iio: imu: st_lsm6dsx: Fix mismatched comments
[linux-2.6-microblaze.git] / drivers / iio / imu / st_lsm6dsx / st_lsm6dsx_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4  *
5  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
6  * The FIFO buffer can be configured to store data from gyroscope and
7  * accelerometer. Samples are queued without any tag according to a
8  * specific pattern based on 'FIFO data sets' (6 bytes each):
9  *  - 1st data set is reserved for gyroscope data
10  *  - 2nd data set is reserved for accelerometer data
11  * The FIFO pattern changes depending on the ODRs and decimation factors
12  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
13  * buffer contains the data of all the enabled FIFO data sets
14  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
15  * value of the decimation factor and ODR set for each FIFO data set.
16  *
17  * LSM6DSO/LSM6DSOX/ASM330LHH/LSM6DSR/LSM6DSRX/ISM330DHCX:
18  * The FIFO buffer can be configured to store data from gyroscope and
19  * accelerometer. Each sample is queued with a tag (1B) indicating data
20  * source (gyroscope, accelerometer, hw timer).
21  *
22  * FIFO supported modes:
23  *  - BYPASS: FIFO disabled
24  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
25  *    restarts from the beginning and the oldest sample is overwritten
26  *
27  * Copyright 2016 STMicroelectronics Inc.
28  *
29  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
30  * Denis Ciocca <denis.ciocca@st.com>
31  */
32 #include <linux/module.h>
33 #include <linux/iio/kfifo_buf.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/buffer.h>
36 #include <linux/regmap.h>
37 #include <linux/bitfield.h>
38
39 #include <linux/platform_data/st_sensors_pdata.h>
40
41 #include "st_lsm6dsx.h"
42
43 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR           0x0a
44 #define ST_LSM6DSX_FIFO_MODE_MASK               GENMASK(2, 0)
45 #define ST_LSM6DSX_FIFO_ODR_MASK                GENMASK(6, 3)
46 #define ST_LSM6DSX_FIFO_EMPTY_MASK              BIT(12)
47 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR           0x3e
48 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR        0x78
49 #define ST_LSM6DSX_REG_TS_RESET_ADDR            0x42
50
51 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL             0x08
52
53 #define ST_LSM6DSX_TS_RESET_VAL                 0xaa
54
55 struct st_lsm6dsx_decimator_entry {
56         u8 decimator;
57         u8 val;
58 };
59
60 enum st_lsm6dsx_fifo_tag {
61         ST_LSM6DSX_GYRO_TAG = 0x01,
62         ST_LSM6DSX_ACC_TAG = 0x02,
63         ST_LSM6DSX_TS_TAG = 0x04,
64         ST_LSM6DSX_EXT0_TAG = 0x0f,
65         ST_LSM6DSX_EXT1_TAG = 0x10,
66         ST_LSM6DSX_EXT2_TAG = 0x11,
67 };
68
69 static const
70 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
71         {  0, 0x0 },
72         {  1, 0x1 },
73         {  2, 0x2 },
74         {  3, 0x3 },
75         {  4, 0x4 },
76         {  8, 0x5 },
77         { 16, 0x6 },
78         { 32, 0x7 },
79 };
80
81 static int
82 st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
83 {
84         const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
85         u32 decimator =  max_odr / sensor->odr;
86         int i;
87
88         if (decimator > 1)
89                 decimator = round_down(decimator, 2);
90
91         for (i = 0; i < max_size; i++) {
92                 if (st_lsm6dsx_decimator_table[i].decimator == decimator)
93                         break;
94         }
95
96         return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
97 }
98
99 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
100                                        u32 *max_odr, u32 *min_odr)
101 {
102         struct st_lsm6dsx_sensor *sensor;
103         int i;
104
105         *max_odr = 0, *min_odr = ~0;
106         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
107                 if (!hw->iio_devs[i])
108                         continue;
109
110                 sensor = iio_priv(hw->iio_devs[i]);
111
112                 if (!(hw->enable_mask & BIT(sensor->id)))
113                         continue;
114
115                 *max_odr = max_t(u32, *max_odr, sensor->odr);
116                 *min_odr = min_t(u32, *min_odr, sensor->odr);
117         }
118 }
119
120 static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
121 {
122         u8 sip = sensor->odr / min_odr;
123
124         return sip > 1 ? round_down(sip, 2) : sip;
125 }
126
127 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
128 {
129         const struct st_lsm6dsx_reg *ts_dec_reg;
130         struct st_lsm6dsx_sensor *sensor;
131         u16 sip = 0, ts_sip = 0;
132         u32 max_odr, min_odr;
133         int err = 0, i;
134         u8 data;
135
136         st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
137
138         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
139                 const struct st_lsm6dsx_reg *dec_reg;
140
141                 if (!hw->iio_devs[i])
142                         continue;
143
144                 sensor = iio_priv(hw->iio_devs[i]);
145                 /* update fifo decimators and sample in pattern */
146                 if (hw->enable_mask & BIT(sensor->id)) {
147                         sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
148                         data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
149                 } else {
150                         sensor->sip = 0;
151                         data = 0;
152                 }
153                 ts_sip = max_t(u16, ts_sip, sensor->sip);
154
155                 dec_reg = &hw->settings->decimator[sensor->id];
156                 if (dec_reg->addr) {
157                         int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
158
159                         err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
160                                                             dec_reg->mask,
161                                                             val);
162                         if (err < 0)
163                                 return err;
164                 }
165                 sip += sensor->sip;
166         }
167         hw->sip = sip + ts_sip;
168         hw->ts_sip = ts_sip;
169
170         /*
171          * update hw ts decimator if necessary. Decimator for hw timestamp
172          * is always 1 or 0 in order to have a ts sample for each data
173          * sample in FIFO
174          */
175         ts_dec_reg = &hw->settings->ts_settings.decimator;
176         if (ts_dec_reg->addr) {
177                 int val, ts_dec = !!hw->ts_sip;
178
179                 val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
180                 err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
181                                                     ts_dec_reg->mask, val);
182         }
183         return err;
184 }
185
186 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
187                              enum st_lsm6dsx_fifo_mode fifo_mode)
188 {
189         unsigned int data;
190
191         data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
192         return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
193                                              ST_LSM6DSX_FIFO_MODE_MASK, data);
194 }
195
196 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
197                                    bool enable)
198 {
199         struct st_lsm6dsx_hw *hw = sensor->hw;
200         const struct st_lsm6dsx_reg *batch_reg;
201         u8 data;
202
203         batch_reg = &hw->settings->batch[sensor->id];
204         if (batch_reg->addr) {
205                 int val;
206
207                 if (enable) {
208                         int err;
209
210                         err = st_lsm6dsx_check_odr(sensor, sensor->odr,
211                                                    &data);
212                         if (err < 0)
213                                 return err;
214                 } else {
215                         data = 0;
216                 }
217                 val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
218                 return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
219                                                      batch_reg->mask, val);
220         } else {
221                 data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
222                 return st_lsm6dsx_update_bits_locked(hw,
223                                         ST_LSM6DSX_REG_FIFO_MODE_ADDR,
224                                         ST_LSM6DSX_FIFO_ODR_MASK,
225                                         FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
226                                                    data));
227         }
228 }
229
230 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
231 {
232         u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
233         struct st_lsm6dsx_hw *hw = sensor->hw;
234         struct st_lsm6dsx_sensor *cur_sensor;
235         int i, err, data;
236         __le16 wdata;
237
238         if (!hw->sip)
239                 return 0;
240
241         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
242                 if (!hw->iio_devs[i])
243                         continue;
244
245                 cur_sensor = iio_priv(hw->iio_devs[i]);
246
247                 if (!(hw->enable_mask & BIT(cur_sensor->id)))
248                         continue;
249
250                 cur_watermark = (cur_sensor == sensor) ? watermark
251                                                        : cur_sensor->watermark;
252
253                 fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
254         }
255
256         fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
257         fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
258         fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
259
260         mutex_lock(&hw->page_lock);
261         err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
262                           &data);
263         if (err < 0)
264                 goto out;
265
266         fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
267         fifo_watermark = ((data << 8) & ~fifo_th_mask) |
268                          (fifo_watermark & fifo_th_mask);
269
270         wdata = cpu_to_le16(fifo_watermark);
271         err = regmap_bulk_write(hw->regmap,
272                                 hw->settings->fifo_ops.fifo_th.addr,
273                                 &wdata, sizeof(wdata));
274 out:
275         mutex_unlock(&hw->page_lock);
276         return err;
277 }
278
279 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
280 {
281         struct st_lsm6dsx_sensor *sensor;
282         int i, err;
283
284         /* reset hw ts counter */
285         err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
286                                       ST_LSM6DSX_TS_RESET_VAL);
287         if (err < 0)
288                 return err;
289
290         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
291                 if (!hw->iio_devs[i])
292                         continue;
293
294                 sensor = iio_priv(hw->iio_devs[i]);
295                 /*
296                  * store enable buffer timestamp as reference for
297                  * hw timestamp
298                  */
299                 sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
300         }
301         return 0;
302 }
303
304 /*
305  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
306  * in order to avoid a kmalloc for each bus access
307  */
308 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
309                                         u8 *data, unsigned int data_len,
310                                         unsigned int max_word_len)
311 {
312         unsigned int word_len, read_len = 0;
313         int err;
314
315         while (read_len < data_len) {
316                 word_len = min_t(unsigned int, data_len - read_len,
317                                  max_word_len);
318                 err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
319                                              word_len);
320                 if (err < 0)
321                         return err;
322                 read_len += word_len;
323         }
324         return 0;
325 }
326
327 #define ST_LSM6DSX_IIO_BUFF_SIZE        (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
328                                                sizeof(s64)) + sizeof(s64))
329 /**
330  * st_lsm6dsx_read_fifo() - hw FIFO read routine
331  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
332  *
333  * Read samples from the hw FIFO and push them to IIO buffers.
334  *
335  * Return: Number of bytes read from the FIFO
336  */
337 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
338 {
339         struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
340         int err, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
341         u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
342         u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
343         u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
344         u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
345         u8 ext_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
346         bool reset_ts = false;
347         __le16 fifo_status;
348         s64 ts = 0;
349
350         err = st_lsm6dsx_read_locked(hw,
351                                      hw->settings->fifo_ops.fifo_diff.addr,
352                                      &fifo_status, sizeof(fifo_status));
353         if (err < 0) {
354                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
355                         err);
356                 return err;
357         }
358
359         if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
360                 return 0;
361
362         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
363                    ST_LSM6DSX_CHAN_SIZE;
364         fifo_len = (fifo_len / pattern_len) * pattern_len;
365
366         acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
367         gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
368         if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
369                 ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
370
371         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
372                 err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
373                                             hw->buff, pattern_len,
374                                             ST_LSM6DSX_MAX_WORD_LEN);
375                 if (err < 0) {
376                         dev_err(hw->dev,
377                                 "failed to read pattern from fifo (err=%d)\n",
378                                 err);
379                         return err;
380                 }
381
382                 /*
383                  * Data are written to the FIFO with a specific pattern
384                  * depending on the configured ODRs. The first sequence of data
385                  * stored in FIFO contains the data of all enabled sensors
386                  * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
387                  * depending on the value of the decimation factor set for each
388                  * sensor.
389                  *
390                  * Supposing the FIFO is storing data from gyroscope and
391                  * accelerometer at different ODRs:
392                  *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
393                  * Since the gyroscope ODR is twice the accelerometer one, the
394                  * following pattern is repeated every 9 samples:
395                  *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
396                  */
397                 ext_sip = ext_sensor ? ext_sensor->sip : 0;
398                 gyro_sip = gyro_sensor->sip;
399                 acc_sip = acc_sensor->sip;
400                 ts_sip = hw->ts_sip;
401                 offset = 0;
402
403                 while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
404                         if (gyro_sip > 0) {
405                                 memcpy(gyro_buff, &hw->buff[offset],
406                                        ST_LSM6DSX_SAMPLE_SIZE);
407                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
408                         }
409                         if (acc_sip > 0) {
410                                 memcpy(acc_buff, &hw->buff[offset],
411                                        ST_LSM6DSX_SAMPLE_SIZE);
412                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
413                         }
414                         if (ext_sip > 0) {
415                                 memcpy(ext_buff, &hw->buff[offset],
416                                        ST_LSM6DSX_SAMPLE_SIZE);
417                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
418                         }
419
420                         if (ts_sip-- > 0) {
421                                 u8 data[ST_LSM6DSX_SAMPLE_SIZE];
422
423                                 memcpy(data, &hw->buff[offset], sizeof(data));
424                                 /*
425                                  * hw timestamp is 3B long and it is stored
426                                  * in FIFO using 6B as 4th FIFO data set
427                                  * according to this schema:
428                                  * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
429                                  */
430                                 ts = data[1] << 16 | data[0] << 8 | data[3];
431                                 /*
432                                  * check if hw timestamp engine is going to
433                                  * reset (the sensor generates an interrupt
434                                  * to signal the hw timestamp will reset in
435                                  * 1.638s)
436                                  */
437                                 if (!reset_ts && ts >= 0xff0000)
438                                         reset_ts = true;
439                                 ts *= hw->ts_gain;
440
441                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
442                         }
443
444                         if (gyro_sip-- > 0)
445                                 iio_push_to_buffers_with_timestamp(
446                                         hw->iio_devs[ST_LSM6DSX_ID_GYRO],
447                                         gyro_buff, gyro_sensor->ts_ref + ts);
448                         if (acc_sip-- > 0)
449                                 iio_push_to_buffers_with_timestamp(
450                                         hw->iio_devs[ST_LSM6DSX_ID_ACC],
451                                         acc_buff, acc_sensor->ts_ref + ts);
452                         if (ext_sip-- > 0)
453                                 iio_push_to_buffers_with_timestamp(
454                                         hw->iio_devs[ST_LSM6DSX_ID_EXT0],
455                                         ext_buff, ext_sensor->ts_ref + ts);
456                 }
457         }
458
459         if (unlikely(reset_ts)) {
460                 err = st_lsm6dsx_reset_hw_ts(hw);
461                 if (err < 0) {
462                         dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
463                                 err);
464                         return err;
465                 }
466         }
467         return read_len;
468 }
469
470 #define ST_LSM6DSX_INVALID_SAMPLE       0x7ffd
471 static int
472 st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
473                             u8 *data, s64 ts)
474 {
475         s16 val = le16_to_cpu(*(__le16 *)data);
476         struct st_lsm6dsx_sensor *sensor;
477         struct iio_dev *iio_dev;
478
479         /* invalid sample during bootstrap phase */
480         if (val >= ST_LSM6DSX_INVALID_SAMPLE)
481                 return -EINVAL;
482
483         /*
484          * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
485          * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
486          * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
487          * channel
488          */
489         switch (tag) {
490         case ST_LSM6DSX_GYRO_TAG:
491                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
492                 break;
493         case ST_LSM6DSX_ACC_TAG:
494                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
495                 break;
496         case ST_LSM6DSX_EXT0_TAG:
497                 if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
498                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
499                 else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
500                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
501                 else
502                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
503                 break;
504         case ST_LSM6DSX_EXT1_TAG:
505                 if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
506                     (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
507                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
508                 else
509                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
510                 break;
511         case ST_LSM6DSX_EXT2_TAG:
512                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
513                 break;
514         default:
515                 return -EINVAL;
516         }
517
518         sensor = iio_priv(iio_dev);
519         iio_push_to_buffers_with_timestamp(iio_dev, data,
520                                            ts + sensor->ts_ref);
521
522         return 0;
523 }
524
525 /**
526  * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
527  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
528  *
529  * Read samples from the hw FIFO and push them to IIO buffers.
530  *
531  * Return: Number of bytes read from the FIFO
532  */
533 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
534 {
535         u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
536         u16 fifo_len, fifo_diff_mask;
537         u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE], tag;
538         bool reset_ts = false;
539         int i, err, read_len;
540         __le16 fifo_status;
541         s64 ts = 0;
542
543         err = st_lsm6dsx_read_locked(hw,
544                                      hw->settings->fifo_ops.fifo_diff.addr,
545                                      &fifo_status, sizeof(fifo_status));
546         if (err < 0) {
547                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
548                         err);
549                 return err;
550         }
551
552         fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
553         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
554                    ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
555         if (!fifo_len)
556                 return 0;
557
558         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
559                 err = st_lsm6dsx_read_block(hw,
560                                             ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
561                                             hw->buff, pattern_len,
562                                             ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
563                 if (err < 0) {
564                         dev_err(hw->dev,
565                                 "failed to read pattern from fifo (err=%d)\n",
566                                 err);
567                         return err;
568                 }
569
570                 for (i = 0; i < pattern_len;
571                      i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
572                         memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
573                                ST_LSM6DSX_SAMPLE_SIZE);
574
575                         tag = hw->buff[i] >> 3;
576                         if (tag == ST_LSM6DSX_TS_TAG) {
577                                 /*
578                                  * hw timestamp is 4B long and it is stored
579                                  * in FIFO according to this schema:
580                                  * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
581                                  * B3 = ts[31:24]
582                                  */
583                                 ts = le32_to_cpu(*((__le32 *)iio_buff));
584                                 /*
585                                  * check if hw timestamp engine is going to
586                                  * reset (the sensor generates an interrupt
587                                  * to signal the hw timestamp will reset in
588                                  * 1.638s)
589                                  */
590                                 if (!reset_ts && ts >= 0xffff0000)
591                                         reset_ts = true;
592                                 ts *= hw->ts_gain;
593                         } else {
594                                 st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
595                                                             ts);
596                         }
597                 }
598         }
599
600         if (unlikely(reset_ts)) {
601                 err = st_lsm6dsx_reset_hw_ts(hw);
602                 if (err < 0)
603                         return err;
604         }
605         return read_len;
606 }
607
608 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
609 {
610         int err;
611
612         if (!hw->settings->fifo_ops.read_fifo)
613                 return -ENOTSUPP;
614
615         mutex_lock(&hw->fifo_lock);
616
617         hw->settings->fifo_ops.read_fifo(hw);
618         err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
619
620         mutex_unlock(&hw->fifo_lock);
621
622         return err;
623 }
624
625 int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
626 {
627         struct st_lsm6dsx_hw *hw = sensor->hw;
628         u8 fifo_mask;
629         int err;
630
631         mutex_lock(&hw->conf_lock);
632
633         if (enable)
634                 fifo_mask = hw->fifo_mask | BIT(sensor->id);
635         else
636                 fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
637
638         if (hw->fifo_mask) {
639                 err = st_lsm6dsx_flush_fifo(hw);
640                 if (err < 0)
641                         goto out;
642         }
643
644         if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
645             sensor->id == ST_LSM6DSX_ID_EXT1 ||
646             sensor->id == ST_LSM6DSX_ID_EXT2) {
647                 err = st_lsm6dsx_shub_set_enable(sensor, enable);
648                 if (err < 0)
649                         goto out;
650         } else {
651                 err = st_lsm6dsx_sensor_set_enable(sensor, enable);
652                 if (err < 0)
653                         goto out;
654         }
655
656         err = st_lsm6dsx_set_fifo_odr(sensor, enable);
657         if (err < 0)
658                 goto out;
659
660         err = st_lsm6dsx_update_decimators(hw);
661         if (err < 0)
662                 goto out;
663
664         err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
665         if (err < 0)
666                 goto out;
667
668         if (fifo_mask) {
669                 /* reset hw ts counter */
670                 err = st_lsm6dsx_reset_hw_ts(hw);
671                 if (err < 0)
672                         goto out;
673
674                 err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
675                 if (err < 0)
676                         goto out;
677         }
678
679         hw->fifo_mask = fifo_mask;
680
681 out:
682         mutex_unlock(&hw->conf_lock);
683
684         return err;
685 }
686
687 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
688 {
689         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
690         struct st_lsm6dsx_hw *hw = sensor->hw;
691
692         if (!hw->settings->fifo_ops.update_fifo)
693                 return -ENOTSUPP;
694
695         return hw->settings->fifo_ops.update_fifo(sensor, true);
696 }
697
698 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
699 {
700         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
701         struct st_lsm6dsx_hw *hw = sensor->hw;
702
703         if (!hw->settings->fifo_ops.update_fifo)
704                 return -ENOTSUPP;
705
706         return hw->settings->fifo_ops.update_fifo(sensor, false);
707 }
708
709 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
710         .preenable = st_lsm6dsx_buffer_preenable,
711         .postdisable = st_lsm6dsx_buffer_postdisable,
712 };
713
714 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
715 {
716         struct iio_buffer *buffer;
717         int i;
718
719         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
720                 if (!hw->iio_devs[i])
721                         continue;
722
723                 buffer = devm_iio_kfifo_allocate(hw->dev);
724                 if (!buffer)
725                         return -ENOMEM;
726
727                 iio_device_attach_buffer(hw->iio_devs[i], buffer);
728                 hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
729                 hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
730         }
731
732         return 0;
733 }