Merge tag 'powerpc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / drivers / iio / chemical / scd30_core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Sensirion SCD30 carbon dioxide sensor core driver
4  *
5  * Copyright (c) 2020 Tomasz Duszynski <tomasz.duszynski@octakon.com>
6  */
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/export.h>
13 #include <linux/iio/buffer.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/iio/trigger.h>
17 #include <linux/iio/trigger_consumer.h>
18 #include <linux/iio/triggered_buffer.h>
19 #include <linux/iio/types.h>
20 #include <linux/interrupt.h>
21 #include <linux/irqreturn.h>
22 #include <linux/jiffies.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/string.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <asm/byteorder.h>
31
32 #include "scd30.h"
33
34 #define SCD30_PRESSURE_COMP_MIN_MBAR 700
35 #define SCD30_PRESSURE_COMP_MAX_MBAR 1400
36 #define SCD30_PRESSURE_COMP_DEFAULT 1013
37 #define SCD30_MEAS_INTERVAL_MIN_S 2
38 #define SCD30_MEAS_INTERVAL_MAX_S 1800
39 #define SCD30_MEAS_INTERVAL_DEFAULT SCD30_MEAS_INTERVAL_MIN_S
40 #define SCD30_FRC_MIN_PPM 400
41 #define SCD30_FRC_MAX_PPM 2000
42 #define SCD30_TEMP_OFFSET_MAX 655360
43 #define SCD30_EXTRA_TIMEOUT_PER_S 250
44
45 enum {
46         SCD30_CONC,
47         SCD30_TEMP,
48         SCD30_HR,
49 };
50
51 static int scd30_command_write(struct scd30_state *state, enum scd30_cmd cmd, u16 arg)
52 {
53         return state->command(state, cmd, arg, NULL, 0);
54 }
55
56 static int scd30_command_read(struct scd30_state *state, enum scd30_cmd cmd, u16 *val)
57 {
58         __be16 tmp;
59         int ret;
60
61         ret = state->command(state, cmd, 0, &tmp, sizeof(tmp));
62         *val = be16_to_cpup(&tmp);
63
64         return ret;
65 }
66
67 static int scd30_reset(struct scd30_state *state)
68 {
69         int ret;
70         u16 val;
71
72         ret = scd30_command_write(state, CMD_RESET, 0);
73         if (ret)
74                 return ret;
75
76         /* sensor boots up within 2 secs */
77         msleep(2000);
78         /*
79          * Power-on-reset causes sensor to produce some glitch on i2c bus and
80          * some controllers end up in error state. Try to recover by placing
81          * any data on the bus.
82          */
83         scd30_command_read(state, CMD_MEAS_READY, &val);
84
85         return 0;
86 }
87
88 /* simplified float to fixed point conversion with a scaling factor of 0.01 */
89 static int scd30_float_to_fp(int float32)
90 {
91         int fraction, shift,
92             mantissa = float32 & GENMASK(22, 0),
93             sign = (float32 & BIT(31)) ? -1 : 1,
94             exp = (float32 & ~BIT(31)) >> 23;
95
96         /* special case 0 */
97         if (!exp && !mantissa)
98                 return 0;
99
100         exp -= 127;
101         if (exp < 0) {
102                 exp = -exp;
103                 /* return values ranging from 1 to 99 */
104                 return sign * ((((BIT(23) + mantissa) * 100) >> 23) >> exp);
105         }
106
107         /* return values starting at 100 */
108         shift = 23 - exp;
109         float32 = BIT(exp) + (mantissa >> shift);
110         fraction = mantissa & GENMASK(shift - 1, 0);
111
112         return sign * (float32 * 100 + ((fraction * 100) >> shift));
113 }
114
115 static int scd30_read_meas(struct scd30_state *state)
116 {
117         int i, ret;
118
119         ret = state->command(state, CMD_READ_MEAS, 0, state->meas, sizeof(state->meas));
120         if (ret)
121                 return ret;
122
123         be32_to_cpu_array(state->meas, (__be32 *)state->meas, ARRAY_SIZE(state->meas));
124
125         for (i = 0; i < ARRAY_SIZE(state->meas); i++)
126                 state->meas[i] = scd30_float_to_fp(state->meas[i]);
127
128         /*
129          * co2 is left unprocessed while temperature and humidity are scaled
130          * to milli deg C and milli percent respectively.
131          */
132         state->meas[SCD30_TEMP] *= 10;
133         state->meas[SCD30_HR] *= 10;
134
135         return 0;
136 }
137
138 static int scd30_wait_meas_irq(struct scd30_state *state)
139 {
140         int ret, timeout;
141
142         reinit_completion(&state->meas_ready);
143         enable_irq(state->irq);
144         timeout = msecs_to_jiffies(state->meas_interval * (1000 + SCD30_EXTRA_TIMEOUT_PER_S));
145         ret = wait_for_completion_interruptible_timeout(&state->meas_ready, timeout);
146         if (ret > 0)
147                 ret = 0;
148         else if (!ret)
149                 ret = -ETIMEDOUT;
150
151         disable_irq(state->irq);
152
153         return ret;
154 }
155
156 static int scd30_wait_meas_poll(struct scd30_state *state)
157 {
158         int timeout = state->meas_interval * SCD30_EXTRA_TIMEOUT_PER_S, tries = 5;
159
160         do {
161                 int ret;
162                 u16 val;
163
164                 ret = scd30_command_read(state, CMD_MEAS_READY, &val);
165                 if (ret)
166                         return -EIO;
167
168                 /* new measurement available */
169                 if (val)
170                         break;
171
172                 msleep_interruptible(timeout);
173         } while (--tries);
174
175         return tries ? 0 : -ETIMEDOUT;
176 }
177
178 static int scd30_read_poll(struct scd30_state *state)
179 {
180         int ret;
181
182         ret = scd30_wait_meas_poll(state);
183         if (ret)
184                 return ret;
185
186         return scd30_read_meas(state);
187 }
188
189 static int scd30_read(struct scd30_state *state)
190 {
191         if (state->irq > 0)
192                 return scd30_wait_meas_irq(state);
193
194         return scd30_read_poll(state);
195 }
196
197 static int scd30_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
198                           int *val, int *val2, long mask)
199 {
200         struct scd30_state *state = iio_priv(indio_dev);
201         int ret = -EINVAL;
202         u16 tmp;
203
204         mutex_lock(&state->lock);
205         switch (mask) {
206         case IIO_CHAN_INFO_RAW:
207         case IIO_CHAN_INFO_PROCESSED:
208                 if (chan->output) {
209                         *val = state->pressure_comp;
210                         ret = IIO_VAL_INT;
211                         break;
212                 }
213
214                 ret = iio_device_claim_direct_mode(indio_dev);
215                 if (ret)
216                         break;
217
218                 ret = scd30_read(state);
219                 if (ret) {
220                         iio_device_release_direct_mode(indio_dev);
221                         break;
222                 }
223
224                 *val = state->meas[chan->address];
225                 iio_device_release_direct_mode(indio_dev);
226                 ret = IIO_VAL_INT;
227                 break;
228         case IIO_CHAN_INFO_SCALE:
229                 *val = 0;
230                 *val2 = 1;
231                 ret = IIO_VAL_INT_PLUS_MICRO;
232                 break;
233         case IIO_CHAN_INFO_SAMP_FREQ:
234                 ret = scd30_command_read(state, CMD_MEAS_INTERVAL, &tmp);
235                 if (ret)
236                         break;
237
238                 *val = 0;
239                 *val2 = 1000000000 / tmp;
240                 ret = IIO_VAL_INT_PLUS_NANO;
241                 break;
242         case IIO_CHAN_INFO_CALIBBIAS:
243                 ret = scd30_command_read(state, CMD_TEMP_OFFSET, &tmp);
244                 if (ret)
245                         break;
246
247                 *val = tmp;
248                 ret = IIO_VAL_INT;
249                 break;
250         }
251         mutex_unlock(&state->lock);
252
253         return ret;
254 }
255
256 static int scd30_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
257                            int val, int val2, long mask)
258 {
259         struct scd30_state *state = iio_priv(indio_dev);
260         int ret = -EINVAL;
261
262         mutex_lock(&state->lock);
263         switch (mask) {
264         case IIO_CHAN_INFO_SAMP_FREQ:
265                 if (val)
266                         break;
267
268                 val = 1000000000 / val2;
269                 if (val < SCD30_MEAS_INTERVAL_MIN_S || val > SCD30_MEAS_INTERVAL_MAX_S)
270                         break;
271
272                 ret = scd30_command_write(state, CMD_MEAS_INTERVAL, val);
273                 if (ret)
274                         break;
275
276                 state->meas_interval = val;
277                 break;
278         case IIO_CHAN_INFO_RAW:
279                 switch (chan->type) {
280                 case IIO_PRESSURE:
281                         if (val < SCD30_PRESSURE_COMP_MIN_MBAR ||
282                             val > SCD30_PRESSURE_COMP_MAX_MBAR)
283                                 break;
284
285                         ret = scd30_command_write(state, CMD_START_MEAS, val);
286                         if (ret)
287                                 break;
288
289                         state->pressure_comp = val;
290                         break;
291                 default:
292                         break;
293                 }
294                 break;
295         case IIO_CHAN_INFO_CALIBBIAS:
296                 if (val < 0 || val > SCD30_TEMP_OFFSET_MAX)
297                         break;
298                 /*
299                  * Manufacturer does not explicitly specify min/max sensible
300                  * values hence check is omitted for simplicity.
301                  */
302                 ret = scd30_command_write(state, CMD_TEMP_OFFSET / 10, val);
303         }
304         mutex_unlock(&state->lock);
305
306         return ret;
307 }
308
309 static int scd30_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
310                                    long mask)
311 {
312         switch (mask) {
313         case IIO_CHAN_INFO_SAMP_FREQ:
314                 return IIO_VAL_INT_PLUS_NANO;
315         case IIO_CHAN_INFO_RAW:
316         case IIO_CHAN_INFO_CALIBBIAS:
317                 return IIO_VAL_INT;
318         }
319
320         return -EINVAL;
321 }
322
323 static const int scd30_pressure_raw_available[] = {
324         SCD30_PRESSURE_COMP_MIN_MBAR, 1, SCD30_PRESSURE_COMP_MAX_MBAR,
325 };
326
327 static const int scd30_temp_calibbias_available[] = {
328         0, 10, SCD30_TEMP_OFFSET_MAX,
329 };
330
331 static int scd30_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
332                             const int **vals, int *type, int *length, long mask)
333 {
334         switch (mask) {
335         case IIO_CHAN_INFO_RAW:
336                 *vals = scd30_pressure_raw_available;
337                 *type = IIO_VAL_INT;
338
339                 return IIO_AVAIL_RANGE;
340         case IIO_CHAN_INFO_CALIBBIAS:
341                 *vals = scd30_temp_calibbias_available;
342                 *type = IIO_VAL_INT;
343
344                 return IIO_AVAIL_RANGE;
345         }
346
347         return -EINVAL;
348 }
349
350 static ssize_t sampling_frequency_available_show(struct device *dev, struct device_attribute *attr,
351                                                  char *buf)
352 {
353         int i = SCD30_MEAS_INTERVAL_MIN_S;
354         ssize_t len = 0;
355
356         do {
357                 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ", 1000000000 / i);
358                 /*
359                  * Not all values fit PAGE_SIZE buffer hence print every 6th
360                  * (each frequency differs by 6s in time domain from the
361                  * adjacent). Unlisted but valid ones are still accepted.
362                  */
363                 i += 6;
364         } while (i <= SCD30_MEAS_INTERVAL_MAX_S);
365
366         buf[len - 1] = '\n';
367
368         return len;
369 }
370
371 static ssize_t calibration_auto_enable_show(struct device *dev, struct device_attribute *attr,
372                                             char *buf)
373 {
374         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
375         struct scd30_state *state = iio_priv(indio_dev);
376         int ret;
377         u16 val;
378
379         mutex_lock(&state->lock);
380         ret = scd30_command_read(state, CMD_ASC, &val);
381         mutex_unlock(&state->lock);
382
383         return ret ?: sprintf(buf, "%d\n", val);
384 }
385
386 static ssize_t calibration_auto_enable_store(struct device *dev, struct device_attribute *attr,
387                                              const char *buf, size_t len)
388 {
389         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
390         struct scd30_state *state = iio_priv(indio_dev);
391         bool val;
392         int ret;
393
394         ret = kstrtobool(buf, &val);
395         if (ret)
396                 return ret;
397
398         mutex_lock(&state->lock);
399         ret = scd30_command_write(state, CMD_ASC, val);
400         mutex_unlock(&state->lock);
401
402         return ret ?: len;
403 }
404
405 static ssize_t calibration_forced_value_show(struct device *dev, struct device_attribute *attr,
406                                              char *buf)
407 {
408         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
409         struct scd30_state *state = iio_priv(indio_dev);
410         int ret;
411         u16 val;
412
413         mutex_lock(&state->lock);
414         ret = scd30_command_read(state, CMD_FRC, &val);
415         mutex_unlock(&state->lock);
416
417         return ret ?: sprintf(buf, "%d\n", val);
418 }
419
420 static ssize_t calibration_forced_value_store(struct device *dev, struct device_attribute *attr,
421                                               const char *buf, size_t len)
422 {
423         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
424         struct scd30_state *state = iio_priv(indio_dev);
425         int ret;
426         u16 val;
427
428         ret = kstrtou16(buf, 0, &val);
429         if (ret)
430                 return ret;
431
432         if (val < SCD30_FRC_MIN_PPM || val > SCD30_FRC_MAX_PPM)
433                 return -EINVAL;
434
435         mutex_lock(&state->lock);
436         ret = scd30_command_write(state, CMD_FRC, val);
437         mutex_unlock(&state->lock);
438
439         return ret ?: len;
440 }
441
442 static IIO_DEVICE_ATTR_RO(sampling_frequency_available, 0);
443 static IIO_DEVICE_ATTR_RW(calibration_auto_enable, 0);
444 static IIO_DEVICE_ATTR_RW(calibration_forced_value, 0);
445
446 static struct attribute *scd30_attrs[] = {
447         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
448         &iio_dev_attr_calibration_auto_enable.dev_attr.attr,
449         &iio_dev_attr_calibration_forced_value.dev_attr.attr,
450         NULL
451 };
452
453 static const struct attribute_group scd30_attr_group = {
454         .attrs = scd30_attrs,
455 };
456
457 static const struct iio_info scd30_info = {
458         .attrs = &scd30_attr_group,
459         .read_raw = scd30_read_raw,
460         .write_raw = scd30_write_raw,
461         .write_raw_get_fmt = scd30_write_raw_get_fmt,
462         .read_avail = scd30_read_avail,
463 };
464
465 #define SCD30_CHAN_SCAN_TYPE(_sign, _realbits) .scan_type = { \
466         .sign = _sign, \
467         .realbits = _realbits, \
468         .storagebits = 32, \
469         .endianness = IIO_CPU, \
470 }
471
472 static const struct iio_chan_spec scd30_channels[] = {
473         {
474                 /*
475                  * this channel is special in a sense we are pretending that
476                  * sensor is able to change measurement chamber pressure but in
477                  * fact we're just setting pressure compensation value
478                  */
479                 .type = IIO_PRESSURE,
480                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
481                 .info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
482                 .output = 1,
483                 .scan_index = -1,
484         },
485         {
486                 .type = IIO_CONCENTRATION,
487                 .channel2 = IIO_MOD_CO2,
488                 .address = SCD30_CONC,
489                 .scan_index = SCD30_CONC,
490                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
491                                       BIT(IIO_CHAN_INFO_SCALE),
492                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
493                 .modified = 1,
494
495                 SCD30_CHAN_SCAN_TYPE('u', 20),
496         },
497         {
498                 .type = IIO_TEMP,
499                 .address = SCD30_TEMP,
500                 .scan_index = SCD30_TEMP,
501                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
502                                       BIT(IIO_CHAN_INFO_CALIBBIAS),
503                 .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS),
504                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
505
506                 SCD30_CHAN_SCAN_TYPE('s', 18),
507         },
508         {
509                 .type = IIO_HUMIDITYRELATIVE,
510                 .address = SCD30_HR,
511                 .scan_index = SCD30_HR,
512                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
513                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
514
515                 SCD30_CHAN_SCAN_TYPE('u', 17),
516         },
517         IIO_CHAN_SOFT_TIMESTAMP(3),
518 };
519
520 int __maybe_unused scd30_suspend(struct device *dev)
521 {
522         struct iio_dev *indio_dev = dev_get_drvdata(dev);
523         struct scd30_state *state  = iio_priv(indio_dev);
524         int ret;
525
526         ret = scd30_command_write(state, CMD_STOP_MEAS, 0);
527         if (ret)
528                 return ret;
529
530         return regulator_disable(state->vdd);
531 }
532 EXPORT_SYMBOL(scd30_suspend);
533
534 int __maybe_unused scd30_resume(struct device *dev)
535 {
536         struct iio_dev *indio_dev = dev_get_drvdata(dev);
537         struct scd30_state *state = iio_priv(indio_dev);
538         int ret;
539
540         ret = regulator_enable(state->vdd);
541         if (ret)
542                 return ret;
543
544         return scd30_command_write(state, CMD_START_MEAS, state->pressure_comp);
545 }
546 EXPORT_SYMBOL(scd30_resume);
547
548 static void scd30_stop_meas(void *data)
549 {
550         struct scd30_state *state = data;
551
552         scd30_command_write(state, CMD_STOP_MEAS, 0);
553 }
554
555 static void scd30_disable_regulator(void *data)
556 {
557         struct scd30_state *state = data;
558
559         regulator_disable(state->vdd);
560 }
561
562 static irqreturn_t scd30_irq_handler(int irq, void *priv)
563 {
564         struct iio_dev *indio_dev = priv;
565
566         if (iio_buffer_enabled(indio_dev)) {
567                 iio_trigger_poll(indio_dev->trig);
568
569                 return IRQ_HANDLED;
570         }
571
572         return IRQ_WAKE_THREAD;
573 }
574
575 static irqreturn_t scd30_irq_thread_handler(int irq, void *priv)
576 {
577         struct iio_dev *indio_dev = priv;
578         struct scd30_state *state = iio_priv(indio_dev);
579         int ret;
580
581         ret = scd30_read_meas(state);
582         if (ret)
583                 goto out;
584
585         complete_all(&state->meas_ready);
586 out:
587         return IRQ_HANDLED;
588 }
589
590 static irqreturn_t scd30_trigger_handler(int irq, void *p)
591 {
592         struct iio_poll_func *pf = p;
593         struct iio_dev *indio_dev = pf->indio_dev;
594         struct scd30_state *state = iio_priv(indio_dev);
595         struct {
596                 int data[SCD30_MEAS_COUNT];
597                 s64 ts __aligned(8);
598         } scan;
599         int ret;
600
601         mutex_lock(&state->lock);
602         if (!iio_trigger_using_own(indio_dev))
603                 ret = scd30_read_poll(state);
604         else
605                 ret = scd30_read_meas(state);
606         memset(&scan, 0, sizeof(scan));
607         memcpy(scan.data, state->meas, sizeof(state->meas));
608         mutex_unlock(&state->lock);
609         if (ret)
610                 goto out;
611
612         iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev));
613 out:
614         iio_trigger_notify_done(indio_dev->trig);
615         return IRQ_HANDLED;
616 }
617
618 static int scd30_set_trigger_state(struct iio_trigger *trig, bool state)
619 {
620         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
621         struct scd30_state *st = iio_priv(indio_dev);
622
623         if (state)
624                 enable_irq(st->irq);
625         else
626                 disable_irq(st->irq);
627
628         return 0;
629 }
630
631 static const struct iio_trigger_ops scd30_trigger_ops = {
632         .set_trigger_state = scd30_set_trigger_state,
633         .validate_device = iio_trigger_validate_own_device,
634 };
635
636 static int scd30_setup_trigger(struct iio_dev *indio_dev)
637 {
638         struct scd30_state *state = iio_priv(indio_dev);
639         struct device *dev = indio_dev->dev.parent;
640         struct iio_trigger *trig;
641         int ret;
642
643         trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, indio_dev->id);
644         if (!trig) {
645                 dev_err(dev, "failed to allocate trigger\n");
646                 return -ENOMEM;
647         }
648
649         trig->dev.parent = dev;
650         trig->ops = &scd30_trigger_ops;
651         iio_trigger_set_drvdata(trig, indio_dev);
652
653         ret = devm_iio_trigger_register(dev, trig);
654         if (ret)
655                 return ret;
656
657         indio_dev->trig = iio_trigger_get(trig);
658
659         ret = devm_request_threaded_irq(dev, state->irq, scd30_irq_handler,
660                                         scd30_irq_thread_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
661                                         indio_dev->name, indio_dev);
662         if (ret)
663                 dev_err(dev, "failed to request irq\n");
664
665         /*
666          * Interrupt is enabled just before taking a fresh measurement
667          * and disabled afterwards. This means we need to disable it here
668          * to keep calls to enable/disable balanced.
669          */
670         disable_irq(state->irq);
671
672         return ret;
673 }
674
675 int scd30_probe(struct device *dev, int irq, const char *name, void *priv,
676                 scd30_command_t command)
677 {
678         static const unsigned long scd30_scan_masks[] = { 0x07, 0x00 };
679         struct scd30_state *state;
680         struct iio_dev *indio_dev;
681         int ret;
682         u16 val;
683
684         indio_dev = devm_iio_device_alloc(dev, sizeof(*state));
685         if (!indio_dev)
686                 return -ENOMEM;
687
688         state = iio_priv(indio_dev);
689         state->dev = dev;
690         state->priv = priv;
691         state->irq = irq;
692         state->pressure_comp = SCD30_PRESSURE_COMP_DEFAULT;
693         state->meas_interval = SCD30_MEAS_INTERVAL_DEFAULT;
694         state->command = command;
695         mutex_init(&state->lock);
696         init_completion(&state->meas_ready);
697
698         dev_set_drvdata(dev, indio_dev);
699
700         indio_dev->info = &scd30_info;
701         indio_dev->name = name;
702         indio_dev->channels = scd30_channels;
703         indio_dev->num_channels = ARRAY_SIZE(scd30_channels);
704         indio_dev->modes = INDIO_DIRECT_MODE;
705         indio_dev->available_scan_masks = scd30_scan_masks;
706
707         state->vdd = devm_regulator_get(dev, "vdd");
708         if (IS_ERR(state->vdd))
709                 return dev_err_probe(dev, PTR_ERR(state->vdd), "failed to get regulator\n");
710
711         ret = regulator_enable(state->vdd);
712         if (ret)
713                 return ret;
714
715         ret = devm_add_action_or_reset(dev, scd30_disable_regulator, state);
716         if (ret)
717                 return ret;
718
719         ret = scd30_reset(state);
720         if (ret) {
721                 dev_err(dev, "failed to reset device: %d\n", ret);
722                 return ret;
723         }
724
725         if (state->irq > 0) {
726                 ret = scd30_setup_trigger(indio_dev);
727                 if (ret) {
728                         dev_err(dev, "failed to setup trigger: %d\n", ret);
729                         return ret;
730                 }
731         }
732
733         ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, scd30_trigger_handler, NULL);
734         if (ret)
735                 return ret;
736
737         ret = scd30_command_read(state, CMD_FW_VERSION, &val);
738         if (ret) {
739                 dev_err(dev, "failed to read firmware version: %d\n", ret);
740                 return ret;
741         }
742         dev_info(dev, "firmware version: %d.%d\n", val >> 8, (char)val);
743
744         ret = scd30_command_write(state, CMD_MEAS_INTERVAL, state->meas_interval);
745         if (ret) {
746                 dev_err(dev, "failed to set measurement interval: %d\n", ret);
747                 return ret;
748         }
749
750         ret = scd30_command_write(state, CMD_START_MEAS, state->pressure_comp);
751         if (ret) {
752                 dev_err(dev, "failed to start measurement: %d\n", ret);
753                 return ret;
754         }
755
756         ret = devm_add_action_or_reset(dev, scd30_stop_meas, state);
757         if (ret)
758                 return ret;
759
760         return devm_iio_device_register(dev, indio_dev);
761 }
762 EXPORT_SYMBOL(scd30_probe);
763
764 MODULE_AUTHOR("Tomasz Duszynski <tomasz.duszynski@octakon.com>");
765 MODULE_DESCRIPTION("Sensirion SCD30 carbon dioxide sensor core driver");
766 MODULE_LICENSE("GPL v2");