Linux 6.11-rc1
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / affinity.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/interrupt.h>
9 #include <linux/numa.h>
10
11 #include "hfi.h"
12 #include "affinity.h"
13 #include "sdma.h"
14 #include "trace.h"
15
16 struct hfi1_affinity_node_list node_affinity = {
17         .list = LIST_HEAD_INIT(node_affinity.list),
18         .lock = __MUTEX_INITIALIZER(node_affinity.lock)
19 };
20
21 /* Name of IRQ types, indexed by enum irq_type */
22 static const char * const irq_type_names[] = {
23         "SDMA",
24         "RCVCTXT",
25         "NETDEVCTXT",
26         "GENERAL",
27         "OTHER",
28 };
29
30 /* Per NUMA node count of HFI devices */
31 static unsigned int *hfi1_per_node_cntr;
32
33 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
34 {
35         cpumask_clear(&set->mask);
36         cpumask_clear(&set->used);
37         set->gen = 0;
38 }
39
40 /* Increment generation of CPU set if needed */
41 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
42 {
43         if (cpumask_equal(&set->mask, &set->used)) {
44                 /*
45                  * We've used up all the CPUs, bump up the generation
46                  * and reset the 'used' map
47                  */
48                 set->gen++;
49                 cpumask_clear(&set->used);
50         }
51 }
52
53 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
54 {
55         if (cpumask_empty(&set->used) && set->gen) {
56                 set->gen--;
57                 cpumask_copy(&set->used, &set->mask);
58         }
59 }
60
61 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
62 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
63 {
64         int cpu;
65
66         if (!diff || !set)
67                 return -EINVAL;
68
69         _cpu_mask_set_gen_inc(set);
70
71         /* Find out CPUs left in CPU mask */
72         cpumask_andnot(diff, &set->mask, &set->used);
73
74         cpu = cpumask_first(diff);
75         if (cpu >= nr_cpu_ids) /* empty */
76                 cpu = -EINVAL;
77         else
78                 cpumask_set_cpu(cpu, &set->used);
79
80         return cpu;
81 }
82
83 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
84 {
85         if (!set)
86                 return;
87
88         cpumask_clear_cpu(cpu, &set->used);
89         _cpu_mask_set_gen_dec(set);
90 }
91
92 /* Initialize non-HT cpu cores mask */
93 void init_real_cpu_mask(void)
94 {
95         int possible, curr_cpu, i, ht;
96
97         cpumask_clear(&node_affinity.real_cpu_mask);
98
99         /* Start with cpu online mask as the real cpu mask */
100         cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
101
102         /*
103          * Remove HT cores from the real cpu mask.  Do this in two steps below.
104          */
105         possible = cpumask_weight(&node_affinity.real_cpu_mask);
106         ht = cpumask_weight(topology_sibling_cpumask(
107                                 cpumask_first(&node_affinity.real_cpu_mask)));
108         /*
109          * Step 1.  Skip over the first N HT siblings and use them as the
110          * "real" cores.  Assumes that HT cores are not enumerated in
111          * succession (except in the single core case).
112          */
113         curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
114         for (i = 0; i < possible / ht; i++)
115                 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
116         /*
117          * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
118          * skip any gaps.
119          */
120         for (; i < possible; i++) {
121                 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
122                 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
123         }
124 }
125
126 int node_affinity_init(void)
127 {
128         int node;
129         struct pci_dev *dev = NULL;
130         const struct pci_device_id *ids = hfi1_pci_tbl;
131
132         cpumask_clear(&node_affinity.proc.used);
133         cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
134
135         node_affinity.proc.gen = 0;
136         node_affinity.num_core_siblings =
137                                 cpumask_weight(topology_sibling_cpumask(
138                                         cpumask_first(&node_affinity.proc.mask)
139                                         ));
140         node_affinity.num_possible_nodes = num_possible_nodes();
141         node_affinity.num_online_nodes = num_online_nodes();
142         node_affinity.num_online_cpus = num_online_cpus();
143
144         /*
145          * The real cpu mask is part of the affinity struct but it has to be
146          * initialized early. It is needed to calculate the number of user
147          * contexts in set_up_context_variables().
148          */
149         init_real_cpu_mask();
150
151         hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
152                                      sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
153         if (!hfi1_per_node_cntr)
154                 return -ENOMEM;
155
156         while (ids->vendor) {
157                 dev = NULL;
158                 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
159                         node = pcibus_to_node(dev->bus);
160                         if (node < 0)
161                                 goto out;
162
163                         hfi1_per_node_cntr[node]++;
164                 }
165                 ids++;
166         }
167
168         return 0;
169
170 out:
171         /*
172          * Invalid PCI NUMA node information found, note it, and populate
173          * our database 1:1.
174          */
175         pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
176         pr_err("HFI: System BIOS may need to be upgraded\n");
177         for (node = 0; node < node_affinity.num_possible_nodes; node++)
178                 hfi1_per_node_cntr[node] = 1;
179
180         pci_dev_put(dev);
181
182         return 0;
183 }
184
185 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
186 {
187         free_percpu(entry->comp_vect_affinity);
188         kfree(entry);
189 }
190
191 void node_affinity_destroy_all(void)
192 {
193         struct list_head *pos, *q;
194         struct hfi1_affinity_node *entry;
195
196         mutex_lock(&node_affinity.lock);
197         list_for_each_safe(pos, q, &node_affinity.list) {
198                 entry = list_entry(pos, struct hfi1_affinity_node,
199                                    list);
200                 list_del(pos);
201                 node_affinity_destroy(entry);
202         }
203         mutex_unlock(&node_affinity.lock);
204         kfree(hfi1_per_node_cntr);
205 }
206
207 static struct hfi1_affinity_node *node_affinity_allocate(int node)
208 {
209         struct hfi1_affinity_node *entry;
210
211         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
212         if (!entry)
213                 return NULL;
214         entry->node = node;
215         entry->comp_vect_affinity = alloc_percpu(u16);
216         INIT_LIST_HEAD(&entry->list);
217
218         return entry;
219 }
220
221 /*
222  * It appends an entry to the list.
223  * It *must* be called with node_affinity.lock held.
224  */
225 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
226 {
227         list_add_tail(&entry->list, &node_affinity.list);
228 }
229
230 /* It must be called with node_affinity.lock held */
231 static struct hfi1_affinity_node *node_affinity_lookup(int node)
232 {
233         struct hfi1_affinity_node *entry;
234
235         list_for_each_entry(entry, &node_affinity.list, list) {
236                 if (entry->node == node)
237                         return entry;
238         }
239
240         return NULL;
241 }
242
243 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
244                                 u16 __percpu *comp_vect_affinity)
245 {
246         int curr_cpu;
247         u16 cntr;
248         u16 prev_cntr;
249         int ret_cpu;
250
251         if (!possible_cpumask) {
252                 ret_cpu = -EINVAL;
253                 goto fail;
254         }
255
256         if (!comp_vect_affinity) {
257                 ret_cpu = -EINVAL;
258                 goto fail;
259         }
260
261         ret_cpu = cpumask_first(possible_cpumask);
262         if (ret_cpu >= nr_cpu_ids) {
263                 ret_cpu = -EINVAL;
264                 goto fail;
265         }
266
267         prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
268         for_each_cpu(curr_cpu, possible_cpumask) {
269                 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
270
271                 if (cntr < prev_cntr) {
272                         ret_cpu = curr_cpu;
273                         prev_cntr = cntr;
274                 }
275         }
276
277         *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
278
279 fail:
280         return ret_cpu;
281 }
282
283 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
284                                     u16 __percpu *comp_vect_affinity)
285 {
286         int curr_cpu;
287         int max_cpu;
288         u16 cntr;
289         u16 prev_cntr;
290
291         if (!possible_cpumask)
292                 return -EINVAL;
293
294         if (!comp_vect_affinity)
295                 return -EINVAL;
296
297         max_cpu = cpumask_first(possible_cpumask);
298         if (max_cpu >= nr_cpu_ids)
299                 return -EINVAL;
300
301         prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
302         for_each_cpu(curr_cpu, possible_cpumask) {
303                 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
304
305                 if (cntr > prev_cntr) {
306                         max_cpu = curr_cpu;
307                         prev_cntr = cntr;
308                 }
309         }
310
311         *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
312
313         return max_cpu;
314 }
315
316 /*
317  * Non-interrupt CPUs are used first, then interrupt CPUs.
318  * Two already allocated cpu masks must be passed.
319  */
320 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
321                                   struct hfi1_affinity_node *entry,
322                                   cpumask_var_t non_intr_cpus,
323                                   cpumask_var_t available_cpus)
324         __must_hold(&node_affinity.lock)
325 {
326         int cpu;
327         struct cpu_mask_set *set = dd->comp_vect;
328
329         lockdep_assert_held(&node_affinity.lock);
330         if (!non_intr_cpus) {
331                 cpu = -1;
332                 goto fail;
333         }
334
335         if (!available_cpus) {
336                 cpu = -1;
337                 goto fail;
338         }
339
340         /* Available CPUs for pinning completion vectors */
341         _cpu_mask_set_gen_inc(set);
342         cpumask_andnot(available_cpus, &set->mask, &set->used);
343
344         /* Available CPUs without SDMA engine interrupts */
345         cpumask_andnot(non_intr_cpus, available_cpus,
346                        &entry->def_intr.used);
347
348         /* If there are non-interrupt CPUs available, use them first */
349         if (!cpumask_empty(non_intr_cpus))
350                 cpu = cpumask_first(non_intr_cpus);
351         else /* Otherwise, use interrupt CPUs */
352                 cpu = cpumask_first(available_cpus);
353
354         if (cpu >= nr_cpu_ids) { /* empty */
355                 cpu = -1;
356                 goto fail;
357         }
358         cpumask_set_cpu(cpu, &set->used);
359
360 fail:
361         return cpu;
362 }
363
364 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
365 {
366         struct cpu_mask_set *set = dd->comp_vect;
367
368         if (cpu < 0)
369                 return;
370
371         cpu_mask_set_put(set, cpu);
372 }
373
374 /* _dev_comp_vect_mappings_destroy() is reentrant */
375 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
376 {
377         int i, cpu;
378
379         if (!dd->comp_vect_mappings)
380                 return;
381
382         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
383                 cpu = dd->comp_vect_mappings[i];
384                 _dev_comp_vect_cpu_put(dd, cpu);
385                 dd->comp_vect_mappings[i] = -1;
386                 hfi1_cdbg(AFFINITY,
387                           "[%s] Release CPU %d from completion vector %d",
388                           rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
389         }
390
391         kfree(dd->comp_vect_mappings);
392         dd->comp_vect_mappings = NULL;
393 }
394
395 /*
396  * This function creates the table for looking up CPUs for completion vectors.
397  * num_comp_vectors needs to have been initilized before calling this function.
398  */
399 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
400                                           struct hfi1_affinity_node *entry)
401         __must_hold(&node_affinity.lock)
402 {
403         int i, cpu, ret;
404         cpumask_var_t non_intr_cpus;
405         cpumask_var_t available_cpus;
406
407         lockdep_assert_held(&node_affinity.lock);
408
409         if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
410                 return -ENOMEM;
411
412         if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
413                 free_cpumask_var(non_intr_cpus);
414                 return -ENOMEM;
415         }
416
417         dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
418                                          sizeof(*dd->comp_vect_mappings),
419                                          GFP_KERNEL);
420         if (!dd->comp_vect_mappings) {
421                 ret = -ENOMEM;
422                 goto fail;
423         }
424         for (i = 0; i < dd->comp_vect_possible_cpus; i++)
425                 dd->comp_vect_mappings[i] = -1;
426
427         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
428                 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
429                                              available_cpus);
430                 if (cpu < 0) {
431                         ret = -EINVAL;
432                         goto fail;
433                 }
434
435                 dd->comp_vect_mappings[i] = cpu;
436                 hfi1_cdbg(AFFINITY,
437                           "[%s] Completion Vector %d -> CPU %d",
438                           rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
439         }
440
441         free_cpumask_var(available_cpus);
442         free_cpumask_var(non_intr_cpus);
443         return 0;
444
445 fail:
446         free_cpumask_var(available_cpus);
447         free_cpumask_var(non_intr_cpus);
448         _dev_comp_vect_mappings_destroy(dd);
449
450         return ret;
451 }
452
453 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
454 {
455         int ret;
456         struct hfi1_affinity_node *entry;
457
458         mutex_lock(&node_affinity.lock);
459         entry = node_affinity_lookup(dd->node);
460         if (!entry) {
461                 ret = -EINVAL;
462                 goto unlock;
463         }
464         ret = _dev_comp_vect_mappings_create(dd, entry);
465 unlock:
466         mutex_unlock(&node_affinity.lock);
467
468         return ret;
469 }
470
471 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
472 {
473         _dev_comp_vect_mappings_destroy(dd);
474 }
475
476 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
477 {
478         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
479         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
480
481         if (!dd->comp_vect_mappings)
482                 return -EINVAL;
483         if (comp_vect >= dd->comp_vect_possible_cpus)
484                 return -EINVAL;
485
486         return dd->comp_vect_mappings[comp_vect];
487 }
488
489 /*
490  * It assumes dd->comp_vect_possible_cpus is available.
491  */
492 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
493                                         struct hfi1_affinity_node *entry,
494                                         bool first_dev_init)
495         __must_hold(&node_affinity.lock)
496 {
497         int i, j, curr_cpu;
498         int possible_cpus_comp_vect = 0;
499         struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
500
501         lockdep_assert_held(&node_affinity.lock);
502         /*
503          * If there's only one CPU available for completion vectors, then
504          * there will only be one completion vector available. Othewise,
505          * the number of completion vector available will be the number of
506          * available CPUs divide it by the number of devices in the
507          * local NUMA node.
508          */
509         if (cpumask_weight(&entry->comp_vect_mask) == 1) {
510                 possible_cpus_comp_vect = 1;
511                 dd_dev_warn(dd,
512                             "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
513         } else {
514                 possible_cpus_comp_vect +=
515                         cpumask_weight(&entry->comp_vect_mask) /
516                                        hfi1_per_node_cntr[dd->node];
517
518                 /*
519                  * If the completion vector CPUs available doesn't divide
520                  * evenly among devices, then the first device device to be
521                  * initialized gets an extra CPU.
522                  */
523                 if (first_dev_init &&
524                     cpumask_weight(&entry->comp_vect_mask) %
525                     hfi1_per_node_cntr[dd->node] != 0)
526                         possible_cpus_comp_vect++;
527         }
528
529         dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
530
531         /* Reserving CPUs for device completion vector */
532         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
533                 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
534                                                 entry->comp_vect_affinity);
535                 if (curr_cpu < 0)
536                         goto fail;
537
538                 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
539         }
540
541         hfi1_cdbg(AFFINITY,
542                   "[%s] Completion vector affinity CPU set(s) %*pbl",
543                   rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
544                   cpumask_pr_args(dev_comp_vect_mask));
545
546         return 0;
547
548 fail:
549         for (j = 0; j < i; j++)
550                 per_cpu_affinity_put_max(&entry->comp_vect_mask,
551                                          entry->comp_vect_affinity);
552
553         return curr_cpu;
554 }
555
556 /*
557  * It assumes dd->comp_vect_possible_cpus is available.
558  */
559 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
560                                              struct hfi1_affinity_node *entry)
561         __must_hold(&node_affinity.lock)
562 {
563         int i, cpu;
564
565         lockdep_assert_held(&node_affinity.lock);
566         if (!dd->comp_vect_possible_cpus)
567                 return;
568
569         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
570                 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
571                                                entry->comp_vect_affinity);
572                 /* Clearing CPU in device completion vector cpu mask */
573                 if (cpu >= 0)
574                         cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
575         }
576
577         dd->comp_vect_possible_cpus = 0;
578 }
579
580 /*
581  * Interrupt affinity.
582  *
583  * non-rcv avail gets a default mask that
584  * starts as possible cpus with threads reset
585  * and each rcv avail reset.
586  *
587  * rcv avail gets node relative 1 wrapping back
588  * to the node relative 1 as necessary.
589  *
590  */
591 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
592 {
593         struct hfi1_affinity_node *entry;
594         const struct cpumask *local_mask;
595         int curr_cpu, possible, i, ret;
596         bool new_entry = false;
597
598         local_mask = cpumask_of_node(dd->node);
599         if (cpumask_first(local_mask) >= nr_cpu_ids)
600                 local_mask = topology_core_cpumask(0);
601
602         mutex_lock(&node_affinity.lock);
603         entry = node_affinity_lookup(dd->node);
604
605         /*
606          * If this is the first time this NUMA node's affinity is used,
607          * create an entry in the global affinity structure and initialize it.
608          */
609         if (!entry) {
610                 entry = node_affinity_allocate(dd->node);
611                 if (!entry) {
612                         dd_dev_err(dd,
613                                    "Unable to allocate global affinity node\n");
614                         ret = -ENOMEM;
615                         goto fail;
616                 }
617                 new_entry = true;
618
619                 init_cpu_mask_set(&entry->def_intr);
620                 init_cpu_mask_set(&entry->rcv_intr);
621                 cpumask_clear(&entry->comp_vect_mask);
622                 cpumask_clear(&entry->general_intr_mask);
623                 /* Use the "real" cpu mask of this node as the default */
624                 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
625                             local_mask);
626
627                 /* fill in the receive list */
628                 possible = cpumask_weight(&entry->def_intr.mask);
629                 curr_cpu = cpumask_first(&entry->def_intr.mask);
630
631                 if (possible == 1) {
632                         /* only one CPU, everyone will use it */
633                         cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
634                         cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
635                 } else {
636                         /*
637                          * The general/control context will be the first CPU in
638                          * the default list, so it is removed from the default
639                          * list and added to the general interrupt list.
640                          */
641                         cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
642                         cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
643                         curr_cpu = cpumask_next(curr_cpu,
644                                                 &entry->def_intr.mask);
645
646                         /*
647                          * Remove the remaining kernel receive queues from
648                          * the default list and add them to the receive list.
649                          */
650                         for (i = 0;
651                              i < (dd->n_krcv_queues - 1) *
652                                   hfi1_per_node_cntr[dd->node];
653                              i++) {
654                                 cpumask_clear_cpu(curr_cpu,
655                                                   &entry->def_intr.mask);
656                                 cpumask_set_cpu(curr_cpu,
657                                                 &entry->rcv_intr.mask);
658                                 curr_cpu = cpumask_next(curr_cpu,
659                                                         &entry->def_intr.mask);
660                                 if (curr_cpu >= nr_cpu_ids)
661                                         break;
662                         }
663
664                         /*
665                          * If there ends up being 0 CPU cores leftover for SDMA
666                          * engines, use the same CPU cores as general/control
667                          * context.
668                          */
669                         if (cpumask_empty(&entry->def_intr.mask))
670                                 cpumask_copy(&entry->def_intr.mask,
671                                              &entry->general_intr_mask);
672                 }
673
674                 /* Determine completion vector CPUs for the entire node */
675                 cpumask_and(&entry->comp_vect_mask,
676                             &node_affinity.real_cpu_mask, local_mask);
677                 cpumask_andnot(&entry->comp_vect_mask,
678                                &entry->comp_vect_mask,
679                                &entry->rcv_intr.mask);
680                 cpumask_andnot(&entry->comp_vect_mask,
681                                &entry->comp_vect_mask,
682                                &entry->general_intr_mask);
683
684                 /*
685                  * If there ends up being 0 CPU cores leftover for completion
686                  * vectors, use the same CPU core as the general/control
687                  * context.
688                  */
689                 if (cpumask_empty(&entry->comp_vect_mask))
690                         cpumask_copy(&entry->comp_vect_mask,
691                                      &entry->general_intr_mask);
692         }
693
694         ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
695         if (ret < 0)
696                 goto fail;
697
698         if (new_entry)
699                 node_affinity_add_tail(entry);
700
701         dd->affinity_entry = entry;
702         mutex_unlock(&node_affinity.lock);
703
704         return 0;
705
706 fail:
707         if (new_entry)
708                 node_affinity_destroy(entry);
709         mutex_unlock(&node_affinity.lock);
710         return ret;
711 }
712
713 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
714 {
715         struct hfi1_affinity_node *entry;
716
717         mutex_lock(&node_affinity.lock);
718         if (!dd->affinity_entry)
719                 goto unlock;
720         entry = node_affinity_lookup(dd->node);
721         if (!entry)
722                 goto unlock;
723
724         /*
725          * Free device completion vector CPUs to be used by future
726          * completion vectors
727          */
728         _dev_comp_vect_cpu_mask_clean_up(dd, entry);
729 unlock:
730         dd->affinity_entry = NULL;
731         mutex_unlock(&node_affinity.lock);
732 }
733
734 /*
735  * Function updates the irq affinity hint for msix after it has been changed
736  * by the user using the /proc/irq interface. This function only accepts
737  * one cpu in the mask.
738  */
739 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
740 {
741         struct sdma_engine *sde = msix->arg;
742         struct hfi1_devdata *dd = sde->dd;
743         struct hfi1_affinity_node *entry;
744         struct cpu_mask_set *set;
745         int i, old_cpu;
746
747         if (cpu > num_online_cpus() || cpu == sde->cpu)
748                 return;
749
750         mutex_lock(&node_affinity.lock);
751         entry = node_affinity_lookup(dd->node);
752         if (!entry)
753                 goto unlock;
754
755         old_cpu = sde->cpu;
756         sde->cpu = cpu;
757         cpumask_clear(&msix->mask);
758         cpumask_set_cpu(cpu, &msix->mask);
759         dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
760                    msix->irq, irq_type_names[msix->type],
761                    sde->this_idx, cpu);
762         irq_set_affinity_hint(msix->irq, &msix->mask);
763
764         /*
765          * Set the new cpu in the hfi1_affinity_node and clean
766          * the old cpu if it is not used by any other IRQ
767          */
768         set = &entry->def_intr;
769         cpumask_set_cpu(cpu, &set->mask);
770         cpumask_set_cpu(cpu, &set->used);
771         for (i = 0; i < dd->msix_info.max_requested; i++) {
772                 struct hfi1_msix_entry *other_msix;
773
774                 other_msix = &dd->msix_info.msix_entries[i];
775                 if (other_msix->type != IRQ_SDMA || other_msix == msix)
776                         continue;
777
778                 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
779                         goto unlock;
780         }
781         cpumask_clear_cpu(old_cpu, &set->mask);
782         cpumask_clear_cpu(old_cpu, &set->used);
783 unlock:
784         mutex_unlock(&node_affinity.lock);
785 }
786
787 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
788                                      const cpumask_t *mask)
789 {
790         int cpu = cpumask_first(mask);
791         struct hfi1_msix_entry *msix = container_of(notify,
792                                                     struct hfi1_msix_entry,
793                                                     notify);
794
795         /* Only one CPU configuration supported currently */
796         hfi1_update_sdma_affinity(msix, cpu);
797 }
798
799 static void hfi1_irq_notifier_release(struct kref *ref)
800 {
801         /*
802          * This is required by affinity notifier. We don't have anything to
803          * free here.
804          */
805 }
806
807 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
808 {
809         struct irq_affinity_notify *notify = &msix->notify;
810
811         notify->irq = msix->irq;
812         notify->notify = hfi1_irq_notifier_notify;
813         notify->release = hfi1_irq_notifier_release;
814
815         if (irq_set_affinity_notifier(notify->irq, notify))
816                 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
817                        notify->irq);
818 }
819
820 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
821 {
822         struct irq_affinity_notify *notify = &msix->notify;
823
824         if (irq_set_affinity_notifier(notify->irq, NULL))
825                 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
826                        notify->irq);
827 }
828
829 /*
830  * Function sets the irq affinity for msix.
831  * It *must* be called with node_affinity.lock held.
832  */
833 static int get_irq_affinity(struct hfi1_devdata *dd,
834                             struct hfi1_msix_entry *msix)
835 {
836         cpumask_var_t diff;
837         struct hfi1_affinity_node *entry;
838         struct cpu_mask_set *set = NULL;
839         struct sdma_engine *sde = NULL;
840         struct hfi1_ctxtdata *rcd = NULL;
841         char extra[64];
842         int cpu = -1;
843
844         extra[0] = '\0';
845         cpumask_clear(&msix->mask);
846
847         entry = node_affinity_lookup(dd->node);
848
849         switch (msix->type) {
850         case IRQ_SDMA:
851                 sde = (struct sdma_engine *)msix->arg;
852                 scnprintf(extra, 64, "engine %u", sde->this_idx);
853                 set = &entry->def_intr;
854                 break;
855         case IRQ_GENERAL:
856                 cpu = cpumask_first(&entry->general_intr_mask);
857                 break;
858         case IRQ_RCVCTXT:
859                 rcd = (struct hfi1_ctxtdata *)msix->arg;
860                 if (rcd->ctxt == HFI1_CTRL_CTXT)
861                         cpu = cpumask_first(&entry->general_intr_mask);
862                 else
863                         set = &entry->rcv_intr;
864                 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
865                 break;
866         case IRQ_NETDEVCTXT:
867                 rcd = (struct hfi1_ctxtdata *)msix->arg;
868                 set = &entry->def_intr;
869                 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
870                 break;
871         default:
872                 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
873                 return -EINVAL;
874         }
875
876         /*
877          * The general and control contexts are placed on a particular
878          * CPU, which is set above. Skip accounting for it. Everything else
879          * finds its CPU here.
880          */
881         if (cpu == -1 && set) {
882                 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
883                         return -ENOMEM;
884
885                 cpu = cpu_mask_set_get_first(set, diff);
886                 if (cpu < 0) {
887                         free_cpumask_var(diff);
888                         dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
889                         return cpu;
890                 }
891
892                 free_cpumask_var(diff);
893         }
894
895         cpumask_set_cpu(cpu, &msix->mask);
896         dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
897                     msix->irq, irq_type_names[msix->type],
898                     extra, cpu);
899         irq_set_affinity_hint(msix->irq, &msix->mask);
900
901         if (msix->type == IRQ_SDMA) {
902                 sde->cpu = cpu;
903                 hfi1_setup_sdma_notifier(msix);
904         }
905
906         return 0;
907 }
908
909 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
910 {
911         int ret;
912
913         mutex_lock(&node_affinity.lock);
914         ret = get_irq_affinity(dd, msix);
915         mutex_unlock(&node_affinity.lock);
916         return ret;
917 }
918
919 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
920                            struct hfi1_msix_entry *msix)
921 {
922         struct cpu_mask_set *set = NULL;
923         struct hfi1_affinity_node *entry;
924
925         mutex_lock(&node_affinity.lock);
926         entry = node_affinity_lookup(dd->node);
927
928         switch (msix->type) {
929         case IRQ_SDMA:
930                 set = &entry->def_intr;
931                 hfi1_cleanup_sdma_notifier(msix);
932                 break;
933         case IRQ_GENERAL:
934                 /* Don't do accounting for general contexts */
935                 break;
936         case IRQ_RCVCTXT: {
937                 struct hfi1_ctxtdata *rcd = msix->arg;
938
939                 /* Don't do accounting for control contexts */
940                 if (rcd->ctxt != HFI1_CTRL_CTXT)
941                         set = &entry->rcv_intr;
942                 break;
943         }
944         case IRQ_NETDEVCTXT:
945                 set = &entry->def_intr;
946                 break;
947         default:
948                 mutex_unlock(&node_affinity.lock);
949                 return;
950         }
951
952         if (set) {
953                 cpumask_andnot(&set->used, &set->used, &msix->mask);
954                 _cpu_mask_set_gen_dec(set);
955         }
956
957         irq_set_affinity_hint(msix->irq, NULL);
958         cpumask_clear(&msix->mask);
959         mutex_unlock(&node_affinity.lock);
960 }
961
962 /* This should be called with node_affinity.lock held */
963 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
964                                 struct hfi1_affinity_node_list *affinity)
965 {
966         int possible, curr_cpu, i;
967         uint num_cores_per_socket = node_affinity.num_online_cpus /
968                                         affinity->num_core_siblings /
969                                                 node_affinity.num_online_nodes;
970
971         cpumask_copy(hw_thread_mask, &affinity->proc.mask);
972         if (affinity->num_core_siblings > 0) {
973                 /* Removing other siblings not needed for now */
974                 possible = cpumask_weight(hw_thread_mask);
975                 curr_cpu = cpumask_first(hw_thread_mask);
976                 for (i = 0;
977                      i < num_cores_per_socket * node_affinity.num_online_nodes;
978                      i++)
979                         curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
980
981                 for (; i < possible; i++) {
982                         cpumask_clear_cpu(curr_cpu, hw_thread_mask);
983                         curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
984                 }
985
986                 /* Identifying correct HW threads within physical cores */
987                 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
988                                    num_cores_per_socket *
989                                    node_affinity.num_online_nodes *
990                                    hw_thread_no);
991         }
992 }
993
994 int hfi1_get_proc_affinity(int node)
995 {
996         int cpu = -1, ret, i;
997         struct hfi1_affinity_node *entry;
998         cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
999         const struct cpumask *node_mask,
1000                 *proc_mask = current->cpus_ptr;
1001         struct hfi1_affinity_node_list *affinity = &node_affinity;
1002         struct cpu_mask_set *set = &affinity->proc;
1003
1004         /*
1005          * check whether process/context affinity has already
1006          * been set
1007          */
1008         if (current->nr_cpus_allowed == 1) {
1009                 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1010                           current->pid, current->comm,
1011                           cpumask_pr_args(proc_mask));
1012                 /*
1013                  * Mark the pre-set CPU as used. This is atomic so we don't
1014                  * need the lock
1015                  */
1016                 cpu = cpumask_first(proc_mask);
1017                 cpumask_set_cpu(cpu, &set->used);
1018                 goto done;
1019         } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1020                 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1021                           current->pid, current->comm,
1022                           cpumask_pr_args(proc_mask));
1023                 goto done;
1024         }
1025
1026         /*
1027          * The process does not have a preset CPU affinity so find one to
1028          * recommend using the following algorithm:
1029          *
1030          * For each user process that is opening a context on HFI Y:
1031          *  a) If all cores are filled, reinitialize the bitmask
1032          *  b) Fill real cores first, then HT cores (First set of HT
1033          *     cores on all physical cores, then second set of HT core,
1034          *     and, so on) in the following order:
1035          *
1036          *     1. Same NUMA node as HFI Y and not running an IRQ
1037          *        handler
1038          *     2. Same NUMA node as HFI Y and running an IRQ handler
1039          *     3. Different NUMA node to HFI Y and not running an IRQ
1040          *        handler
1041          *     4. Different NUMA node to HFI Y and running an IRQ
1042          *        handler
1043          *  c) Mark core as filled in the bitmask. As user processes are
1044          *     done, clear cores from the bitmask.
1045          */
1046
1047         ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1048         if (!ret)
1049                 goto done;
1050         ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1051         if (!ret)
1052                 goto free_diff;
1053         ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1054         if (!ret)
1055                 goto free_hw_thread_mask;
1056         ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1057         if (!ret)
1058                 goto free_available_mask;
1059
1060         mutex_lock(&affinity->lock);
1061         /*
1062          * If we've used all available HW threads, clear the mask and start
1063          * overloading.
1064          */
1065         _cpu_mask_set_gen_inc(set);
1066
1067         /*
1068          * If NUMA node has CPUs used by interrupt handlers, include them in the
1069          * interrupt handler mask.
1070          */
1071         entry = node_affinity_lookup(node);
1072         if (entry) {
1073                 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1074                                           &entry->def_intr.mask :
1075                                           &entry->def_intr.used));
1076                 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1077                                                     &entry->rcv_intr.mask :
1078                                                     &entry->rcv_intr.used));
1079                 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1080         }
1081         hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1082                   cpumask_pr_args(intrs_mask));
1083
1084         cpumask_copy(hw_thread_mask, &set->mask);
1085
1086         /*
1087          * If HT cores are enabled, identify which HW threads within the
1088          * physical cores should be used.
1089          */
1090         if (affinity->num_core_siblings > 0) {
1091                 for (i = 0; i < affinity->num_core_siblings; i++) {
1092                         find_hw_thread_mask(i, hw_thread_mask, affinity);
1093
1094                         /*
1095                          * If there's at least one available core for this HW
1096                          * thread number, stop looking for a core.
1097                          *
1098                          * diff will always be not empty at least once in this
1099                          * loop as the used mask gets reset when
1100                          * (set->mask == set->used) before this loop.
1101                          */
1102                         cpumask_andnot(diff, hw_thread_mask, &set->used);
1103                         if (!cpumask_empty(diff))
1104                                 break;
1105                 }
1106         }
1107         hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1108                   cpumask_pr_args(hw_thread_mask));
1109
1110         node_mask = cpumask_of_node(node);
1111         hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1112                   cpumask_pr_args(node_mask));
1113
1114         /* Get cpumask of available CPUs on preferred NUMA */
1115         cpumask_and(available_mask, hw_thread_mask, node_mask);
1116         cpumask_andnot(available_mask, available_mask, &set->used);
1117         hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1118                   cpumask_pr_args(available_mask));
1119
1120         /*
1121          * At first, we don't want to place processes on the same
1122          * CPUs as interrupt handlers. Then, CPUs running interrupt
1123          * handlers are used.
1124          *
1125          * 1) If diff is not empty, then there are CPUs not running
1126          *    non-interrupt handlers available, so diff gets copied
1127          *    over to available_mask.
1128          * 2) If diff is empty, then all CPUs not running interrupt
1129          *    handlers are taken, so available_mask contains all
1130          *    available CPUs running interrupt handlers.
1131          * 3) If available_mask is empty, then all CPUs on the
1132          *    preferred NUMA node are taken, so other NUMA nodes are
1133          *    used for process assignments using the same method as
1134          *    the preferred NUMA node.
1135          */
1136         cpumask_andnot(diff, available_mask, intrs_mask);
1137         if (!cpumask_empty(diff))
1138                 cpumask_copy(available_mask, diff);
1139
1140         /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1141         if (cpumask_empty(available_mask)) {
1142                 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1143                 /* Excluding preferred NUMA cores */
1144                 cpumask_andnot(available_mask, available_mask, node_mask);
1145                 hfi1_cdbg(PROC,
1146                           "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1147                           cpumask_pr_args(available_mask));
1148
1149                 /*
1150                  * At first, we don't want to place processes on the same
1151                  * CPUs as interrupt handlers.
1152                  */
1153                 cpumask_andnot(diff, available_mask, intrs_mask);
1154                 if (!cpumask_empty(diff))
1155                         cpumask_copy(available_mask, diff);
1156         }
1157         hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1158                   cpumask_pr_args(available_mask));
1159
1160         cpu = cpumask_first(available_mask);
1161         if (cpu >= nr_cpu_ids) /* empty */
1162                 cpu = -1;
1163         else
1164                 cpumask_set_cpu(cpu, &set->used);
1165
1166         mutex_unlock(&affinity->lock);
1167         hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1168
1169         free_cpumask_var(intrs_mask);
1170 free_available_mask:
1171         free_cpumask_var(available_mask);
1172 free_hw_thread_mask:
1173         free_cpumask_var(hw_thread_mask);
1174 free_diff:
1175         free_cpumask_var(diff);
1176 done:
1177         return cpu;
1178 }
1179
1180 void hfi1_put_proc_affinity(int cpu)
1181 {
1182         struct hfi1_affinity_node_list *affinity = &node_affinity;
1183         struct cpu_mask_set *set = &affinity->proc;
1184
1185         if (cpu < 0)
1186                 return;
1187
1188         mutex_lock(&affinity->lock);
1189         cpu_mask_set_put(set, cpu);
1190         hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1191         mutex_unlock(&affinity->lock);
1192 }