Merge tag 'gvt-next-fixes-2020-12-25' of https://github.com/intel/gvt-linux into...
[linux-2.6-microblaze.git] / drivers / iio / adc / exynos_adc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4  *
5  *  8 ~ 10 channel, 10/12-bit ADC
6  *
7  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8  */
9
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_platform.h>
24 #include <linux/err.h>
25 #include <linux/input.h>
26
27 #include <linux/iio/iio.h>
28 #include <linux/iio/machine.h>
29 #include <linux/iio/driver.h>
30 #include <linux/mfd/syscon.h>
31 #include <linux/regmap.h>
32
33 #include <linux/platform_data/touchscreen-s3c2410.h>
34
35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36 #define ADC_V1_CON(x)           ((x) + 0x00)
37 #define ADC_V1_TSC(x)           ((x) + 0x04)
38 #define ADC_V1_DLY(x)           ((x) + 0x08)
39 #define ADC_V1_DATX(x)          ((x) + 0x0C)
40 #define ADC_V1_DATY(x)          ((x) + 0x10)
41 #define ADC_V1_UPDN(x)          ((x) + 0x14)
42 #define ADC_V1_INTCLR(x)        ((x) + 0x18)
43 #define ADC_V1_MUX(x)           ((x) + 0x1c)
44 #define ADC_V1_CLRINTPNDNUP(x)  ((x) + 0x20)
45
46 /* S3C2410 ADC registers definitions */
47 #define ADC_S3C2410_MUX(x)      ((x) + 0x18)
48
49 /* Future ADC_V2 registers definitions */
50 #define ADC_V2_CON1(x)          ((x) + 0x00)
51 #define ADC_V2_CON2(x)          ((x) + 0x04)
52 #define ADC_V2_STAT(x)          ((x) + 0x08)
53 #define ADC_V2_INT_EN(x)        ((x) + 0x10)
54 #define ADC_V2_INT_ST(x)        ((x) + 0x14)
55 #define ADC_V2_VER(x)           ((x) + 0x20)
56
57 /* Bit definitions for ADC_V1 */
58 #define ADC_V1_CON_RES          (1u << 16)
59 #define ADC_V1_CON_PRSCEN       (1u << 14)
60 #define ADC_V1_CON_PRSCLV(x)    (((x) & 0xFF) << 6)
61 #define ADC_V1_CON_STANDBY      (1u << 2)
62
63 /* Bit definitions for S3C2410 ADC */
64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65 #define ADC_S3C2410_DATX_MASK   0x3FF
66 #define ADC_S3C2416_CON_RES_SEL (1u << 3)
67
68 /* touch screen always uses channel 0 */
69 #define ADC_S3C2410_MUX_TS      0
70
71 /* ADCTSC Register Bits */
72 #define ADC_S3C2443_TSC_UD_SEN          (1u << 8)
73 #define ADC_S3C2410_TSC_YM_SEN          (1u << 7)
74 #define ADC_S3C2410_TSC_YP_SEN          (1u << 6)
75 #define ADC_S3C2410_TSC_XM_SEN          (1u << 5)
76 #define ADC_S3C2410_TSC_XP_SEN          (1u << 4)
77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3)
78 #define ADC_S3C2410_TSC_AUTO_PST        (1u << 2)
79 #define ADC_S3C2410_TSC_XY_PST(x)       (((x) & 0x3) << 0)
80
81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82                          ADC_S3C2410_TSC_YP_SEN | \
83                          ADC_S3C2410_TSC_XP_SEN | \
84                          ADC_S3C2410_TSC_XY_PST(3))
85
86 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \
87                          ADC_S3C2410_TSC_YP_SEN | \
88                          ADC_S3C2410_TSC_XP_SEN | \
89                          ADC_S3C2410_TSC_AUTO_PST | \
90                          ADC_S3C2410_TSC_XY_PST(0))
91
92 /* Bit definitions for ADC_V2 */
93 #define ADC_V2_CON1_SOFT_RESET  (1u << 2)
94
95 #define ADC_V2_CON2_OSEL        (1u << 10)
96 #define ADC_V2_CON2_ESEL        (1u << 9)
97 #define ADC_V2_CON2_HIGHF       (1u << 8)
98 #define ADC_V2_CON2_C_TIME(x)   (((x) & 7) << 4)
99 #define ADC_V2_CON2_ACH_SEL(x)  (((x) & 0xF) << 0)
100 #define ADC_V2_CON2_ACH_MASK    0xF
101
102 #define MAX_ADC_V2_CHANNELS             10
103 #define MAX_ADC_V1_CHANNELS             8
104 #define MAX_EXYNOS3250_ADC_CHANNELS     2
105 #define MAX_EXYNOS4212_ADC_CHANNELS     4
106 #define MAX_S5PV210_ADC_CHANNELS        10
107
108 /* Bit definitions common for ADC_V1 and ADC_V2 */
109 #define ADC_CON_EN_START        (1u << 0)
110 #define ADC_CON_EN_START_MASK   (0x3 << 0)
111 #define ADC_DATX_PRESSED        (1u << 15)
112 #define ADC_DATX_MASK           0xFFF
113 #define ADC_DATY_MASK           0xFFF
114
115 #define EXYNOS_ADC_TIMEOUT      (msecs_to_jiffies(100))
116
117 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718
118 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720
119
120 struct exynos_adc {
121         struct exynos_adc_data  *data;
122         struct device           *dev;
123         struct input_dev        *input;
124         void __iomem            *regs;
125         struct regmap           *pmu_map;
126         struct clk              *clk;
127         struct clk              *sclk;
128         unsigned int            irq;
129         unsigned int            tsirq;
130         unsigned int            delay;
131         struct regulator        *vdd;
132
133         struct completion       completion;
134
135         u32                     value;
136         unsigned int            version;
137
138         bool                    read_ts;
139         u32                     ts_x;
140         u32                     ts_y;
141
142         /*
143          * Lock to protect from potential concurrent access to the
144          * completion callback during a manual conversion. For this driver
145          * a wait-callback is used to wait for the conversion result,
146          * so in the meantime no other read request (or conversion start)
147          * must be performed, otherwise it would interfere with the
148          * current conversion result.
149          */
150         struct mutex            lock;
151 };
152
153 struct exynos_adc_data {
154         int num_channels;
155         bool needs_sclk;
156         bool needs_adc_phy;
157         int phy_offset;
158         u32 mask;
159
160         void (*init_hw)(struct exynos_adc *info);
161         void (*exit_hw)(struct exynos_adc *info);
162         void (*clear_irq)(struct exynos_adc *info);
163         void (*start_conv)(struct exynos_adc *info, unsigned long addr);
164 };
165
166 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
167 {
168         if (info->data->needs_sclk)
169                 clk_unprepare(info->sclk);
170         clk_unprepare(info->clk);
171 }
172
173 static int exynos_adc_prepare_clk(struct exynos_adc *info)
174 {
175         int ret;
176
177         ret = clk_prepare(info->clk);
178         if (ret) {
179                 dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
180                 return ret;
181         }
182
183         if (info->data->needs_sclk) {
184                 ret = clk_prepare(info->sclk);
185                 if (ret) {
186                         clk_unprepare(info->clk);
187                         dev_err(info->dev,
188                                 "failed preparing sclk_adc clock: %d\n", ret);
189                         return ret;
190                 }
191         }
192
193         return 0;
194 }
195
196 static void exynos_adc_disable_clk(struct exynos_adc *info)
197 {
198         if (info->data->needs_sclk)
199                 clk_disable(info->sclk);
200         clk_disable(info->clk);
201 }
202
203 static int exynos_adc_enable_clk(struct exynos_adc *info)
204 {
205         int ret;
206
207         ret = clk_enable(info->clk);
208         if (ret) {
209                 dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
210                 return ret;
211         }
212
213         if (info->data->needs_sclk) {
214                 ret = clk_enable(info->sclk);
215                 if (ret) {
216                         clk_disable(info->clk);
217                         dev_err(info->dev,
218                                 "failed enabling sclk_adc clock: %d\n", ret);
219                         return ret;
220                 }
221         }
222
223         return 0;
224 }
225
226 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
227 {
228         u32 con1;
229
230         if (info->data->needs_adc_phy)
231                 regmap_write(info->pmu_map, info->data->phy_offset, 1);
232
233         /* set default prescaler values and Enable prescaler */
234         con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
235
236         /* Enable 12-bit ADC resolution */
237         con1 |= ADC_V1_CON_RES;
238         writel(con1, ADC_V1_CON(info->regs));
239
240         /* set touchscreen delay */
241         writel(info->delay, ADC_V1_DLY(info->regs));
242 }
243
244 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
245 {
246         u32 con;
247
248         if (info->data->needs_adc_phy)
249                 regmap_write(info->pmu_map, info->data->phy_offset, 0);
250
251         con = readl(ADC_V1_CON(info->regs));
252         con |= ADC_V1_CON_STANDBY;
253         writel(con, ADC_V1_CON(info->regs));
254 }
255
256 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
257 {
258         writel(1, ADC_V1_INTCLR(info->regs));
259 }
260
261 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
262                                      unsigned long addr)
263 {
264         u32 con1;
265
266         writel(addr, ADC_V1_MUX(info->regs));
267
268         con1 = readl(ADC_V1_CON(info->regs));
269         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
270 }
271
272 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
273 static const struct exynos_adc_data exynos4212_adc_data = {
274         .num_channels   = MAX_EXYNOS4212_ADC_CHANNELS,
275         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
276         .needs_adc_phy  = true,
277         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
278
279         .init_hw        = exynos_adc_v1_init_hw,
280         .exit_hw        = exynos_adc_v1_exit_hw,
281         .clear_irq      = exynos_adc_v1_clear_irq,
282         .start_conv     = exynos_adc_v1_start_conv,
283 };
284
285 static const struct exynos_adc_data exynos_adc_v1_data = {
286         .num_channels   = MAX_ADC_V1_CHANNELS,
287         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
288         .needs_adc_phy  = true,
289         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
290
291         .init_hw        = exynos_adc_v1_init_hw,
292         .exit_hw        = exynos_adc_v1_exit_hw,
293         .clear_irq      = exynos_adc_v1_clear_irq,
294         .start_conv     = exynos_adc_v1_start_conv,
295 };
296
297 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
298         .num_channels   = MAX_S5PV210_ADC_CHANNELS,
299         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
300
301         .init_hw        = exynos_adc_v1_init_hw,
302         .exit_hw        = exynos_adc_v1_exit_hw,
303         .clear_irq      = exynos_adc_v1_clear_irq,
304         .start_conv     = exynos_adc_v1_start_conv,
305 };
306
307 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
308                                           unsigned long addr)
309 {
310         u32 con1;
311
312         /* Enable 12 bit ADC resolution */
313         con1 = readl(ADC_V1_CON(info->regs));
314         con1 |= ADC_S3C2416_CON_RES_SEL;
315         writel(con1, ADC_V1_CON(info->regs));
316
317         /* Select channel for S3C2416 */
318         writel(addr, ADC_S3C2410_MUX(info->regs));
319
320         con1 = readl(ADC_V1_CON(info->regs));
321         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
322 }
323
324 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
325         .num_channels   = MAX_ADC_V1_CHANNELS,
326         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
327
328         .init_hw        = exynos_adc_v1_init_hw,
329         .exit_hw        = exynos_adc_v1_exit_hw,
330         .start_conv     = exynos_adc_s3c2416_start_conv,
331 };
332
333 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
334                                           unsigned long addr)
335 {
336         u32 con1;
337
338         /* Select channel for S3C2433 */
339         writel(addr, ADC_S3C2410_MUX(info->regs));
340
341         con1 = readl(ADC_V1_CON(info->regs));
342         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
343 }
344
345 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
346         .num_channels   = MAX_ADC_V1_CHANNELS,
347         .mask           = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
348
349         .init_hw        = exynos_adc_v1_init_hw,
350         .exit_hw        = exynos_adc_v1_exit_hw,
351         .start_conv     = exynos_adc_s3c2443_start_conv,
352 };
353
354 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
355                                           unsigned long addr)
356 {
357         u32 con1;
358
359         con1 = readl(ADC_V1_CON(info->regs));
360         con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
361         con1 |= ADC_S3C2410_CON_SELMUX(addr);
362         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
363 }
364
365 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
366         .num_channels   = MAX_ADC_V1_CHANNELS,
367         .mask           = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
368
369         .init_hw        = exynos_adc_v1_init_hw,
370         .exit_hw        = exynos_adc_v1_exit_hw,
371         .start_conv     = exynos_adc_s3c64xx_start_conv,
372 };
373
374 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
375         .num_channels   = MAX_ADC_V1_CHANNELS,
376         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
377
378         .init_hw        = exynos_adc_v1_init_hw,
379         .exit_hw        = exynos_adc_v1_exit_hw,
380         .clear_irq      = exynos_adc_v1_clear_irq,
381         .start_conv     = exynos_adc_s3c64xx_start_conv,
382 };
383
384 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
385 {
386         u32 con1, con2;
387
388         if (info->data->needs_adc_phy)
389                 regmap_write(info->pmu_map, info->data->phy_offset, 1);
390
391         con1 = ADC_V2_CON1_SOFT_RESET;
392         writel(con1, ADC_V2_CON1(info->regs));
393
394         con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
395                 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
396         writel(con2, ADC_V2_CON2(info->regs));
397
398         /* Enable interrupts */
399         writel(1, ADC_V2_INT_EN(info->regs));
400 }
401
402 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
403 {
404         u32 con;
405
406         if (info->data->needs_adc_phy)
407                 regmap_write(info->pmu_map, info->data->phy_offset, 0);
408
409         con = readl(ADC_V2_CON1(info->regs));
410         con &= ~ADC_CON_EN_START;
411         writel(con, ADC_V2_CON1(info->regs));
412 }
413
414 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
415 {
416         writel(1, ADC_V2_INT_ST(info->regs));
417 }
418
419 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
420                                      unsigned long addr)
421 {
422         u32 con1, con2;
423
424         con2 = readl(ADC_V2_CON2(info->regs));
425         con2 &= ~ADC_V2_CON2_ACH_MASK;
426         con2 |= ADC_V2_CON2_ACH_SEL(addr);
427         writel(con2, ADC_V2_CON2(info->regs));
428
429         con1 = readl(ADC_V2_CON1(info->regs));
430         writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
431 }
432
433 static const struct exynos_adc_data exynos_adc_v2_data = {
434         .num_channels   = MAX_ADC_V2_CHANNELS,
435         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
436         .needs_adc_phy  = true,
437         .phy_offset     = EXYNOS_ADCV2_PHY_OFFSET,
438
439         .init_hw        = exynos_adc_v2_init_hw,
440         .exit_hw        = exynos_adc_v2_exit_hw,
441         .clear_irq      = exynos_adc_v2_clear_irq,
442         .start_conv     = exynos_adc_v2_start_conv,
443 };
444
445 static const struct exynos_adc_data exynos3250_adc_data = {
446         .num_channels   = MAX_EXYNOS3250_ADC_CHANNELS,
447         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
448         .needs_sclk     = true,
449         .needs_adc_phy  = true,
450         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
451
452         .init_hw        = exynos_adc_v2_init_hw,
453         .exit_hw        = exynos_adc_v2_exit_hw,
454         .clear_irq      = exynos_adc_v2_clear_irq,
455         .start_conv     = exynos_adc_v2_start_conv,
456 };
457
458 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
459 {
460         u32 con1, con2;
461
462         con1 = ADC_V2_CON1_SOFT_RESET;
463         writel(con1, ADC_V2_CON1(info->regs));
464
465         con2 = readl(ADC_V2_CON2(info->regs));
466         con2 &= ~ADC_V2_CON2_C_TIME(7);
467         con2 |= ADC_V2_CON2_C_TIME(0);
468         writel(con2, ADC_V2_CON2(info->regs));
469
470         /* Enable interrupts */
471         writel(1, ADC_V2_INT_EN(info->regs));
472 }
473
474 static const struct exynos_adc_data exynos7_adc_data = {
475         .num_channels   = MAX_ADC_V1_CHANNELS,
476         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
477
478         .init_hw        = exynos_adc_exynos7_init_hw,
479         .exit_hw        = exynos_adc_v2_exit_hw,
480         .clear_irq      = exynos_adc_v2_clear_irq,
481         .start_conv     = exynos_adc_v2_start_conv,
482 };
483
484 static const struct of_device_id exynos_adc_match[] = {
485         {
486                 .compatible = "samsung,s3c2410-adc",
487                 .data = &exynos_adc_s3c24xx_data,
488         }, {
489                 .compatible = "samsung,s3c2416-adc",
490                 .data = &exynos_adc_s3c2416_data,
491         }, {
492                 .compatible = "samsung,s3c2440-adc",
493                 .data = &exynos_adc_s3c24xx_data,
494         }, {
495                 .compatible = "samsung,s3c2443-adc",
496                 .data = &exynos_adc_s3c2443_data,
497         }, {
498                 .compatible = "samsung,s3c6410-adc",
499                 .data = &exynos_adc_s3c64xx_data,
500         }, {
501                 .compatible = "samsung,s5pv210-adc",
502                 .data = &exynos_adc_s5pv210_data,
503         }, {
504                 .compatible = "samsung,exynos4212-adc",
505                 .data = &exynos4212_adc_data,
506         }, {
507                 .compatible = "samsung,exynos-adc-v1",
508                 .data = &exynos_adc_v1_data,
509         }, {
510                 .compatible = "samsung,exynos-adc-v2",
511                 .data = &exynos_adc_v2_data,
512         }, {
513                 .compatible = "samsung,exynos3250-adc",
514                 .data = &exynos3250_adc_data,
515         }, {
516                 .compatible = "samsung,exynos7-adc",
517                 .data = &exynos7_adc_data,
518         },
519         {},
520 };
521 MODULE_DEVICE_TABLE(of, exynos_adc_match);
522
523 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
524 {
525         const struct of_device_id *match;
526
527         match = of_match_node(exynos_adc_match, pdev->dev.of_node);
528         return (struct exynos_adc_data *)match->data;
529 }
530
531 static int exynos_read_raw(struct iio_dev *indio_dev,
532                                 struct iio_chan_spec const *chan,
533                                 int *val,
534                                 int *val2,
535                                 long mask)
536 {
537         struct exynos_adc *info = iio_priv(indio_dev);
538         unsigned long timeout;
539         int ret;
540
541         if (mask == IIO_CHAN_INFO_SCALE) {
542                 ret = regulator_get_voltage(info->vdd);
543                 if (ret < 0)
544                         return ret;
545
546                 /* Regulator voltage is in uV, but need mV */
547                 *val = ret / 1000;
548                 *val2 = info->data->mask;
549
550                 return IIO_VAL_FRACTIONAL;
551         } else if (mask != IIO_CHAN_INFO_RAW) {
552                 return -EINVAL;
553         }
554
555         mutex_lock(&info->lock);
556         reinit_completion(&info->completion);
557
558         /* Select the channel to be used and Trigger conversion */
559         if (info->data->start_conv)
560                 info->data->start_conv(info, chan->address);
561
562         timeout = wait_for_completion_timeout(&info->completion,
563                                               EXYNOS_ADC_TIMEOUT);
564         if (timeout == 0) {
565                 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
566                 if (info->data->init_hw)
567                         info->data->init_hw(info);
568                 ret = -ETIMEDOUT;
569         } else {
570                 *val = info->value;
571                 *val2 = 0;
572                 ret = IIO_VAL_INT;
573         }
574
575         mutex_unlock(&info->lock);
576
577         return ret;
578 }
579
580 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
581 {
582         struct exynos_adc *info = iio_priv(indio_dev);
583         unsigned long timeout;
584         int ret;
585
586         mutex_lock(&info->lock);
587         info->read_ts = true;
588
589         reinit_completion(&info->completion);
590
591         writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
592                ADC_V1_TSC(info->regs));
593
594         /* Select the ts channel to be used and Trigger conversion */
595         info->data->start_conv(info, ADC_S3C2410_MUX_TS);
596
597         timeout = wait_for_completion_timeout(&info->completion,
598                                               EXYNOS_ADC_TIMEOUT);
599         if (timeout == 0) {
600                 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
601                 if (info->data->init_hw)
602                         info->data->init_hw(info);
603                 ret = -ETIMEDOUT;
604         } else {
605                 *x = info->ts_x;
606                 *y = info->ts_y;
607                 ret = 0;
608         }
609
610         info->read_ts = false;
611         mutex_unlock(&info->lock);
612
613         return ret;
614 }
615
616 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
617 {
618         struct exynos_adc *info = dev_id;
619         u32 mask = info->data->mask;
620
621         /* Read value */
622         if (info->read_ts) {
623                 info->ts_x = readl(ADC_V1_DATX(info->regs));
624                 info->ts_y = readl(ADC_V1_DATY(info->regs));
625                 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
626         } else {
627                 info->value = readl(ADC_V1_DATX(info->regs)) & mask;
628         }
629
630         /* clear irq */
631         if (info->data->clear_irq)
632                 info->data->clear_irq(info);
633
634         complete(&info->completion);
635
636         return IRQ_HANDLED;
637 }
638
639 /*
640  * Here we (ab)use a threaded interrupt handler to stay running
641  * for as long as the touchscreen remains pressed, we report
642  * a new event with the latest data and then sleep until the
643  * next timer tick. This mirrors the behavior of the old
644  * driver, with much less code.
645  */
646 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
647 {
648         struct exynos_adc *info = dev_id;
649         struct iio_dev *dev = dev_get_drvdata(info->dev);
650         u32 x, y;
651         bool pressed;
652         int ret;
653
654         while (info->input->users) {
655                 ret = exynos_read_s3c64xx_ts(dev, &x, &y);
656                 if (ret == -ETIMEDOUT)
657                         break;
658
659                 pressed = x & y & ADC_DATX_PRESSED;
660                 if (!pressed) {
661                         input_report_key(info->input, BTN_TOUCH, 0);
662                         input_sync(info->input);
663                         break;
664                 }
665
666                 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
667                 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
668                 input_report_key(info->input, BTN_TOUCH, 1);
669                 input_sync(info->input);
670
671                 usleep_range(1000, 1100);
672         }
673
674         writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
675
676         return IRQ_HANDLED;
677 }
678
679 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
680                               unsigned reg, unsigned writeval,
681                               unsigned *readval)
682 {
683         struct exynos_adc *info = iio_priv(indio_dev);
684
685         if (readval == NULL)
686                 return -EINVAL;
687
688         *readval = readl(info->regs + reg);
689
690         return 0;
691 }
692
693 static const struct iio_info exynos_adc_iio_info = {
694         .read_raw = &exynos_read_raw,
695         .debugfs_reg_access = &exynos_adc_reg_access,
696 };
697
698 #define ADC_CHANNEL(_index, _id) {                      \
699         .type = IIO_VOLTAGE,                            \
700         .indexed = 1,                                   \
701         .channel = _index,                              \
702         .address = _index,                              \
703         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),   \
704         .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),    \
705         .datasheet_name = _id,                          \
706 }
707
708 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
709         ADC_CHANNEL(0, "adc0"),
710         ADC_CHANNEL(1, "adc1"),
711         ADC_CHANNEL(2, "adc2"),
712         ADC_CHANNEL(3, "adc3"),
713         ADC_CHANNEL(4, "adc4"),
714         ADC_CHANNEL(5, "adc5"),
715         ADC_CHANNEL(6, "adc6"),
716         ADC_CHANNEL(7, "adc7"),
717         ADC_CHANNEL(8, "adc8"),
718         ADC_CHANNEL(9, "adc9"),
719 };
720
721 static int exynos_adc_remove_devices(struct device *dev, void *c)
722 {
723         struct platform_device *pdev = to_platform_device(dev);
724
725         platform_device_unregister(pdev);
726
727         return 0;
728 }
729
730 static int exynos_adc_ts_open(struct input_dev *dev)
731 {
732         struct exynos_adc *info = input_get_drvdata(dev);
733
734         enable_irq(info->tsirq);
735
736         return 0;
737 }
738
739 static void exynos_adc_ts_close(struct input_dev *dev)
740 {
741         struct exynos_adc *info = input_get_drvdata(dev);
742
743         disable_irq(info->tsirq);
744 }
745
746 static int exynos_adc_ts_init(struct exynos_adc *info)
747 {
748         int ret;
749
750         if (info->tsirq <= 0)
751                 return -ENODEV;
752
753         info->input = input_allocate_device();
754         if (!info->input)
755                 return -ENOMEM;
756
757         info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
758         info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
759
760         input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
761         input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
762
763         info->input->name = "S3C24xx TouchScreen";
764         info->input->id.bustype = BUS_HOST;
765         info->input->open = exynos_adc_ts_open;
766         info->input->close = exynos_adc_ts_close;
767
768         input_set_drvdata(info->input, info);
769
770         ret = input_register_device(info->input);
771         if (ret) {
772                 input_free_device(info->input);
773                 return ret;
774         }
775
776         disable_irq(info->tsirq);
777         ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
778                                    IRQF_ONESHOT, "touchscreen", info);
779         if (ret)
780                 input_unregister_device(info->input);
781
782         return ret;
783 }
784
785 static int exynos_adc_probe(struct platform_device *pdev)
786 {
787         struct exynos_adc *info = NULL;
788         struct device_node *np = pdev->dev.of_node;
789         struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
790         struct iio_dev *indio_dev = NULL;
791         bool has_ts = false;
792         int ret = -ENODEV;
793         int irq;
794
795         indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
796         if (!indio_dev) {
797                 dev_err(&pdev->dev, "failed allocating iio device\n");
798                 return -ENOMEM;
799         }
800
801         info = iio_priv(indio_dev);
802
803         info->data = exynos_adc_get_data(pdev);
804         if (!info->data) {
805                 dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
806                 return -EINVAL;
807         }
808
809         info->regs = devm_platform_ioremap_resource(pdev, 0);
810         if (IS_ERR(info->regs))
811                 return PTR_ERR(info->regs);
812
813
814         if (info->data->needs_adc_phy) {
815                 info->pmu_map = syscon_regmap_lookup_by_phandle(
816                                         pdev->dev.of_node,
817                                         "samsung,syscon-phandle");
818                 if (IS_ERR(info->pmu_map)) {
819                         dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
820                         return PTR_ERR(info->pmu_map);
821                 }
822         }
823
824         irq = platform_get_irq(pdev, 0);
825         if (irq < 0)
826                 return irq;
827         info->irq = irq;
828
829         irq = platform_get_irq(pdev, 1);
830         if (irq == -EPROBE_DEFER)
831                 return irq;
832
833         info->tsirq = irq;
834
835         info->dev = &pdev->dev;
836
837         init_completion(&info->completion);
838
839         info->clk = devm_clk_get(&pdev->dev, "adc");
840         if (IS_ERR(info->clk)) {
841                 dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
842                                                         PTR_ERR(info->clk));
843                 return PTR_ERR(info->clk);
844         }
845
846         if (info->data->needs_sclk) {
847                 info->sclk = devm_clk_get(&pdev->dev, "sclk");
848                 if (IS_ERR(info->sclk)) {
849                         dev_err(&pdev->dev,
850                                 "failed getting sclk clock, err = %ld\n",
851                                 PTR_ERR(info->sclk));
852                         return PTR_ERR(info->sclk);
853                 }
854         }
855
856         info->vdd = devm_regulator_get(&pdev->dev, "vdd");
857         if (IS_ERR(info->vdd))
858                 return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
859                                      "failed getting regulator");
860
861         ret = regulator_enable(info->vdd);
862         if (ret)
863                 return ret;
864
865         ret = exynos_adc_prepare_clk(info);
866         if (ret)
867                 goto err_disable_reg;
868
869         ret = exynos_adc_enable_clk(info);
870         if (ret)
871                 goto err_unprepare_clk;
872
873         platform_set_drvdata(pdev, indio_dev);
874
875         indio_dev->name = dev_name(&pdev->dev);
876         indio_dev->info = &exynos_adc_iio_info;
877         indio_dev->modes = INDIO_DIRECT_MODE;
878         indio_dev->channels = exynos_adc_iio_channels;
879         indio_dev->num_channels = info->data->num_channels;
880
881         mutex_init(&info->lock);
882
883         ret = request_irq(info->irq, exynos_adc_isr,
884                                         0, dev_name(&pdev->dev), info);
885         if (ret < 0) {
886                 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
887                                                         info->irq);
888                 goto err_disable_clk;
889         }
890
891         ret = iio_device_register(indio_dev);
892         if (ret)
893                 goto err_irq;
894
895         if (info->data->init_hw)
896                 info->data->init_hw(info);
897
898         /* leave out any TS related code if unreachable */
899         if (IS_REACHABLE(CONFIG_INPUT)) {
900                 has_ts = of_property_read_bool(pdev->dev.of_node,
901                                                "has-touchscreen") || pdata;
902         }
903
904         if (pdata)
905                 info->delay = pdata->delay;
906         else
907                 info->delay = 10000;
908
909         if (has_ts)
910                 ret = exynos_adc_ts_init(info);
911         if (ret)
912                 goto err_iio;
913
914         ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
915         if (ret < 0) {
916                 dev_err(&pdev->dev, "failed adding child nodes\n");
917                 goto err_of_populate;
918         }
919
920         return 0;
921
922 err_of_populate:
923         device_for_each_child(&indio_dev->dev, NULL,
924                                 exynos_adc_remove_devices);
925         if (has_ts) {
926                 input_unregister_device(info->input);
927                 free_irq(info->tsirq, info);
928         }
929 err_iio:
930         iio_device_unregister(indio_dev);
931 err_irq:
932         free_irq(info->irq, info);
933 err_disable_clk:
934         if (info->data->exit_hw)
935                 info->data->exit_hw(info);
936         exynos_adc_disable_clk(info);
937 err_unprepare_clk:
938         exynos_adc_unprepare_clk(info);
939 err_disable_reg:
940         regulator_disable(info->vdd);
941         return ret;
942 }
943
944 static int exynos_adc_remove(struct platform_device *pdev)
945 {
946         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
947         struct exynos_adc *info = iio_priv(indio_dev);
948
949         if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
950                 free_irq(info->tsirq, info);
951                 input_unregister_device(info->input);
952         }
953         device_for_each_child(&indio_dev->dev, NULL,
954                                 exynos_adc_remove_devices);
955         iio_device_unregister(indio_dev);
956         free_irq(info->irq, info);
957         if (info->data->exit_hw)
958                 info->data->exit_hw(info);
959         exynos_adc_disable_clk(info);
960         exynos_adc_unprepare_clk(info);
961         regulator_disable(info->vdd);
962
963         return 0;
964 }
965
966 #ifdef CONFIG_PM_SLEEP
967 static int exynos_adc_suspend(struct device *dev)
968 {
969         struct iio_dev *indio_dev = dev_get_drvdata(dev);
970         struct exynos_adc *info = iio_priv(indio_dev);
971
972         if (info->data->exit_hw)
973                 info->data->exit_hw(info);
974         exynos_adc_disable_clk(info);
975         regulator_disable(info->vdd);
976
977         return 0;
978 }
979
980 static int exynos_adc_resume(struct device *dev)
981 {
982         struct iio_dev *indio_dev = dev_get_drvdata(dev);
983         struct exynos_adc *info = iio_priv(indio_dev);
984         int ret;
985
986         ret = regulator_enable(info->vdd);
987         if (ret)
988                 return ret;
989
990         ret = exynos_adc_enable_clk(info);
991         if (ret)
992                 return ret;
993
994         if (info->data->init_hw)
995                 info->data->init_hw(info);
996
997         return 0;
998 }
999 #endif
1000
1001 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
1002                         exynos_adc_suspend,
1003                         exynos_adc_resume);
1004
1005 static struct platform_driver exynos_adc_driver = {
1006         .probe          = exynos_adc_probe,
1007         .remove         = exynos_adc_remove,
1008         .driver         = {
1009                 .name   = "exynos-adc",
1010                 .of_match_table = exynos_adc_match,
1011                 .pm     = &exynos_adc_pm_ops,
1012         },
1013 };
1014
1015 module_platform_driver(exynos_adc_driver);
1016
1017 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1018 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1019 MODULE_LICENSE("GPL v2");