Merge tag 'arc-5.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         default:               return  -1;
151         }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157         switch (mult) {
158         case 1:   return IB_RATE_2_5_GBPS;
159         case 2:   return IB_RATE_5_GBPS;
160         case 4:   return IB_RATE_10_GBPS;
161         case 8:   return IB_RATE_20_GBPS;
162         case 12:  return IB_RATE_30_GBPS;
163         case 16:  return IB_RATE_40_GBPS;
164         case 24:  return IB_RATE_60_GBPS;
165         case 32:  return IB_RATE_80_GBPS;
166         case 48:  return IB_RATE_120_GBPS;
167         case 6:   return IB_RATE_14_GBPS;
168         case 22:  return IB_RATE_56_GBPS;
169         case 45:  return IB_RATE_112_GBPS;
170         case 67:  return IB_RATE_168_GBPS;
171         case 10:  return IB_RATE_25_GBPS;
172         case 40:  return IB_RATE_100_GBPS;
173         case 80:  return IB_RATE_200_GBPS;
174         case 120: return IB_RATE_300_GBPS;
175         case 11:  return IB_RATE_28_GBPS;
176         case 20:  return IB_RATE_50_GBPS;
177         case 160: return IB_RATE_400_GBPS;
178         case 240: return IB_RATE_600_GBPS;
179         default:  return IB_RATE_PORT_CURRENT;
180         }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186         switch (rate) {
187         case IB_RATE_2_5_GBPS: return 2500;
188         case IB_RATE_5_GBPS:   return 5000;
189         case IB_RATE_10_GBPS:  return 10000;
190         case IB_RATE_20_GBPS:  return 20000;
191         case IB_RATE_30_GBPS:  return 30000;
192         case IB_RATE_40_GBPS:  return 40000;
193         case IB_RATE_60_GBPS:  return 60000;
194         case IB_RATE_80_GBPS:  return 80000;
195         case IB_RATE_120_GBPS: return 120000;
196         case IB_RATE_14_GBPS:  return 14062;
197         case IB_RATE_56_GBPS:  return 56250;
198         case IB_RATE_112_GBPS: return 112500;
199         case IB_RATE_168_GBPS: return 168750;
200         case IB_RATE_25_GBPS:  return 25781;
201         case IB_RATE_100_GBPS: return 103125;
202         case IB_RATE_200_GBPS: return 206250;
203         case IB_RATE_300_GBPS: return 309375;
204         case IB_RATE_28_GBPS:  return 28125;
205         case IB_RATE_50_GBPS:  return 53125;
206         case IB_RATE_400_GBPS: return 425000;
207         case IB_RATE_600_GBPS: return 637500;
208         default:               return -1;
209         }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217         if (node_type == RDMA_NODE_USNIC)
218                 return RDMA_TRANSPORT_USNIC;
219         if (node_type == RDMA_NODE_USNIC_UDP)
220                 return RDMA_TRANSPORT_USNIC_UDP;
221         if (node_type == RDMA_NODE_RNIC)
222                 return RDMA_TRANSPORT_IWARP;
223         if (node_type == RDMA_NODE_UNSPECIFIED)
224                 return RDMA_TRANSPORT_UNSPECIFIED;
225
226         return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
231 {
232         enum rdma_transport_type lt;
233         if (device->ops.get_link_layer)
234                 return device->ops.get_link_layer(device, port_num);
235
236         lt = rdma_node_get_transport(device->node_type);
237         if (lt == RDMA_TRANSPORT_IB)
238                 return IB_LINK_LAYER_INFINIBAND;
239
240         return IB_LINK_LAYER_ETHERNET;
241 }
242 EXPORT_SYMBOL(rdma_port_get_link_layer);
243
244 /* Protection domains */
245
246 /**
247  * ib_alloc_pd - Allocates an unused protection domain.
248  * @device: The device on which to allocate the protection domain.
249  * @flags: protection domain flags
250  * @caller: caller's build-time module name
251  *
252  * A protection domain object provides an association between QPs, shared
253  * receive queues, address handles, memory regions, and memory windows.
254  *
255  * Every PD has a local_dma_lkey which can be used as the lkey value for local
256  * memory operations.
257  */
258 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
259                 const char *caller)
260 {
261         struct ib_pd *pd;
262         int mr_access_flags = 0;
263         int ret;
264
265         pd = rdma_zalloc_drv_obj(device, ib_pd);
266         if (!pd)
267                 return ERR_PTR(-ENOMEM);
268
269         pd->device = device;
270         pd->uobject = NULL;
271         pd->__internal_mr = NULL;
272         atomic_set(&pd->usecnt, 0);
273         pd->flags = flags;
274
275         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
276         rdma_restrack_set_name(&pd->res, caller);
277
278         ret = device->ops.alloc_pd(pd, NULL);
279         if (ret) {
280                 rdma_restrack_put(&pd->res);
281                 kfree(pd);
282                 return ERR_PTR(ret);
283         }
284         rdma_restrack_add(&pd->res);
285
286         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
287                 pd->local_dma_lkey = device->local_dma_lkey;
288         else
289                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
290
291         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
292                 pr_warn("%s: enabling unsafe global rkey\n", caller);
293                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
294         }
295
296         if (mr_access_flags) {
297                 struct ib_mr *mr;
298
299                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
300                 if (IS_ERR(mr)) {
301                         ib_dealloc_pd(pd);
302                         return ERR_CAST(mr);
303                 }
304
305                 mr->device      = pd->device;
306                 mr->pd          = pd;
307                 mr->type        = IB_MR_TYPE_DMA;
308                 mr->uobject     = NULL;
309                 mr->need_inval  = false;
310
311                 pd->__internal_mr = mr;
312
313                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
314                         pd->local_dma_lkey = pd->__internal_mr->lkey;
315
316                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
317                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
318         }
319
320         return pd;
321 }
322 EXPORT_SYMBOL(__ib_alloc_pd);
323
324 /**
325  * ib_dealloc_pd_user - Deallocates a protection domain.
326  * @pd: The protection domain to deallocate.
327  * @udata: Valid user data or NULL for kernel object
328  *
329  * It is an error to call this function while any resources in the pd still
330  * exist.  The caller is responsible to synchronously destroy them and
331  * guarantee no new allocations will happen.
332  */
333 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
334 {
335         int ret;
336
337         if (pd->__internal_mr) {
338                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
339                 WARN_ON(ret);
340                 pd->__internal_mr = NULL;
341         }
342
343         /* uverbs manipulates usecnt with proper locking, while the kabi
344            requires the caller to guarantee we can't race here. */
345         WARN_ON(atomic_read(&pd->usecnt));
346
347         ret = pd->device->ops.dealloc_pd(pd, udata);
348         if (ret)
349                 return ret;
350
351         rdma_restrack_del(&pd->res);
352         kfree(pd);
353         return ret;
354 }
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
356
357 /* Address handles */
358
359 /**
360  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361  * @dest:       Pointer to destination ah_attr. Contents of the destination
362  *              pointer is assumed to be invalid and attribute are overwritten.
363  * @src:        Pointer to source ah_attr.
364  */
365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366                        const struct rdma_ah_attr *src)
367 {
368         *dest = *src;
369         if (dest->grh.sgid_attr)
370                 rdma_hold_gid_attr(dest->grh.sgid_attr);
371 }
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
373
374 /**
375  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
376  * @old:        Pointer to existing ah_attr which needs to be replaced.
377  *              old is assumed to be valid or zero'd
378  * @new:        Pointer to the new ah_attr.
379  *
380  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381  * old the ah_attr is valid; after that it copies the new attribute and holds
382  * the reference to the replaced ah_attr.
383  */
384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385                           const struct rdma_ah_attr *new)
386 {
387         rdma_destroy_ah_attr(old);
388         *old = *new;
389         if (old->grh.sgid_attr)
390                 rdma_hold_gid_attr(old->grh.sgid_attr);
391 }
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
393
394 /**
395  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396  * @dest:       Pointer to destination ah_attr to copy to.
397  *              dest is assumed to be valid or zero'd
398  * @src:        Pointer to the new ah_attr.
399  *
400  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401  * if it is valid. This also transfers ownership of internal references from
402  * src to dest, making src invalid in the process. No new reference of the src
403  * ah_attr is taken.
404  */
405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
406 {
407         rdma_destroy_ah_attr(dest);
408         *dest = *src;
409         src->grh.sgid_attr = NULL;
410 }
411 EXPORT_SYMBOL(rdma_move_ah_attr);
412
413 /*
414  * Validate that the rdma_ah_attr is valid for the device before passing it
415  * off to the driver.
416  */
417 static int rdma_check_ah_attr(struct ib_device *device,
418                               struct rdma_ah_attr *ah_attr)
419 {
420         if (!rdma_is_port_valid(device, ah_attr->port_num))
421                 return -EINVAL;
422
423         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425             !(ah_attr->ah_flags & IB_AH_GRH))
426                 return -EINVAL;
427
428         if (ah_attr->grh.sgid_attr) {
429                 /*
430                  * Make sure the passed sgid_attr is consistent with the
431                  * parameters
432                  */
433                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435                         return -EINVAL;
436         }
437         return 0;
438 }
439
440 /*
441  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442  * On success the caller is responsible to call rdma_unfill_sgid_attr().
443  */
444 static int rdma_fill_sgid_attr(struct ib_device *device,
445                                struct rdma_ah_attr *ah_attr,
446                                const struct ib_gid_attr **old_sgid_attr)
447 {
448         const struct ib_gid_attr *sgid_attr;
449         struct ib_global_route *grh;
450         int ret;
451
452         *old_sgid_attr = ah_attr->grh.sgid_attr;
453
454         ret = rdma_check_ah_attr(device, ah_attr);
455         if (ret)
456                 return ret;
457
458         if (!(ah_attr->ah_flags & IB_AH_GRH))
459                 return 0;
460
461         grh = rdma_ah_retrieve_grh(ah_attr);
462         if (grh->sgid_attr)
463                 return 0;
464
465         sgid_attr =
466                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467         if (IS_ERR(sgid_attr))
468                 return PTR_ERR(sgid_attr);
469
470         /* Move ownerhip of the kref into the ah_attr */
471         grh->sgid_attr = sgid_attr;
472         return 0;
473 }
474
475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476                                   const struct ib_gid_attr *old_sgid_attr)
477 {
478         /*
479          * Fill didn't change anything, the caller retains ownership of
480          * whatever it passed
481          */
482         if (ah_attr->grh.sgid_attr == old_sgid_attr)
483                 return;
484
485         /*
486          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487          * doesn't see any change in the rdma_ah_attr. If we get here
488          * old_sgid_attr is NULL.
489          */
490         rdma_destroy_ah_attr(ah_attr);
491 }
492
493 static const struct ib_gid_attr *
494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495                       const struct ib_gid_attr *old_attr)
496 {
497         if (old_attr)
498                 rdma_put_gid_attr(old_attr);
499         if (ah_attr->ah_flags & IB_AH_GRH) {
500                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501                 return ah_attr->grh.sgid_attr;
502         }
503         return NULL;
504 }
505
506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507                                      struct rdma_ah_attr *ah_attr,
508                                      u32 flags,
509                                      struct ib_udata *udata,
510                                      struct net_device *xmit_slave)
511 {
512         struct rdma_ah_init_attr init_attr = {};
513         struct ib_device *device = pd->device;
514         struct ib_ah *ah;
515         int ret;
516
517         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
518
519         if (!device->ops.create_ah)
520                 return ERR_PTR(-EOPNOTSUPP);
521
522         ah = rdma_zalloc_drv_obj_gfp(
523                 device, ib_ah,
524                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
525         if (!ah)
526                 return ERR_PTR(-ENOMEM);
527
528         ah->device = device;
529         ah->pd = pd;
530         ah->type = ah_attr->type;
531         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532         init_attr.ah_attr = ah_attr;
533         init_attr.flags = flags;
534         init_attr.xmit_slave = xmit_slave;
535
536         ret = device->ops.create_ah(ah, &init_attr, udata);
537         if (ret) {
538                 kfree(ah);
539                 return ERR_PTR(ret);
540         }
541
542         atomic_inc(&pd->usecnt);
543         return ah;
544 }
545
546 /**
547  * rdma_create_ah - Creates an address handle for the
548  * given address vector.
549  * @pd: The protection domain associated with the address handle.
550  * @ah_attr: The attributes of the address vector.
551  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
552  *
553  * It returns 0 on success and returns appropriate error code on error.
554  * The address handle is used to reference a local or global destination
555  * in all UD QP post sends.
556  */
557 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
558                              u32 flags)
559 {
560         const struct ib_gid_attr *old_sgid_attr;
561         struct net_device *slave;
562         struct ib_ah *ah;
563         int ret;
564
565         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
566         if (ret)
567                 return ERR_PTR(ret);
568         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
569                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
570                                            GFP_KERNEL : GFP_ATOMIC);
571         if (IS_ERR(slave)) {
572                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
573                 return (void *)slave;
574         }
575         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
576         rdma_lag_put_ah_roce_slave(slave);
577         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578         return ah;
579 }
580 EXPORT_SYMBOL(rdma_create_ah);
581
582 /**
583  * rdma_create_user_ah - Creates an address handle for the
584  * given address vector.
585  * It resolves destination mac address for ah attribute of RoCE type.
586  * @pd: The protection domain associated with the address handle.
587  * @ah_attr: The attributes of the address vector.
588  * @udata: pointer to user's input output buffer information need by
589  *         provider driver.
590  *
591  * It returns 0 on success and returns appropriate error code on error.
592  * The address handle is used to reference a local or global destination
593  * in all UD QP post sends.
594  */
595 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
596                                   struct rdma_ah_attr *ah_attr,
597                                   struct ib_udata *udata)
598 {
599         const struct ib_gid_attr *old_sgid_attr;
600         struct ib_ah *ah;
601         int err;
602
603         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
604         if (err)
605                 return ERR_PTR(err);
606
607         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
608                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
609                 if (err) {
610                         ah = ERR_PTR(err);
611                         goto out;
612                 }
613         }
614
615         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
616                              udata, NULL);
617
618 out:
619         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
620         return ah;
621 }
622 EXPORT_SYMBOL(rdma_create_user_ah);
623
624 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
625 {
626         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
627         struct iphdr ip4h_checked;
628         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
629
630         /* If it's IPv6, the version must be 6, otherwise, the first
631          * 20 bytes (before the IPv4 header) are garbled.
632          */
633         if (ip6h->version != 6)
634                 return (ip4h->version == 4) ? 4 : 0;
635         /* version may be 6 or 4 because the first 20 bytes could be garbled */
636
637         /* RoCE v2 requires no options, thus header length
638          * must be 5 words
639          */
640         if (ip4h->ihl != 5)
641                 return 6;
642
643         /* Verify checksum.
644          * We can't write on scattered buffers so we need to copy to
645          * temp buffer.
646          */
647         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
648         ip4h_checked.check = 0;
649         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
650         /* if IPv4 header checksum is OK, believe it */
651         if (ip4h->check == ip4h_checked.check)
652                 return 4;
653         return 6;
654 }
655 EXPORT_SYMBOL(ib_get_rdma_header_version);
656
657 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
658                                                      u8 port_num,
659                                                      const struct ib_grh *grh)
660 {
661         int grh_version;
662
663         if (rdma_protocol_ib(device, port_num))
664                 return RDMA_NETWORK_IB;
665
666         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
667
668         if (grh_version == 4)
669                 return RDMA_NETWORK_IPV4;
670
671         if (grh->next_hdr == IPPROTO_UDP)
672                 return RDMA_NETWORK_IPV6;
673
674         return RDMA_NETWORK_ROCE_V1;
675 }
676
677 struct find_gid_index_context {
678         u16 vlan_id;
679         enum ib_gid_type gid_type;
680 };
681
682 static bool find_gid_index(const union ib_gid *gid,
683                            const struct ib_gid_attr *gid_attr,
684                            void *context)
685 {
686         struct find_gid_index_context *ctx = context;
687         u16 vlan_id = 0xffff;
688         int ret;
689
690         if (ctx->gid_type != gid_attr->gid_type)
691                 return false;
692
693         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
694         if (ret)
695                 return false;
696
697         return ctx->vlan_id == vlan_id;
698 }
699
700 static const struct ib_gid_attr *
701 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
702                        u16 vlan_id, const union ib_gid *sgid,
703                        enum ib_gid_type gid_type)
704 {
705         struct find_gid_index_context context = {.vlan_id = vlan_id,
706                                                  .gid_type = gid_type};
707
708         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
709                                        &context);
710 }
711
712 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
713                               enum rdma_network_type net_type,
714                               union ib_gid *sgid, union ib_gid *dgid)
715 {
716         struct sockaddr_in  src_in;
717         struct sockaddr_in  dst_in;
718         __be32 src_saddr, dst_saddr;
719
720         if (!sgid || !dgid)
721                 return -EINVAL;
722
723         if (net_type == RDMA_NETWORK_IPV4) {
724                 memcpy(&src_in.sin_addr.s_addr,
725                        &hdr->roce4grh.saddr, 4);
726                 memcpy(&dst_in.sin_addr.s_addr,
727                        &hdr->roce4grh.daddr, 4);
728                 src_saddr = src_in.sin_addr.s_addr;
729                 dst_saddr = dst_in.sin_addr.s_addr;
730                 ipv6_addr_set_v4mapped(src_saddr,
731                                        (struct in6_addr *)sgid);
732                 ipv6_addr_set_v4mapped(dst_saddr,
733                                        (struct in6_addr *)dgid);
734                 return 0;
735         } else if (net_type == RDMA_NETWORK_IPV6 ||
736                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
737                 *dgid = hdr->ibgrh.dgid;
738                 *sgid = hdr->ibgrh.sgid;
739                 return 0;
740         } else {
741                 return -EINVAL;
742         }
743 }
744 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
745
746 /* Resolve destination mac address and hop limit for unicast destination
747  * GID entry, considering the source GID entry as well.
748  * ah_attribute must have have valid port_num, sgid_index.
749  */
750 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
751                                        struct rdma_ah_attr *ah_attr)
752 {
753         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
754         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
755         int hop_limit = 0xff;
756         int ret = 0;
757
758         /* If destination is link local and source GID is RoCEv1,
759          * IP stack is not used.
760          */
761         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
762             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
763                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
764                                 ah_attr->roce.dmac);
765                 return ret;
766         }
767
768         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
769                                            ah_attr->roce.dmac,
770                                            sgid_attr, &hop_limit);
771
772         grh->hop_limit = hop_limit;
773         return ret;
774 }
775
776 /*
777  * This function initializes address handle attributes from the incoming packet.
778  * Incoming packet has dgid of the receiver node on which this code is
779  * getting executed and, sgid contains the GID of the sender.
780  *
781  * When resolving mac address of destination, the arrived dgid is used
782  * as sgid and, sgid is used as dgid because sgid contains destinations
783  * GID whom to respond to.
784  *
785  * On success the caller is responsible to call rdma_destroy_ah_attr on the
786  * attr.
787  */
788 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
789                             const struct ib_wc *wc, const struct ib_grh *grh,
790                             struct rdma_ah_attr *ah_attr)
791 {
792         u32 flow_class;
793         int ret;
794         enum rdma_network_type net_type = RDMA_NETWORK_IB;
795         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
796         const struct ib_gid_attr *sgid_attr;
797         int hoplimit = 0xff;
798         union ib_gid dgid;
799         union ib_gid sgid;
800
801         might_sleep();
802
803         memset(ah_attr, 0, sizeof *ah_attr);
804         ah_attr->type = rdma_ah_find_type(device, port_num);
805         if (rdma_cap_eth_ah(device, port_num)) {
806                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
807                         net_type = wc->network_hdr_type;
808                 else
809                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
810                 gid_type = ib_network_to_gid_type(net_type);
811         }
812         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
813                                         &sgid, &dgid);
814         if (ret)
815                 return ret;
816
817         rdma_ah_set_sl(ah_attr, wc->sl);
818         rdma_ah_set_port_num(ah_attr, port_num);
819
820         if (rdma_protocol_roce(device, port_num)) {
821                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
822                                 wc->vlan_id : 0xffff;
823
824                 if (!(wc->wc_flags & IB_WC_GRH))
825                         return -EPROTOTYPE;
826
827                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
828                                                    vlan_id, &dgid,
829                                                    gid_type);
830                 if (IS_ERR(sgid_attr))
831                         return PTR_ERR(sgid_attr);
832
833                 flow_class = be32_to_cpu(grh->version_tclass_flow);
834                 rdma_move_grh_sgid_attr(ah_attr,
835                                         &sgid,
836                                         flow_class & 0xFFFFF,
837                                         hoplimit,
838                                         (flow_class >> 20) & 0xFF,
839                                         sgid_attr);
840
841                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
842                 if (ret)
843                         rdma_destroy_ah_attr(ah_attr);
844
845                 return ret;
846         } else {
847                 rdma_ah_set_dlid(ah_attr, wc->slid);
848                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
849
850                 if ((wc->wc_flags & IB_WC_GRH) == 0)
851                         return 0;
852
853                 if (dgid.global.interface_id !=
854                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
855                         sgid_attr = rdma_find_gid_by_port(
856                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
857                 } else
858                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
859
860                 if (IS_ERR(sgid_attr))
861                         return PTR_ERR(sgid_attr);
862                 flow_class = be32_to_cpu(grh->version_tclass_flow);
863                 rdma_move_grh_sgid_attr(ah_attr,
864                                         &sgid,
865                                         flow_class & 0xFFFFF,
866                                         hoplimit,
867                                         (flow_class >> 20) & 0xFF,
868                                         sgid_attr);
869
870                 return 0;
871         }
872 }
873 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
874
875 /**
876  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
877  * of the reference
878  *
879  * @attr:       Pointer to AH attribute structure
880  * @dgid:       Destination GID
881  * @flow_label: Flow label
882  * @hop_limit:  Hop limit
883  * @traffic_class: traffic class
884  * @sgid_attr:  Pointer to SGID attribute
885  *
886  * This takes ownership of the sgid_attr reference. The caller must ensure
887  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
888  * calling this function.
889  */
890 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
891                              u32 flow_label, u8 hop_limit, u8 traffic_class,
892                              const struct ib_gid_attr *sgid_attr)
893 {
894         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
895                         traffic_class);
896         attr->grh.sgid_attr = sgid_attr;
897 }
898 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
899
900 /**
901  * rdma_destroy_ah_attr - Release reference to SGID attribute of
902  * ah attribute.
903  * @ah_attr: Pointer to ah attribute
904  *
905  * Release reference to the SGID attribute of the ah attribute if it is
906  * non NULL. It is safe to call this multiple times, and safe to call it on
907  * a zero initialized ah_attr.
908  */
909 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
910 {
911         if (ah_attr->grh.sgid_attr) {
912                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
913                 ah_attr->grh.sgid_attr = NULL;
914         }
915 }
916 EXPORT_SYMBOL(rdma_destroy_ah_attr);
917
918 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
919                                    const struct ib_grh *grh, u8 port_num)
920 {
921         struct rdma_ah_attr ah_attr;
922         struct ib_ah *ah;
923         int ret;
924
925         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
926         if (ret)
927                 return ERR_PTR(ret);
928
929         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
930
931         rdma_destroy_ah_attr(&ah_attr);
932         return ah;
933 }
934 EXPORT_SYMBOL(ib_create_ah_from_wc);
935
936 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
937 {
938         const struct ib_gid_attr *old_sgid_attr;
939         int ret;
940
941         if (ah->type != ah_attr->type)
942                 return -EINVAL;
943
944         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
945         if (ret)
946                 return ret;
947
948         ret = ah->device->ops.modify_ah ?
949                 ah->device->ops.modify_ah(ah, ah_attr) :
950                 -EOPNOTSUPP;
951
952         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
953         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
954         return ret;
955 }
956 EXPORT_SYMBOL(rdma_modify_ah);
957
958 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
959 {
960         ah_attr->grh.sgid_attr = NULL;
961
962         return ah->device->ops.query_ah ?
963                 ah->device->ops.query_ah(ah, ah_attr) :
964                 -EOPNOTSUPP;
965 }
966 EXPORT_SYMBOL(rdma_query_ah);
967
968 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
969 {
970         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
971         struct ib_pd *pd;
972         int ret;
973
974         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
975
976         pd = ah->pd;
977
978         ret = ah->device->ops.destroy_ah(ah, flags);
979         if (ret)
980                 return ret;
981
982         atomic_dec(&pd->usecnt);
983         if (sgid_attr)
984                 rdma_put_gid_attr(sgid_attr);
985
986         kfree(ah);
987         return ret;
988 }
989 EXPORT_SYMBOL(rdma_destroy_ah_user);
990
991 /* Shared receive queues */
992
993 /**
994  * ib_create_srq_user - Creates a SRQ associated with the specified protection
995  *   domain.
996  * @pd: The protection domain associated with the SRQ.
997  * @srq_init_attr: A list of initial attributes required to create the
998  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
999  *   the actual capabilities of the created SRQ.
1000  * @uobject: uobject pointer if this is not a kernel SRQ
1001  * @udata: udata pointer if this is not a kernel SRQ
1002  *
1003  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1004  * requested size of the SRQ, and set to the actual values allocated
1005  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1006  * will always be at least as large as the requested values.
1007  */
1008 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1009                                   struct ib_srq_init_attr *srq_init_attr,
1010                                   struct ib_usrq_object *uobject,
1011                                   struct ib_udata *udata)
1012 {
1013         struct ib_srq *srq;
1014         int ret;
1015
1016         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1017         if (!srq)
1018                 return ERR_PTR(-ENOMEM);
1019
1020         srq->device = pd->device;
1021         srq->pd = pd;
1022         srq->event_handler = srq_init_attr->event_handler;
1023         srq->srq_context = srq_init_attr->srq_context;
1024         srq->srq_type = srq_init_attr->srq_type;
1025         srq->uobject = uobject;
1026
1027         if (ib_srq_has_cq(srq->srq_type)) {
1028                 srq->ext.cq = srq_init_attr->ext.cq;
1029                 atomic_inc(&srq->ext.cq->usecnt);
1030         }
1031         if (srq->srq_type == IB_SRQT_XRC) {
1032                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1033                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1034         }
1035         atomic_inc(&pd->usecnt);
1036
1037         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1038         if (ret) {
1039                 atomic_dec(&srq->pd->usecnt);
1040                 if (srq->srq_type == IB_SRQT_XRC)
1041                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1042                 if (ib_srq_has_cq(srq->srq_type))
1043                         atomic_dec(&srq->ext.cq->usecnt);
1044                 kfree(srq);
1045                 return ERR_PTR(ret);
1046         }
1047
1048         return srq;
1049 }
1050 EXPORT_SYMBOL(ib_create_srq_user);
1051
1052 int ib_modify_srq(struct ib_srq *srq,
1053                   struct ib_srq_attr *srq_attr,
1054                   enum ib_srq_attr_mask srq_attr_mask)
1055 {
1056         return srq->device->ops.modify_srq ?
1057                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1058                                             NULL) : -EOPNOTSUPP;
1059 }
1060 EXPORT_SYMBOL(ib_modify_srq);
1061
1062 int ib_query_srq(struct ib_srq *srq,
1063                  struct ib_srq_attr *srq_attr)
1064 {
1065         return srq->device->ops.query_srq ?
1066                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1067 }
1068 EXPORT_SYMBOL(ib_query_srq);
1069
1070 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1071 {
1072         int ret;
1073
1074         if (atomic_read(&srq->usecnt))
1075                 return -EBUSY;
1076
1077         ret = srq->device->ops.destroy_srq(srq, udata);
1078         if (ret)
1079                 return ret;
1080
1081         atomic_dec(&srq->pd->usecnt);
1082         if (srq->srq_type == IB_SRQT_XRC)
1083                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1084         if (ib_srq_has_cq(srq->srq_type))
1085                 atomic_dec(&srq->ext.cq->usecnt);
1086         kfree(srq);
1087
1088         return ret;
1089 }
1090 EXPORT_SYMBOL(ib_destroy_srq_user);
1091
1092 /* Queue pairs */
1093
1094 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1095 {
1096         struct ib_qp *qp = context;
1097         unsigned long flags;
1098
1099         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1100         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1101                 if (event->element.qp->event_handler)
1102                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1103         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1104 }
1105
1106 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1107                                   void (*event_handler)(struct ib_event *, void *),
1108                                   void *qp_context)
1109 {
1110         struct ib_qp *qp;
1111         unsigned long flags;
1112         int err;
1113
1114         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1115         if (!qp)
1116                 return ERR_PTR(-ENOMEM);
1117
1118         qp->real_qp = real_qp;
1119         err = ib_open_shared_qp_security(qp, real_qp->device);
1120         if (err) {
1121                 kfree(qp);
1122                 return ERR_PTR(err);
1123         }
1124
1125         qp->real_qp = real_qp;
1126         atomic_inc(&real_qp->usecnt);
1127         qp->device = real_qp->device;
1128         qp->event_handler = event_handler;
1129         qp->qp_context = qp_context;
1130         qp->qp_num = real_qp->qp_num;
1131         qp->qp_type = real_qp->qp_type;
1132
1133         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1134         list_add(&qp->open_list, &real_qp->open_list);
1135         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1136
1137         return qp;
1138 }
1139
1140 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1141                          struct ib_qp_open_attr *qp_open_attr)
1142 {
1143         struct ib_qp *qp, *real_qp;
1144
1145         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1146                 return ERR_PTR(-EINVAL);
1147
1148         down_read(&xrcd->tgt_qps_rwsem);
1149         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1150         if (!real_qp) {
1151                 up_read(&xrcd->tgt_qps_rwsem);
1152                 return ERR_PTR(-EINVAL);
1153         }
1154         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1155                           qp_open_attr->qp_context);
1156         up_read(&xrcd->tgt_qps_rwsem);
1157         return qp;
1158 }
1159 EXPORT_SYMBOL(ib_open_qp);
1160
1161 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1162                                         struct ib_qp_init_attr *qp_init_attr)
1163 {
1164         struct ib_qp *real_qp = qp;
1165         int err;
1166
1167         qp->event_handler = __ib_shared_qp_event_handler;
1168         qp->qp_context = qp;
1169         qp->pd = NULL;
1170         qp->send_cq = qp->recv_cq = NULL;
1171         qp->srq = NULL;
1172         qp->xrcd = qp_init_attr->xrcd;
1173         atomic_inc(&qp_init_attr->xrcd->usecnt);
1174         INIT_LIST_HEAD(&qp->open_list);
1175
1176         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1177                           qp_init_attr->qp_context);
1178         if (IS_ERR(qp))
1179                 return qp;
1180
1181         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1182                               real_qp, GFP_KERNEL));
1183         if (err) {
1184                 ib_close_qp(qp);
1185                 return ERR_PTR(err);
1186         }
1187         return qp;
1188 }
1189
1190 /**
1191  * ib_create_qp - Creates a kernel QP associated with the specified protection
1192  *   domain.
1193  * @pd: The protection domain associated with the QP.
1194  * @qp_init_attr: A list of initial attributes required to create the
1195  *   QP.  If QP creation succeeds, then the attributes are updated to
1196  *   the actual capabilities of the created QP.
1197  *
1198  * NOTE: for user qp use ib_create_qp_user with valid udata!
1199  */
1200 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1201                            struct ib_qp_init_attr *qp_init_attr)
1202 {
1203         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1204         struct ib_qp *qp;
1205         int ret;
1206
1207         if (qp_init_attr->rwq_ind_tbl &&
1208             (qp_init_attr->recv_cq ||
1209             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1210             qp_init_attr->cap.max_recv_sge))
1211                 return ERR_PTR(-EINVAL);
1212
1213         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1214             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1215                 return ERR_PTR(-EINVAL);
1216
1217         /*
1218          * If the callers is using the RDMA API calculate the resources
1219          * needed for the RDMA READ/WRITE operations.
1220          *
1221          * Note that these callers need to pass in a port number.
1222          */
1223         if (qp_init_attr->cap.max_rdma_ctxs)
1224                 rdma_rw_init_qp(device, qp_init_attr);
1225
1226         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1227         if (IS_ERR(qp))
1228                 return qp;
1229
1230         ret = ib_create_qp_security(qp, device);
1231         if (ret)
1232                 goto err;
1233
1234         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1235                 struct ib_qp *xrc_qp =
1236                         create_xrc_qp_user(qp, qp_init_attr);
1237
1238                 if (IS_ERR(xrc_qp)) {
1239                         ret = PTR_ERR(xrc_qp);
1240                         goto err;
1241                 }
1242                 return xrc_qp;
1243         }
1244
1245         qp->event_handler = qp_init_attr->event_handler;
1246         qp->qp_context = qp_init_attr->qp_context;
1247         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1248                 qp->recv_cq = NULL;
1249                 qp->srq = NULL;
1250         } else {
1251                 qp->recv_cq = qp_init_attr->recv_cq;
1252                 if (qp_init_attr->recv_cq)
1253                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1254                 qp->srq = qp_init_attr->srq;
1255                 if (qp->srq)
1256                         atomic_inc(&qp_init_attr->srq->usecnt);
1257         }
1258
1259         qp->send_cq = qp_init_attr->send_cq;
1260         qp->xrcd    = NULL;
1261
1262         atomic_inc(&pd->usecnt);
1263         if (qp_init_attr->send_cq)
1264                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1265         if (qp_init_attr->rwq_ind_tbl)
1266                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1267
1268         if (qp_init_attr->cap.max_rdma_ctxs) {
1269                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1270                 if (ret)
1271                         goto err;
1272         }
1273
1274         /*
1275          * Note: all hw drivers guarantee that max_send_sge is lower than
1276          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1277          * max_send_sge <= max_sge_rd.
1278          */
1279         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1280         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1281                                  device->attrs.max_sge_rd);
1282         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1283                 qp->integrity_en = true;
1284
1285         return qp;
1286
1287 err:
1288         ib_destroy_qp(qp);
1289         return ERR_PTR(ret);
1290
1291 }
1292 EXPORT_SYMBOL(ib_create_qp);
1293
1294 static const struct {
1295         int                     valid;
1296         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1297         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1298 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1299         [IB_QPS_RESET] = {
1300                 [IB_QPS_RESET] = { .valid = 1 },
1301                 [IB_QPS_INIT]  = {
1302                         .valid = 1,
1303                         .req_param = {
1304                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1305                                                 IB_QP_PORT                      |
1306                                                 IB_QP_QKEY),
1307                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1308                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1309                                                 IB_QP_PORT                      |
1310                                                 IB_QP_ACCESS_FLAGS),
1311                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1312                                                 IB_QP_PORT                      |
1313                                                 IB_QP_ACCESS_FLAGS),
1314                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1315                                                 IB_QP_PORT                      |
1316                                                 IB_QP_ACCESS_FLAGS),
1317                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1318                                                 IB_QP_PORT                      |
1319                                                 IB_QP_ACCESS_FLAGS),
1320                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1321                                                 IB_QP_QKEY),
1322                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1323                                                 IB_QP_QKEY),
1324                         }
1325                 },
1326         },
1327         [IB_QPS_INIT]  = {
1328                 [IB_QPS_RESET] = { .valid = 1 },
1329                 [IB_QPS_ERR] =   { .valid = 1 },
1330                 [IB_QPS_INIT]  = {
1331                         .valid = 1,
1332                         .opt_param = {
1333                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1334                                                 IB_QP_PORT                      |
1335                                                 IB_QP_QKEY),
1336                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1337                                                 IB_QP_PORT                      |
1338                                                 IB_QP_ACCESS_FLAGS),
1339                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1340                                                 IB_QP_PORT                      |
1341                                                 IB_QP_ACCESS_FLAGS),
1342                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1343                                                 IB_QP_PORT                      |
1344                                                 IB_QP_ACCESS_FLAGS),
1345                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1346                                                 IB_QP_PORT                      |
1347                                                 IB_QP_ACCESS_FLAGS),
1348                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1349                                                 IB_QP_QKEY),
1350                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1351                                                 IB_QP_QKEY),
1352                         }
1353                 },
1354                 [IB_QPS_RTR]   = {
1355                         .valid = 1,
1356                         .req_param = {
1357                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1358                                                 IB_QP_PATH_MTU                  |
1359                                                 IB_QP_DEST_QPN                  |
1360                                                 IB_QP_RQ_PSN),
1361                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1362                                                 IB_QP_PATH_MTU                  |
1363                                                 IB_QP_DEST_QPN                  |
1364                                                 IB_QP_RQ_PSN                    |
1365                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1366                                                 IB_QP_MIN_RNR_TIMER),
1367                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1368                                                 IB_QP_PATH_MTU                  |
1369                                                 IB_QP_DEST_QPN                  |
1370                                                 IB_QP_RQ_PSN),
1371                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1372                                                 IB_QP_PATH_MTU                  |
1373                                                 IB_QP_DEST_QPN                  |
1374                                                 IB_QP_RQ_PSN                    |
1375                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1376                                                 IB_QP_MIN_RNR_TIMER),
1377                         },
1378                         .opt_param = {
1379                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1380                                                  IB_QP_QKEY),
1381                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1382                                                  IB_QP_ACCESS_FLAGS             |
1383                                                  IB_QP_PKEY_INDEX),
1384                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1385                                                  IB_QP_ACCESS_FLAGS             |
1386                                                  IB_QP_PKEY_INDEX),
1387                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1388                                                  IB_QP_ACCESS_FLAGS             |
1389                                                  IB_QP_PKEY_INDEX),
1390                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1391                                                  IB_QP_ACCESS_FLAGS             |
1392                                                  IB_QP_PKEY_INDEX),
1393                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1394                                                  IB_QP_QKEY),
1395                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1396                                                  IB_QP_QKEY),
1397                          },
1398                 },
1399         },
1400         [IB_QPS_RTR]   = {
1401                 [IB_QPS_RESET] = { .valid = 1 },
1402                 [IB_QPS_ERR] =   { .valid = 1 },
1403                 [IB_QPS_RTS]   = {
1404                         .valid = 1,
1405                         .req_param = {
1406                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1407                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1408                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1409                                                 IB_QP_RETRY_CNT                 |
1410                                                 IB_QP_RNR_RETRY                 |
1411                                                 IB_QP_SQ_PSN                    |
1412                                                 IB_QP_MAX_QP_RD_ATOMIC),
1413                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1414                                                 IB_QP_RETRY_CNT                 |
1415                                                 IB_QP_RNR_RETRY                 |
1416                                                 IB_QP_SQ_PSN                    |
1417                                                 IB_QP_MAX_QP_RD_ATOMIC),
1418                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1419                                                 IB_QP_SQ_PSN),
1420                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1421                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1422                         },
1423                         .opt_param = {
1424                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1425                                                  IB_QP_QKEY),
1426                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1427                                                  IB_QP_ALT_PATH                 |
1428                                                  IB_QP_ACCESS_FLAGS             |
1429                                                  IB_QP_PATH_MIG_STATE),
1430                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1431                                                  IB_QP_ALT_PATH                 |
1432                                                  IB_QP_ACCESS_FLAGS             |
1433                                                  IB_QP_MIN_RNR_TIMER            |
1434                                                  IB_QP_PATH_MIG_STATE),
1435                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1436                                                  IB_QP_ALT_PATH                 |
1437                                                  IB_QP_ACCESS_FLAGS             |
1438                                                  IB_QP_PATH_MIG_STATE),
1439                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1440                                                  IB_QP_ALT_PATH                 |
1441                                                  IB_QP_ACCESS_FLAGS             |
1442                                                  IB_QP_MIN_RNR_TIMER            |
1443                                                  IB_QP_PATH_MIG_STATE),
1444                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1445                                                  IB_QP_QKEY),
1446                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1447                                                  IB_QP_QKEY),
1448                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1449                          }
1450                 }
1451         },
1452         [IB_QPS_RTS]   = {
1453                 [IB_QPS_RESET] = { .valid = 1 },
1454                 [IB_QPS_ERR] =   { .valid = 1 },
1455                 [IB_QPS_RTS]   = {
1456                         .valid = 1,
1457                         .opt_param = {
1458                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1459                                                 IB_QP_QKEY),
1460                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1461                                                 IB_QP_ACCESS_FLAGS              |
1462                                                 IB_QP_ALT_PATH                  |
1463                                                 IB_QP_PATH_MIG_STATE),
1464                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1465                                                 IB_QP_ACCESS_FLAGS              |
1466                                                 IB_QP_ALT_PATH                  |
1467                                                 IB_QP_PATH_MIG_STATE            |
1468                                                 IB_QP_MIN_RNR_TIMER),
1469                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1470                                                 IB_QP_ACCESS_FLAGS              |
1471                                                 IB_QP_ALT_PATH                  |
1472                                                 IB_QP_PATH_MIG_STATE),
1473                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1474                                                 IB_QP_ACCESS_FLAGS              |
1475                                                 IB_QP_ALT_PATH                  |
1476                                                 IB_QP_PATH_MIG_STATE            |
1477                                                 IB_QP_MIN_RNR_TIMER),
1478                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1479                                                 IB_QP_QKEY),
1480                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1481                                                 IB_QP_QKEY),
1482                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1483                         }
1484                 },
1485                 [IB_QPS_SQD]   = {
1486                         .valid = 1,
1487                         .opt_param = {
1488                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1489                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1490                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1491                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1492                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1493                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1494                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1495                         }
1496                 },
1497         },
1498         [IB_QPS_SQD]   = {
1499                 [IB_QPS_RESET] = { .valid = 1 },
1500                 [IB_QPS_ERR] =   { .valid = 1 },
1501                 [IB_QPS_RTS]   = {
1502                         .valid = 1,
1503                         .opt_param = {
1504                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1505                                                 IB_QP_QKEY),
1506                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1507                                                 IB_QP_ALT_PATH                  |
1508                                                 IB_QP_ACCESS_FLAGS              |
1509                                                 IB_QP_PATH_MIG_STATE),
1510                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1511                                                 IB_QP_ALT_PATH                  |
1512                                                 IB_QP_ACCESS_FLAGS              |
1513                                                 IB_QP_MIN_RNR_TIMER             |
1514                                                 IB_QP_PATH_MIG_STATE),
1515                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1516                                                 IB_QP_ALT_PATH                  |
1517                                                 IB_QP_ACCESS_FLAGS              |
1518                                                 IB_QP_PATH_MIG_STATE),
1519                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1520                                                 IB_QP_ALT_PATH                  |
1521                                                 IB_QP_ACCESS_FLAGS              |
1522                                                 IB_QP_MIN_RNR_TIMER             |
1523                                                 IB_QP_PATH_MIG_STATE),
1524                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1525                                                 IB_QP_QKEY),
1526                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1527                                                 IB_QP_QKEY),
1528                         }
1529                 },
1530                 [IB_QPS_SQD]   = {
1531                         .valid = 1,
1532                         .opt_param = {
1533                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1534                                                 IB_QP_QKEY),
1535                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1536                                                 IB_QP_ALT_PATH                  |
1537                                                 IB_QP_ACCESS_FLAGS              |
1538                                                 IB_QP_PKEY_INDEX                |
1539                                                 IB_QP_PATH_MIG_STATE),
1540                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1541                                                 IB_QP_AV                        |
1542                                                 IB_QP_TIMEOUT                   |
1543                                                 IB_QP_RETRY_CNT                 |
1544                                                 IB_QP_RNR_RETRY                 |
1545                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1546                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1547                                                 IB_QP_ALT_PATH                  |
1548                                                 IB_QP_ACCESS_FLAGS              |
1549                                                 IB_QP_PKEY_INDEX                |
1550                                                 IB_QP_MIN_RNR_TIMER             |
1551                                                 IB_QP_PATH_MIG_STATE),
1552                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1553                                                 IB_QP_AV                        |
1554                                                 IB_QP_TIMEOUT                   |
1555                                                 IB_QP_RETRY_CNT                 |
1556                                                 IB_QP_RNR_RETRY                 |
1557                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1558                                                 IB_QP_ALT_PATH                  |
1559                                                 IB_QP_ACCESS_FLAGS              |
1560                                                 IB_QP_PKEY_INDEX                |
1561                                                 IB_QP_PATH_MIG_STATE),
1562                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1563                                                 IB_QP_AV                        |
1564                                                 IB_QP_TIMEOUT                   |
1565                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1566                                                 IB_QP_ALT_PATH                  |
1567                                                 IB_QP_ACCESS_FLAGS              |
1568                                                 IB_QP_PKEY_INDEX                |
1569                                                 IB_QP_MIN_RNR_TIMER             |
1570                                                 IB_QP_PATH_MIG_STATE),
1571                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1572                                                 IB_QP_QKEY),
1573                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1574                                                 IB_QP_QKEY),
1575                         }
1576                 }
1577         },
1578         [IB_QPS_SQE]   = {
1579                 [IB_QPS_RESET] = { .valid = 1 },
1580                 [IB_QPS_ERR] =   { .valid = 1 },
1581                 [IB_QPS_RTS]   = {
1582                         .valid = 1,
1583                         .opt_param = {
1584                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1585                                                 IB_QP_QKEY),
1586                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1587                                                 IB_QP_ACCESS_FLAGS),
1588                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1589                                                 IB_QP_QKEY),
1590                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1591                                                 IB_QP_QKEY),
1592                         }
1593                 }
1594         },
1595         [IB_QPS_ERR] = {
1596                 [IB_QPS_RESET] = { .valid = 1 },
1597                 [IB_QPS_ERR] =   { .valid = 1 }
1598         }
1599 };
1600
1601 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1602                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1603 {
1604         enum ib_qp_attr_mask req_param, opt_param;
1605
1606         if (mask & IB_QP_CUR_STATE  &&
1607             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1608             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1609                 return false;
1610
1611         if (!qp_state_table[cur_state][next_state].valid)
1612                 return false;
1613
1614         req_param = qp_state_table[cur_state][next_state].req_param[type];
1615         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1616
1617         if ((mask & req_param) != req_param)
1618                 return false;
1619
1620         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1621                 return false;
1622
1623         return true;
1624 }
1625 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1626
1627 /**
1628  * ib_resolve_eth_dmac - Resolve destination mac address
1629  * @device:             Device to consider
1630  * @ah_attr:            address handle attribute which describes the
1631  *                      source and destination parameters
1632  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1633  * returns 0 on success or appropriate error code. It initializes the
1634  * necessary ah_attr fields when call is successful.
1635  */
1636 static int ib_resolve_eth_dmac(struct ib_device *device,
1637                                struct rdma_ah_attr *ah_attr)
1638 {
1639         int ret = 0;
1640
1641         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1642                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1643                         __be32 addr = 0;
1644
1645                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1646                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1647                 } else {
1648                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1649                                         (char *)ah_attr->roce.dmac);
1650                 }
1651         } else {
1652                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1653         }
1654         return ret;
1655 }
1656
1657 static bool is_qp_type_connected(const struct ib_qp *qp)
1658 {
1659         return (qp->qp_type == IB_QPT_UC ||
1660                 qp->qp_type == IB_QPT_RC ||
1661                 qp->qp_type == IB_QPT_XRC_INI ||
1662                 qp->qp_type == IB_QPT_XRC_TGT);
1663 }
1664
1665 /**
1666  * IB core internal function to perform QP attributes modification.
1667  */
1668 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1669                          int attr_mask, struct ib_udata *udata)
1670 {
1671         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1672         const struct ib_gid_attr *old_sgid_attr_av;
1673         const struct ib_gid_attr *old_sgid_attr_alt_av;
1674         int ret;
1675
1676         attr->xmit_slave = NULL;
1677         if (attr_mask & IB_QP_AV) {
1678                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1679                                           &old_sgid_attr_av);
1680                 if (ret)
1681                         return ret;
1682
1683                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1684                     is_qp_type_connected(qp)) {
1685                         struct net_device *slave;
1686
1687                         /*
1688                          * If the user provided the qp_attr then we have to
1689                          * resolve it. Kerne users have to provide already
1690                          * resolved rdma_ah_attr's.
1691                          */
1692                         if (udata) {
1693                                 ret = ib_resolve_eth_dmac(qp->device,
1694                                                           &attr->ah_attr);
1695                                 if (ret)
1696                                         goto out_av;
1697                         }
1698                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1699                                                            &attr->ah_attr,
1700                                                            GFP_KERNEL);
1701                         if (IS_ERR(slave))
1702                                 goto out_av;
1703                         attr->xmit_slave = slave;
1704                 }
1705         }
1706         if (attr_mask & IB_QP_ALT_PATH) {
1707                 /*
1708                  * FIXME: This does not track the migration state, so if the
1709                  * user loads a new alternate path after the HW has migrated
1710                  * from primary->alternate we will keep the wrong
1711                  * references. This is OK for IB because the reference
1712                  * counting does not serve any functional purpose.
1713                  */
1714                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1715                                           &old_sgid_attr_alt_av);
1716                 if (ret)
1717                         goto out_av;
1718
1719                 /*
1720                  * Today the core code can only handle alternate paths and APM
1721                  * for IB. Ban them in roce mode.
1722                  */
1723                 if (!(rdma_protocol_ib(qp->device,
1724                                        attr->alt_ah_attr.port_num) &&
1725                       rdma_protocol_ib(qp->device, port))) {
1726                         ret = -EINVAL;
1727                         goto out;
1728                 }
1729         }
1730
1731         if (rdma_ib_or_roce(qp->device, port)) {
1732                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1733                         dev_warn(&qp->device->dev,
1734                                  "%s rq_psn overflow, masking to 24 bits\n",
1735                                  __func__);
1736                         attr->rq_psn &= 0xffffff;
1737                 }
1738
1739                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1740                         dev_warn(&qp->device->dev,
1741                                  " %s sq_psn overflow, masking to 24 bits\n",
1742                                  __func__);
1743                         attr->sq_psn &= 0xffffff;
1744                 }
1745         }
1746
1747         /*
1748          * Bind this qp to a counter automatically based on the rdma counter
1749          * rules. This only set in RST2INIT with port specified
1750          */
1751         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1752             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1753                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1754
1755         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1756         if (ret)
1757                 goto out;
1758
1759         if (attr_mask & IB_QP_PORT)
1760                 qp->port = attr->port_num;
1761         if (attr_mask & IB_QP_AV)
1762                 qp->av_sgid_attr =
1763                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1764         if (attr_mask & IB_QP_ALT_PATH)
1765                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1766                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1767
1768 out:
1769         if (attr_mask & IB_QP_ALT_PATH)
1770                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1771 out_av:
1772         if (attr_mask & IB_QP_AV) {
1773                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1774                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1775         }
1776         return ret;
1777 }
1778
1779 /**
1780  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1781  * @ib_qp: The QP to modify.
1782  * @attr: On input, specifies the QP attributes to modify.  On output,
1783  *   the current values of selected QP attributes are returned.
1784  * @attr_mask: A bit-mask used to specify which attributes of the QP
1785  *   are being modified.
1786  * @udata: pointer to user's input output buffer information
1787  *   are being modified.
1788  * It returns 0 on success and returns appropriate error code on error.
1789  */
1790 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1791                             int attr_mask, struct ib_udata *udata)
1792 {
1793         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1794 }
1795 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1796
1797 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width)
1798 {
1799         int rc;
1800         u32 netdev_speed;
1801         struct net_device *netdev;
1802         struct ethtool_link_ksettings lksettings;
1803
1804         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1805                 return -EINVAL;
1806
1807         netdev = ib_device_get_netdev(dev, port_num);
1808         if (!netdev)
1809                 return -ENODEV;
1810
1811         rtnl_lock();
1812         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1813         rtnl_unlock();
1814
1815         dev_put(netdev);
1816
1817         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1818                 netdev_speed = lksettings.base.speed;
1819         } else {
1820                 netdev_speed = SPEED_1000;
1821                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1822                         netdev_speed);
1823         }
1824
1825         if (netdev_speed <= SPEED_1000) {
1826                 *width = IB_WIDTH_1X;
1827                 *speed = IB_SPEED_SDR;
1828         } else if (netdev_speed <= SPEED_10000) {
1829                 *width = IB_WIDTH_1X;
1830                 *speed = IB_SPEED_FDR10;
1831         } else if (netdev_speed <= SPEED_20000) {
1832                 *width = IB_WIDTH_4X;
1833                 *speed = IB_SPEED_DDR;
1834         } else if (netdev_speed <= SPEED_25000) {
1835                 *width = IB_WIDTH_1X;
1836                 *speed = IB_SPEED_EDR;
1837         } else if (netdev_speed <= SPEED_40000) {
1838                 *width = IB_WIDTH_4X;
1839                 *speed = IB_SPEED_FDR10;
1840         } else {
1841                 *width = IB_WIDTH_4X;
1842                 *speed = IB_SPEED_EDR;
1843         }
1844
1845         return 0;
1846 }
1847 EXPORT_SYMBOL(ib_get_eth_speed);
1848
1849 int ib_modify_qp(struct ib_qp *qp,
1850                  struct ib_qp_attr *qp_attr,
1851                  int qp_attr_mask)
1852 {
1853         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1854 }
1855 EXPORT_SYMBOL(ib_modify_qp);
1856
1857 int ib_query_qp(struct ib_qp *qp,
1858                 struct ib_qp_attr *qp_attr,
1859                 int qp_attr_mask,
1860                 struct ib_qp_init_attr *qp_init_attr)
1861 {
1862         qp_attr->ah_attr.grh.sgid_attr = NULL;
1863         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1864
1865         return qp->device->ops.query_qp ?
1866                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1867                                          qp_init_attr) : -EOPNOTSUPP;
1868 }
1869 EXPORT_SYMBOL(ib_query_qp);
1870
1871 int ib_close_qp(struct ib_qp *qp)
1872 {
1873         struct ib_qp *real_qp;
1874         unsigned long flags;
1875
1876         real_qp = qp->real_qp;
1877         if (real_qp == qp)
1878                 return -EINVAL;
1879
1880         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1881         list_del(&qp->open_list);
1882         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1883
1884         atomic_dec(&real_qp->usecnt);
1885         if (qp->qp_sec)
1886                 ib_close_shared_qp_security(qp->qp_sec);
1887         kfree(qp);
1888
1889         return 0;
1890 }
1891 EXPORT_SYMBOL(ib_close_qp);
1892
1893 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1894 {
1895         struct ib_xrcd *xrcd;
1896         struct ib_qp *real_qp;
1897         int ret;
1898
1899         real_qp = qp->real_qp;
1900         xrcd = real_qp->xrcd;
1901         down_write(&xrcd->tgt_qps_rwsem);
1902         ib_close_qp(qp);
1903         if (atomic_read(&real_qp->usecnt) == 0)
1904                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1905         else
1906                 real_qp = NULL;
1907         up_write(&xrcd->tgt_qps_rwsem);
1908
1909         if (real_qp) {
1910                 ret = ib_destroy_qp(real_qp);
1911                 if (!ret)
1912                         atomic_dec(&xrcd->usecnt);
1913         }
1914
1915         return 0;
1916 }
1917
1918 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1919 {
1920         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1921         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1922         struct ib_pd *pd;
1923         struct ib_cq *scq, *rcq;
1924         struct ib_srq *srq;
1925         struct ib_rwq_ind_table *ind_tbl;
1926         struct ib_qp_security *sec;
1927         int ret;
1928
1929         WARN_ON_ONCE(qp->mrs_used > 0);
1930
1931         if (atomic_read(&qp->usecnt))
1932                 return -EBUSY;
1933
1934         if (qp->real_qp != qp)
1935                 return __ib_destroy_shared_qp(qp);
1936
1937         pd   = qp->pd;
1938         scq  = qp->send_cq;
1939         rcq  = qp->recv_cq;
1940         srq  = qp->srq;
1941         ind_tbl = qp->rwq_ind_tbl;
1942         sec  = qp->qp_sec;
1943         if (sec)
1944                 ib_destroy_qp_security_begin(sec);
1945
1946         if (!qp->uobject)
1947                 rdma_rw_cleanup_mrs(qp);
1948
1949         rdma_counter_unbind_qp(qp, true);
1950         rdma_restrack_del(&qp->res);
1951         ret = qp->device->ops.destroy_qp(qp, udata);
1952         if (!ret) {
1953                 if (alt_path_sgid_attr)
1954                         rdma_put_gid_attr(alt_path_sgid_attr);
1955                 if (av_sgid_attr)
1956                         rdma_put_gid_attr(av_sgid_attr);
1957                 if (pd)
1958                         atomic_dec(&pd->usecnt);
1959                 if (scq)
1960                         atomic_dec(&scq->usecnt);
1961                 if (rcq)
1962                         atomic_dec(&rcq->usecnt);
1963                 if (srq)
1964                         atomic_dec(&srq->usecnt);
1965                 if (ind_tbl)
1966                         atomic_dec(&ind_tbl->usecnt);
1967                 if (sec)
1968                         ib_destroy_qp_security_end(sec);
1969         } else {
1970                 if (sec)
1971                         ib_destroy_qp_security_abort(sec);
1972         }
1973
1974         return ret;
1975 }
1976 EXPORT_SYMBOL(ib_destroy_qp_user);
1977
1978 /* Completion queues */
1979
1980 struct ib_cq *__ib_create_cq(struct ib_device *device,
1981                              ib_comp_handler comp_handler,
1982                              void (*event_handler)(struct ib_event *, void *),
1983                              void *cq_context,
1984                              const struct ib_cq_init_attr *cq_attr,
1985                              const char *caller)
1986 {
1987         struct ib_cq *cq;
1988         int ret;
1989
1990         cq = rdma_zalloc_drv_obj(device, ib_cq);
1991         if (!cq)
1992                 return ERR_PTR(-ENOMEM);
1993
1994         cq->device = device;
1995         cq->uobject = NULL;
1996         cq->comp_handler = comp_handler;
1997         cq->event_handler = event_handler;
1998         cq->cq_context = cq_context;
1999         atomic_set(&cq->usecnt, 0);
2000
2001         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2002         rdma_restrack_set_name(&cq->res, caller);
2003
2004         ret = device->ops.create_cq(cq, cq_attr, NULL);
2005         if (ret) {
2006                 rdma_restrack_put(&cq->res);
2007                 kfree(cq);
2008                 return ERR_PTR(ret);
2009         }
2010
2011         rdma_restrack_add(&cq->res);
2012         return cq;
2013 }
2014 EXPORT_SYMBOL(__ib_create_cq);
2015
2016 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2017 {
2018         if (cq->shared)
2019                 return -EOPNOTSUPP;
2020
2021         return cq->device->ops.modify_cq ?
2022                 cq->device->ops.modify_cq(cq, cq_count,
2023                                           cq_period) : -EOPNOTSUPP;
2024 }
2025 EXPORT_SYMBOL(rdma_set_cq_moderation);
2026
2027 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2028 {
2029         int ret;
2030
2031         if (WARN_ON_ONCE(cq->shared))
2032                 return -EOPNOTSUPP;
2033
2034         if (atomic_read(&cq->usecnt))
2035                 return -EBUSY;
2036
2037         ret = cq->device->ops.destroy_cq(cq, udata);
2038         if (ret)
2039                 return ret;
2040
2041         rdma_restrack_del(&cq->res);
2042         kfree(cq);
2043         return ret;
2044 }
2045 EXPORT_SYMBOL(ib_destroy_cq_user);
2046
2047 int ib_resize_cq(struct ib_cq *cq, int cqe)
2048 {
2049         if (cq->shared)
2050                 return -EOPNOTSUPP;
2051
2052         return cq->device->ops.resize_cq ?
2053                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2054 }
2055 EXPORT_SYMBOL(ib_resize_cq);
2056
2057 /* Memory regions */
2058
2059 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2060                              u64 virt_addr, int access_flags)
2061 {
2062         struct ib_mr *mr;
2063
2064         if (access_flags & IB_ACCESS_ON_DEMAND) {
2065                 if (!(pd->device->attrs.device_cap_flags &
2066                       IB_DEVICE_ON_DEMAND_PAGING)) {
2067                         pr_debug("ODP support not available\n");
2068                         return ERR_PTR(-EINVAL);
2069                 }
2070         }
2071
2072         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2073                                          access_flags, NULL);
2074
2075         if (IS_ERR(mr))
2076                 return mr;
2077
2078         mr->device = pd->device;
2079         mr->pd = pd;
2080         mr->dm = NULL;
2081         atomic_inc(&pd->usecnt);
2082
2083         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2084         rdma_restrack_parent_name(&mr->res, &pd->res);
2085         rdma_restrack_add(&mr->res);
2086
2087         return mr;
2088 }
2089 EXPORT_SYMBOL(ib_reg_user_mr);
2090
2091 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2092                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2093 {
2094         if (!pd->device->ops.advise_mr)
2095                 return -EOPNOTSUPP;
2096
2097         if (!num_sge)
2098                 return 0;
2099
2100         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2101                                          NULL);
2102 }
2103 EXPORT_SYMBOL(ib_advise_mr);
2104
2105 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2106 {
2107         struct ib_pd *pd = mr->pd;
2108         struct ib_dm *dm = mr->dm;
2109         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2110         int ret;
2111
2112         trace_mr_dereg(mr);
2113         rdma_restrack_del(&mr->res);
2114         ret = mr->device->ops.dereg_mr(mr, udata);
2115         if (!ret) {
2116                 atomic_dec(&pd->usecnt);
2117                 if (dm)
2118                         atomic_dec(&dm->usecnt);
2119                 kfree(sig_attrs);
2120         }
2121
2122         return ret;
2123 }
2124 EXPORT_SYMBOL(ib_dereg_mr_user);
2125
2126 /**
2127  * ib_alloc_mr() - Allocates a memory region
2128  * @pd:            protection domain associated with the region
2129  * @mr_type:       memory region type
2130  * @max_num_sg:    maximum sg entries available for registration.
2131  *
2132  * Notes:
2133  * Memory registeration page/sg lists must not exceed max_num_sg.
2134  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2135  * max_num_sg * used_page_size.
2136  *
2137  */
2138 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2139                           u32 max_num_sg)
2140 {
2141         struct ib_mr *mr;
2142
2143         if (!pd->device->ops.alloc_mr) {
2144                 mr = ERR_PTR(-EOPNOTSUPP);
2145                 goto out;
2146         }
2147
2148         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2149                 WARN_ON_ONCE(1);
2150                 mr = ERR_PTR(-EINVAL);
2151                 goto out;
2152         }
2153
2154         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2155         if (IS_ERR(mr))
2156                 goto out;
2157
2158         mr->device = pd->device;
2159         mr->pd = pd;
2160         mr->dm = NULL;
2161         mr->uobject = NULL;
2162         atomic_inc(&pd->usecnt);
2163         mr->need_inval = false;
2164         mr->type = mr_type;
2165         mr->sig_attrs = NULL;
2166
2167         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2168         rdma_restrack_parent_name(&mr->res, &pd->res);
2169         rdma_restrack_add(&mr->res);
2170 out:
2171         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2172         return mr;
2173 }
2174 EXPORT_SYMBOL(ib_alloc_mr);
2175
2176 /**
2177  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2178  * @pd:                      protection domain associated with the region
2179  * @max_num_data_sg:         maximum data sg entries available for registration
2180  * @max_num_meta_sg:         maximum metadata sg entries available for
2181  *                           registration
2182  *
2183  * Notes:
2184  * Memory registration page/sg lists must not exceed max_num_sg,
2185  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2186  *
2187  */
2188 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2189                                     u32 max_num_data_sg,
2190                                     u32 max_num_meta_sg)
2191 {
2192         struct ib_mr *mr;
2193         struct ib_sig_attrs *sig_attrs;
2194
2195         if (!pd->device->ops.alloc_mr_integrity ||
2196             !pd->device->ops.map_mr_sg_pi) {
2197                 mr = ERR_PTR(-EOPNOTSUPP);
2198                 goto out;
2199         }
2200
2201         if (!max_num_meta_sg) {
2202                 mr = ERR_PTR(-EINVAL);
2203                 goto out;
2204         }
2205
2206         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2207         if (!sig_attrs) {
2208                 mr = ERR_PTR(-ENOMEM);
2209                 goto out;
2210         }
2211
2212         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2213                                                 max_num_meta_sg);
2214         if (IS_ERR(mr)) {
2215                 kfree(sig_attrs);
2216                 goto out;
2217         }
2218
2219         mr->device = pd->device;
2220         mr->pd = pd;
2221         mr->dm = NULL;
2222         mr->uobject = NULL;
2223         atomic_inc(&pd->usecnt);
2224         mr->need_inval = false;
2225         mr->type = IB_MR_TYPE_INTEGRITY;
2226         mr->sig_attrs = sig_attrs;
2227
2228         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2229         rdma_restrack_parent_name(&mr->res, &pd->res);
2230         rdma_restrack_add(&mr->res);
2231 out:
2232         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2233         return mr;
2234 }
2235 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2236
2237 /* Multicast groups */
2238
2239 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2240 {
2241         struct ib_qp_init_attr init_attr = {};
2242         struct ib_qp_attr attr = {};
2243         int num_eth_ports = 0;
2244         int port;
2245
2246         /* If QP state >= init, it is assigned to a port and we can check this
2247          * port only.
2248          */
2249         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2250                 if (attr.qp_state >= IB_QPS_INIT) {
2251                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2252                             IB_LINK_LAYER_INFINIBAND)
2253                                 return true;
2254                         goto lid_check;
2255                 }
2256         }
2257
2258         /* Can't get a quick answer, iterate over all ports */
2259         for (port = 0; port < qp->device->phys_port_cnt; port++)
2260                 if (rdma_port_get_link_layer(qp->device, port) !=
2261                     IB_LINK_LAYER_INFINIBAND)
2262                         num_eth_ports++;
2263
2264         /* If we have at lease one Ethernet port, RoCE annex declares that
2265          * multicast LID should be ignored. We can't tell at this step if the
2266          * QP belongs to an IB or Ethernet port.
2267          */
2268         if (num_eth_ports)
2269                 return true;
2270
2271         /* If all the ports are IB, we can check according to IB spec. */
2272 lid_check:
2273         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2274                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2275 }
2276
2277 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2278 {
2279         int ret;
2280
2281         if (!qp->device->ops.attach_mcast)
2282                 return -EOPNOTSUPP;
2283
2284         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2285             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2286                 return -EINVAL;
2287
2288         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2289         if (!ret)
2290                 atomic_inc(&qp->usecnt);
2291         return ret;
2292 }
2293 EXPORT_SYMBOL(ib_attach_mcast);
2294
2295 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2296 {
2297         int ret;
2298
2299         if (!qp->device->ops.detach_mcast)
2300                 return -EOPNOTSUPP;
2301
2302         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2303             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2304                 return -EINVAL;
2305
2306         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2307         if (!ret)
2308                 atomic_dec(&qp->usecnt);
2309         return ret;
2310 }
2311 EXPORT_SYMBOL(ib_detach_mcast);
2312
2313 /**
2314  * ib_alloc_xrcd_user - Allocates an XRC domain.
2315  * @device: The device on which to allocate the XRC domain.
2316  * @inode: inode to connect XRCD
2317  * @udata: Valid user data or NULL for kernel object
2318  */
2319 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2320                                    struct inode *inode, struct ib_udata *udata)
2321 {
2322         struct ib_xrcd *xrcd;
2323         int ret;
2324
2325         if (!device->ops.alloc_xrcd)
2326                 return ERR_PTR(-EOPNOTSUPP);
2327
2328         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2329         if (!xrcd)
2330                 return ERR_PTR(-ENOMEM);
2331
2332         xrcd->device = device;
2333         xrcd->inode = inode;
2334         atomic_set(&xrcd->usecnt, 0);
2335         init_rwsem(&xrcd->tgt_qps_rwsem);
2336         xa_init(&xrcd->tgt_qps);
2337
2338         ret = device->ops.alloc_xrcd(xrcd, udata);
2339         if (ret)
2340                 goto err;
2341         return xrcd;
2342 err:
2343         kfree(xrcd);
2344         return ERR_PTR(ret);
2345 }
2346 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2347
2348 /**
2349  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2350  * @xrcd: The XRC domain to deallocate.
2351  * @udata: Valid user data or NULL for kernel object
2352  */
2353 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2354 {
2355         int ret;
2356
2357         if (atomic_read(&xrcd->usecnt))
2358                 return -EBUSY;
2359
2360         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2361         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2362         if (ret)
2363                 return ret;
2364         kfree(xrcd);
2365         return ret;
2366 }
2367 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2368
2369 /**
2370  * ib_create_wq - Creates a WQ associated with the specified protection
2371  * domain.
2372  * @pd: The protection domain associated with the WQ.
2373  * @wq_attr: A list of initial attributes required to create the
2374  * WQ. If WQ creation succeeds, then the attributes are updated to
2375  * the actual capabilities of the created WQ.
2376  *
2377  * wq_attr->max_wr and wq_attr->max_sge determine
2378  * the requested size of the WQ, and set to the actual values allocated
2379  * on return.
2380  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2381  * at least as large as the requested values.
2382  */
2383 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2384                            struct ib_wq_init_attr *wq_attr)
2385 {
2386         struct ib_wq *wq;
2387
2388         if (!pd->device->ops.create_wq)
2389                 return ERR_PTR(-EOPNOTSUPP);
2390
2391         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2392         if (!IS_ERR(wq)) {
2393                 wq->event_handler = wq_attr->event_handler;
2394                 wq->wq_context = wq_attr->wq_context;
2395                 wq->wq_type = wq_attr->wq_type;
2396                 wq->cq = wq_attr->cq;
2397                 wq->device = pd->device;
2398                 wq->pd = pd;
2399                 wq->uobject = NULL;
2400                 atomic_inc(&pd->usecnt);
2401                 atomic_inc(&wq_attr->cq->usecnt);
2402                 atomic_set(&wq->usecnt, 0);
2403         }
2404         return wq;
2405 }
2406 EXPORT_SYMBOL(ib_create_wq);
2407
2408 /**
2409  * ib_destroy_wq_user - Destroys the specified user WQ.
2410  * @wq: The WQ to destroy.
2411  * @udata: Valid user data
2412  */
2413 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2414 {
2415         struct ib_cq *cq = wq->cq;
2416         struct ib_pd *pd = wq->pd;
2417         int ret;
2418
2419         if (atomic_read(&wq->usecnt))
2420                 return -EBUSY;
2421
2422         ret = wq->device->ops.destroy_wq(wq, udata);
2423         if (ret)
2424                 return ret;
2425
2426         atomic_dec(&pd->usecnt);
2427         atomic_dec(&cq->usecnt);
2428         return ret;
2429 }
2430 EXPORT_SYMBOL(ib_destroy_wq_user);
2431
2432 /**
2433  * ib_modify_wq - Modifies the specified WQ.
2434  * @wq: The WQ to modify.
2435  * @wq_attr: On input, specifies the WQ attributes to modify.
2436  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2437  *   are being modified.
2438  * On output, the current values of selected WQ attributes are returned.
2439  */
2440 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2441                  u32 wq_attr_mask)
2442 {
2443         int err;
2444
2445         if (!wq->device->ops.modify_wq)
2446                 return -EOPNOTSUPP;
2447
2448         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2449         return err;
2450 }
2451 EXPORT_SYMBOL(ib_modify_wq);
2452
2453 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2454                        struct ib_mr_status *mr_status)
2455 {
2456         if (!mr->device->ops.check_mr_status)
2457                 return -EOPNOTSUPP;
2458
2459         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2460 }
2461 EXPORT_SYMBOL(ib_check_mr_status);
2462
2463 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2464                          int state)
2465 {
2466         if (!device->ops.set_vf_link_state)
2467                 return -EOPNOTSUPP;
2468
2469         return device->ops.set_vf_link_state(device, vf, port, state);
2470 }
2471 EXPORT_SYMBOL(ib_set_vf_link_state);
2472
2473 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2474                      struct ifla_vf_info *info)
2475 {
2476         if (!device->ops.get_vf_config)
2477                 return -EOPNOTSUPP;
2478
2479         return device->ops.get_vf_config(device, vf, port, info);
2480 }
2481 EXPORT_SYMBOL(ib_get_vf_config);
2482
2483 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2484                     struct ifla_vf_stats *stats)
2485 {
2486         if (!device->ops.get_vf_stats)
2487                 return -EOPNOTSUPP;
2488
2489         return device->ops.get_vf_stats(device, vf, port, stats);
2490 }
2491 EXPORT_SYMBOL(ib_get_vf_stats);
2492
2493 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2494                    int type)
2495 {
2496         if (!device->ops.set_vf_guid)
2497                 return -EOPNOTSUPP;
2498
2499         return device->ops.set_vf_guid(device, vf, port, guid, type);
2500 }
2501 EXPORT_SYMBOL(ib_set_vf_guid);
2502
2503 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2504                    struct ifla_vf_guid *node_guid,
2505                    struct ifla_vf_guid *port_guid)
2506 {
2507         if (!device->ops.get_vf_guid)
2508                 return -EOPNOTSUPP;
2509
2510         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2511 }
2512 EXPORT_SYMBOL(ib_get_vf_guid);
2513 /**
2514  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2515  *     information) and set an appropriate memory region for registration.
2516  * @mr:             memory region
2517  * @data_sg:        dma mapped scatterlist for data
2518  * @data_sg_nents:  number of entries in data_sg
2519  * @data_sg_offset: offset in bytes into data_sg
2520  * @meta_sg:        dma mapped scatterlist for metadata
2521  * @meta_sg_nents:  number of entries in meta_sg
2522  * @meta_sg_offset: offset in bytes into meta_sg
2523  * @page_size:      page vector desired page size
2524  *
2525  * Constraints:
2526  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2527  *
2528  * Return: 0 on success.
2529  *
2530  * After this completes successfully, the  memory region
2531  * is ready for registration.
2532  */
2533 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2534                     int data_sg_nents, unsigned int *data_sg_offset,
2535                     struct scatterlist *meta_sg, int meta_sg_nents,
2536                     unsigned int *meta_sg_offset, unsigned int page_size)
2537 {
2538         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2539                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2540                 return -EOPNOTSUPP;
2541
2542         mr->page_size = page_size;
2543
2544         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2545                                             data_sg_offset, meta_sg,
2546                                             meta_sg_nents, meta_sg_offset);
2547 }
2548 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2549
2550 /**
2551  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2552  *     and set it the memory region.
2553  * @mr:            memory region
2554  * @sg:            dma mapped scatterlist
2555  * @sg_nents:      number of entries in sg
2556  * @sg_offset:     offset in bytes into sg
2557  * @page_size:     page vector desired page size
2558  *
2559  * Constraints:
2560  *
2561  * - The first sg element is allowed to have an offset.
2562  * - Each sg element must either be aligned to page_size or virtually
2563  *   contiguous to the previous element. In case an sg element has a
2564  *   non-contiguous offset, the mapping prefix will not include it.
2565  * - The last sg element is allowed to have length less than page_size.
2566  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2567  *   then only max_num_sg entries will be mapped.
2568  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2569  *   constraints holds and the page_size argument is ignored.
2570  *
2571  * Returns the number of sg elements that were mapped to the memory region.
2572  *
2573  * After this completes successfully, the  memory region
2574  * is ready for registration.
2575  */
2576 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2577                  unsigned int *sg_offset, unsigned int page_size)
2578 {
2579         if (unlikely(!mr->device->ops.map_mr_sg))
2580                 return -EOPNOTSUPP;
2581
2582         mr->page_size = page_size;
2583
2584         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2585 }
2586 EXPORT_SYMBOL(ib_map_mr_sg);
2587
2588 /**
2589  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2590  *     to a page vector
2591  * @mr:            memory region
2592  * @sgl:           dma mapped scatterlist
2593  * @sg_nents:      number of entries in sg
2594  * @sg_offset_p:   ==== =======================================================
2595  *                 IN   start offset in bytes into sg
2596  *                 OUT  offset in bytes for element n of the sg of the first
2597  *                      byte that has not been processed where n is the return
2598  *                      value of this function.
2599  *                 ==== =======================================================
2600  * @set_page:      driver page assignment function pointer
2601  *
2602  * Core service helper for drivers to convert the largest
2603  * prefix of given sg list to a page vector. The sg list
2604  * prefix converted is the prefix that meet the requirements
2605  * of ib_map_mr_sg.
2606  *
2607  * Returns the number of sg elements that were assigned to
2608  * a page vector.
2609  */
2610 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2611                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2612 {
2613         struct scatterlist *sg;
2614         u64 last_end_dma_addr = 0;
2615         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2616         unsigned int last_page_off = 0;
2617         u64 page_mask = ~((u64)mr->page_size - 1);
2618         int i, ret;
2619
2620         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2621                 return -EINVAL;
2622
2623         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2624         mr->length = 0;
2625
2626         for_each_sg(sgl, sg, sg_nents, i) {
2627                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2628                 u64 prev_addr = dma_addr;
2629                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2630                 u64 end_dma_addr = dma_addr + dma_len;
2631                 u64 page_addr = dma_addr & page_mask;
2632
2633                 /*
2634                  * For the second and later elements, check whether either the
2635                  * end of element i-1 or the start of element i is not aligned
2636                  * on a page boundary.
2637                  */
2638                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2639                         /* Stop mapping if there is a gap. */
2640                         if (last_end_dma_addr != dma_addr)
2641                                 break;
2642
2643                         /*
2644                          * Coalesce this element with the last. If it is small
2645                          * enough just update mr->length. Otherwise start
2646                          * mapping from the next page.
2647                          */
2648                         goto next_page;
2649                 }
2650
2651                 do {
2652                         ret = set_page(mr, page_addr);
2653                         if (unlikely(ret < 0)) {
2654                                 sg_offset = prev_addr - sg_dma_address(sg);
2655                                 mr->length += prev_addr - dma_addr;
2656                                 if (sg_offset_p)
2657                                         *sg_offset_p = sg_offset;
2658                                 return i || sg_offset ? i : ret;
2659                         }
2660                         prev_addr = page_addr;
2661 next_page:
2662                         page_addr += mr->page_size;
2663                 } while (page_addr < end_dma_addr);
2664
2665                 mr->length += dma_len;
2666                 last_end_dma_addr = end_dma_addr;
2667                 last_page_off = end_dma_addr & ~page_mask;
2668
2669                 sg_offset = 0;
2670         }
2671
2672         if (sg_offset_p)
2673                 *sg_offset_p = 0;
2674         return i;
2675 }
2676 EXPORT_SYMBOL(ib_sg_to_pages);
2677
2678 struct ib_drain_cqe {
2679         struct ib_cqe cqe;
2680         struct completion done;
2681 };
2682
2683 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2684 {
2685         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2686                                                 cqe);
2687
2688         complete(&cqe->done);
2689 }
2690
2691 /*
2692  * Post a WR and block until its completion is reaped for the SQ.
2693  */
2694 static void __ib_drain_sq(struct ib_qp *qp)
2695 {
2696         struct ib_cq *cq = qp->send_cq;
2697         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2698         struct ib_drain_cqe sdrain;
2699         struct ib_rdma_wr swr = {
2700                 .wr = {
2701                         .next = NULL,
2702                         { .wr_cqe       = &sdrain.cqe, },
2703                         .opcode = IB_WR_RDMA_WRITE,
2704                 },
2705         };
2706         int ret;
2707
2708         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2709         if (ret) {
2710                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2711                 return;
2712         }
2713
2714         sdrain.cqe.done = ib_drain_qp_done;
2715         init_completion(&sdrain.done);
2716
2717         ret = ib_post_send(qp, &swr.wr, NULL);
2718         if (ret) {
2719                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2720                 return;
2721         }
2722
2723         if (cq->poll_ctx == IB_POLL_DIRECT)
2724                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2725                         ib_process_cq_direct(cq, -1);
2726         else
2727                 wait_for_completion(&sdrain.done);
2728 }
2729
2730 /*
2731  * Post a WR and block until its completion is reaped for the RQ.
2732  */
2733 static void __ib_drain_rq(struct ib_qp *qp)
2734 {
2735         struct ib_cq *cq = qp->recv_cq;
2736         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2737         struct ib_drain_cqe rdrain;
2738         struct ib_recv_wr rwr = {};
2739         int ret;
2740
2741         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2742         if (ret) {
2743                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2744                 return;
2745         }
2746
2747         rwr.wr_cqe = &rdrain.cqe;
2748         rdrain.cqe.done = ib_drain_qp_done;
2749         init_completion(&rdrain.done);
2750
2751         ret = ib_post_recv(qp, &rwr, NULL);
2752         if (ret) {
2753                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2754                 return;
2755         }
2756
2757         if (cq->poll_ctx == IB_POLL_DIRECT)
2758                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2759                         ib_process_cq_direct(cq, -1);
2760         else
2761                 wait_for_completion(&rdrain.done);
2762 }
2763
2764 /**
2765  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2766  *                 application.
2767  * @qp:            queue pair to drain
2768  *
2769  * If the device has a provider-specific drain function, then
2770  * call that.  Otherwise call the generic drain function
2771  * __ib_drain_sq().
2772  *
2773  * The caller must:
2774  *
2775  * ensure there is room in the CQ and SQ for the drain work request and
2776  * completion.
2777  *
2778  * allocate the CQ using ib_alloc_cq().
2779  *
2780  * ensure that there are no other contexts that are posting WRs concurrently.
2781  * Otherwise the drain is not guaranteed.
2782  */
2783 void ib_drain_sq(struct ib_qp *qp)
2784 {
2785         if (qp->device->ops.drain_sq)
2786                 qp->device->ops.drain_sq(qp);
2787         else
2788                 __ib_drain_sq(qp);
2789         trace_cq_drain_complete(qp->send_cq);
2790 }
2791 EXPORT_SYMBOL(ib_drain_sq);
2792
2793 /**
2794  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2795  *                 application.
2796  * @qp:            queue pair to drain
2797  *
2798  * If the device has a provider-specific drain function, then
2799  * call that.  Otherwise call the generic drain function
2800  * __ib_drain_rq().
2801  *
2802  * The caller must:
2803  *
2804  * ensure there is room in the CQ and RQ for the drain work request and
2805  * completion.
2806  *
2807  * allocate the CQ using ib_alloc_cq().
2808  *
2809  * ensure that there are no other contexts that are posting WRs concurrently.
2810  * Otherwise the drain is not guaranteed.
2811  */
2812 void ib_drain_rq(struct ib_qp *qp)
2813 {
2814         if (qp->device->ops.drain_rq)
2815                 qp->device->ops.drain_rq(qp);
2816         else
2817                 __ib_drain_rq(qp);
2818         trace_cq_drain_complete(qp->recv_cq);
2819 }
2820 EXPORT_SYMBOL(ib_drain_rq);
2821
2822 /**
2823  * ib_drain_qp() - Block until all CQEs have been consumed by the
2824  *                 application on both the RQ and SQ.
2825  * @qp:            queue pair to drain
2826  *
2827  * The caller must:
2828  *
2829  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2830  * and completions.
2831  *
2832  * allocate the CQs using ib_alloc_cq().
2833  *
2834  * ensure that there are no other contexts that are posting WRs concurrently.
2835  * Otherwise the drain is not guaranteed.
2836  */
2837 void ib_drain_qp(struct ib_qp *qp)
2838 {
2839         ib_drain_sq(qp);
2840         if (!qp->srq)
2841                 ib_drain_rq(qp);
2842 }
2843 EXPORT_SYMBOL(ib_drain_qp);
2844
2845 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2846                                      enum rdma_netdev_t type, const char *name,
2847                                      unsigned char name_assign_type,
2848                                      void (*setup)(struct net_device *))
2849 {
2850         struct rdma_netdev_alloc_params params;
2851         struct net_device *netdev;
2852         int rc;
2853
2854         if (!device->ops.rdma_netdev_get_params)
2855                 return ERR_PTR(-EOPNOTSUPP);
2856
2857         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2858                                                 &params);
2859         if (rc)
2860                 return ERR_PTR(rc);
2861
2862         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2863                                   setup, params.txqs, params.rxqs);
2864         if (!netdev)
2865                 return ERR_PTR(-ENOMEM);
2866
2867         return netdev;
2868 }
2869 EXPORT_SYMBOL(rdma_alloc_netdev);
2870
2871 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2872                      enum rdma_netdev_t type, const char *name,
2873                      unsigned char name_assign_type,
2874                      void (*setup)(struct net_device *),
2875                      struct net_device *netdev)
2876 {
2877         struct rdma_netdev_alloc_params params;
2878         int rc;
2879
2880         if (!device->ops.rdma_netdev_get_params)
2881                 return -EOPNOTSUPP;
2882
2883         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2884                                                 &params);
2885         if (rc)
2886                 return rc;
2887
2888         return params.initialize_rdma_netdev(device, port_num,
2889                                              netdev, params.param);
2890 }
2891 EXPORT_SYMBOL(rdma_init_netdev);
2892
2893 void __rdma_block_iter_start(struct ib_block_iter *biter,
2894                              struct scatterlist *sglist, unsigned int nents,
2895                              unsigned long pgsz)
2896 {
2897         memset(biter, 0, sizeof(struct ib_block_iter));
2898         biter->__sg = sglist;
2899         biter->__sg_nents = nents;
2900
2901         /* Driver provides best block size to use */
2902         biter->__pg_bit = __fls(pgsz);
2903 }
2904 EXPORT_SYMBOL(__rdma_block_iter_start);
2905
2906 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2907 {
2908         unsigned int block_offset;
2909
2910         if (!biter->__sg_nents || !biter->__sg)
2911                 return false;
2912
2913         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2914         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2915         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2916
2917         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2918                 biter->__sg_advance = 0;
2919                 biter->__sg = sg_next(biter->__sg);
2920                 biter->__sg_nents--;
2921         }
2922
2923         return true;
2924 }
2925 EXPORT_SYMBOL(__rdma_block_iter_next);