2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <rdma/uverbs_ioctl.h>
37 static void destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
38 struct c4iw_dev_ucontext *uctx, struct sk_buff *skb,
39 struct c4iw_wr_wait *wr_waitp)
41 struct fw_ri_res_wr *res_wr;
42 struct fw_ri_res *res;
45 wr_len = sizeof(*res_wr) + sizeof(*res);
46 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
48 res_wr = __skb_put_zero(skb, wr_len);
49 res_wr->op_nres = cpu_to_be32(
50 FW_WR_OP_V(FW_RI_RES_WR) |
51 FW_RI_RES_WR_NRES_V(1) |
53 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
54 res_wr->cookie = (uintptr_t)wr_waitp;
56 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
57 res->u.cq.op = FW_RI_RES_OP_RESET;
58 res->u.cq.iqid = cpu_to_be32(cq->cqid);
60 c4iw_init_wr_wait(wr_waitp);
61 c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
64 dma_free_coherent(&(rdev->lldi.pdev->dev),
65 cq->memsize, cq->queue,
66 dma_unmap_addr(cq, mapping));
67 c4iw_put_cqid(rdev, cq->cqid, uctx);
70 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
71 struct c4iw_dev_ucontext *uctx,
72 struct c4iw_wr_wait *wr_waitp)
74 struct fw_ri_res_wr *res_wr;
75 struct fw_ri_res *res;
77 int user = (uctx != &rdev->uctx);
80 struct c4iw_ucontext *ucontext = NULL;
83 ucontext = container_of(uctx, struct c4iw_ucontext, uctx);
85 cq->cqid = c4iw_get_cqid(rdev, uctx);
92 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
98 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
99 &cq->dma_addr, GFP_KERNEL);
104 dma_unmap_addr_set(cq, mapping, cq->dma_addr);
106 if (user && ucontext->is_32b_cqe) {
107 cq->qp_errp = &((struct t4_status_page *)
108 ((u8 *)cq->queue + (cq->size - 1) *
109 (sizeof(*cq->queue) / 2)))->qp_err;
111 cq->qp_errp = &((struct t4_status_page *)
112 ((u8 *)cq->queue + (cq->size - 1) *
113 sizeof(*cq->queue)))->qp_err;
116 /* build fw_ri_res_wr */
117 wr_len = sizeof(*res_wr) + sizeof(*res);
119 skb = alloc_skb(wr_len, GFP_KERNEL);
124 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
126 res_wr = __skb_put_zero(skb, wr_len);
127 res_wr->op_nres = cpu_to_be32(
128 FW_WR_OP_V(FW_RI_RES_WR) |
129 FW_RI_RES_WR_NRES_V(1) |
131 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
132 res_wr->cookie = (uintptr_t)wr_waitp;
134 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
135 res->u.cq.op = FW_RI_RES_OP_WRITE;
136 res->u.cq.iqid = cpu_to_be32(cq->cqid);
137 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
138 FW_RI_RES_WR_IQANUS_V(0) |
139 FW_RI_RES_WR_IQANUD_V(1) |
140 FW_RI_RES_WR_IQANDST_F |
141 FW_RI_RES_WR_IQANDSTINDEX_V(
142 rdev->lldi.ciq_ids[cq->vector]));
143 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
144 FW_RI_RES_WR_IQDROPRSS_F |
145 FW_RI_RES_WR_IQPCIECH_V(2) |
146 FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
148 ((user && ucontext->is_32b_cqe) ?
149 FW_RI_RES_WR_IQESIZE_V(1) :
150 FW_RI_RES_WR_IQESIZE_V(2)));
151 res->u.cq.iqsize = cpu_to_be16(cq->size);
152 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
154 c4iw_init_wr_wait(wr_waitp);
155 ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
160 cq->gts = rdev->lldi.gts_reg;
163 cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, CXGB4_BAR2_QTYPE_INGRESS,
165 user ? &cq->bar2_pa : NULL);
166 if (user && !cq->bar2_pa) {
167 pr_warn("%s: cqid %u not in BAR2 range\n",
168 pci_name(rdev->lldi.pdev), cq->cqid);
174 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
175 dma_unmap_addr(cq, mapping));
179 c4iw_put_cqid(rdev, cq->cqid, uctx);
184 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq, u32 srqidx)
188 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
189 wq, cq, cq->sw_cidx, cq->sw_pidx);
190 memset(&cqe, 0, sizeof(cqe));
191 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
192 CQE_OPCODE_V(FW_RI_SEND) |
195 CQE_QPID_V(wq->sq.qid));
196 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
198 cqe.u.srcqe.abs_rqe_idx = cpu_to_be32(srqidx);
199 cq->sw_queue[cq->sw_pidx] = cqe;
203 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
206 int in_use = wq->rq.in_use - count;
208 pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
209 wq, cq, wq->rq.in_use, count);
211 insert_recv_cqe(wq, cq, 0);
217 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
218 struct t4_swsqe *swcqe)
222 pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
223 wq, cq, cq->sw_cidx, cq->sw_pidx);
224 memset(&cqe, 0, sizeof(cqe));
225 cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
226 CQE_OPCODE_V(swcqe->opcode) |
229 CQE_QPID_V(wq->sq.qid));
230 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
231 cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
232 cq->sw_queue[cq->sw_pidx] = cqe;
236 static void advance_oldest_read(struct t4_wq *wq);
238 int c4iw_flush_sq(struct c4iw_qp *qhp)
241 struct t4_wq *wq = &qhp->wq;
242 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
243 struct t4_cq *cq = &chp->cq;
245 struct t4_swsqe *swsqe;
247 if (wq->sq.flush_cidx == -1)
248 wq->sq.flush_cidx = wq->sq.cidx;
249 idx = wq->sq.flush_cidx;
250 while (idx != wq->sq.pidx) {
251 swsqe = &wq->sq.sw_sq[idx];
253 insert_sq_cqe(wq, cq, swsqe);
254 if (wq->sq.oldest_read == swsqe) {
255 advance_oldest_read(wq);
258 if (++idx == wq->sq.size)
261 wq->sq.flush_cidx += flushed;
262 if (wq->sq.flush_cidx >= wq->sq.size)
263 wq->sq.flush_cidx -= wq->sq.size;
267 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
269 struct t4_swsqe *swsqe;
272 if (wq->sq.flush_cidx == -1)
273 wq->sq.flush_cidx = wq->sq.cidx;
274 cidx = wq->sq.flush_cidx;
276 while (cidx != wq->sq.pidx) {
277 swsqe = &wq->sq.sw_sq[cidx];
278 if (!swsqe->signaled) {
279 if (++cidx == wq->sq.size)
281 } else if (swsqe->complete) {
284 * Insert this completed cqe into the swcq.
286 pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
288 swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
289 cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
292 if (++cidx == wq->sq.size)
294 wq->sq.flush_cidx = cidx;
300 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
301 struct t4_cqe *read_cqe)
303 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
304 read_cqe->len = htonl(wq->sq.oldest_read->read_len);
305 read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
306 CQE_SWCQE_V(SW_CQE(hw_cqe)) |
307 CQE_OPCODE_V(FW_RI_READ_REQ) |
309 read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
312 static void advance_oldest_read(struct t4_wq *wq)
315 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
317 if (rptr == wq->sq.size)
319 while (rptr != wq->sq.pidx) {
320 wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
322 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
324 if (++rptr == wq->sq.size)
327 wq->sq.oldest_read = NULL;
331 * Move all CQEs from the HWCQ into the SWCQ.
332 * Deal with out-of-order and/or completions that complete
333 * prior unsignalled WRs.
335 void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp)
337 struct t4_cqe *hw_cqe, *swcqe, read_cqe;
339 struct t4_swsqe *swsqe;
342 pr_debug("cqid 0x%x\n", chp->cq.cqid);
343 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
346 * This logic is similar to poll_cq(), but not quite the same
347 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
348 * also do any translation magic that poll_cq() normally does.
351 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
354 * drop CQEs with no associated QP
359 if (flush_qhp != qhp) {
360 spin_lock(&qhp->lock);
362 if (qhp->wq.flushed == 1)
366 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
369 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
371 /* If we have reached here because of async
372 * event or other error, and have egress error
375 if (CQE_TYPE(hw_cqe) == 1)
378 /* drop peer2peer RTR reads.
380 if (CQE_WRID_STAG(hw_cqe) == 1)
384 * Eat completions for unsignaled read WRs.
386 if (!qhp->wq.sq.oldest_read->signaled) {
387 advance_oldest_read(&qhp->wq);
392 * Don't write to the HWCQ, create a new read req CQE
393 * in local memory and move it into the swcq.
395 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
397 advance_oldest_read(&qhp->wq);
400 /* if its a SQ completion, then do the magic to move all the
401 * unsignaled and now in-order completions into the swcq.
403 if (SQ_TYPE(hw_cqe)) {
404 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
405 swsqe->cqe = *hw_cqe;
407 flush_completed_wrs(&qhp->wq, &chp->cq);
409 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
411 swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
412 t4_swcq_produce(&chp->cq);
415 t4_hwcq_consume(&chp->cq);
416 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
417 if (qhp && flush_qhp != qhp)
418 spin_unlock(&qhp->lock);
422 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
424 if (DRAIN_CQE(cqe)) {
425 WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid);
429 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
432 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
435 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
438 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
443 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
449 pr_debug("count zero %d\n", *count);
451 while (ptr != cq->sw_pidx) {
452 cqe = &cq->sw_queue[ptr];
453 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
454 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
456 if (++ptr == cq->size)
459 pr_debug("cq %p count %d\n", cq, *count);
462 static void post_pending_srq_wrs(struct t4_srq *srq)
464 struct t4_srq_pending_wr *pwr;
467 while (srq->pending_in_use) {
468 pwr = &srq->pending_wrs[srq->pending_cidx];
469 srq->sw_rq[srq->pidx].wr_id = pwr->wr_id;
470 srq->sw_rq[srq->pidx].valid = 1;
472 pr_debug("%s posting pending cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
474 srq->cidx, srq->pidx, srq->wq_pidx,
475 srq->in_use, srq->size,
476 (unsigned long long)pwr->wr_id);
478 c4iw_copy_wr_to_srq(srq, &pwr->wqe, pwr->len16);
479 t4_srq_consume_pending_wr(srq);
480 t4_srq_produce(srq, pwr->len16);
481 idx += DIV_ROUND_UP(pwr->len16 * 16, T4_EQ_ENTRY_SIZE);
485 t4_ring_srq_db(srq, idx, pwr->len16, &pwr->wqe);
486 srq->queue[srq->size].status.host_wq_pidx =
491 static u64 reap_srq_cqe(struct t4_cqe *hw_cqe, struct t4_srq *srq)
493 int rel_idx = CQE_ABS_RQE_IDX(hw_cqe) - srq->rqt_abs_idx;
496 srq->sw_rq[rel_idx].valid = 0;
497 wr_id = srq->sw_rq[rel_idx].wr_id;
499 if (rel_idx == srq->cidx) {
500 pr_debug("%s in order cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
501 __func__, rel_idx, srq->cidx, srq->pidx,
502 srq->wq_pidx, srq->in_use, srq->size,
503 (unsigned long long)srq->sw_rq[rel_idx].wr_id);
505 while (srq->ooo_count && !srq->sw_rq[srq->cidx].valid) {
506 pr_debug("%s eat ooo cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
507 __func__, srq->cidx, srq->pidx,
508 srq->wq_pidx, srq->in_use,
509 srq->size, srq->ooo_count,
511 srq->sw_rq[srq->cidx].wr_id);
512 t4_srq_consume_ooo(srq);
514 if (srq->ooo_count == 0 && srq->pending_in_use)
515 post_pending_srq_wrs(srq);
517 pr_debug("%s ooo cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
518 __func__, rel_idx, srq->cidx,
519 srq->pidx, srq->wq_pidx,
520 srq->in_use, srq->size,
522 (unsigned long long)srq->sw_rq[rel_idx].wr_id);
523 t4_srq_produce_ooo(srq);
532 * check the validity of the first CQE,
533 * supply the wq assicated with the qpid.
535 * credit: cq credit to return to sge.
536 * cqe_flushed: 1 iff the CQE is flushed.
537 * cqe: copy of the polled CQE.
541 * -EAGAIN CQE skipped, try again.
542 * -EOVERFLOW CQ overflow detected.
544 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
545 u8 *cqe_flushed, u64 *cookie, u32 *credit,
549 struct t4_cqe *hw_cqe, read_cqe;
553 ret = t4_next_cqe(cq, &hw_cqe);
557 pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
558 CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
559 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
560 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
561 CQE_WRID_LOW(hw_cqe));
564 * skip cqe's not affiliated with a QP.
572 * skip hw cqe's if the wq is flushed.
574 if (wq->flushed && !SW_CQE(hw_cqe)) {
580 * skip TERMINATE cqes...
582 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
588 * Special cqe for drain WR completions...
590 if (DRAIN_CQE(hw_cqe)) {
591 *cookie = CQE_DRAIN_COOKIE(hw_cqe);
597 * Gotta tweak READ completions:
598 * 1) the cqe doesn't contain the sq_wptr from the wr.
599 * 2) opcode not reflected from the wr.
600 * 3) read_len not reflected from the wr.
601 * 4) cq_type is RQ_TYPE not SQ_TYPE.
603 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
605 /* If we have reached here because of async
606 * event or other error, and have egress error
609 if (CQE_TYPE(hw_cqe) == 1) {
610 if (CQE_STATUS(hw_cqe))
611 t4_set_wq_in_error(wq, 0);
616 /* If this is an unsolicited read response, then the read
617 * was generated by the kernel driver as part of peer-2-peer
618 * connection setup. So ignore the completion.
620 if (CQE_WRID_STAG(hw_cqe) == 1) {
621 if (CQE_STATUS(hw_cqe))
622 t4_set_wq_in_error(wq, 0);
628 * Eat completions for unsignaled read WRs.
630 if (!wq->sq.oldest_read->signaled) {
631 advance_oldest_read(wq);
637 * Don't write to the HWCQ, so create a new read req CQE
640 create_read_req_cqe(wq, hw_cqe, &read_cqe);
642 advance_oldest_read(wq);
645 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
646 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
647 t4_set_wq_in_error(wq, 0);
653 if (RQ_TYPE(hw_cqe)) {
656 * HW only validates 4 bits of MSN. So we must validate that
657 * the MSN in the SEND is the next expected MSN. If its not,
658 * then we complete this with T4_ERR_MSN and mark the wq in
661 if (unlikely(!CQE_STATUS(hw_cqe) &&
662 CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) {
663 t4_set_wq_in_error(wq, 0);
664 hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN));
670 * If we get here its a send completion.
672 * Handle out of order completion. These get stuffed
673 * in the SW SQ. Then the SW SQ is walked to move any
674 * now in-order completions into the SW CQ. This handles
676 * 1) reaping unsignaled WRs when the first subsequent
677 * signaled WR is completed.
678 * 2) out of order read completions.
680 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
681 struct t4_swsqe *swsqe;
683 pr_debug("out of order completion going in sw_sq at idx %u\n",
684 CQE_WRID_SQ_IDX(hw_cqe));
685 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
686 swsqe->cqe = *hw_cqe;
696 * Reap the associated WR(s) that are freed up with this
699 if (SQ_TYPE(hw_cqe)) {
700 int idx = CQE_WRID_SQ_IDX(hw_cqe);
703 * Account for any unsignaled completions completed by
704 * this signaled completion. In this case, cidx points
705 * to the first unsignaled one, and idx points to the
706 * signaled one. So adjust in_use based on this delta.
707 * if this is not completing any unsigned wrs, then the
708 * delta will be 0. Handle wrapping also!
710 if (idx < wq->sq.cidx)
711 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
713 wq->sq.in_use -= idx - wq->sq.cidx;
715 wq->sq.cidx = (uint16_t)idx;
716 pr_debug("completing sq idx %u\n", wq->sq.cidx);
717 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
719 c4iw_log_wr_stats(wq, hw_cqe);
723 pr_debug("completing rq idx %u\n", wq->rq.cidx);
724 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
726 c4iw_log_wr_stats(wq, hw_cqe);
729 *cookie = reap_srq_cqe(hw_cqe, srq);
737 * Flush any completed cqes that are now in-order.
739 flush_completed_wrs(wq, cq);
742 if (SW_CQE(hw_cqe)) {
743 pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
744 cq, cq->cqid, cq->sw_cidx);
747 pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
748 cq, cq->cqid, cq->cidx);
754 static int __c4iw_poll_cq_one(struct c4iw_cq *chp, struct c4iw_qp *qhp,
755 struct ib_wc *wc, struct c4iw_srq *srq)
758 struct t4_wq *wq = qhp ? &qhp->wq : NULL;
764 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit,
765 srq ? &srq->wq : NULL);
770 wc->qp = qhp ? &qhp->ibqp : NULL;
771 wc->vendor_err = CQE_STATUS(&cqe);
775 * Simulate a SRQ_LIMIT_REACHED HW notification if required.
777 if (srq && !(srq->flags & T4_SRQ_LIMIT_SUPPORT) && srq->armed &&
778 srq->wq.in_use < srq->srq_limit)
779 c4iw_dispatch_srq_limit_reached_event(srq);
781 pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
783 CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
784 CQE_STATUS(&cqe), CQE_LEN(&cqe),
785 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
786 (unsigned long long)cookie);
788 if (CQE_TYPE(&cqe) == 0) {
789 if (!CQE_STATUS(&cqe))
790 wc->byte_len = CQE_LEN(&cqe);
794 switch (CQE_OPCODE(&cqe)) {
796 wc->opcode = IB_WC_RECV;
798 case FW_RI_SEND_WITH_INV:
799 case FW_RI_SEND_WITH_SE_INV:
800 wc->opcode = IB_WC_RECV;
801 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
802 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
803 c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
805 case FW_RI_WRITE_IMMEDIATE:
806 wc->opcode = IB_WC_RECV_RDMA_WITH_IMM;
807 wc->ex.imm_data = CQE_IMM_DATA(&cqe);
808 wc->wc_flags |= IB_WC_WITH_IMM;
811 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
812 CQE_OPCODE(&cqe), CQE_QPID(&cqe));
817 switch (CQE_OPCODE(&cqe)) {
818 case FW_RI_WRITE_IMMEDIATE:
819 case FW_RI_RDMA_WRITE:
820 wc->opcode = IB_WC_RDMA_WRITE;
823 wc->opcode = IB_WC_RDMA_READ;
824 wc->byte_len = CQE_LEN(&cqe);
826 case FW_RI_SEND_WITH_INV:
827 case FW_RI_SEND_WITH_SE_INV:
828 wc->opcode = IB_WC_SEND;
829 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
832 case FW_RI_SEND_WITH_SE:
833 wc->opcode = IB_WC_SEND;
836 case FW_RI_LOCAL_INV:
837 wc->opcode = IB_WC_LOCAL_INV;
839 case FW_RI_FAST_REGISTER:
840 wc->opcode = IB_WC_REG_MR;
842 /* Invalidate the MR if the fastreg failed */
843 if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
844 c4iw_invalidate_mr(qhp->rhp,
845 CQE_WRID_FR_STAG(&cqe));
848 pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
849 CQE_OPCODE(&cqe), CQE_QPID(&cqe));
856 wc->status = IB_WC_WR_FLUSH_ERR;
859 switch (CQE_STATUS(&cqe)) {
861 wc->status = IB_WC_SUCCESS;
864 wc->status = IB_WC_LOC_ACCESS_ERR;
867 wc->status = IB_WC_LOC_PROT_ERR;
871 wc->status = IB_WC_LOC_ACCESS_ERR;
874 wc->status = IB_WC_GENERAL_ERR;
877 wc->status = IB_WC_LOC_LEN_ERR;
879 case T4_ERR_INVALIDATE_SHARED_MR:
880 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
881 wc->status = IB_WC_MW_BIND_ERR;
885 case T4_ERR_PDU_LEN_ERR:
886 case T4_ERR_OUT_OF_RQE:
887 case T4_ERR_DDP_VERSION:
888 case T4_ERR_RDMA_VERSION:
889 case T4_ERR_DDP_QUEUE_NUM:
893 case T4_ERR_MSN_RANGE:
894 case T4_ERR_IRD_OVERFLOW:
896 case T4_ERR_INTERNAL_ERR:
897 wc->status = IB_WC_FATAL_ERR;
900 wc->status = IB_WC_WR_FLUSH_ERR;
903 pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
904 CQE_STATUS(&cqe), CQE_QPID(&cqe));
905 wc->status = IB_WC_FATAL_ERR;
913 * Get one cq entry from c4iw and map it to openib.
918 * -EAGAIN caller must try again
919 * any other -errno fatal error
921 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
923 struct c4iw_srq *srq = NULL;
924 struct c4iw_qp *qhp = NULL;
925 struct t4_cqe *rd_cqe;
928 ret = t4_next_cqe(&chp->cq, &rd_cqe);
933 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
935 spin_lock(&qhp->lock);
938 spin_lock(&srq->lock);
939 ret = __c4iw_poll_cq_one(chp, qhp, wc, srq);
940 spin_unlock(&qhp->lock);
942 spin_unlock(&srq->lock);
944 ret = __c4iw_poll_cq_one(chp, NULL, wc, NULL);
949 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
956 chp = to_c4iw_cq(ibcq);
958 spin_lock_irqsave(&chp->lock, flags);
959 for (npolled = 0; npolled < num_entries; ++npolled) {
961 err = c4iw_poll_cq_one(chp, wc + npolled);
962 } while (err == -EAGAIN);
966 spin_unlock_irqrestore(&chp->lock, flags);
967 return !err || err == -ENODATA ? npolled : err;
970 int c4iw_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata)
973 struct c4iw_ucontext *ucontext;
975 pr_debug("ib_cq %p\n", ib_cq);
976 chp = to_c4iw_cq(ib_cq);
978 xa_erase_irq(&chp->rhp->cqs, chp->cq.cqid);
979 refcount_dec(&chp->refcnt);
980 wait_event(chp->wait, !refcount_read(&chp->refcnt));
982 ucontext = rdma_udata_to_drv_context(udata, struct c4iw_ucontext,
984 destroy_cq(&chp->rhp->rdev, &chp->cq,
985 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
986 chp->destroy_skb, chp->wr_waitp);
987 c4iw_put_wr_wait(chp->wr_waitp);
991 int c4iw_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr,
992 struct ib_udata *udata)
994 struct ib_device *ibdev = ibcq->device;
995 int entries = attr->cqe;
996 int vector = attr->comp_vector;
997 struct c4iw_dev *rhp = to_c4iw_dev(ibcq->device);
998 struct c4iw_cq *chp = to_c4iw_cq(ibcq);
999 struct c4iw_create_cq ucmd;
1000 struct c4iw_create_cq_resp uresp;
1002 size_t memsize, hwentries;
1003 struct c4iw_mm_entry *mm, *mm2;
1004 struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context(
1005 udata, struct c4iw_ucontext, ibucontext);
1007 pr_debug("ib_dev %p entries %d\n", ibdev, entries);
1011 if (entries < 1 || entries > ibdev->attrs.max_cqe)
1014 if (vector >= rhp->rdev.lldi.nciq)
1018 if (udata->inlen < sizeof(ucmd))
1019 ucontext->is_32b_cqe = 1;
1022 chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
1023 if (!chp->wr_waitp) {
1027 c4iw_init_wr_wait(chp->wr_waitp);
1029 wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
1030 chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
1031 if (!chp->destroy_skb) {
1033 goto err_free_wr_wait;
1036 /* account for the status page. */
1039 /* IQ needs one extra entry to differentiate full vs empty. */
1043 * entries must be multiple of 16 for HW.
1045 entries = roundup(entries, 16);
1048 * Make actual HW queue 2x to avoid cdix_inc overflows.
1050 hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
1053 * Make HW queue at least 64 entries so GTS updates aren't too
1059 memsize = hwentries * ((ucontext && ucontext->is_32b_cqe) ?
1060 (sizeof(*chp->cq.queue) / 2) : sizeof(*chp->cq.queue));
1063 * memsize must be a multiple of the page size if its a user cq.
1066 memsize = roundup(memsize, PAGE_SIZE);
1068 chp->cq.size = hwentries;
1069 chp->cq.memsize = memsize;
1070 chp->cq.vector = vector;
1072 ret = create_cq(&rhp->rdev, &chp->cq,
1073 ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1079 chp->cq.size--; /* status page */
1080 chp->ibcq.cqe = entries - 2;
1081 spin_lock_init(&chp->lock);
1082 spin_lock_init(&chp->comp_handler_lock);
1083 refcount_set(&chp->refcnt, 1);
1084 init_waitqueue_head(&chp->wait);
1085 ret = xa_insert_irq(&rhp->cqs, chp->cq.cqid, chp, GFP_KERNEL);
1087 goto err_destroy_cq;
1091 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
1093 goto err_remove_handle;
1094 mm2 = kmalloc(sizeof(*mm2), GFP_KERNEL);
1098 memset(&uresp, 0, sizeof(uresp));
1099 uresp.qid_mask = rhp->rdev.cqmask;
1100 uresp.cqid = chp->cq.cqid;
1101 uresp.size = chp->cq.size;
1102 uresp.memsize = chp->cq.memsize;
1103 spin_lock(&ucontext->mmap_lock);
1104 uresp.key = ucontext->key;
1105 ucontext->key += PAGE_SIZE;
1106 uresp.gts_key = ucontext->key;
1107 ucontext->key += PAGE_SIZE;
1108 /* communicate to the userspace that
1109 * kernel driver supports 64B CQE
1111 uresp.flags |= C4IW_64B_CQE;
1113 spin_unlock(&ucontext->mmap_lock);
1114 ret = ib_copy_to_udata(udata, &uresp,
1115 ucontext->is_32b_cqe ?
1116 sizeof(uresp) - sizeof(uresp.flags) :
1121 mm->key = uresp.key;
1122 mm->addr = virt_to_phys(chp->cq.queue);
1123 mm->len = chp->cq.memsize;
1124 insert_mmap(ucontext, mm);
1126 mm2->key = uresp.gts_key;
1127 mm2->addr = chp->cq.bar2_pa;
1128 mm2->len = PAGE_SIZE;
1129 insert_mmap(ucontext, mm2);
1132 pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr %pad\n",
1133 chp->cq.cqid, chp, chp->cq.size, chp->cq.memsize,
1141 xa_erase_irq(&rhp->cqs, chp->cq.cqid);
1143 destroy_cq(&chp->rhp->rdev, &chp->cq,
1144 ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1145 chp->destroy_skb, chp->wr_waitp);
1147 kfree_skb(chp->destroy_skb);
1149 c4iw_put_wr_wait(chp->wr_waitp);
1154 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
1156 struct c4iw_cq *chp;
1160 chp = to_c4iw_cq(ibcq);
1161 spin_lock_irqsave(&chp->lock, flag);
1163 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1164 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1165 ret = t4_cq_notempty(&chp->cq);
1166 spin_unlock_irqrestore(&chp->lock, flag);
1170 void c4iw_flush_srqidx(struct c4iw_qp *qhp, u32 srqidx)
1172 struct c4iw_cq *rchp = to_c4iw_cq(qhp->ibqp.recv_cq);
1175 /* locking heirarchy: cq lock first, then qp lock. */
1176 spin_lock_irqsave(&rchp->lock, flag);
1177 spin_lock(&qhp->lock);
1179 /* create a SRQ RECV CQE for srqidx */
1180 insert_recv_cqe(&qhp->wq, &rchp->cq, srqidx);
1182 spin_unlock(&qhp->lock);
1183 spin_unlock_irqrestore(&rchp->lock, flag);