They power on to zeros, so to avoid send context errors
13795  * they need to be set:
13796  *
13797  * SC 0-7 -> VL 0-7 (respectively)
13798  * SC 15  -> VL 15
13799  * otherwise
13800  *        -> VL 0
13801  */
13802 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13803 {
13804         int i;
13805         /* init per architecture spec, constrained by hardware capability */
13806
13807         /* HFI maps sent packets */
13808         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13809                 0,
13810                 0, 0, 1, 1,
13811                 2, 2, 3, 3,
13812                 4, 4, 5, 5,
13813                 6, 6, 7, 7));
13814         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13815                 1,
13816                 8, 0, 9, 0,
13817                 10, 0, 11, 0,
13818                 12, 0, 13, 0,
13819                 14, 0, 15, 15));
13820         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13821                 2,
13822                 16, 0, 17, 0,
13823                 18, 0, 19, 0,
13824                 20, 0, 21, 0,
13825                 22, 0, 23, 0));
13826         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13827                 3,
13828                 24, 0, 25, 0,
13829                 26, 0, 27, 0,
13830                 28, 0, 29, 0,
13831                 30, 0, 31, 0));
13832
13833         /* DC maps received packets */
13834         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13835                 15_0,
13836                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13837                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13838         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13839                 31_16,
13840                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13841                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13842
13843         /* initialize the cached sc2vl values consistently with h/w */
13844         for (i = 0; i < 32; i++) {
13845                 if (i < 8 || i == 15)
13846                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
13847                 else
13848                         *((u8 *)(dd->sc2vl) + i) = 0;
13849         }
13850 }
13851
13852 /*
13853  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13854  * depend on the chip going through a power-on reset - a driver may be loaded
13855  * and unloaded many times.
13856  *
13857  * Do not write any CSR values to the chip in this routine - there may be
13858  * a reset following the (possible) FLR in this routine.
13859  *
13860  */
13861 static void init_chip(struct hfi1_devdata *dd)
13862 {
13863         int i;
13864
13865         /*
13866          * Put the HFI CSRs in a known state.
13867          * Combine this with a DC reset.
13868          *
13869          * Stop the device from doing anything while we do a
13870          * reset.  We know there are no other active users of
13871          * the device since we are now in charge.  Turn off
13872          * off all outbound and inbound traffic and make sure
13873          * the device does not generate any interrupts.
13874          */
13875
13876         /* disable send contexts and SDMA engines */
13877         write_csr(dd, SEND_CTRL, 0);
13878         for (i = 0; i < dd->chip_send_contexts; i++)
13879                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13880         for (i = 0; i < dd->chip_sdma_engines; i++)
13881                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13882         /* disable port (turn off RXE inbound traffic) and contexts */
13883         write_csr(dd, RCV_CTRL, 0);
13884         for (i = 0; i < dd->chip_rcv_contexts; i++)
13885                 write_csr(dd, RCV_CTXT_CTRL, 0);
13886         /* mask all interrupt sources */
13887         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13888                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13889
13890         /*
13891          * DC Reset: do a full DC reset before the register clear.
13892          * A recommended length of time to hold is one CSR read,
13893          * so reread the CceDcCtrl.  Then, hold the DC in reset
13894          * across the clear.
13895          */
13896         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13897         (void)read_csr(dd, CCE_DC_CTRL);
13898
13899         if (use_flr) {
13900                 /*
13901                  * A FLR will reset the SPC core and part of the PCIe.
13902                  * The parts that need to be restored have already been
13903                  * saved.
13904                  */
13905                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13906
13907                 /* do the FLR, the DC reset will remain */
13908                 pcie_flr(dd->pcidev);
13909
13910                 /* restore command and BARs */
13911                 restore_pci_variables(dd);
13912
13913                 if (is_ax(dd)) {
13914                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
13915                         pcie_flr(dd->pcidev);
13916                         restore_pci_variables(dd);
13917                 }
13918         } else {
13919                 dd_dev_info(dd, "Resetting CSRs with writes\n");
13920                 reset_cce_csrs(dd);
13921                 reset_txe_csrs(dd);
13922                 reset_rxe_csrs(dd);
13923                 reset_misc_csrs(dd);
13924         }
13925         /* clear the DC reset */
13926         write_csr(dd, CCE_DC_CTRL, 0);
13927
13928         /* Set the LED off */
13929         setextled(dd, 0);
13930
13931         /*
13932          * Clear the QSFP reset.
13933          * An FLR enforces a 0 on all out pins. The driver does not touch
13934          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13935          * anything plugged constantly in reset, if it pays attention
13936          * to RESET_N.
13937          * Prime examples of this are optical cables. Set all pins high.
13938          * I2CCLK and I2CDAT will change per direction, and INT_N and
13939          * MODPRS_N are input only and their value is ignored.
13940          */
13941         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13942         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13943         init_chip_resources(dd);
13944 }
13945
13946 static void init_early_variables(struct hfi1_devdata *dd)
13947 {
13948         int i;
13949
13950         /* assign link credit variables */
13951         dd->vau = CM_VAU;
13952         dd->link_credits = CM_GLOBAL_CREDITS;
13953         if (is_ax(dd))
13954                 dd->link_credits--;
13955         dd->vcu = cu_to_vcu(hfi1_cu);
13956         /* enough room for 8 MAD packets plus header - 17K */
13957         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13958         if (dd->vl15_init > dd->link_credits)
13959                 dd->vl15_init = dd->link_credits;
13960
13961         write_uninitialized_csrs_and_memories(dd);
13962
13963         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13964                 for (i = 0; i < dd->num_pports; i++) {
13965                         struct hfi1_pportdata *ppd = &dd->pport[i];
13966
13967                         set_partition_keys(ppd);
13968                 }
13969         init_sc2vl_tables(dd);
13970 }
13971
13972 static void init_kdeth_qp(struct hfi1_devdata *dd)
13973 {
13974         /* user changed the KDETH_QP */
13975         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13976                 /* out of range or illegal value */
13977                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13978                 kdeth_qp = 0;
13979         }
13980         if (kdeth_qp == 0)      /* not set, or failed range check */
13981                 kdeth_qp = DEFAULT_KDETH_QP;
13982
13983         write_csr(dd, SEND_BTH_QP,
13984                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13985                   SEND_BTH_QP_KDETH_QP_SHIFT);
13986
13987         write_csr(dd, RCV_BTH_QP,
13988                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13989                   RCV_BTH_QP_KDETH_QP_SHIFT);
13990 }
13991
13992 /**
13993  * init_qpmap_table
13994  * @dd - device data
13995  * @first_ctxt - first context
13996  * @last_ctxt - first context
13997  *
13998  * This return sets the qpn mapping table that
13999  * is indexed by qpn[8:1].
14000  *
14001  * The routine will round robin the 256 settings
14002  * from first_ctxt to last_ctxt.
14003  *
14004  * The first/last looks ahead to having specialized
14005  * receive contexts for mgmt and bypass.  Normal
14006  * verbs traffic will assumed to be on a range
14007  * of receive contexts.
14008  */
14009 static void init_qpmap_table(struct hfi1_devdata *dd,
14010                              u32 first_ctxt,
14011                              u32 last_ctxt)
14012 {
14013         u64 reg = 0;
14014         u64 regno = RCV_QP_MAP_TABLE;
14015         int i;
14016         u64 ctxt = first_ctxt;
14017
14018         for (i = 0; i < 256; i++) {
14019                 reg |= ctxt << (8 * (i % 8));
14020                 ctxt++;
14021                 if (ctxt > last_ctxt)
14022                         ctxt = first_ctxt;
14023                 if (i % 8 == 7) {
14024                         write_csr(dd, regno, reg);
14025                         reg = 0;
14026                         regno += 8;
14027                 }
14028         }
14029
14030         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14031                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14032 }
14033
14034 struct rsm_map_table {
14035         u64 map[NUM_MAP_REGS];
14036         unsigned int used;
14037 };
14038
14039 struct rsm_rule_data {
14040         u8 offset;
14041         u8 pkt_type;
14042         u32 field1_off;
14043         u32 field2_off;
14044         u32 index1_off;
14045         u32 index1_width;
14046         u32 index2_off;
14047         u32 index2_width;
14048         u32 mask1;
14049         u32 value1;
14050         u32 mask2;
14051         u32 value2;
14052 };
14053
14054 /*
14055  * Return an initialized RMT map table for users to fill in.  OK if it
14056  * returns NULL, indicating no table.
14057  */
14058 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14059 {
14060         struct rsm_map_table *rmt;
14061         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14062
14063         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14064         if (rmt) {
14065                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14066                 rmt->used = 0;
14067         }
14068
14069         return rmt;
14070 }
14071
14072 /*
14073  * Write the final RMT map table to the chip and free the table.  OK if
14074  * table is NULL.
14075  */
14076 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14077                                    struct rsm_map_table *rmt)
14078 {
14079         int i;
14080
14081         if (rmt) {
14082                 /* write table to chip */
14083                 for (i = 0; i < NUM_MAP_REGS; i++)
14084                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14085
14086                 /* enable RSM */
14087                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14088         }
14089 }
14090
14091 /*
14092  * Add a receive side mapping rule.
14093  */
14094 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14095                          struct rsm_rule_data *rrd)
14096 {
14097         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14098                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14099                   1ull << rule_index | /* enable bit */
14100                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14101         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14102                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14103                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14104                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14105                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14106                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14107                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14108         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14109                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14110                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14111                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14112                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14113 }
14114
14115 /*
14116  * Clear a receive side mapping rule.
14117  */
14118 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14119 {
14120         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14121         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14122         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14123 }
14124
14125 /* return the number of RSM map table entries that will be used for QOS */
14126 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14127                            unsigned int *np)
14128 {
14129         int i;
14130         unsigned int m, n;
14131         u8 max_by_vl = 0;
14132
14133         /* is QOS active at all? */
14134         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14135             num_vls == 1 ||
14136             krcvqsset <= 1)
14137                 goto no_qos;
14138
14139         /* determine bits for qpn */
14140         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14141                 if (krcvqs[i] > max_by_vl)
14142                         max_by_vl = krcvqs[i];
14143         if (max_by_vl > 32)
14144                 goto no_qos;
14145         m = ilog2(__roundup_pow_of_two(max_by_vl));
14146
14147         /* determine bits for vl */
14148         n = ilog2(__roundup_pow_of_two(num_vls));
14149
14150         /* reject if too much is used */
14151         if ((m + n) > 7)
14152                 goto no_qos;
14153
14154         if (mp)
14155                 *mp = m;
14156         if (np)
14157                 *np = n;
14158
14159         return 1 << (m + n);
14160
14161 no_qos:
14162         if (mp)
14163                 *mp = 0;
14164         if (np)
14165                 *np = 0;
14166         return 0;
14167 }
14168
14169 /**
14170  * init_qos - init RX qos
14171  * @dd - device data
14172  * @rmt - RSM map table
14173  *
14174  * This routine initializes Rule 0 and the RSM map table to implement
14175  * quality of service (qos).
14176  *
14177  * If all of the limit tests succeed, qos is applied based on the array
14178  * interpretation of krcvqs where entry 0 is VL0.
14179  *
14180  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14181  * feed both the RSM map table and the single rule.
14182  */
14183 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14184 {
14185         struct rsm_rule_data rrd;
14186         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14187         unsigned int rmt_entries;
14188         u64 reg;
14189
14190         if (!rmt)
14191                 goto bail;
14192         rmt_entries = qos_rmt_entries(dd, &m, &n);
14193         if (rmt_entries == 0)
14194                 goto bail;
14195         qpns_per_vl = 1 << m;
14196
14197         /* enough room in the map table? */
14198         rmt_entries = 1 << (m + n);
14199         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14200                 goto bail;
14201
14202         /* add qos entries to the the RSM map table */
14203         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14204                 unsigned tctxt;
14205
14206                 for (qpn = 0, tctxt = ctxt;
14207                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14208                         unsigned idx, regoff, regidx;
14209
14210                         /* generate the index the hardware will produce */
14211                         idx = rmt->used + ((qpn << n) ^ i);
14212                         regoff = (idx % 8) * 8;
14213                         regidx = idx / 8;
14214                         /* replace default with context number */
14215                         reg = rmt->map[regidx];
14216                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14217                                 << regoff);
14218                         reg |= (u64)(tctxt++) << regoff;
14219                         rmt->map[regidx] = reg;
14220                         if (tctxt == ctxt + krcvqs[i])
14221                                 tctxt = ctxt;
14222                 }
14223                 ctxt += krcvqs[i];
14224         }
14225
14226         rrd.offset = rmt->used;
14227         rrd.pkt_type = 2;
14228         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14229         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14230         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14231         rrd.index1_width = n;
14232         rrd.index2_off = QPN_SELECT_OFFSET;
14233         rrd.index2_width = m + n;
14234         rrd.mask1 = LRH_BTH_MASK;
14235         rrd.value1 = LRH_BTH_VALUE;
14236         rrd.mask2 = LRH_SC_MASK;
14237         rrd.value2 = LRH_SC_VALUE;
14238
14239         /* add rule 0 */
14240         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14241
14242         /* mark RSM map entries as used */
14243         rmt->used += rmt_entries;
14244         /* map everything else to the mcast/err/vl15 context */
14245         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14246         dd->qos_shift = n + 1;
14247         return;
14248 bail:
14249         dd->qos_shift = 1;
14250         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14251 }
14252
14253 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14254                                     struct rsm_map_table *rmt)
14255 {
14256         struct rsm_rule_data rrd;
14257         u64 reg;
14258         int i, idx, regoff, regidx;
14259         u8 offset;
14260
14261         /* there needs to be enough room in the map table */
14262         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14263                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14264                 return;
14265         }
14266
14267         /*
14268          * RSM will extract the destination context as an index into the
14269          * map table.  The destination contexts are a sequential block
14270          * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14271          * Map entries are accessed as offset + extracted value.  Adjust
14272          * the added offset so this sequence can be placed anywhere in
14273          * the table - as long as the entries themselves do not wrap.
14274          * There are only enough bits in offset for the table size, so
14275          * start with that to allow for a "negative" offset.
14276          */
14277         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14278                                                 (int)dd->first_dyn_alloc_ctxt);
14279
14280         for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14281                                 i < dd->num_rcv_contexts; i++, idx++) {
14282                 /* replace with identity mapping */
14283                 regoff = (idx % 8) * 8;
14284                 regidx = idx / 8;
14285                 reg = rmt->map[regidx];
14286                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14287                 reg |= (u64)i << regoff;
14288                 rmt->map[regidx] = reg;
14289         }
14290
14291         /*
14292          * For RSM intercept of Expected FECN packets:
14293          * o packet type 0 - expected
14294          * o match on F (bit 95), using select/match 1, and
14295          * o match on SH (bit 133), using select/match 2.
14296          *
14297          * Use index 1 to extract the 8-bit receive context from DestQP
14298          * (start at bit 64).  Use that as the RSM map table index.
14299          */
14300         rrd.offset = offset;
14301         rrd.pkt_type = 0;
14302         rrd.field1_off = 95;
14303         rrd.field2_off = 133;
14304         rrd.index1_off = 64;
14305         rrd.index1_width = 8;
14306         rrd.index2_off = 0;
14307         rrd.index2_width = 0;
14308         rrd.mask1 = 1;
14309         rrd.value1 = 1;
14310         rrd.mask2 = 1;
14311         rrd.value2 = 1;
14312
14313         /* add rule 1 */
14314         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14315
14316         rmt->used += dd->num_user_contexts;
14317 }
14318
14319 /* Initialize RSM for VNIC */
14320 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14321 {
14322         u8 i, j;
14323         u8 ctx_id = 0;
14324         u64 reg;
14325         u32 regoff;
14326         struct rsm_rule_data rrd;
14327
14328         if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14329                 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14330                            dd->vnic.rmt_start);
14331                 return;
14332         }
14333
14334         dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14335                 dd->vnic.rmt_start,
14336                 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14337
14338         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14339         regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14340         reg = read_csr(dd, regoff);
14341         for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14342                 /* Update map register with vnic context */
14343                 j = (dd->vnic.rmt_start + i) % 8;
14344                 reg &= ~(0xffllu << (j * 8));
14345                 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14346                 /* Wrap up vnic ctx index */
14347                 ctx_id %= dd->vnic.num_ctxt;
14348                 /* Write back map register */
14349                 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14350                         dev_dbg(&(dd)->pcidev->dev,
14351                                 "Vnic rsm map reg[%d] =0x%llx\n",
14352                                 regoff - RCV_RSM_MAP_TABLE, reg);
14353
14354                         write_csr(dd, regoff, reg);
14355                         regoff += 8;
14356                         if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14357                                 reg = read_csr(dd, regoff);
14358                 }
14359         }
14360
14361         /* Add rule for vnic */
14362         rrd.offset = dd->vnic.rmt_start;
14363         rrd.pkt_type = 4;
14364         /* Match 16B packets */
14365         rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14366         rrd.mask1 = L2_TYPE_MASK;
14367         rrd.value1 = L2_16B_VALUE;
14368         /* Match ETH L4 packets */
14369         rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14370         rrd.mask2 = L4_16B_TYPE_MASK;
14371         rrd.value2 = L4_16B_ETH_VALUE;
14372         /* Calc context from veswid and entropy */
14373         rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14374         rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14375         rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14376         rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14377         add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14378
14379         /* Enable RSM if not already enabled */
14380         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14381 }
14382
14383 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14384 {
14385         clear_rsm_rule(dd, RSM_INS_VNIC);
14386
14387         /* Disable RSM if used only by vnic */
14388         if (dd->vnic.rmt_start == 0)
14389                 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14390 }
14391
14392 static void init_rxe(struct hfi1_devdata *dd)
14393 {
14394         struct rsm_map_table *rmt;
14395
14396         /* enable all receive errors */
14397         write_csr(dd, RCV_ERR_MASK, ~0ull);
14398
14399         rmt = alloc_rsm_map_table(dd);
14400         /* set up QOS, including the QPN map table */
14401         init_qos(dd, rmt);
14402         init_user_fecn_handling(dd, rmt);
14403         complete_rsm_map_table(dd, rmt);
14404         /* record number of used rsm map entries for vnic */
14405         dd->vnic.rmt_start = rmt->used;
14406         kfree(rmt);
14407
14408         /*
14409          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14410          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14411          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14412          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14413          * Max_PayLoad_Size set to its minimum of 128.
14414          *
14415          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14416          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14417          * tune_pcie_caps() which is called after this routine.
14418          */
14419 }
14420
14421 static void init_other(struct hfi1_devdata *dd)
14422 {
14423         /* enable all CCE errors */
14424         write_csr(dd, CCE_ERR_MASK, ~0ull);
14425         /* enable *some* Misc errors */
14426         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14427         /* enable all DC errors, except LCB */
14428         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14429         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14430 }
14431
14432 /*
14433  * Fill out the given AU table using the given CU.  A CU is defined in terms
14434  * AUs.  The table is a an encoding: given the index, how many AUs does that
14435  * represent?
14436  *
14437  * NOTE: Assumes that the register layout is the same for the
14438  * local and remote tables.
14439  */
14440 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14441                                u32 csr0to3, u32 csr4to7)
14442 {
14443         write_csr(dd, csr0to3,
14444                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14445                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14446                   2ull * cu <<
14447                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14448                   4ull * cu <<
14449                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14450         write_csr(dd, csr4to7,
14451                   8ull * cu <<
14452                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14453                   16ull * cu <<
14454                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14455                   32ull * cu <<
14456                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14457                   64ull * cu <<
14458                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14459 }
14460
14461 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14462 {
14463         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14464                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14465 }
14466
14467 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14468 {
14469         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14470                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14471 }
14472
14473 static void init_txe(struct hfi1_devdata *dd)
14474 {
14475         int i;
14476
14477         /* enable all PIO, SDMA, general, and Egress errors */
14478         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14479         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14480         write_csr(dd, SEND_ERR_MASK, ~0ull);
14481         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14482
14483         /* enable all per-context and per-SDMA engine errors */
14484         for (i = 0; i < dd->chip_send_contexts; i++)
14485                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14486         for (i = 0; i < dd->chip_sdma_engines; i++)
14487                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14488
14489         /* set the local CU to AU mapping */
14490         assign_local_cm_au_table(dd, dd->vcu);
14491
14492         /*
14493          * Set reasonable default for Credit Return Timer
14494          * Don't set on Simulator - causes it to choke.
14495          */
14496         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14497                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14498 }
14499
14500 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14501 {
14502         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14503         unsigned sctxt;
14504         int ret = 0;
14505         u64 reg;
14506
14507         if (!rcd || !rcd->sc) {
14508                 ret = -EINVAL;
14509                 goto done;
14510         }
14511         sctxt = rcd->sc->hw_context;
14512         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14513                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14514                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14515         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14516         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14517                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14518         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14519         /*
14520          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14521          */
14522         if (!is_ax(dd)) {
14523                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14524                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14525                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14526         }
14527
14528         /* Enable J_KEY check on receive context. */
14529         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14530                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14531                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14532         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14533 done:
14534         return ret;
14535 }
14536
14537 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14538 {
14539         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14540         unsigned sctxt;
14541         int ret = 0;
14542         u64 reg;
14543
14544         if (!rcd || !rcd->sc) {
14545                 ret = -EINVAL;
14546                 goto done;
14547         }
14548         sctxt = rcd->sc->hw_context;
14549         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14550         /*
14551          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14552          * This check would not have been enabled for A0 h/w, see
14553          * set_ctxt_jkey().
14554          */
14555         if (!is_ax(dd)) {
14556                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14557                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14558                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14559         }
14560         /* Turn off the J_KEY on the receive side */
14561         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14562 done:
14563         return ret;
14564 }
14565
14566 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14567 {
14568         struct hfi1_ctxtdata *rcd;
14569         unsigned sctxt;
14570         int ret = 0;
14571         u64 reg;
14572
14573         if (ctxt < dd->num_rcv_contexts) {
14574                 rcd = dd->rcd[ctxt];
14575         } else {
14576                 ret = -EINVAL;
14577                 goto done;
14578         }
14579         if (!rcd || !rcd->sc) {
14580                 ret = -EINVAL;
14581                 goto done;
14582         }
14583         sctxt = rcd->sc->hw_context;
14584         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14585                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14586         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14587         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14588         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14589         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14590         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14591 done:
14592         return ret;
14593 }
14594
14595 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14596 {
14597         u8 hw_ctxt;
14598         u64 reg;
14599
14600         if (!ctxt || !ctxt->sc)
14601                 return -EINVAL;
14602
14603         if (ctxt->ctxt >= dd->num_rcv_contexts)
14604                 return -EINVAL;
14605
14606         hw_ctxt = ctxt->sc->hw_context;
14607         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14608         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14609         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14610         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14611
14612         return 0;
14613 }
14614
14615 /*
14616  * Start doing the clean up the the chip. Our clean up happens in multiple
14617  * stages and this is just the first.
14618  */
14619 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14620 {
14621         aspm_exit(dd);
14622         free_cntrs(dd);
14623         free_rcverr(dd);
14624         clean_up_interrupts(dd);
14625         finish_chip_resources(dd);
14626 }
14627
14628 #define HFI_BASE_GUID(dev) \
14629         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14630
14631 /*
14632  * Information can be shared between the two HFIs on the same ASIC
14633  * in the same OS.  This function finds the peer device and sets
14634  * up a shared structure.
14635  */
14636 static int init_asic_data(struct hfi1_devdata *dd)
14637 {
14638         unsigned long flags;
14639         struct hfi1_devdata *tmp, *peer = NULL;
14640         struct hfi1_asic_data *asic_data;
14641         int ret = 0;
14642
14643         /* pre-allocate the asic structure in case we are the first device */
14644         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14645         if (!asic_data)
14646                 return -ENOMEM;
14647
14648         spin_lock_irqsave(&hfi1_devs_lock, flags);
14649         /* Find our peer device */
14650         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14651                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14652                     dd->unit != tmp->unit) {
14653                         peer = tmp;
14654                         break;
14655                 }
14656         }
14657
14658         if (peer) {
14659                 /* use already allocated structure */
14660                 dd->asic_data = peer->asic_data;
14661                 kfree(asic_data);
14662         } else {
14663                 dd->asic_data = asic_data;
14664                 mutex_init(&dd->asic_data->asic_resource_mutex);
14665         }
14666         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14667         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14668
14669         /* first one through - set up i2c devices */
14670         if (!peer)
14671                 ret = set_up_i2c(dd, dd->asic_data);
14672
14673         return ret;
14674 }
14675
14676 /*
14677  * Set dd->boardname.  Use a generic name if a name is not returned from
14678  * EFI variable space.
14679  *
14680  * Return 0 on success, -ENOMEM if space could not be allocated.
14681  */
14682 static int obtain_boardname(struct hfi1_devdata *dd)
14683 {
14684         /* generic board description */
14685         const char generic[] =
14686                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14687         unsigned long size;
14688         int ret;
14689
14690         ret = read_hfi1_efi_var(dd, "description", &size,
14691                                 (void **)&dd->boardname);
14692         if (ret) {
14693                 dd_dev_info(dd, "Board description not found\n");
14694                 /* use generic description */
14695                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14696                 if (!dd->boardname)
14697                         return -ENOMEM;
14698         }
14699         return 0;
14700 }
14701
14702 /*
14703  * Check the interrupt registers to make sure that they are mapped correctly.
14704  * It is intended to help user identify any mismapping by VMM when the driver
14705  * is running in a VM. This function should only be called before interrupt
14706  * is set up properly.
14707  *
14708  * Return 0 on success, -EINVAL on failure.
14709  */
14710 static int check_int_registers(struct hfi1_devdata *dd)
14711 {
14712         u64 reg;
14713         u64 all_bits = ~(u64)0;
14714         u64 mask;
14715
14716         /* Clear CceIntMask[0] to avoid raising any interrupts */
14717         mask = read_csr(dd, CCE_INT_MASK);
14718         write_csr(dd, CCE_INT_MASK, 0ull);
14719         reg = read_csr(dd, CCE_INT_MASK);
14720         if (reg)
14721                 goto err_exit;
14722
14723         /* Clear all interrupt status bits */
14724         write_csr(dd, CCE_INT_CLEAR, all_bits);
14725         reg = read_csr(dd, CCE_INT_STATUS);
14726         if (reg)
14727                 goto err_exit;
14728
14729         /* Set all interrupt status bits */
14730         write_csr(dd, CCE_INT_FORCE, all_bits);
14731         reg = read_csr(dd, CCE_INT_STATUS);
14732         if (reg != all_bits)
14733                 goto err_exit;
14734
14735         /* Restore the interrupt mask */
14736         write_csr(dd, CCE_INT_CLEAR, all_bits);
14737         write_csr(dd, CCE_INT_MASK, mask);
14738
14739         return 0;
14740 err_exit:
14741         write_csr(dd, CCE_INT_MASK, mask);
14742         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14743         return -EINVAL;
14744 }
14745
14746 /**
14747  * Allocate and initialize the device structure for the hfi.
14748  * @dev: the pci_dev for hfi1_ib device
14749  * @ent: pci_device_id struct for this dev
14750  *
14751  * Also allocates, initializes, and returns the devdata struct for this
14752  * device instance
14753  *
14754  * This is global, and is called directly at init to set up the
14755  * chip-specific function pointers for later use.
14756  */
14757 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14758                                   const struct pci_device_id *ent)
14759 {
14760         struct hfi1_devdata *dd;
14761         struct hfi1_pportdata *ppd;
14762         u64 reg;
14763         int i, ret;
14764         static const char * const inames[] = { /* implementation names */
14765                 "RTL silicon",
14766                 "RTL VCS simulation",
14767                 "RTL FPGA emulation",
14768                 "Functional simulator"
14769         };
14770         struct pci_dev *parent = pdev->bus->self;
14771
14772         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14773                                 sizeof(struct hfi1_pportdata));
14774         if (IS_ERR(dd))
14775                 goto bail;
14776         ppd = dd->pport;
14777         for (i = 0; i < dd->num_pports; i++, ppd++) {
14778                 int vl;
14779                 /* init common fields */
14780                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14781                 /* DC supports 4 link widths */
14782                 ppd->link_width_supported =
14783                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14784                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14785                 ppd->link_width_downgrade_supported =
14786                         ppd->link_width_supported;
14787                 /* start out enabling only 4X */
14788                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14789                 ppd->link_width_downgrade_enabled =
14790                                         ppd->link_width_downgrade_supported;
14791                 /* link width active is 0 when link is down */
14792                 /* link width downgrade active is 0 when link is down */
14793
14794                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14795                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14796                         hfi1_early_err(&pdev->dev,
14797                                        "Invalid num_vls %u, using %u VLs\n",
14798                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14799                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14800                 }
14801                 ppd->vls_supported = num_vls;
14802                 ppd->vls_operational = ppd->vls_supported;
14803                 ppd->actual_vls_operational = ppd->vls_supported;
14804                 /* Set the default MTU. */
14805                 for (vl = 0; vl < num_vls; vl++)
14806                         dd->vld[vl].mtu = hfi1_max_mtu;
14807                 dd->vld[15].mtu = MAX_MAD_PACKET;
14808                 /*
14809                  * Set the initial values to reasonable default, will be set
14810                  * for real when link is up.
14811                  */
14812                 ppd->lstate = IB_PORT_DOWN;
14813                 ppd->overrun_threshold = 0x4;
14814                 ppd->phy_error_threshold = 0xf;
14815                 ppd->port_crc_mode_enabled = link_crc_mask;
14816                 /* initialize supported LTP CRC mode */
14817                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14818                 /* initialize enabled LTP CRC mode */
14819                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14820                 /* start in offline */
14821                 ppd->host_link_state = HLS_DN_OFFLINE;
14822                 init_vl_arb_caches(ppd);
14823                 ppd->pstate = PLS_OFFLINE;
14824         }
14825
14826         dd->link_default = HLS_DN_POLL;
14827
14828         /*
14829          * Do remaining PCIe setup and save PCIe values in dd.
14830          * Any error printing is already done by the init code.
14831          * On return, we have the chip mapped.
14832          */
14833         ret = hfi1_pcie_ddinit(dd, pdev);
14834         if (ret < 0)
14835                 goto bail_free;
14836
14837         /* verify that reads actually work, save revision for reset check */
14838         dd->revision = read_csr(dd, CCE_REVISION);
14839         if (dd->revision == ~(u64)0) {
14840                 dd_dev_err(dd, "cannot read chip CSRs\n");
14841                 ret = -EINVAL;
14842                 goto bail_cleanup;
14843         }
14844         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14845                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14846         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14847                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
14848
14849         /*
14850          * Check interrupt registers mapping if the driver has no access to
14851          * the upstream component. In this case, it is likely that the driver
14852          * is running in a VM.
14853          */
14854         if (!parent) {
14855                 ret = check_int_registers(dd);
14856                 if (ret)
14857                         goto bail_cleanup;
14858         }
14859
14860         /*
14861          * obtain the hardware ID - NOT related to unit, which is a
14862          * software enumeration
14863          */
14864         reg = read_csr(dd, CCE_REVISION2);
14865         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14866                                         & CCE_REVISION2_HFI_ID_MASK;
14867         /* the variable size will remove unwanted bits */
14868         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14869         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14870         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14871                     dd->icode < ARRAY_SIZE(inames) ?
14872                     inames[dd->icode] : "unknown", (int)dd->irev);
14873
14874         /* speeds the hardware can support */
14875         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14876         /* speeds allowed to run at */
14877         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14878         /* give a reasonable active value, will be set on link up */
14879         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14880
14881         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14882         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14883         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14884         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14885         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14886         /* fix up link widths for emulation _p */
14887         ppd = dd->pport;
14888         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14889                 ppd->link_width_supported =
14890                         ppd->link_width_enabled =
14891                         ppd->link_width_downgrade_supported =
14892                         ppd->link_width_downgrade_enabled =
14893                                 OPA_LINK_WIDTH_1X;
14894         }
14895         /* insure num_vls isn't larger than number of sdma engines */
14896         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14897                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14898                            num_vls, dd->chip_sdma_engines);
14899                 num_vls = dd->chip_sdma_engines;
14900                 ppd->vls_supported = dd->chip_sdma_engines;
14901                 ppd->vls_operational = ppd->vls_supported;
14902         }
14903
14904         /*
14905          * Convert the ns parameter to the 64 * cclocks used in the CSR.
14906          * Limit the max if larger than the field holds.  If timeout is
14907          * non-zero, then the calculated field will be at least 1.
14908          *
14909          * Must be after icode is set up - the cclock rate depends
14910          * on knowing the hardware being used.
14911          */
14912         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14913         if (dd->rcv_intr_timeout_csr >
14914                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14915                 dd->rcv_intr_timeout_csr =
14916                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14917         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14918                 dd->rcv_intr_timeout_csr = 1;
14919
14920         /* needs to be done before we look for the peer device */
14921         read_guid(dd);
14922
14923         /* set up shared ASIC data with peer device */
14924         ret = init_asic_data(dd);
14925         if (ret)
14926                 goto bail_cleanup;
14927
14928         /* obtain chip sizes, reset chip CSRs */
14929         init_chip(dd);
14930
14931         /* read in the PCIe link speed information */
14932         ret = pcie_speeds(dd);
14933         if (ret)
14934                 goto bail_cleanup;
14935
14936         /* call before get_platform_config(), after init_chip_resources() */
14937         ret = eprom_init(dd);
14938         if (ret)
14939                 goto bail_free_rcverr;
14940
14941         /* Needs to be called before hfi1_firmware_init */
14942         get_platform_config(dd);
14943
14944         /* read in firmware */
14945         ret = hfi1_firmware_init(dd);
14946         if (ret)
14947                 goto bail_cleanup;
14948
14949         /*
14950          * In general, the PCIe Gen3 transition must occur after the
14951          * chip has been idled (so it won't initiate any PCIe transactions
14952          * e.g. an interrupt) and before the driver changes any registers
14953          * (the transition will reset the registers).
14954          *
14955          * In particular, place this call after:
14956          * - init_chip()     - the chip will not initiate any PCIe transactions
14957          * - pcie_speeds()   - reads the current link speed
14958          * - hfi1_firmware_init() - the needed firmware is ready to be
14959          *                          downloaded
14960          */
14961         ret = do_pcie_gen3_transition(dd);
14962         if (ret)
14963                 goto bail_cleanup;
14964
14965         /* start setting dd values and adjusting CSRs */
14966         init_early_variables(dd);
14967
14968         parse_platform_config(dd);
14969
14970         ret = obtain_boardname(dd);
14971         if (ret)
14972                 goto bail_cleanup;
14973
14974         snprintf(dd->boardversion, BOARD_VERS_MAX,
14975                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14976                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14977                  (u32)dd->majrev,
14978                  (u32)dd->minrev,
14979                  (dd->revision >> CCE_REVISION_SW_SHIFT)
14980                     & CCE_REVISION_SW_MASK);
14981
14982         ret = set_up_context_variables(dd);
14983         if (ret)
14984                 goto bail_cleanup;
14985
14986         /* set initial RXE CSRs */
14987         init_rxe(dd);
14988         /* set initial TXE CSRs */
14989         init_txe(dd);
14990         /* set initial non-RXE, non-TXE CSRs */
14991         init_other(dd);
14992         /* set up KDETH QP prefix in both RX and TX CSRs */
14993         init_kdeth_qp(dd);
14994
14995         ret = hfi1_dev_affinity_init(dd);
14996         if (ret)
14997                 goto bail_cleanup;
14998
14999         /* send contexts must be set up before receive contexts */
15000         ret = init_send_contexts(dd);
15001         if (ret)
15002                 goto bail_cleanup;
15003
15004         ret = hfi1_create_ctxts(dd);
15005         if (ret)
15006                 goto bail_cleanup;
15007
15008         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15009         /*
15010          * rcd[0] is guaranteed to be valid by this point. Also, all
15011          * context are using the same value, as per the module parameter.
15012          */
15013         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15014
15015         ret = init_pervl_scs(dd);
15016         if (ret)
15017                 goto bail_cleanup;
15018
15019         /* sdma init */
15020         for (i = 0; i < dd->num_pports; ++i) {
15021                 ret = sdma_init(dd, i);
15022                 if (ret)
15023                         goto bail_cleanup;
15024         }
15025
15026         /* use contexts created by hfi1_create_ctxts */
15027         ret = set_up_interrupts(dd);
15028         if (ret)
15029                 goto bail_cleanup;
15030
15031         /* set up LCB access - must be after set_up_interrupts() */
15032         init_lcb_access(dd);
15033
15034         /*
15035          * Serial number is created from the base guid:
15036          * [27:24] = base guid [38:35]
15037          * [23: 0] = base guid [23: 0]
15038          */
15039         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15040                  (dd->base_guid & 0xFFFFFF) |
15041                      ((dd->base_guid >> 11) & 0xF000000));
15042
15043         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15044         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15045         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15046
15047         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15048         if (ret)
15049                 goto bail_clear_intr;
15050
15051         thermal_init(dd);
15052
15053         ret = init_cntrs(dd);
15054         if (ret)
15055                 goto bail_clear_intr;
15056
15057         ret = init_rcverr(dd);
15058         if (ret)
15059                 goto bail_free_cntrs;
15060
15061         init_completion(&dd->user_comp);
15062
15063         /* The user refcount starts with one to inidicate an active device */
15064         atomic_set(&dd->user_refcount, 1);
15065
15066         goto bail;
15067
15068 bail_free_rcverr:
15069         free_rcverr(dd);
15070 bail_free_cntrs:
15071         free_cntrs(dd);
15072 bail_clear_intr:
15073         clean_up_interrupts(dd);
15074 bail_cleanup:
15075         hfi1_pcie_ddcleanup(dd);
15076 bail_free:
15077         hfi1_free_devdata(dd);
15078         dd = ERR_PTR(ret);
15079 bail:
15080         return dd;
15081 }
15082
15083 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15084                         u32 dw_len)
15085 {
15086         u32 delta_cycles;
15087         u32 current_egress_rate = ppd->current_egress_rate;
15088         /* rates here are in units of 10^6 bits/sec */
15089
15090         if (desired_egress_rate == -1)
15091                 return 0; /* shouldn't happen */
15092
15093         if (desired_egress_rate >= current_egress_rate)
15094                 return 0; /* we can't help go faster, only slower */
15095
15096         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15097                         egress_cycles(dw_len * 4, current_egress_rate);
15098
15099         return (u16)delta_cycles;
15100 }
15101
15102 /**
15103  * create_pbc - build a pbc for transmission
15104  * @flags: special case flags or-ed in built pbc
15105  * @srate: static rate
15106  * @vl: vl
15107  * @dwlen: dword length (header words + data words + pbc words)
15108  *
15109  * Create a PBC with the given flags, rate, VL, and length.
15110  *
15111  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15112  * for verbs, which does not use this PSM feature.  The lone other caller
15113  * is for the diagnostic interface which calls this if the user does not
15114  * supply their own PBC.
15115  */
15116 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15117                u32 dw_len)
15118 {
15119         u64 pbc, delay = 0;
15120
15121         if (unlikely(srate_mbs))
15122                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15123
15124         pbc = flags
15125                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15126                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15127                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15128                 | (dw_len & PBC_LENGTH_DWS_MASK)
15129                         << PBC_LENGTH_DWS_SHIFT;
15130
15131         return pbc;
15132 }
15133
15134 #define SBUS_THERMAL    0x4f
15135 #define SBUS_THERM_MONITOR_MODE 0x1
15136
15137 #define THERM_FAILURE(dev, ret, reason) \
15138         dd_dev_err((dd),                                                \
15139                    "Thermal sensor initialization failed: %s (%d)\n",   \
15140                    (reason), (ret))
15141
15142 /*
15143  * Initialize the thermal sensor.
15144  *
15145  * After initialization, enable polling of thermal sensor through
15146  * SBus interface. In order for this to work, the SBus Master
15147  * firmware has to be loaded due to the fact that the HW polling
15148  * logic uses SBus interrupts, which are not supported with
15149  * default firmware. Otherwise, no data will be returned through
15150  * the ASIC_STS_THERM CSR.
15151  */
15152 static int thermal_init(struct hfi1_devdata *dd)
15153 {
15154         int ret = 0;
15155
15156         if (dd->icode != ICODE_RTL_SILICON ||
15157             check_chip_resource(dd, CR_THERM_INIT, NULL))
15158                 return ret;
15159
15160         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15161         if (ret) {
15162                 THERM_FAILURE(dd, ret, "Acquire SBus");
15163                 return ret;
15164         }
15165
15166         dd_dev_info(dd, "Initializing thermal sensor\n");
15167         /* Disable polling of thermal readings */
15168         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15169         msleep(100);
15170         /* Thermal Sensor Initialization */
15171         /*    Step 1: Reset the Thermal SBus Receiver */
15172         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15173                                 RESET_SBUS_RECEIVER, 0);
15174         if (ret) {
15175                 THERM_FAILURE(dd, ret, "Bus Reset");
15176                 goto done;
15177         }
15178         /*    Step 2: Set Reset bit in Thermal block */
15179         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15180                                 WRITE_SBUS_RECEIVER, 0x1);
15181         if (ret) {
15182                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15183                 goto done;
15184         }
15185         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15186         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15187                                 WRITE_SBUS_RECEIVER, 0x32);
15188         if (ret) {
15189                 THERM_FAILURE(dd, ret, "Write Clock Div");
15190                 goto done;
15191         }
15192         /*    Step 4: Select temperature mode */
15193         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15194                                 WRITE_SBUS_RECEIVER,
15195                                 SBUS_THERM_MONITOR_MODE);
15196         if (ret) {
15197                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15198                 goto done;
15199         }
15200         /*    Step 5: De-assert block reset and start conversion */
15201         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15202                                 WRITE_SBUS_RECEIVER, 0x2);
15203         if (ret) {
15204                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15205                 goto done;
15206         }
15207         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15208         msleep(22);
15209
15210         /* Enable polling of thermal readings */
15211         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15212
15213         /* Set initialized flag */
15214         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15215         if (ret)
15216                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15217
15218 done:
15219         release_chip_resource(dd, CR_SBUS);
15220         return ret;
15221 }
15222
15223 static void handle_temp_err(struct hfi1_devdata *dd)
15224 {
15225         struct hfi1_pportdata *ppd = &dd->pport[0];
15226         /*
15227          * Thermal Critical Interrupt
15228          * Put the device into forced freeze mode, take link down to
15229          * offline, and put DC into reset.
15230          */
15231         dd_dev_emerg(dd,
15232                      "Critical temperature reached! Forcing device into freeze mode!\n");
15233         dd->flags |= HFI1_FORCED_FREEZE;
15234         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15235         /*
15236          * Shut DC down as much and as quickly as possible.
15237          *
15238          * Step 1: Take the link down to OFFLINE. This will cause the
15239          *         8051 to put the Serdes in reset. However, we don't want to
15240          *         go through the entire link state machine since we want to
15241          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15242          *         but rather an attempt to save the chip.
15243          *         Code below is almost the same as quiet_serdes() but avoids
15244          *         all the extra work and the sleeps.
15245          */
15246         ppd->driver_link_ready = 0;
15247         ppd->link_enabled = 0;
15248         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15249                                 PLS_OFFLINE);
15250         /*
15251          * Step 2: Shutdown LCB and 8051
15252          *         After shutdown, do not restore DC_CFG_RESET value.
15253          */
15254         dc_shutdown(dd);
15255 }