IB/hfi1: make hist static
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / affinity.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5
6 #include <linux/topology.h>
7 #include <linux/cpumask.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/numa.h>
11
12 #include "hfi.h"
13 #include "affinity.h"
14 #include "sdma.h"
15 #include "trace.h"
16
17 struct hfi1_affinity_node_list node_affinity = {
18         .list = LIST_HEAD_INIT(node_affinity.list),
19         .lock = __MUTEX_INITIALIZER(node_affinity.lock)
20 };
21
22 /* Name of IRQ types, indexed by enum irq_type */
23 static const char * const irq_type_names[] = {
24         "SDMA",
25         "RCVCTXT",
26         "NETDEVCTXT",
27         "GENERAL",
28         "OTHER",
29 };
30
31 /* Per NUMA node count of HFI devices */
32 static unsigned int *hfi1_per_node_cntr;
33
34 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
35 {
36         cpumask_clear(&set->mask);
37         cpumask_clear(&set->used);
38         set->gen = 0;
39 }
40
41 /* Increment generation of CPU set if needed */
42 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
43 {
44         if (cpumask_equal(&set->mask, &set->used)) {
45                 /*
46                  * We've used up all the CPUs, bump up the generation
47                  * and reset the 'used' map
48                  */
49                 set->gen++;
50                 cpumask_clear(&set->used);
51         }
52 }
53
54 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
55 {
56         if (cpumask_empty(&set->used) && set->gen) {
57                 set->gen--;
58                 cpumask_copy(&set->used, &set->mask);
59         }
60 }
61
62 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
63 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
64 {
65         int cpu;
66
67         if (!diff || !set)
68                 return -EINVAL;
69
70         _cpu_mask_set_gen_inc(set);
71
72         /* Find out CPUs left in CPU mask */
73         cpumask_andnot(diff, &set->mask, &set->used);
74
75         cpu = cpumask_first(diff);
76         if (cpu >= nr_cpu_ids) /* empty */
77                 cpu = -EINVAL;
78         else
79                 cpumask_set_cpu(cpu, &set->used);
80
81         return cpu;
82 }
83
84 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
85 {
86         if (!set)
87                 return;
88
89         cpumask_clear_cpu(cpu, &set->used);
90         _cpu_mask_set_gen_dec(set);
91 }
92
93 /* Initialize non-HT cpu cores mask */
94 void init_real_cpu_mask(void)
95 {
96         int possible, curr_cpu, i, ht;
97
98         cpumask_clear(&node_affinity.real_cpu_mask);
99
100         /* Start with cpu online mask as the real cpu mask */
101         cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
102
103         /*
104          * Remove HT cores from the real cpu mask.  Do this in two steps below.
105          */
106         possible = cpumask_weight(&node_affinity.real_cpu_mask);
107         ht = cpumask_weight(topology_sibling_cpumask(
108                                 cpumask_first(&node_affinity.real_cpu_mask)));
109         /*
110          * Step 1.  Skip over the first N HT siblings and use them as the
111          * "real" cores.  Assumes that HT cores are not enumerated in
112          * succession (except in the single core case).
113          */
114         curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
115         for (i = 0; i < possible / ht; i++)
116                 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
117         /*
118          * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
119          * skip any gaps.
120          */
121         for (; i < possible; i++) {
122                 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
123                 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
124         }
125 }
126
127 int node_affinity_init(void)
128 {
129         int node;
130         struct pci_dev *dev = NULL;
131         const struct pci_device_id *ids = hfi1_pci_tbl;
132
133         cpumask_clear(&node_affinity.proc.used);
134         cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
135
136         node_affinity.proc.gen = 0;
137         node_affinity.num_core_siblings =
138                                 cpumask_weight(topology_sibling_cpumask(
139                                         cpumask_first(&node_affinity.proc.mask)
140                                         ));
141         node_affinity.num_possible_nodes = num_possible_nodes();
142         node_affinity.num_online_nodes = num_online_nodes();
143         node_affinity.num_online_cpus = num_online_cpus();
144
145         /*
146          * The real cpu mask is part of the affinity struct but it has to be
147          * initialized early. It is needed to calculate the number of user
148          * contexts in set_up_context_variables().
149          */
150         init_real_cpu_mask();
151
152         hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
153                                      sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
154         if (!hfi1_per_node_cntr)
155                 return -ENOMEM;
156
157         while (ids->vendor) {
158                 dev = NULL;
159                 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
160                         node = pcibus_to_node(dev->bus);
161                         if (node < 0)
162                                 goto out;
163
164                         hfi1_per_node_cntr[node]++;
165                 }
166                 ids++;
167         }
168
169         return 0;
170
171 out:
172         /*
173          * Invalid PCI NUMA node information found, note it, and populate
174          * our database 1:1.
175          */
176         pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
177         pr_err("HFI: System BIOS may need to be upgraded\n");
178         for (node = 0; node < node_affinity.num_possible_nodes; node++)
179                 hfi1_per_node_cntr[node] = 1;
180
181         return 0;
182 }
183
184 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
185 {
186         free_percpu(entry->comp_vect_affinity);
187         kfree(entry);
188 }
189
190 void node_affinity_destroy_all(void)
191 {
192         struct list_head *pos, *q;
193         struct hfi1_affinity_node *entry;
194
195         mutex_lock(&node_affinity.lock);
196         list_for_each_safe(pos, q, &node_affinity.list) {
197                 entry = list_entry(pos, struct hfi1_affinity_node,
198                                    list);
199                 list_del(pos);
200                 node_affinity_destroy(entry);
201         }
202         mutex_unlock(&node_affinity.lock);
203         kfree(hfi1_per_node_cntr);
204 }
205
206 static struct hfi1_affinity_node *node_affinity_allocate(int node)
207 {
208         struct hfi1_affinity_node *entry;
209
210         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
211         if (!entry)
212                 return NULL;
213         entry->node = node;
214         entry->comp_vect_affinity = alloc_percpu(u16);
215         INIT_LIST_HEAD(&entry->list);
216
217         return entry;
218 }
219
220 /*
221  * It appends an entry to the list.
222  * It *must* be called with node_affinity.lock held.
223  */
224 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
225 {
226         list_add_tail(&entry->list, &node_affinity.list);
227 }
228
229 /* It must be called with node_affinity.lock held */
230 static struct hfi1_affinity_node *node_affinity_lookup(int node)
231 {
232         struct list_head *pos;
233         struct hfi1_affinity_node *entry;
234
235         list_for_each(pos, &node_affinity.list) {
236                 entry = list_entry(pos, struct hfi1_affinity_node, list);
237                 if (entry->node == node)
238                         return entry;
239         }
240
241         return NULL;
242 }
243
244 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
245                                 u16 __percpu *comp_vect_affinity)
246 {
247         int curr_cpu;
248         u16 cntr;
249         u16 prev_cntr;
250         int ret_cpu;
251
252         if (!possible_cpumask) {
253                 ret_cpu = -EINVAL;
254                 goto fail;
255         }
256
257         if (!comp_vect_affinity) {
258                 ret_cpu = -EINVAL;
259                 goto fail;
260         }
261
262         ret_cpu = cpumask_first(possible_cpumask);
263         if (ret_cpu >= nr_cpu_ids) {
264                 ret_cpu = -EINVAL;
265                 goto fail;
266         }
267
268         prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
269         for_each_cpu(curr_cpu, possible_cpumask) {
270                 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
271
272                 if (cntr < prev_cntr) {
273                         ret_cpu = curr_cpu;
274                         prev_cntr = cntr;
275                 }
276         }
277
278         *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
279
280 fail:
281         return ret_cpu;
282 }
283
284 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
285                                     u16 __percpu *comp_vect_affinity)
286 {
287         int curr_cpu;
288         int max_cpu;
289         u16 cntr;
290         u16 prev_cntr;
291
292         if (!possible_cpumask)
293                 return -EINVAL;
294
295         if (!comp_vect_affinity)
296                 return -EINVAL;
297
298         max_cpu = cpumask_first(possible_cpumask);
299         if (max_cpu >= nr_cpu_ids)
300                 return -EINVAL;
301
302         prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
303         for_each_cpu(curr_cpu, possible_cpumask) {
304                 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
305
306                 if (cntr > prev_cntr) {
307                         max_cpu = curr_cpu;
308                         prev_cntr = cntr;
309                 }
310         }
311
312         *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
313
314         return max_cpu;
315 }
316
317 /*
318  * Non-interrupt CPUs are used first, then interrupt CPUs.
319  * Two already allocated cpu masks must be passed.
320  */
321 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
322                                   struct hfi1_affinity_node *entry,
323                                   cpumask_var_t non_intr_cpus,
324                                   cpumask_var_t available_cpus)
325         __must_hold(&node_affinity.lock)
326 {
327         int cpu;
328         struct cpu_mask_set *set = dd->comp_vect;
329
330         lockdep_assert_held(&node_affinity.lock);
331         if (!non_intr_cpus) {
332                 cpu = -1;
333                 goto fail;
334         }
335
336         if (!available_cpus) {
337                 cpu = -1;
338                 goto fail;
339         }
340
341         /* Available CPUs for pinning completion vectors */
342         _cpu_mask_set_gen_inc(set);
343         cpumask_andnot(available_cpus, &set->mask, &set->used);
344
345         /* Available CPUs without SDMA engine interrupts */
346         cpumask_andnot(non_intr_cpus, available_cpus,
347                        &entry->def_intr.used);
348
349         /* If there are non-interrupt CPUs available, use them first */
350         if (!cpumask_empty(non_intr_cpus))
351                 cpu = cpumask_first(non_intr_cpus);
352         else /* Otherwise, use interrupt CPUs */
353                 cpu = cpumask_first(available_cpus);
354
355         if (cpu >= nr_cpu_ids) { /* empty */
356                 cpu = -1;
357                 goto fail;
358         }
359         cpumask_set_cpu(cpu, &set->used);
360
361 fail:
362         return cpu;
363 }
364
365 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
366 {
367         struct cpu_mask_set *set = dd->comp_vect;
368
369         if (cpu < 0)
370                 return;
371
372         cpu_mask_set_put(set, cpu);
373 }
374
375 /* _dev_comp_vect_mappings_destroy() is reentrant */
376 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
377 {
378         int i, cpu;
379
380         if (!dd->comp_vect_mappings)
381                 return;
382
383         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
384                 cpu = dd->comp_vect_mappings[i];
385                 _dev_comp_vect_cpu_put(dd, cpu);
386                 dd->comp_vect_mappings[i] = -1;
387                 hfi1_cdbg(AFFINITY,
388                           "[%s] Release CPU %d from completion vector %d",
389                           rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
390         }
391
392         kfree(dd->comp_vect_mappings);
393         dd->comp_vect_mappings = NULL;
394 }
395
396 /*
397  * This function creates the table for looking up CPUs for completion vectors.
398  * num_comp_vectors needs to have been initilized before calling this function.
399  */
400 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
401                                           struct hfi1_affinity_node *entry)
402         __must_hold(&node_affinity.lock)
403 {
404         int i, cpu, ret;
405         cpumask_var_t non_intr_cpus;
406         cpumask_var_t available_cpus;
407
408         lockdep_assert_held(&node_affinity.lock);
409
410         if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
411                 return -ENOMEM;
412
413         if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
414                 free_cpumask_var(non_intr_cpus);
415                 return -ENOMEM;
416         }
417
418         dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
419                                          sizeof(*dd->comp_vect_mappings),
420                                          GFP_KERNEL);
421         if (!dd->comp_vect_mappings) {
422                 ret = -ENOMEM;
423                 goto fail;
424         }
425         for (i = 0; i < dd->comp_vect_possible_cpus; i++)
426                 dd->comp_vect_mappings[i] = -1;
427
428         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
429                 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
430                                              available_cpus);
431                 if (cpu < 0) {
432                         ret = -EINVAL;
433                         goto fail;
434                 }
435
436                 dd->comp_vect_mappings[i] = cpu;
437                 hfi1_cdbg(AFFINITY,
438                           "[%s] Completion Vector %d -> CPU %d",
439                           rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
440         }
441
442         free_cpumask_var(available_cpus);
443         free_cpumask_var(non_intr_cpus);
444         return 0;
445
446 fail:
447         free_cpumask_var(available_cpus);
448         free_cpumask_var(non_intr_cpus);
449         _dev_comp_vect_mappings_destroy(dd);
450
451         return ret;
452 }
453
454 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
455 {
456         int ret;
457         struct hfi1_affinity_node *entry;
458
459         mutex_lock(&node_affinity.lock);
460         entry = node_affinity_lookup(dd->node);
461         if (!entry) {
462                 ret = -EINVAL;
463                 goto unlock;
464         }
465         ret = _dev_comp_vect_mappings_create(dd, entry);
466 unlock:
467         mutex_unlock(&node_affinity.lock);
468
469         return ret;
470 }
471
472 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
473 {
474         _dev_comp_vect_mappings_destroy(dd);
475 }
476
477 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
478 {
479         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
480         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
481
482         if (!dd->comp_vect_mappings)
483                 return -EINVAL;
484         if (comp_vect >= dd->comp_vect_possible_cpus)
485                 return -EINVAL;
486
487         return dd->comp_vect_mappings[comp_vect];
488 }
489
490 /*
491  * It assumes dd->comp_vect_possible_cpus is available.
492  */
493 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
494                                         struct hfi1_affinity_node *entry,
495                                         bool first_dev_init)
496         __must_hold(&node_affinity.lock)
497 {
498         int i, j, curr_cpu;
499         int possible_cpus_comp_vect = 0;
500         struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
501
502         lockdep_assert_held(&node_affinity.lock);
503         /*
504          * If there's only one CPU available for completion vectors, then
505          * there will only be one completion vector available. Othewise,
506          * the number of completion vector available will be the number of
507          * available CPUs divide it by the number of devices in the
508          * local NUMA node.
509          */
510         if (cpumask_weight(&entry->comp_vect_mask) == 1) {
511                 possible_cpus_comp_vect = 1;
512                 dd_dev_warn(dd,
513                             "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
514         } else {
515                 possible_cpus_comp_vect +=
516                         cpumask_weight(&entry->comp_vect_mask) /
517                                        hfi1_per_node_cntr[dd->node];
518
519                 /*
520                  * If the completion vector CPUs available doesn't divide
521                  * evenly among devices, then the first device device to be
522                  * initialized gets an extra CPU.
523                  */
524                 if (first_dev_init &&
525                     cpumask_weight(&entry->comp_vect_mask) %
526                     hfi1_per_node_cntr[dd->node] != 0)
527                         possible_cpus_comp_vect++;
528         }
529
530         dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
531
532         /* Reserving CPUs for device completion vector */
533         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
534                 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
535                                                 entry->comp_vect_affinity);
536                 if (curr_cpu < 0)
537                         goto fail;
538
539                 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
540         }
541
542         hfi1_cdbg(AFFINITY,
543                   "[%s] Completion vector affinity CPU set(s) %*pbl",
544                   rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
545                   cpumask_pr_args(dev_comp_vect_mask));
546
547         return 0;
548
549 fail:
550         for (j = 0; j < i; j++)
551                 per_cpu_affinity_put_max(&entry->comp_vect_mask,
552                                          entry->comp_vect_affinity);
553
554         return curr_cpu;
555 }
556
557 /*
558  * It assumes dd->comp_vect_possible_cpus is available.
559  */
560 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
561                                              struct hfi1_affinity_node *entry)
562         __must_hold(&node_affinity.lock)
563 {
564         int i, cpu;
565
566         lockdep_assert_held(&node_affinity.lock);
567         if (!dd->comp_vect_possible_cpus)
568                 return;
569
570         for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
571                 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
572                                                entry->comp_vect_affinity);
573                 /* Clearing CPU in device completion vector cpu mask */
574                 if (cpu >= 0)
575                         cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
576         }
577
578         dd->comp_vect_possible_cpus = 0;
579 }
580
581 /*
582  * Interrupt affinity.
583  *
584  * non-rcv avail gets a default mask that
585  * starts as possible cpus with threads reset
586  * and each rcv avail reset.
587  *
588  * rcv avail gets node relative 1 wrapping back
589  * to the node relative 1 as necessary.
590  *
591  */
592 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
593 {
594         struct hfi1_affinity_node *entry;
595         const struct cpumask *local_mask;
596         int curr_cpu, possible, i, ret;
597         bool new_entry = false;
598
599         local_mask = cpumask_of_node(dd->node);
600         if (cpumask_first(local_mask) >= nr_cpu_ids)
601                 local_mask = topology_core_cpumask(0);
602
603         mutex_lock(&node_affinity.lock);
604         entry = node_affinity_lookup(dd->node);
605
606         /*
607          * If this is the first time this NUMA node's affinity is used,
608          * create an entry in the global affinity structure and initialize it.
609          */
610         if (!entry) {
611                 entry = node_affinity_allocate(dd->node);
612                 if (!entry) {
613                         dd_dev_err(dd,
614                                    "Unable to allocate global affinity node\n");
615                         ret = -ENOMEM;
616                         goto fail;
617                 }
618                 new_entry = true;
619
620                 init_cpu_mask_set(&entry->def_intr);
621                 init_cpu_mask_set(&entry->rcv_intr);
622                 cpumask_clear(&entry->comp_vect_mask);
623                 cpumask_clear(&entry->general_intr_mask);
624                 /* Use the "real" cpu mask of this node as the default */
625                 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
626                             local_mask);
627
628                 /* fill in the receive list */
629                 possible = cpumask_weight(&entry->def_intr.mask);
630                 curr_cpu = cpumask_first(&entry->def_intr.mask);
631
632                 if (possible == 1) {
633                         /* only one CPU, everyone will use it */
634                         cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
635                         cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
636                 } else {
637                         /*
638                          * The general/control context will be the first CPU in
639                          * the default list, so it is removed from the default
640                          * list and added to the general interrupt list.
641                          */
642                         cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
643                         cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
644                         curr_cpu = cpumask_next(curr_cpu,
645                                                 &entry->def_intr.mask);
646
647                         /*
648                          * Remove the remaining kernel receive queues from
649                          * the default list and add them to the receive list.
650                          */
651                         for (i = 0;
652                              i < (dd->n_krcv_queues - 1) *
653                                   hfi1_per_node_cntr[dd->node];
654                              i++) {
655                                 cpumask_clear_cpu(curr_cpu,
656                                                   &entry->def_intr.mask);
657                                 cpumask_set_cpu(curr_cpu,
658                                                 &entry->rcv_intr.mask);
659                                 curr_cpu = cpumask_next(curr_cpu,
660                                                         &entry->def_intr.mask);
661                                 if (curr_cpu >= nr_cpu_ids)
662                                         break;
663                         }
664
665                         /*
666                          * If there ends up being 0 CPU cores leftover for SDMA
667                          * engines, use the same CPU cores as general/control
668                          * context.
669                          */
670                         if (cpumask_weight(&entry->def_intr.mask) == 0)
671                                 cpumask_copy(&entry->def_intr.mask,
672                                              &entry->general_intr_mask);
673                 }
674
675                 /* Determine completion vector CPUs for the entire node */
676                 cpumask_and(&entry->comp_vect_mask,
677                             &node_affinity.real_cpu_mask, local_mask);
678                 cpumask_andnot(&entry->comp_vect_mask,
679                                &entry->comp_vect_mask,
680                                &entry->rcv_intr.mask);
681                 cpumask_andnot(&entry->comp_vect_mask,
682                                &entry->comp_vect_mask,
683                                &entry->general_intr_mask);
684
685                 /*
686                  * If there ends up being 0 CPU cores leftover for completion
687                  * vectors, use the same CPU core as the general/control
688                  * context.
689                  */
690                 if (cpumask_weight(&entry->comp_vect_mask) == 0)
691                         cpumask_copy(&entry->comp_vect_mask,
692                                      &entry->general_intr_mask);
693         }
694
695         ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
696         if (ret < 0)
697                 goto fail;
698
699         if (new_entry)
700                 node_affinity_add_tail(entry);
701
702         dd->affinity_entry = entry;
703         mutex_unlock(&node_affinity.lock);
704
705         return 0;
706
707 fail:
708         if (new_entry)
709                 node_affinity_destroy(entry);
710         mutex_unlock(&node_affinity.lock);
711         return ret;
712 }
713
714 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
715 {
716         struct hfi1_affinity_node *entry;
717
718         mutex_lock(&node_affinity.lock);
719         if (!dd->affinity_entry)
720                 goto unlock;
721         entry = node_affinity_lookup(dd->node);
722         if (!entry)
723                 goto unlock;
724
725         /*
726          * Free device completion vector CPUs to be used by future
727          * completion vectors
728          */
729         _dev_comp_vect_cpu_mask_clean_up(dd, entry);
730 unlock:
731         dd->affinity_entry = NULL;
732         mutex_unlock(&node_affinity.lock);
733 }
734
735 /*
736  * Function updates the irq affinity hint for msix after it has been changed
737  * by the user using the /proc/irq interface. This function only accepts
738  * one cpu in the mask.
739  */
740 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
741 {
742         struct sdma_engine *sde = msix->arg;
743         struct hfi1_devdata *dd = sde->dd;
744         struct hfi1_affinity_node *entry;
745         struct cpu_mask_set *set;
746         int i, old_cpu;
747
748         if (cpu > num_online_cpus() || cpu == sde->cpu)
749                 return;
750
751         mutex_lock(&node_affinity.lock);
752         entry = node_affinity_lookup(dd->node);
753         if (!entry)
754                 goto unlock;
755
756         old_cpu = sde->cpu;
757         sde->cpu = cpu;
758         cpumask_clear(&msix->mask);
759         cpumask_set_cpu(cpu, &msix->mask);
760         dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
761                    msix->irq, irq_type_names[msix->type],
762                    sde->this_idx, cpu);
763         irq_set_affinity_hint(msix->irq, &msix->mask);
764
765         /*
766          * Set the new cpu in the hfi1_affinity_node and clean
767          * the old cpu if it is not used by any other IRQ
768          */
769         set = &entry->def_intr;
770         cpumask_set_cpu(cpu, &set->mask);
771         cpumask_set_cpu(cpu, &set->used);
772         for (i = 0; i < dd->msix_info.max_requested; i++) {
773                 struct hfi1_msix_entry *other_msix;
774
775                 other_msix = &dd->msix_info.msix_entries[i];
776                 if (other_msix->type != IRQ_SDMA || other_msix == msix)
777                         continue;
778
779                 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
780                         goto unlock;
781         }
782         cpumask_clear_cpu(old_cpu, &set->mask);
783         cpumask_clear_cpu(old_cpu, &set->used);
784 unlock:
785         mutex_unlock(&node_affinity.lock);
786 }
787
788 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
789                                      const cpumask_t *mask)
790 {
791         int cpu = cpumask_first(mask);
792         struct hfi1_msix_entry *msix = container_of(notify,
793                                                     struct hfi1_msix_entry,
794                                                     notify);
795
796         /* Only one CPU configuration supported currently */
797         hfi1_update_sdma_affinity(msix, cpu);
798 }
799
800 static void hfi1_irq_notifier_release(struct kref *ref)
801 {
802         /*
803          * This is required by affinity notifier. We don't have anything to
804          * free here.
805          */
806 }
807
808 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
809 {
810         struct irq_affinity_notify *notify = &msix->notify;
811
812         notify->irq = msix->irq;
813         notify->notify = hfi1_irq_notifier_notify;
814         notify->release = hfi1_irq_notifier_release;
815
816         if (irq_set_affinity_notifier(notify->irq, notify))
817                 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
818                        notify->irq);
819 }
820
821 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
822 {
823         struct irq_affinity_notify *notify = &msix->notify;
824
825         if (irq_set_affinity_notifier(notify->irq, NULL))
826                 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
827                        notify->irq);
828 }
829
830 /*
831  * Function sets the irq affinity for msix.
832  * It *must* be called with node_affinity.lock held.
833  */
834 static int get_irq_affinity(struct hfi1_devdata *dd,
835                             struct hfi1_msix_entry *msix)
836 {
837         cpumask_var_t diff;
838         struct hfi1_affinity_node *entry;
839         struct cpu_mask_set *set = NULL;
840         struct sdma_engine *sde = NULL;
841         struct hfi1_ctxtdata *rcd = NULL;
842         char extra[64];
843         int cpu = -1;
844
845         extra[0] = '\0';
846         cpumask_clear(&msix->mask);
847
848         entry = node_affinity_lookup(dd->node);
849
850         switch (msix->type) {
851         case IRQ_SDMA:
852                 sde = (struct sdma_engine *)msix->arg;
853                 scnprintf(extra, 64, "engine %u", sde->this_idx);
854                 set = &entry->def_intr;
855                 break;
856         case IRQ_GENERAL:
857                 cpu = cpumask_first(&entry->general_intr_mask);
858                 break;
859         case IRQ_RCVCTXT:
860                 rcd = (struct hfi1_ctxtdata *)msix->arg;
861                 if (rcd->ctxt == HFI1_CTRL_CTXT)
862                         cpu = cpumask_first(&entry->general_intr_mask);
863                 else
864                         set = &entry->rcv_intr;
865                 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
866                 break;
867         case IRQ_NETDEVCTXT:
868                 rcd = (struct hfi1_ctxtdata *)msix->arg;
869                 set = &entry->def_intr;
870                 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
871                 break;
872         default:
873                 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
874                 return -EINVAL;
875         }
876
877         /*
878          * The general and control contexts are placed on a particular
879          * CPU, which is set above. Skip accounting for it. Everything else
880          * finds its CPU here.
881          */
882         if (cpu == -1 && set) {
883                 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
884                         return -ENOMEM;
885
886                 cpu = cpu_mask_set_get_first(set, diff);
887                 if (cpu < 0) {
888                         free_cpumask_var(diff);
889                         dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
890                         return cpu;
891                 }
892
893                 free_cpumask_var(diff);
894         }
895
896         cpumask_set_cpu(cpu, &msix->mask);
897         dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
898                     msix->irq, irq_type_names[msix->type],
899                     extra, cpu);
900         irq_set_affinity_hint(msix->irq, &msix->mask);
901
902         if (msix->type == IRQ_SDMA) {
903                 sde->cpu = cpu;
904                 hfi1_setup_sdma_notifier(msix);
905         }
906
907         return 0;
908 }
909
910 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
911 {
912         int ret;
913
914         mutex_lock(&node_affinity.lock);
915         ret = get_irq_affinity(dd, msix);
916         mutex_unlock(&node_affinity.lock);
917         return ret;
918 }
919
920 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
921                            struct hfi1_msix_entry *msix)
922 {
923         struct cpu_mask_set *set = NULL;
924         struct hfi1_affinity_node *entry;
925
926         mutex_lock(&node_affinity.lock);
927         entry = node_affinity_lookup(dd->node);
928
929         switch (msix->type) {
930         case IRQ_SDMA:
931                 set = &entry->def_intr;
932                 hfi1_cleanup_sdma_notifier(msix);
933                 break;
934         case IRQ_GENERAL:
935                 /* Don't do accounting for general contexts */
936                 break;
937         case IRQ_RCVCTXT: {
938                 struct hfi1_ctxtdata *rcd = msix->arg;
939
940                 /* Don't do accounting for control contexts */
941                 if (rcd->ctxt != HFI1_CTRL_CTXT)
942                         set = &entry->rcv_intr;
943                 break;
944         }
945         case IRQ_NETDEVCTXT:
946                 set = &entry->def_intr;
947                 break;
948         default:
949                 mutex_unlock(&node_affinity.lock);
950                 return;
951         }
952
953         if (set) {
954                 cpumask_andnot(&set->used, &set->used, &msix->mask);
955                 _cpu_mask_set_gen_dec(set);
956         }
957
958         irq_set_affinity_hint(msix->irq, NULL);
959         cpumask_clear(&msix->mask);
960         mutex_unlock(&node_affinity.lock);
961 }
962
963 /* This should be called with node_affinity.lock held */
964 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
965                                 struct hfi1_affinity_node_list *affinity)
966 {
967         int possible, curr_cpu, i;
968         uint num_cores_per_socket = node_affinity.num_online_cpus /
969                                         affinity->num_core_siblings /
970                                                 node_affinity.num_online_nodes;
971
972         cpumask_copy(hw_thread_mask, &affinity->proc.mask);
973         if (affinity->num_core_siblings > 0) {
974                 /* Removing other siblings not needed for now */
975                 possible = cpumask_weight(hw_thread_mask);
976                 curr_cpu = cpumask_first(hw_thread_mask);
977                 for (i = 0;
978                      i < num_cores_per_socket * node_affinity.num_online_nodes;
979                      i++)
980                         curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
981
982                 for (; i < possible; i++) {
983                         cpumask_clear_cpu(curr_cpu, hw_thread_mask);
984                         curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
985                 }
986
987                 /* Identifying correct HW threads within physical cores */
988                 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
989                                    num_cores_per_socket *
990                                    node_affinity.num_online_nodes *
991                                    hw_thread_no);
992         }
993 }
994
995 int hfi1_get_proc_affinity(int node)
996 {
997         int cpu = -1, ret, i;
998         struct hfi1_affinity_node *entry;
999         cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1000         const struct cpumask *node_mask,
1001                 *proc_mask = current->cpus_ptr;
1002         struct hfi1_affinity_node_list *affinity = &node_affinity;
1003         struct cpu_mask_set *set = &affinity->proc;
1004
1005         /*
1006          * check whether process/context affinity has already
1007          * been set
1008          */
1009         if (current->nr_cpus_allowed == 1) {
1010                 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1011                           current->pid, current->comm,
1012                           cpumask_pr_args(proc_mask));
1013                 /*
1014                  * Mark the pre-set CPU as used. This is atomic so we don't
1015                  * need the lock
1016                  */
1017                 cpu = cpumask_first(proc_mask);
1018                 cpumask_set_cpu(cpu, &set->used);
1019                 goto done;
1020         } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1021                 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1022                           current->pid, current->comm,
1023                           cpumask_pr_args(proc_mask));
1024                 goto done;
1025         }
1026
1027         /*
1028          * The process does not have a preset CPU affinity so find one to
1029          * recommend using the following algorithm:
1030          *
1031          * For each user process that is opening a context on HFI Y:
1032          *  a) If all cores are filled, reinitialize the bitmask
1033          *  b) Fill real cores first, then HT cores (First set of HT
1034          *     cores on all physical cores, then second set of HT core,
1035          *     and, so on) in the following order:
1036          *
1037          *     1. Same NUMA node as HFI Y and not running an IRQ
1038          *        handler
1039          *     2. Same NUMA node as HFI Y and running an IRQ handler
1040          *     3. Different NUMA node to HFI Y and not running an IRQ
1041          *        handler
1042          *     4. Different NUMA node to HFI Y and running an IRQ
1043          *        handler
1044          *  c) Mark core as filled in the bitmask. As user processes are
1045          *     done, clear cores from the bitmask.
1046          */
1047
1048         ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1049         if (!ret)
1050                 goto done;
1051         ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1052         if (!ret)
1053                 goto free_diff;
1054         ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1055         if (!ret)
1056                 goto free_hw_thread_mask;
1057         ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1058         if (!ret)
1059                 goto free_available_mask;
1060
1061         mutex_lock(&affinity->lock);
1062         /*
1063          * If we've used all available HW threads, clear the mask and start
1064          * overloading.
1065          */
1066         _cpu_mask_set_gen_inc(set);
1067
1068         /*
1069          * If NUMA node has CPUs used by interrupt handlers, include them in the
1070          * interrupt handler mask.
1071          */
1072         entry = node_affinity_lookup(node);
1073         if (entry) {
1074                 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1075                                           &entry->def_intr.mask :
1076                                           &entry->def_intr.used));
1077                 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1078                                                     &entry->rcv_intr.mask :
1079                                                     &entry->rcv_intr.used));
1080                 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1081         }
1082         hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1083                   cpumask_pr_args(intrs_mask));
1084
1085         cpumask_copy(hw_thread_mask, &set->mask);
1086
1087         /*
1088          * If HT cores are enabled, identify which HW threads within the
1089          * physical cores should be used.
1090          */
1091         if (affinity->num_core_siblings > 0) {
1092                 for (i = 0; i < affinity->num_core_siblings; i++) {
1093                         find_hw_thread_mask(i, hw_thread_mask, affinity);
1094
1095                         /*
1096                          * If there's at least one available core for this HW
1097                          * thread number, stop looking for a core.
1098                          *
1099                          * diff will always be not empty at least once in this
1100                          * loop as the used mask gets reset when
1101                          * (set->mask == set->used) before this loop.
1102                          */
1103                         cpumask_andnot(diff, hw_thread_mask, &set->used);
1104                         if (!cpumask_empty(diff))
1105                                 break;
1106                 }
1107         }
1108         hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1109                   cpumask_pr_args(hw_thread_mask));
1110
1111         node_mask = cpumask_of_node(node);
1112         hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1113                   cpumask_pr_args(node_mask));
1114
1115         /* Get cpumask of available CPUs on preferred NUMA */
1116         cpumask_and(available_mask, hw_thread_mask, node_mask);
1117         cpumask_andnot(available_mask, available_mask, &set->used);
1118         hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1119                   cpumask_pr_args(available_mask));
1120
1121         /*
1122          * At first, we don't want to place processes on the same
1123          * CPUs as interrupt handlers. Then, CPUs running interrupt
1124          * handlers are used.
1125          *
1126          * 1) If diff is not empty, then there are CPUs not running
1127          *    non-interrupt handlers available, so diff gets copied
1128          *    over to available_mask.
1129          * 2) If diff is empty, then all CPUs not running interrupt
1130          *    handlers are taken, so available_mask contains all
1131          *    available CPUs running interrupt handlers.
1132          * 3) If available_mask is empty, then all CPUs on the
1133          *    preferred NUMA node are taken, so other NUMA nodes are
1134          *    used for process assignments using the same method as
1135          *    the preferred NUMA node.
1136          */
1137         cpumask_andnot(diff, available_mask, intrs_mask);
1138         if (!cpumask_empty(diff))
1139                 cpumask_copy(available_mask, diff);
1140
1141         /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1142         if (cpumask_empty(available_mask)) {
1143                 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1144                 /* Excluding preferred NUMA cores */
1145                 cpumask_andnot(available_mask, available_mask, node_mask);
1146                 hfi1_cdbg(PROC,
1147                           "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1148                           cpumask_pr_args(available_mask));
1149
1150                 /*
1151                  * At first, we don't want to place processes on the same
1152                  * CPUs as interrupt handlers.
1153                  */
1154                 cpumask_andnot(diff, available_mask, intrs_mask);
1155                 if (!cpumask_empty(diff))
1156                         cpumask_copy(available_mask, diff);
1157         }
1158         hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1159                   cpumask_pr_args(available_mask));
1160
1161         cpu = cpumask_first(available_mask);
1162         if (cpu >= nr_cpu_ids) /* empty */
1163                 cpu = -1;
1164         else
1165                 cpumask_set_cpu(cpu, &set->used);
1166
1167         mutex_unlock(&affinity->lock);
1168         hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1169
1170         free_cpumask_var(intrs_mask);
1171 free_available_mask:
1172         free_cpumask_var(available_mask);
1173 free_hw_thread_mask:
1174         free_cpumask_var(hw_thread_mask);
1175 free_diff:
1176         free_cpumask_var(diff);
1177 done:
1178         return cpu;
1179 }
1180
1181 void hfi1_put_proc_affinity(int cpu)
1182 {
1183         struct hfi1_affinity_node_list *affinity = &node_affinity;
1184         struct cpu_mask_set *set = &affinity->proc;
1185
1186         if (cpu < 0)
1187                 return;
1188
1189         mutex_lock(&affinity->lock);
1190         cpu_mask_set_put(set, cpu);
1191         hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1192         mutex_unlock(&affinity->lock);
1193 }