Merge tag 'usb-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / drivers / iio / adc / stm32-dfsdm-adc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26
27 #include "stm32-dfsdm.h"
28
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
44 /*
45  * Data are output as two's complement data in a 24 bit field.
46  * Data from filters are in the range +/-2^(n-1)
47  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49  * So, the resolution of samples from filter is actually limited to 23 bits
50  */
51 #define DFSDM_DATA_RES 24
52
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55                             DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
56                             DFSDM_CR1_JSCAN_MASK)
57
58 enum sd_converter_type {
59         DFSDM_AUDIO,
60         DFSDM_IIO,
61 };
62
63 struct stm32_dfsdm_dev_data {
64         int type;
65         int (*init)(struct device *dev, struct iio_dev *indio_dev);
66         unsigned int num_channels;
67         const struct regmap_config *regmap_cfg;
68 };
69
70 struct stm32_dfsdm_adc {
71         struct stm32_dfsdm *dfsdm;
72         const struct stm32_dfsdm_dev_data *dev_data;
73         unsigned int fl_id;
74         unsigned int nconv;
75         unsigned long smask;
76
77         /* ADC specific */
78         unsigned int oversamp;
79         struct iio_hw_consumer *hwc;
80         struct completion completion;
81         u32 *buffer;
82
83         /* Audio specific */
84         unsigned int spi_freq;  /* SPI bus clock frequency */
85         unsigned int sample_freq; /* Sample frequency after filter decimation */
86         int (*cb)(const void *data, size_t size, void *cb_priv);
87         void *cb_priv;
88
89         /* DMA */
90         u8 *rx_buf;
91         unsigned int bufi; /* Buffer current position */
92         unsigned int buf_sz; /* Buffer size */
93         struct dma_chan *dma_chan;
94         dma_addr_t dma_buf;
95 };
96
97 struct stm32_dfsdm_str2field {
98         const char      *name;
99         unsigned int    val;
100 };
101
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104         { "SPI_R", 0 }, /* SPI with data on rising edge */
105         { "SPI_F", 1 }, /* SPI with data on falling edge */
106         { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107         { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
108         {},
109 };
110
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113         /* External SPI clock (CLKIN x) */
114         { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115         /* Internal SPI clock (CLKOUT) */
116         { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117         /* Internal SPI clock divided by 2 (falling edge) */
118         { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119         /* Internal SPI clock divided by 2 (falling edge) */
120         { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
121         {},
122 };
123
124 static int stm32_dfsdm_str2val(const char *str,
125                                const struct stm32_dfsdm_str2field *list)
126 {
127         const struct stm32_dfsdm_str2field *p = list;
128
129         for (p = list; p && p->name; p++)
130                 if (!strcmp(p->name, str))
131                         return p->val;
132
133         return -EINVAL;
134 }
135
136 /**
137  * struct stm32_dfsdm_trig_info - DFSDM trigger info
138  * @name:               name of the trigger, corresponding to its source
139  * @jextsel:            trigger signal selection
140  */
141 struct stm32_dfsdm_trig_info {
142         const char *name;
143         unsigned int jextsel;
144 };
145
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148         STM32_DFSDM_JEXTEN_DISABLED,
149         STM32_DFSDM_JEXTEN_RISING_EDGE,
150         STM32_DFSDM_JEXTEN_FALLING_EDGE,
151         STM32_DFSDM_EXTEN_BOTH_EDGES,
152 };
153
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
155         { TIM1_TRGO, 0 },
156         { TIM1_TRGO2, 1 },
157         { TIM8_TRGO, 2 },
158         { TIM8_TRGO2, 3 },
159         { TIM3_TRGO, 4 },
160         { TIM4_TRGO, 5 },
161         { TIM16_OC1, 6 },
162         { TIM6_TRGO, 7 },
163         { TIM7_TRGO, 8 },
164         { LPTIM1_OUT, 26 },
165         { LPTIM2_OUT, 27 },
166         { LPTIM3_OUT, 28 },
167         {},
168 };
169
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171                                    struct iio_trigger *trig)
172 {
173         int i;
174
175         /* lookup triggers registered by stm32 timer trigger driver */
176         for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
177                 /**
178                  * Checking both stm32 timer trigger type and trig name
179                  * should be safe against arbitrary trigger names.
180                  */
181                 if ((is_stm32_timer_trigger(trig) ||
182                      is_stm32_lptim_trigger(trig)) &&
183                     !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184                         return stm32_dfsdm_trigs[i].jextsel;
185                 }
186         }
187
188         return -EINVAL;
189 }
190
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192                                     unsigned int fast, unsigned int oversamp)
193 {
194         unsigned int i, d, fosr, iosr;
195         u64 res, max;
196         int bits, shift;
197         unsigned int m = 1;     /* multiplication factor */
198         unsigned int p = fl->ford;      /* filter order (ford) */
199         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
200
201         pr_debug("Requested oversampling: %d\n", oversamp);
202         /*
203          * This function tries to compute filter oversampling and integrator
204          * oversampling, base on oversampling ratio requested by user.
205          *
206          * Decimation d depends on the filter order and the oversampling ratios.
207          * ford: filter order
208          * fosr: filter over sampling ratio
209          * iosr: integrator over sampling ratio
210          */
211         if (fl->ford == DFSDM_FASTSINC_ORDER) {
212                 m = 2;
213                 p = 2;
214         }
215
216         /*
217          * Look for filter and integrator oversampling ratios which allows
218          * to maximize data output resolution.
219          */
220         for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221                 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
222                         if (fast)
223                                 d = fosr * iosr;
224                         else if (fl->ford == DFSDM_FASTSINC_ORDER)
225                                 d = fosr * (iosr + 3) + 2;
226                         else
227                                 d = fosr * (iosr - 1 + p) + p;
228
229                         if (d > oversamp)
230                                 break;
231                         else if (d != oversamp)
232                                 continue;
233                         /*
234                          * Check resolution (limited to signed 32 bits)
235                          *   res <= 2^31
236                          * Sincx filters:
237                          *   res = m * fosr^p x iosr (with m=1, p=ford)
238                          * FastSinc filter
239                          *   res = m * fosr^p x iosr (with m=2, p=2)
240                          */
241                         res = fosr;
242                         for (i = p - 1; i > 0; i--) {
243                                 res = res * (u64)fosr;
244                                 if (res > DFSDM_DATA_MAX)
245                                         break;
246                         }
247                         if (res > DFSDM_DATA_MAX)
248                                 continue;
249
250                         res = res * (u64)m * (u64)iosr;
251                         if (res > DFSDM_DATA_MAX)
252                                 continue;
253
254                         if (res >= flo->res) {
255                                 flo->res = res;
256                                 flo->fosr = fosr;
257                                 flo->iosr = iosr;
258
259                                 bits = fls(flo->res);
260                                 /* 8 LBSs in data register contain chan info */
261                                 max = flo->res << 8;
262
263                                 /* if resolution is not a power of two */
264                                 if (flo->res > BIT(bits - 1))
265                                         bits++;
266                                 else
267                                         max--;
268
269                                 shift = DFSDM_DATA_RES - bits;
270                                 /*
271                                  * Compute right/left shift
272                                  * Right shift is performed by hardware
273                                  * when transferring samples to data register.
274                                  * Left shift is done by software on buffer
275                                  */
276                                 if (shift > 0) {
277                                         /* Resolution is lower than 24 bits */
278                                         flo->rshift = 0;
279                                         flo->lshift = shift;
280                                 } else {
281                                         /*
282                                          * If resolution is 24 bits or more,
283                                          * max positive value may be ambiguous
284                                          * (equal to max negative value as sign
285                                          * bit is dropped).
286                                          * Reduce resolution to 23 bits (rshift)
287                                          * to keep the sign on bit 23 and treat
288                                          * saturation before rescaling on 24
289                                          * bits (lshift).
290                                          */
291                                         flo->rshift = 1 - shift;
292                                         flo->lshift = 1;
293                                         max >>= flo->rshift;
294                                 }
295                                 flo->max = (s32)max;
296                                 flo->bits = bits;
297
298                                 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
299                                          fast, flo->fosr, flo->iosr,
300                                          flo->res, bits, flo->rshift,
301                                          flo->lshift);
302                         }
303                 }
304         }
305
306         if (!flo->res)
307                 return -EINVAL;
308
309         return 0;
310 }
311
312 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
313                                         unsigned int oversamp)
314 {
315         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
316         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
317         int ret0, ret1;
318
319         memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
320         memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
321
322         ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
323         ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
324         if (ret0 < 0 && ret1 < 0) {
325                 dev_err(&indio_dev->dev,
326                         "Filter parameters not found: errors %d/%d\n",
327                         ret0, ret1);
328                 return -EINVAL;
329         }
330
331         return 0;
332 }
333
334 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
335 {
336         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
337         struct regmap *regmap = adc->dfsdm->regmap;
338         const struct iio_chan_spec *chan;
339         unsigned int bit;
340         int ret;
341
342         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
343                 chan = indio_dev->channels + bit;
344                 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
345                                          DFSDM_CHCFGR1_CHEN_MASK,
346                                          DFSDM_CHCFGR1_CHEN(1));
347                 if (ret < 0)
348                         return ret;
349         }
350
351         return 0;
352 }
353
354 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
355 {
356         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
357         struct regmap *regmap = adc->dfsdm->regmap;
358         const struct iio_chan_spec *chan;
359         unsigned int bit;
360
361         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
362                 chan = indio_dev->channels + bit;
363                 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
364                                    DFSDM_CHCFGR1_CHEN_MASK,
365                                    DFSDM_CHCFGR1_CHEN(0));
366         }
367 }
368
369 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
370                                       struct stm32_dfsdm_channel *ch)
371 {
372         unsigned int id = ch->id;
373         struct regmap *regmap = dfsdm->regmap;
374         int ret;
375
376         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
377                                  DFSDM_CHCFGR1_SITP_MASK,
378                                  DFSDM_CHCFGR1_SITP(ch->type));
379         if (ret < 0)
380                 return ret;
381         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
382                                  DFSDM_CHCFGR1_SPICKSEL_MASK,
383                                  DFSDM_CHCFGR1_SPICKSEL(ch->src));
384         if (ret < 0)
385                 return ret;
386         return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
387                                   DFSDM_CHCFGR1_CHINSEL_MASK,
388                                   DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
389 }
390
391 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
392                                     unsigned int fl_id,
393                                     struct iio_trigger *trig)
394 {
395         struct stm32_dfsdm *dfsdm = adc->dfsdm;
396         int ret;
397
398         /* Enable filter */
399         ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
400                                  DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
401         if (ret < 0)
402                 return ret;
403
404         /* Nothing more to do for injected (scan mode/triggered) conversions */
405         if (adc->nconv > 1 || trig)
406                 return 0;
407
408         /* Software start (single or continuous) regular conversion */
409         return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
410                                   DFSDM_CR1_RSWSTART_MASK,
411                                   DFSDM_CR1_RSWSTART(1));
412 }
413
414 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
415                                     unsigned int fl_id)
416 {
417         /* Disable conversion */
418         regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
419                            DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
420 }
421
422 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
423                                        unsigned int fl_id,
424                                        struct iio_trigger *trig)
425 {
426         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
427         struct regmap *regmap = adc->dfsdm->regmap;
428         u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
429         int ret;
430
431         if (trig) {
432                 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
433                 if (ret < 0)
434                         return ret;
435
436                 /* set trigger source and polarity (default to rising edge) */
437                 jextsel = ret;
438                 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
439         }
440
441         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
442                                  DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
443                                  DFSDM_CR1_JEXTSEL(jextsel) |
444                                  DFSDM_CR1_JEXTEN(jexten));
445         if (ret < 0)
446                 return ret;
447
448         return 0;
449 }
450
451 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
452                                           unsigned int fl_id,
453                                           struct iio_trigger *trig)
454 {
455         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
456         struct regmap *regmap = adc->dfsdm->regmap;
457         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
458         struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
459         const struct iio_chan_spec *chan;
460         unsigned int bit;
461         int ret;
462
463         fl->fast = 0;
464
465         /*
466          * In continuous mode, use fast mode configuration,
467          * if it provides a better resolution.
468          */
469         if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
470                 if (fl->flo[1].res >= fl->flo[0].res) {
471                         fl->fast = 1;
472                         flo = &fl->flo[1];
473                 }
474         }
475
476         if (!flo->res)
477                 return -EINVAL;
478
479         dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
480                 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
481
482         for_each_set_bit(bit, &adc->smask,
483                          sizeof(adc->smask) * BITS_PER_BYTE) {
484                 chan = indio_dev->channels + bit;
485
486                 ret = regmap_update_bits(regmap,
487                                          DFSDM_CHCFGR2(chan->channel),
488                                          DFSDM_CHCFGR2_DTRBS_MASK,
489                                          DFSDM_CHCFGR2_DTRBS(flo->rshift));
490                 if (ret)
491                         return ret;
492         }
493
494         return 0;
495 }
496
497 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
498                                         unsigned int fl_id,
499                                         struct iio_trigger *trig)
500 {
501         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
502         struct regmap *regmap = adc->dfsdm->regmap;
503         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
504         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
505         u32 cr1;
506         const struct iio_chan_spec *chan;
507         unsigned int bit, jchg = 0;
508         int ret;
509
510         /* Average integrator oversampling */
511         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
512                                  DFSDM_FCR_IOSR(flo->iosr - 1));
513         if (ret)
514                 return ret;
515
516         /* Filter order and Oversampling */
517         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
518                                  DFSDM_FCR_FOSR(flo->fosr - 1));
519         if (ret)
520                 return ret;
521
522         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
523                                  DFSDM_FCR_FORD(fl->ford));
524         if (ret)
525                 return ret;
526
527         ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
528         if (ret)
529                 return ret;
530
531         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
532                                  DFSDM_CR1_FAST_MASK,
533                                  DFSDM_CR1_FAST(fl->fast));
534         if (ret)
535                 return ret;
536
537         /*
538          * DFSDM modes configuration W.R.T audio/iio type modes
539          * ----------------------------------------------------------------
540          * Modes         | regular |  regular     | injected | injected   |
541          *               |         |  continuous  |          | + scan     |
542          * --------------|---------|--------------|----------|------------|
543          * single conv   |    x    |              |          |            |
544          * (1 chan)      |         |              |          |            |
545          * --------------|---------|--------------|----------|------------|
546          * 1 Audio chan  |         | sample freq  |          |            |
547          *               |         | or sync_mode |          |            |
548          * --------------|---------|--------------|----------|------------|
549          * 1 IIO chan    |         | sample freq  | trigger  |            |
550          *               |         | or sync_mode |          |            |
551          * --------------|---------|--------------|----------|------------|
552          * 2+ IIO chans  |         |              |          | trigger or |
553          *               |         |              |          | sync_mode  |
554          * ----------------------------------------------------------------
555          */
556         if (adc->nconv == 1 && !trig) {
557                 bit = __ffs(adc->smask);
558                 chan = indio_dev->channels + bit;
559
560                 /* Use regular conversion for single channel without trigger */
561                 cr1 = DFSDM_CR1_RCH(chan->channel);
562
563                 /* Continuous conversions triggered by SPI clk in buffer mode */
564                 if (iio_buffer_enabled(indio_dev))
565                         cr1 |= DFSDM_CR1_RCONT(1);
566
567                 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
568         } else {
569                 /* Use injected conversion for multiple channels */
570                 for_each_set_bit(bit, &adc->smask,
571                                  sizeof(adc->smask) * BITS_PER_BYTE) {
572                         chan = indio_dev->channels + bit;
573                         jchg |= BIT(chan->channel);
574                 }
575                 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
576                 if (ret < 0)
577                         return ret;
578
579                 /* Use scan mode for multiple channels */
580                 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
581
582                 /*
583                  * Continuous conversions not supported in injected mode,
584                  * either use:
585                  * - conversions in sync with filter 0
586                  * - triggered conversions
587                  */
588                 if (!fl->sync_mode && !trig)
589                         return -EINVAL;
590                 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
591         }
592
593         return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
594                                   cr1);
595 }
596
597 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
598                                         struct iio_dev *indio_dev,
599                                         struct iio_chan_spec *ch)
600 {
601         struct stm32_dfsdm_channel *df_ch;
602         const char *of_str;
603         int chan_idx = ch->scan_index;
604         int ret, val;
605
606         ret = of_property_read_u32_index(indio_dev->dev.of_node,
607                                          "st,adc-channels", chan_idx,
608                                          &ch->channel);
609         if (ret < 0) {
610                 dev_err(&indio_dev->dev,
611                         " Error parsing 'st,adc-channels' for idx %d\n",
612                         chan_idx);
613                 return ret;
614         }
615         if (ch->channel >= dfsdm->num_chs) {
616                 dev_err(&indio_dev->dev,
617                         " Error bad channel number %d (max = %d)\n",
618                         ch->channel, dfsdm->num_chs);
619                 return -EINVAL;
620         }
621
622         ret = of_property_read_string_index(indio_dev->dev.of_node,
623                                             "st,adc-channel-names", chan_idx,
624                                             &ch->datasheet_name);
625         if (ret < 0) {
626                 dev_err(&indio_dev->dev,
627                         " Error parsing 'st,adc-channel-names' for idx %d\n",
628                         chan_idx);
629                 return ret;
630         }
631
632         df_ch =  &dfsdm->ch_list[ch->channel];
633         df_ch->id = ch->channel;
634
635         ret = of_property_read_string_index(indio_dev->dev.of_node,
636                                             "st,adc-channel-types", chan_idx,
637                                             &of_str);
638         if (!ret) {
639                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
640                 if (val < 0)
641                         return val;
642         } else {
643                 val = 0;
644         }
645         df_ch->type = val;
646
647         ret = of_property_read_string_index(indio_dev->dev.of_node,
648                                             "st,adc-channel-clk-src", chan_idx,
649                                             &of_str);
650         if (!ret) {
651                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
652                 if (val < 0)
653                         return val;
654         } else {
655                 val = 0;
656         }
657         df_ch->src = val;
658
659         ret = of_property_read_u32_index(indio_dev->dev.of_node,
660                                          "st,adc-alt-channel", chan_idx,
661                                          &df_ch->alt_si);
662         if (ret < 0)
663                 df_ch->alt_si = 0;
664
665         return 0;
666 }
667
668 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
669                                           uintptr_t priv,
670                                           const struct iio_chan_spec *chan,
671                                           char *buf)
672 {
673         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
674
675         return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
676 }
677
678 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
679                                    unsigned int sample_freq,
680                                    unsigned int spi_freq)
681 {
682         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
683         unsigned int oversamp;
684         int ret;
685
686         oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
687         if (spi_freq % sample_freq)
688                 dev_dbg(&indio_dev->dev,
689                         "Rate not accurate. requested (%u), actual (%u)\n",
690                         sample_freq, spi_freq / oversamp);
691
692         ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
693         if (ret < 0)
694                 return ret;
695
696         adc->sample_freq = spi_freq / oversamp;
697         adc->oversamp = oversamp;
698
699         return 0;
700 }
701
702 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
703                                           uintptr_t priv,
704                                           const struct iio_chan_spec *chan,
705                                           const char *buf, size_t len)
706 {
707         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
708         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
709         unsigned int sample_freq = adc->sample_freq;
710         unsigned int spi_freq;
711         int ret;
712
713         dev_err(&indio_dev->dev, "enter %s\n", __func__);
714         /* If DFSDM is master on SPI, SPI freq can not be updated */
715         if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
716                 return -EPERM;
717
718         ret = kstrtoint(buf, 0, &spi_freq);
719         if (ret)
720                 return ret;
721
722         if (!spi_freq)
723                 return -EINVAL;
724
725         if (sample_freq) {
726                 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
727                 if (ret < 0)
728                         return ret;
729         }
730         adc->spi_freq = spi_freq;
731
732         return len;
733 }
734
735 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
736                                   struct iio_trigger *trig)
737 {
738         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
739         struct regmap *regmap = adc->dfsdm->regmap;
740         int ret;
741
742         ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
743         if (ret < 0)
744                 return ret;
745
746         ret = stm32_dfsdm_start_channel(indio_dev);
747         if (ret < 0)
748                 return ret;
749
750         ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
751         if (ret < 0)
752                 goto stop_channels;
753
754         ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
755         if (ret < 0)
756                 goto filter_unconfigure;
757
758         return 0;
759
760 filter_unconfigure:
761         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
762                            DFSDM_CR1_CFG_MASK, 0);
763 stop_channels:
764         stm32_dfsdm_stop_channel(indio_dev);
765
766         return ret;
767 }
768
769 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
770 {
771         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
772         struct regmap *regmap = adc->dfsdm->regmap;
773
774         stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
775
776         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
777                            DFSDM_CR1_CFG_MASK, 0);
778
779         stm32_dfsdm_stop_channel(indio_dev);
780 }
781
782 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
783                                      unsigned int val)
784 {
785         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
786         unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
787         unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
788
789         /*
790          * DMA cyclic transfers are used, buffer is split into two periods.
791          * There should be :
792          * - always one buffer (period) DMA is working on
793          * - one buffer (period) driver pushed to ASoC side.
794          */
795         watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
796         adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
797
798         return 0;
799 }
800
801 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
802 {
803         struct dma_tx_state state;
804         enum dma_status status;
805
806         status = dmaengine_tx_status(adc->dma_chan,
807                                      adc->dma_chan->cookie,
808                                      &state);
809         if (status == DMA_IN_PROGRESS) {
810                 /* Residue is size in bytes from end of buffer */
811                 unsigned int i = adc->buf_sz - state.residue;
812                 unsigned int size;
813
814                 /* Return available bytes */
815                 if (i >= adc->bufi)
816                         size = i - adc->bufi;
817                 else
818                         size = adc->buf_sz + i - adc->bufi;
819
820                 return size;
821         }
822
823         return 0;
824 }
825
826 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
827                                             s32 *buffer)
828 {
829         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
830         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
831         unsigned int i = adc->nconv;
832         s32 *ptr = buffer;
833
834         while (i--) {
835                 /* Mask 8 LSB that contains the channel ID */
836                 *ptr &= 0xFFFFFF00;
837                 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
838                 if (*ptr > flo->max)
839                         *ptr -= 1;
840                 /*
841                  * Samples from filter are retrieved with 23 bits resolution
842                  * or less. Shift left to align MSB on 24 bits.
843                  */
844                 *ptr <<= flo->lshift;
845
846                 ptr++;
847         }
848 }
849
850 static void stm32_dfsdm_dma_buffer_done(void *data)
851 {
852         struct iio_dev *indio_dev = data;
853         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
854         int available = stm32_dfsdm_adc_dma_residue(adc);
855         size_t old_pos;
856
857         /*
858          * FIXME: In Kernel interface does not support cyclic DMA buffer,and
859          * offers only an interface to push data samples per samples.
860          * For this reason IIO buffer interface is not used and interface is
861          * bypassed using a private callback registered by ASoC.
862          * This should be a temporary solution waiting a cyclic DMA engine
863          * support in IIO.
864          */
865
866         dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
867                 adc->bufi, available);
868         old_pos = adc->bufi;
869
870         while (available >= indio_dev->scan_bytes) {
871                 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
872
873                 stm32_dfsdm_process_data(adc, buffer);
874
875                 available -= indio_dev->scan_bytes;
876                 adc->bufi += indio_dev->scan_bytes;
877                 if (adc->bufi >= adc->buf_sz) {
878                         if (adc->cb)
879                                 adc->cb(&adc->rx_buf[old_pos],
880                                          adc->buf_sz - old_pos, adc->cb_priv);
881                         adc->bufi = 0;
882                         old_pos = 0;
883                 }
884                 /*
885                  * In DMA mode the trigger services of IIO are not used
886                  * (e.g. no call to iio_trigger_poll).
887                  * Calling irq handler associated to the hardware trigger is not
888                  * relevant as the conversions have already been done. Data
889                  * transfers are performed directly in DMA callback instead.
890                  * This implementation avoids to call trigger irq handler that
891                  * may sleep, in an atomic context (DMA irq handler context).
892                  */
893                 if (adc->dev_data->type == DFSDM_IIO)
894                         iio_push_to_buffers(indio_dev, buffer);
895         }
896         if (adc->cb)
897                 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
898                         adc->cb_priv);
899 }
900
901 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
902 {
903         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
904         /*
905          * The DFSDM supports half-word transfers. However, for 16 bits record,
906          * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
907          * shift is required.
908          */
909         struct dma_slave_config config = {
910                 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
911                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912         };
913         struct dma_async_tx_descriptor *desc;
914         dma_cookie_t cookie;
915         int ret;
916
917         if (!adc->dma_chan)
918                 return -EINVAL;
919
920         dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
921                 adc->buf_sz, adc->buf_sz / 2);
922
923         if (adc->nconv == 1 && !indio_dev->trig)
924                 config.src_addr += DFSDM_RDATAR(adc->fl_id);
925         else
926                 config.src_addr += DFSDM_JDATAR(adc->fl_id);
927         ret = dmaengine_slave_config(adc->dma_chan, &config);
928         if (ret)
929                 return ret;
930
931         /* Prepare a DMA cyclic transaction */
932         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
933                                          adc->dma_buf,
934                                          adc->buf_sz, adc->buf_sz / 2,
935                                          DMA_DEV_TO_MEM,
936                                          DMA_PREP_INTERRUPT);
937         if (!desc)
938                 return -EBUSY;
939
940         desc->callback = stm32_dfsdm_dma_buffer_done;
941         desc->callback_param = indio_dev;
942
943         cookie = dmaengine_submit(desc);
944         ret = dma_submit_error(cookie);
945         if (ret)
946                 goto err_stop_dma;
947
948         /* Issue pending DMA requests */
949         dma_async_issue_pending(adc->dma_chan);
950
951         if (adc->nconv == 1 && !indio_dev->trig) {
952                 /* Enable regular DMA transfer*/
953                 ret = regmap_update_bits(adc->dfsdm->regmap,
954                                          DFSDM_CR1(adc->fl_id),
955                                          DFSDM_CR1_RDMAEN_MASK,
956                                          DFSDM_CR1_RDMAEN_MASK);
957         } else {
958                 /* Enable injected DMA transfer*/
959                 ret = regmap_update_bits(adc->dfsdm->regmap,
960                                          DFSDM_CR1(adc->fl_id),
961                                          DFSDM_CR1_JDMAEN_MASK,
962                                          DFSDM_CR1_JDMAEN_MASK);
963         }
964
965         if (ret < 0)
966                 goto err_stop_dma;
967
968         return 0;
969
970 err_stop_dma:
971         dmaengine_terminate_all(adc->dma_chan);
972
973         return ret;
974 }
975
976 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
977 {
978         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
979
980         if (!adc->dma_chan)
981                 return;
982
983         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
984                            DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
985         dmaengine_terminate_all(adc->dma_chan);
986 }
987
988 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
989                                         const unsigned long *scan_mask)
990 {
991         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
992
993         adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
994         adc->smask = *scan_mask;
995
996         dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
997
998         return 0;
999 }
1000
1001 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1002 {
1003         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1004         int ret;
1005
1006         /* Reset adc buffer index */
1007         adc->bufi = 0;
1008
1009         if (adc->hwc) {
1010                 ret = iio_hw_consumer_enable(adc->hwc);
1011                 if (ret < 0)
1012                         return ret;
1013         }
1014
1015         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1016         if (ret < 0)
1017                 goto err_stop_hwc;
1018
1019         ret = stm32_dfsdm_adc_dma_start(indio_dev);
1020         if (ret) {
1021                 dev_err(&indio_dev->dev, "Can't start DMA\n");
1022                 goto stop_dfsdm;
1023         }
1024
1025         ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1026         if (ret) {
1027                 dev_err(&indio_dev->dev, "Can't start conversion\n");
1028                 goto err_stop_dma;
1029         }
1030
1031         return 0;
1032
1033 err_stop_dma:
1034         stm32_dfsdm_adc_dma_stop(indio_dev);
1035 stop_dfsdm:
1036         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1037 err_stop_hwc:
1038         if (adc->hwc)
1039                 iio_hw_consumer_disable(adc->hwc);
1040
1041         return ret;
1042 }
1043
1044 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1045 {
1046         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1047
1048         stm32_dfsdm_stop_conv(indio_dev);
1049
1050         stm32_dfsdm_adc_dma_stop(indio_dev);
1051
1052         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1053
1054         if (adc->hwc)
1055                 iio_hw_consumer_disable(adc->hwc);
1056
1057         return 0;
1058 }
1059
1060 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1061         .postenable = &stm32_dfsdm_postenable,
1062         .predisable = &stm32_dfsdm_predisable,
1063 };
1064
1065 /**
1066  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1067  *                             DMA transfer period is achieved.
1068  *
1069  * @iio_dev: Handle to IIO device.
1070  * @cb: Pointer to callback function:
1071  *      - data: pointer to data buffer
1072  *      - size: size in byte of the data buffer
1073  *      - private: pointer to consumer private structure.
1074  * @private: Pointer to consumer private structure.
1075  */
1076 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1077                             int (*cb)(const void *data, size_t size,
1078                                       void *private),
1079                             void *private)
1080 {
1081         struct stm32_dfsdm_adc *adc;
1082
1083         if (!iio_dev)
1084                 return -EINVAL;
1085         adc = iio_priv(iio_dev);
1086
1087         adc->cb = cb;
1088         adc->cb_priv = private;
1089
1090         return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1093
1094 /**
1095  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1096  *
1097  * @iio_dev: Handle to IIO device.
1098  */
1099 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1100 {
1101         struct stm32_dfsdm_adc *adc;
1102
1103         if (!iio_dev)
1104                 return -EINVAL;
1105         adc = iio_priv(iio_dev);
1106
1107         adc->cb = NULL;
1108         adc->cb_priv = NULL;
1109
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1113
1114 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1115                                    const struct iio_chan_spec *chan, int *res)
1116 {
1117         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1118         long timeout;
1119         int ret;
1120
1121         reinit_completion(&adc->completion);
1122
1123         adc->buffer = res;
1124
1125         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1126         if (ret < 0)
1127                 return ret;
1128
1129         ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1130                                  DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1131         if (ret < 0)
1132                 goto stop_dfsdm;
1133
1134         adc->nconv = 1;
1135         adc->smask = BIT(chan->scan_index);
1136         ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1137         if (ret < 0) {
1138                 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1139                                    DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1140                 goto stop_dfsdm;
1141         }
1142
1143         timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1144                                                             DFSDM_TIMEOUT);
1145
1146         /* Mask IRQ for regular conversion achievement*/
1147         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1148                            DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1149
1150         if (timeout == 0)
1151                 ret = -ETIMEDOUT;
1152         else if (timeout < 0)
1153                 ret = timeout;
1154         else
1155                 ret = IIO_VAL_INT;
1156
1157         stm32_dfsdm_stop_conv(indio_dev);
1158
1159         stm32_dfsdm_process_data(adc, res);
1160
1161 stop_dfsdm:
1162         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1163
1164         return ret;
1165 }
1166
1167 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1168                                  struct iio_chan_spec const *chan,
1169                                  int val, int val2, long mask)
1170 {
1171         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1172         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1173         unsigned int spi_freq;
1174         int ret = -EINVAL;
1175
1176         switch (ch->src) {
1177         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1178                 spi_freq = adc->dfsdm->spi_master_freq;
1179                 break;
1180         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1181         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1182                 spi_freq = adc->dfsdm->spi_master_freq / 2;
1183                 break;
1184         default:
1185                 spi_freq = adc->spi_freq;
1186         }
1187
1188         switch (mask) {
1189         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1190                 ret = iio_device_claim_direct_mode(indio_dev);
1191                 if (ret)
1192                         return ret;
1193
1194                 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1195                 if (!ret) {
1196                         dev_dbg(&indio_dev->dev,
1197                                 "Sampling rate changed from (%u) to (%u)\n",
1198                                 adc->sample_freq, spi_freq / val);
1199                         adc->oversamp = val;
1200                         adc->sample_freq = spi_freq / val;
1201                 }
1202                 iio_device_release_direct_mode(indio_dev);
1203                 return ret;
1204
1205         case IIO_CHAN_INFO_SAMP_FREQ:
1206                 if (!val)
1207                         return -EINVAL;
1208
1209                 ret = iio_device_claim_direct_mode(indio_dev);
1210                 if (ret)
1211                         return ret;
1212
1213                 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1214                 iio_device_release_direct_mode(indio_dev);
1215                 return ret;
1216         }
1217
1218         return -EINVAL;
1219 }
1220
1221 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1222                                 struct iio_chan_spec const *chan, int *val,
1223                                 int *val2, long mask)
1224 {
1225         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1226         int ret;
1227
1228         switch (mask) {
1229         case IIO_CHAN_INFO_RAW:
1230                 ret = iio_device_claim_direct_mode(indio_dev);
1231                 if (ret)
1232                         return ret;
1233                 ret = iio_hw_consumer_enable(adc->hwc);
1234                 if (ret < 0) {
1235                         dev_err(&indio_dev->dev,
1236                                 "%s: IIO enable failed (channel %d)\n",
1237                                 __func__, chan->channel);
1238                         iio_device_release_direct_mode(indio_dev);
1239                         return ret;
1240                 }
1241                 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1242                 iio_hw_consumer_disable(adc->hwc);
1243                 if (ret < 0) {
1244                         dev_err(&indio_dev->dev,
1245                                 "%s: Conversion failed (channel %d)\n",
1246                                 __func__, chan->channel);
1247                         iio_device_release_direct_mode(indio_dev);
1248                         return ret;
1249                 }
1250                 iio_device_release_direct_mode(indio_dev);
1251                 return IIO_VAL_INT;
1252
1253         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1254                 *val = adc->oversamp;
1255
1256                 return IIO_VAL_INT;
1257
1258         case IIO_CHAN_INFO_SAMP_FREQ:
1259                 *val = adc->sample_freq;
1260
1261                 return IIO_VAL_INT;
1262         }
1263
1264         return -EINVAL;
1265 }
1266
1267 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1268                                         struct iio_trigger *trig)
1269 {
1270         return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1271 }
1272
1273 static const struct iio_info stm32_dfsdm_info_audio = {
1274         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1275         .read_raw = stm32_dfsdm_read_raw,
1276         .write_raw = stm32_dfsdm_write_raw,
1277         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1278 };
1279
1280 static const struct iio_info stm32_dfsdm_info_adc = {
1281         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1282         .read_raw = stm32_dfsdm_read_raw,
1283         .write_raw = stm32_dfsdm_write_raw,
1284         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1285         .validate_trigger = stm32_dfsdm_validate_trigger,
1286 };
1287
1288 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1289 {
1290         struct iio_dev *indio_dev = arg;
1291         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1292         struct regmap *regmap = adc->dfsdm->regmap;
1293         unsigned int status, int_en;
1294
1295         regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1296         regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1297
1298         if (status & DFSDM_ISR_REOCF_MASK) {
1299                 /* Read the data register clean the IRQ status */
1300                 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1301                 complete(&adc->completion);
1302         }
1303
1304         if (status & DFSDM_ISR_ROVRF_MASK) {
1305                 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1306                         dev_warn(&indio_dev->dev, "Overrun detected\n");
1307                 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1308                                    DFSDM_ICR_CLRROVRF_MASK,
1309                                    DFSDM_ICR_CLRROVRF_MASK);
1310         }
1311
1312         return IRQ_HANDLED;
1313 }
1314
1315 /*
1316  * Define external info for SPI Frequency and audio sampling rate that can be
1317  * configured by ASoC driver through consumer.h API
1318  */
1319 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1320         /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1321         {
1322                 .name = "spi_clk_freq",
1323                 .shared = IIO_SHARED_BY_TYPE,
1324                 .read = dfsdm_adc_audio_get_spiclk,
1325                 .write = dfsdm_adc_audio_set_spiclk,
1326         },
1327         {},
1328 };
1329
1330 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1331 {
1332         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1333
1334         if (adc->dma_chan) {
1335                 dma_free_coherent(adc->dma_chan->device->dev,
1336                                   DFSDM_DMA_BUFFER_SIZE,
1337                                   adc->rx_buf, adc->dma_buf);
1338                 dma_release_channel(adc->dma_chan);
1339         }
1340 }
1341
1342 static int stm32_dfsdm_dma_request(struct device *dev,
1343                                    struct iio_dev *indio_dev)
1344 {
1345         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1346
1347         adc->dma_chan = dma_request_chan(dev, "rx");
1348         if (IS_ERR(adc->dma_chan)) {
1349                 int ret = PTR_ERR(adc->dma_chan);
1350
1351                 adc->dma_chan = NULL;
1352                 return ret;
1353         }
1354
1355         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1356                                          DFSDM_DMA_BUFFER_SIZE,
1357                                          &adc->dma_buf, GFP_KERNEL);
1358         if (!adc->rx_buf) {
1359                 dma_release_channel(adc->dma_chan);
1360                 return -ENOMEM;
1361         }
1362
1363         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1364         indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1365
1366         return 0;
1367 }
1368
1369 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1370                                          struct iio_chan_spec *ch)
1371 {
1372         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1373         int ret;
1374
1375         ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1376         if (ret < 0)
1377                 return ret;
1378
1379         ch->type = IIO_VOLTAGE;
1380         ch->indexed = 1;
1381
1382         /*
1383          * IIO_CHAN_INFO_RAW: used to compute regular conversion
1384          * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1385          */
1386         ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1387         ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1388                                         BIT(IIO_CHAN_INFO_SAMP_FREQ);
1389
1390         if (adc->dev_data->type == DFSDM_AUDIO) {
1391                 ch->ext_info = dfsdm_adc_audio_ext_info;
1392         } else {
1393                 ch->scan_type.shift = 8;
1394         }
1395         ch->scan_type.sign = 's';
1396         ch->scan_type.realbits = 24;
1397         ch->scan_type.storagebits = 32;
1398
1399         return stm32_dfsdm_chan_configure(adc->dfsdm,
1400                                           &adc->dfsdm->ch_list[ch->channel]);
1401 }
1402
1403 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1404 {
1405         struct iio_chan_spec *ch;
1406         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1407         struct stm32_dfsdm_channel *d_ch;
1408         int ret;
1409
1410         ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1411         if (!ch)
1412                 return -ENOMEM;
1413
1414         ch->scan_index = 0;
1415
1416         ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1417         if (ret < 0) {
1418                 dev_err(&indio_dev->dev, "Channels init failed\n");
1419                 return ret;
1420         }
1421         ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1422
1423         d_ch = &adc->dfsdm->ch_list[ch->channel];
1424         if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1425                 adc->spi_freq = adc->dfsdm->spi_master_freq;
1426
1427         indio_dev->num_channels = 1;
1428         indio_dev->channels = ch;
1429
1430         return stm32_dfsdm_dma_request(dev, indio_dev);
1431 }
1432
1433 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1434 {
1435         struct iio_chan_spec *ch;
1436         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1437         int num_ch;
1438         int ret, chan_idx;
1439
1440         adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1441         ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1442         if (ret < 0)
1443                 return ret;
1444
1445         num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1446                                              "st,adc-channels");
1447         if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1448                 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1449                 return num_ch < 0 ? num_ch : -EINVAL;
1450         }
1451
1452         /* Bind to SD modulator IIO device */
1453         adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1454         if (IS_ERR(adc->hwc))
1455                 return -EPROBE_DEFER;
1456
1457         ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1458                           GFP_KERNEL);
1459         if (!ch)
1460                 return -ENOMEM;
1461
1462         for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1463                 ch[chan_idx].scan_index = chan_idx;
1464                 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1465                 if (ret < 0) {
1466                         dev_err(&indio_dev->dev, "Channels init failed\n");
1467                         return ret;
1468                 }
1469         }
1470
1471         indio_dev->num_channels = num_ch;
1472         indio_dev->channels = ch;
1473
1474         init_completion(&adc->completion);
1475
1476         /* Optionally request DMA */
1477         ret = stm32_dfsdm_dma_request(dev, indio_dev);
1478         if (ret) {
1479                 if (ret != -ENODEV)
1480                         return dev_err_probe(dev, ret,
1481                                              "DMA channel request failed with\n");
1482
1483                 dev_dbg(dev, "No DMA support\n");
1484                 return 0;
1485         }
1486
1487         ret = iio_triggered_buffer_setup(indio_dev,
1488                                          &iio_pollfunc_store_time, NULL,
1489                                          &stm32_dfsdm_buffer_setup_ops);
1490         if (ret) {
1491                 stm32_dfsdm_dma_release(indio_dev);
1492                 dev_err(&indio_dev->dev, "buffer setup failed\n");
1493                 return ret;
1494         }
1495
1496         /* lptimer/timer hardware triggers */
1497         indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1498
1499         return 0;
1500 }
1501
1502 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1503         .type = DFSDM_IIO,
1504         .init = stm32_dfsdm_adc_init,
1505 };
1506
1507 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1508         .type = DFSDM_AUDIO,
1509         .init = stm32_dfsdm_audio_init,
1510 };
1511
1512 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1513         {
1514                 .compatible = "st,stm32-dfsdm-adc",
1515                 .data = &stm32h7_dfsdm_adc_data,
1516         },
1517         {
1518                 .compatible = "st,stm32-dfsdm-dmic",
1519                 .data = &stm32h7_dfsdm_audio_data,
1520         },
1521         {}
1522 };
1523
1524 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1525 {
1526         struct device *dev = &pdev->dev;
1527         struct stm32_dfsdm_adc *adc;
1528         struct device_node *np = dev->of_node;
1529         const struct stm32_dfsdm_dev_data *dev_data;
1530         struct iio_dev *iio;
1531         char *name;
1532         int ret, irq, val;
1533
1534         dev_data = of_device_get_match_data(dev);
1535         iio = devm_iio_device_alloc(dev, sizeof(*adc));
1536         if (!iio) {
1537                 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1538                 return -ENOMEM;
1539         }
1540
1541         adc = iio_priv(iio);
1542         adc->dfsdm = dev_get_drvdata(dev->parent);
1543
1544         iio->dev.of_node = np;
1545         iio->modes = INDIO_DIRECT_MODE;
1546
1547         platform_set_drvdata(pdev, iio);
1548
1549         ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1550         if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1551                 dev_err(dev, "Missing or bad reg property\n");
1552                 return -EINVAL;
1553         }
1554
1555         name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1556         if (!name)
1557                 return -ENOMEM;
1558         if (dev_data->type == DFSDM_AUDIO) {
1559                 iio->info = &stm32_dfsdm_info_audio;
1560                 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1561         } else {
1562                 iio->info = &stm32_dfsdm_info_adc;
1563                 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1564         }
1565         iio->name = name;
1566
1567         /*
1568          * In a first step IRQs generated for channels are not treated.
1569          * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1570          */
1571         irq = platform_get_irq(pdev, 0);
1572         if (irq < 0)
1573                 return irq;
1574
1575         ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1576                                0, pdev->name, iio);
1577         if (ret < 0) {
1578                 dev_err(dev, "Failed to request IRQ\n");
1579                 return ret;
1580         }
1581
1582         ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1583         if (ret < 0) {
1584                 dev_err(dev, "Failed to set filter order\n");
1585                 return ret;
1586         }
1587
1588         adc->dfsdm->fl_list[adc->fl_id].ford = val;
1589
1590         ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1591         if (!ret)
1592                 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1593
1594         adc->dev_data = dev_data;
1595         ret = dev_data->init(dev, iio);
1596         if (ret < 0)
1597                 return ret;
1598
1599         ret = iio_device_register(iio);
1600         if (ret < 0)
1601                 goto err_cleanup;
1602
1603         if (dev_data->type == DFSDM_AUDIO) {
1604                 ret = of_platform_populate(np, NULL, NULL, dev);
1605                 if (ret < 0) {
1606                         dev_err(dev, "Failed to find an audio DAI\n");
1607                         goto err_unregister;
1608                 }
1609         }
1610
1611         return 0;
1612
1613 err_unregister:
1614         iio_device_unregister(iio);
1615 err_cleanup:
1616         stm32_dfsdm_dma_release(iio);
1617
1618         return ret;
1619 }
1620
1621 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1622 {
1623         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1624         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1625
1626         if (adc->dev_data->type == DFSDM_AUDIO)
1627                 of_platform_depopulate(&pdev->dev);
1628         iio_device_unregister(indio_dev);
1629         stm32_dfsdm_dma_release(indio_dev);
1630
1631         return 0;
1632 }
1633
1634 static int stm32_dfsdm_adc_suspend(struct device *dev)
1635 {
1636         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1637
1638         if (iio_buffer_enabled(indio_dev))
1639                 stm32_dfsdm_predisable(indio_dev);
1640
1641         return 0;
1642 }
1643
1644 static int stm32_dfsdm_adc_resume(struct device *dev)
1645 {
1646         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648         const struct iio_chan_spec *chan;
1649         struct stm32_dfsdm_channel *ch;
1650         int i, ret;
1651
1652         /* restore channels configuration */
1653         for (i = 0; i < indio_dev->num_channels; i++) {
1654                 chan = indio_dev->channels + i;
1655                 ch = &adc->dfsdm->ch_list[chan->channel];
1656                 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1657                 if (ret)
1658                         return ret;
1659         }
1660
1661         if (iio_buffer_enabled(indio_dev))
1662                 stm32_dfsdm_postenable(indio_dev);
1663
1664         return 0;
1665 }
1666
1667 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1668                                 stm32_dfsdm_adc_suspend,
1669                                 stm32_dfsdm_adc_resume);
1670
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672         .driver = {
1673                 .name = "stm32-dfsdm-adc",
1674                 .of_match_table = stm32_dfsdm_adc_match,
1675                 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1676         },
1677         .probe = stm32_dfsdm_adc_probe,
1678         .remove = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");