Merge tag 'at91-defconfig-5.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / ide / hpt366.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999-2003              Andre Hedrick <andre@linux-ide.org>
4  * Portions Copyright (C) 2001          Sun Microsystems, Inc.
5  * Portions Copyright (C) 2003          Red Hat Inc
6  * Portions Copyright (C) 2007          Bartlomiej Zolnierkiewicz
7  * Portions Copyright (C) 2005-2009     MontaVista Software, Inc.
8  *
9  * Thanks to HighPoint Technologies for their assistance, and hardware.
10  * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
11  * donation of an ABit BP6 mainboard, processor, and memory acellerated
12  * development and support.
13  *
14  *
15  * HighPoint has its own drivers (open source except for the RAID part)
16  * available from http://www.highpoint-tech.com/USA_new/service_support.htm 
17  * This may be useful to anyone wanting to work on this driver, however  do not
18  * trust  them too much since the code tends to become less and less meaningful
19  * as the time passes... :-/
20  *
21  * Note that final HPT370 support was done by force extraction of GPL.
22  *
23  * - add function for getting/setting power status of drive
24  * - the HPT370's state machine can get confused. reset it before each dma 
25  *   xfer to prevent that from happening.
26  * - reset state engine whenever we get an error.
27  * - check for busmaster state at end of dma. 
28  * - use new highpoint timings.
29  * - detect bus speed using highpoint register.
30  * - use pll if we don't have a clock table. added a 66MHz table that's
31  *   just 2x the 33MHz table.
32  * - removed turnaround. NOTE: we never want to switch between pll and
33  *   pci clocks as the chip can glitch in those cases. the highpoint
34  *   approved workaround slows everything down too much to be useful. in
35  *   addition, we would have to serialize access to each chip.
36  *      Adrian Sun <a.sun@sun.com>
37  *
38  * add drive timings for 66MHz PCI bus,
39  * fix ATA Cable signal detection, fix incorrect /proc info
40  * add /proc display for per-drive PIO/DMA/UDMA mode and
41  * per-channel ATA-33/66 Cable detect.
42  *      Duncan Laurie <void@sun.com>
43  *
44  * fixup /proc output for multiple controllers
45  *      Tim Hockin <thockin@sun.com>
46  *
47  * On hpt366: 
48  * Reset the hpt366 on error, reset on dma
49  * Fix disabling Fast Interrupt hpt366.
50  *      Mike Waychison <crlf@sun.com>
51  *
52  * Added support for 372N clocking and clock switching. The 372N needs
53  * different clocks on read/write. This requires overloading rw_disk and
54  * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
55  * keeping me sane. 
56  *              Alan Cox <alan@lxorguk.ukuu.org.uk>
57  *
58  * - fix the clock turnaround code: it was writing to the wrong ports when
59  *   called for the secondary channel, caching the current clock mode per-
60  *   channel caused the cached register value to get out of sync with the
61  *   actual one, the channels weren't serialized, the turnaround shouldn't
62  *   be done on 66 MHz PCI bus
63  * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
64  *   does not allow for this speed anyway
65  * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
66  *   their primary channel is kind of virtual, it isn't tied to any pins)
67  * - fix/remove bad/unused timing tables and use one set of tables for the whole
68  *   HPT37x chip family; save space by introducing the separate transfer mode
69  *   table in which the mode lookup is done
70  * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
71  *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
72  *   read it only from the function 0 of HPT374 chips
73  * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
74  *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
75  * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
76  *   they tamper with its fields
77  * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
78  *   since they may tamper with its fields
79  * - prefix the driver startup messages with the real chip name
80  * - claim the extra 240 bytes of I/O space for all chips
81  * - optimize the UltraDMA filtering and the drive list lookup code
82  * - use pci_get_slot() to get to the function 1 of HPT36x/374
83  * - cache offset of the channel's misc. control registers (MCRs) being used
84  *   throughout the driver
85  * - only touch the relevant MCR when detecting the cable type on HPT374's
86  *   function 1
87  * - rename all the register related variables consistently
88  * - move all the interrupt twiddling code from the speedproc handlers into
89  *   init_hwif_hpt366(), also grouping all the DMA related code together there
90  * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
91  *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
92  *   when setting an UltraDMA mode
93  * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
94  *   the best possible one
95  * - clean up DMA timeout handling for HPT370
96  * - switch to using the enumeration type to differ between the numerous chip
97  *   variants, matching PCI device/revision ID with the chip type early, at the
98  *   init_setup stage
99  * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
100  *   stop duplicating it for each channel by storing the pointer in the pci_dev
101  *   structure: first, at the init_setup stage, point it to a static "template"
102  *   with only the chip type and its specific base DPLL frequency, the highest
103  *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
104  *   init_chipset stage, allocate per-chip instance  and fill it with the rest
105  *   of the necessary information
106  * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
107  *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
108  *   frequency
109  * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
110  *   anything  newer than HPT370/A (except HPT374 that is not capable of this
111  *   mode according to the manual)
112  * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
113  *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
114  *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
115  *   the register setting lists into the table indexed by the clock selected
116  * - set the correct hwif->ultra_mask for each individual chip
117  * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
118  * - stop resetting HPT370's state machine before each DMA transfer as that has
119  *   caused more harm than good
120  *      Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
121  */
122
123 #include <linux/types.h>
124 #include <linux/module.h>
125 #include <linux/kernel.h>
126 #include <linux/delay.h>
127 #include <linux/blkdev.h>
128 #include <linux/interrupt.h>
129 #include <linux/pci.h>
130 #include <linux/init.h>
131 #include <linux/ide.h>
132 #include <linux/slab.h>
133
134 #include <linux/uaccess.h>
135 #include <asm/io.h>
136
137 #define DRV_NAME "hpt366"
138
139 /* various tuning parameters */
140 #undef  HPT_RESET_STATE_ENGINE
141 #undef  HPT_DELAY_INTERRUPT
142
143 static const char *bad_ata100_5[] = {
144         "IBM-DTLA-307075",
145         "IBM-DTLA-307060",
146         "IBM-DTLA-307045",
147         "IBM-DTLA-307030",
148         "IBM-DTLA-307020",
149         "IBM-DTLA-307015",
150         "IBM-DTLA-305040",
151         "IBM-DTLA-305030",
152         "IBM-DTLA-305020",
153         "IC35L010AVER07-0",
154         "IC35L020AVER07-0",
155         "IC35L030AVER07-0",
156         "IC35L040AVER07-0",
157         "IC35L060AVER07-0",
158         "WDC AC310200R",
159         NULL
160 };
161
162 static const char *bad_ata66_4[] = {
163         "IBM-DTLA-307075",
164         "IBM-DTLA-307060",
165         "IBM-DTLA-307045",
166         "IBM-DTLA-307030",
167         "IBM-DTLA-307020",
168         "IBM-DTLA-307015",
169         "IBM-DTLA-305040",
170         "IBM-DTLA-305030",
171         "IBM-DTLA-305020",
172         "IC35L010AVER07-0",
173         "IC35L020AVER07-0",
174         "IC35L030AVER07-0",
175         "IC35L040AVER07-0",
176         "IC35L060AVER07-0",
177         "WDC AC310200R",
178         "MAXTOR STM3320620A",
179         NULL
180 };
181
182 static const char *bad_ata66_3[] = {
183         "WDC AC310200R",
184         NULL
185 };
186
187 static const char *bad_ata33[] = {
188         "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
189         "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
190         "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
191         "Maxtor 90510D4",
192         "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
193         "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
194         "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
195         NULL
196 };
197
198 static u8 xfer_speeds[] = {
199         XFER_UDMA_6,
200         XFER_UDMA_5,
201         XFER_UDMA_4,
202         XFER_UDMA_3,
203         XFER_UDMA_2,
204         XFER_UDMA_1,
205         XFER_UDMA_0,
206
207         XFER_MW_DMA_2,
208         XFER_MW_DMA_1,
209         XFER_MW_DMA_0,
210
211         XFER_PIO_4,
212         XFER_PIO_3,
213         XFER_PIO_2,
214         XFER_PIO_1,
215         XFER_PIO_0
216 };
217
218 /* Key for bus clock timings
219  * 36x   37x
220  * bits  bits
221  * 0:3   0:3    data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
222  *              cycles = value + 1
223  * 4:7   4:8    data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
224  *              cycles = value + 1
225  * 8:11  9:12   cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
226  *              register access.
227  * 12:15 13:17  cmd_low_time. Active time of DIOW_/DIOR_ during task file
228  *              register access.
229  * 16:18 18:20  udma_cycle_time. Clock cycles for UDMA xfer.
230  * -     21     CLK frequency: 0=ATA clock, 1=dual ATA clock.
231  * 19:21 22:24  pre_high_time. Time to initialize the 1st cycle for PIO and
232  *              MW DMA xfer.
233  * 22:24 25:27  cmd_pre_high_time. Time to initialize the 1st PIO cycle for
234  *              task file register access.
235  * 28    28     UDMA enable.
236  * 29    29     DMA  enable.
237  * 30    30     PIO MST enable. If set, the chip is in bus master mode during
238  *              PIO xfer.
239  * 31    31     FIFO enable.
240  */
241
242 static u32 forty_base_hpt36x[] = {
243         /* XFER_UDMA_6 */       0x900fd943,
244         /* XFER_UDMA_5 */       0x900fd943,
245         /* XFER_UDMA_4 */       0x900fd943,
246         /* XFER_UDMA_3 */       0x900ad943,
247         /* XFER_UDMA_2 */       0x900bd943,
248         /* XFER_UDMA_1 */       0x9008d943,
249         /* XFER_UDMA_0 */       0x9008d943,
250
251         /* XFER_MW_DMA_2 */     0xa008d943,
252         /* XFER_MW_DMA_1 */     0xa010d955,
253         /* XFER_MW_DMA_0 */     0xa010d9fc,
254
255         /* XFER_PIO_4 */        0xc008d963,
256         /* XFER_PIO_3 */        0xc010d974,
257         /* XFER_PIO_2 */        0xc010d997,
258         /* XFER_PIO_1 */        0xc010d9c7,
259         /* XFER_PIO_0 */        0xc018d9d9
260 };
261
262 static u32 thirty_three_base_hpt36x[] = {
263         /* XFER_UDMA_6 */       0x90c9a731,
264         /* XFER_UDMA_5 */       0x90c9a731,
265         /* XFER_UDMA_4 */       0x90c9a731,
266         /* XFER_UDMA_3 */       0x90cfa731,
267         /* XFER_UDMA_2 */       0x90caa731,
268         /* XFER_UDMA_1 */       0x90cba731,
269         /* XFER_UDMA_0 */       0x90c8a731,
270
271         /* XFER_MW_DMA_2 */     0xa0c8a731,
272         /* XFER_MW_DMA_1 */     0xa0c8a732,     /* 0xa0c8a733 */
273         /* XFER_MW_DMA_0 */     0xa0c8a797,
274
275         /* XFER_PIO_4 */        0xc0c8a731,
276         /* XFER_PIO_3 */        0xc0c8a742,
277         /* XFER_PIO_2 */        0xc0d0a753,
278         /* XFER_PIO_1 */        0xc0d0a7a3,     /* 0xc0d0a793 */
279         /* XFER_PIO_0 */        0xc0d0a7aa      /* 0xc0d0a7a7 */
280 };
281
282 static u32 twenty_five_base_hpt36x[] = {
283         /* XFER_UDMA_6 */       0x90c98521,
284         /* XFER_UDMA_5 */       0x90c98521,
285         /* XFER_UDMA_4 */       0x90c98521,
286         /* XFER_UDMA_3 */       0x90cf8521,
287         /* XFER_UDMA_2 */       0x90cf8521,
288         /* XFER_UDMA_1 */       0x90cb8521,
289         /* XFER_UDMA_0 */       0x90cb8521,
290
291         /* XFER_MW_DMA_2 */     0xa0ca8521,
292         /* XFER_MW_DMA_1 */     0xa0ca8532,
293         /* XFER_MW_DMA_0 */     0xa0ca8575,
294
295         /* XFER_PIO_4 */        0xc0ca8521,
296         /* XFER_PIO_3 */        0xc0ca8532,
297         /* XFER_PIO_2 */        0xc0ca8542,
298         /* XFER_PIO_1 */        0xc0d08572,
299         /* XFER_PIO_0 */        0xc0d08585
300 };
301
302 /*
303  * The following are the new timing tables with PIO mode data/taskfile transfer
304  * overclocking fixed...
305  */
306
307 /* This table is taken from the HPT370 data manual rev. 1.02 */
308 static u32 thirty_three_base_hpt37x[] = {
309         /* XFER_UDMA_6 */       0x16455031,     /* 0x16655031 ?? */
310         /* XFER_UDMA_5 */       0x16455031,
311         /* XFER_UDMA_4 */       0x16455031,
312         /* XFER_UDMA_3 */       0x166d5031,
313         /* XFER_UDMA_2 */       0x16495031,
314         /* XFER_UDMA_1 */       0x164d5033,
315         /* XFER_UDMA_0 */       0x16515097,
316
317         /* XFER_MW_DMA_2 */     0x26515031,
318         /* XFER_MW_DMA_1 */     0x26515033,
319         /* XFER_MW_DMA_0 */     0x26515097,
320
321         /* XFER_PIO_4 */        0x06515021,
322         /* XFER_PIO_3 */        0x06515022,
323         /* XFER_PIO_2 */        0x06515033,
324         /* XFER_PIO_1 */        0x06915065,
325         /* XFER_PIO_0 */        0x06d1508a
326 };
327
328 static u32 fifty_base_hpt37x[] = {
329         /* XFER_UDMA_6 */       0x1a861842,
330         /* XFER_UDMA_5 */       0x1a861842,
331         /* XFER_UDMA_4 */       0x1aae1842,
332         /* XFER_UDMA_3 */       0x1a8e1842,
333         /* XFER_UDMA_2 */       0x1a0e1842,
334         /* XFER_UDMA_1 */       0x1a161854,
335         /* XFER_UDMA_0 */       0x1a1a18ea,
336
337         /* XFER_MW_DMA_2 */     0x2a821842,
338         /* XFER_MW_DMA_1 */     0x2a821854,
339         /* XFER_MW_DMA_0 */     0x2a8218ea,
340
341         /* XFER_PIO_4 */        0x0a821842,
342         /* XFER_PIO_3 */        0x0a821843,
343         /* XFER_PIO_2 */        0x0a821855,
344         /* XFER_PIO_1 */        0x0ac218a8,
345         /* XFER_PIO_0 */        0x0b02190c
346 };
347
348 static u32 sixty_six_base_hpt37x[] = {
349         /* XFER_UDMA_6 */       0x1c86fe62,
350         /* XFER_UDMA_5 */       0x1caefe62,     /* 0x1c8afe62 */
351         /* XFER_UDMA_4 */       0x1c8afe62,
352         /* XFER_UDMA_3 */       0x1c8efe62,
353         /* XFER_UDMA_2 */       0x1c92fe62,
354         /* XFER_UDMA_1 */       0x1c9afe62,
355         /* XFER_UDMA_0 */       0x1c82fe62,
356
357         /* XFER_MW_DMA_2 */     0x2c82fe62,
358         /* XFER_MW_DMA_1 */     0x2c82fe66,
359         /* XFER_MW_DMA_0 */     0x2c82ff2e,
360
361         /* XFER_PIO_4 */        0x0c82fe62,
362         /* XFER_PIO_3 */        0x0c82fe84,
363         /* XFER_PIO_2 */        0x0c82fea6,
364         /* XFER_PIO_1 */        0x0d02ff26,
365         /* XFER_PIO_0 */        0x0d42ff7f
366 };
367
368 #define HPT371_ALLOW_ATA133_6           1
369 #define HPT302_ALLOW_ATA133_6           1
370 #define HPT372_ALLOW_ATA133_6           1
371 #define HPT370_ALLOW_ATA100_5           0
372 #define HPT366_ALLOW_ATA66_4            1
373 #define HPT366_ALLOW_ATA66_3            1
374
375 /* Supported ATA clock frequencies */
376 enum ata_clock {
377         ATA_CLOCK_25MHZ,
378         ATA_CLOCK_33MHZ,
379         ATA_CLOCK_40MHZ,
380         ATA_CLOCK_50MHZ,
381         ATA_CLOCK_66MHZ,
382         NUM_ATA_CLOCKS
383 };
384
385 struct hpt_timings {
386         u32 pio_mask;
387         u32 dma_mask;
388         u32 ultra_mask;
389         u32 *clock_table[NUM_ATA_CLOCKS];
390 };
391
392 /*
393  *      Hold all the HighPoint chip information in one place.
394  */
395
396 struct hpt_info {
397         char *chip_name;        /* Chip name */
398         u8 chip_type;           /* Chip type */
399         u8 udma_mask;           /* Allowed UltraDMA modes mask. */
400         u8 dpll_clk;            /* DPLL clock in MHz */
401         u8 pci_clk;             /* PCI  clock in MHz */
402         struct hpt_timings *timings; /* Chipset timing data */
403         u8 clock;               /* ATA clock selected */
404 };
405
406 /* Supported HighPoint chips */
407 enum {
408         HPT36x,
409         HPT370,
410         HPT370A,
411         HPT374,
412         HPT372,
413         HPT372A,
414         HPT302,
415         HPT371,
416         HPT372N,
417         HPT302N,
418         HPT371N
419 };
420
421 static struct hpt_timings hpt36x_timings = {
422         .pio_mask       = 0xc1f8ffff,
423         .dma_mask       = 0x303800ff,
424         .ultra_mask     = 0x30070000,
425         .clock_table    = {
426                 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
427                 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
428                 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
429                 [ATA_CLOCK_50MHZ] = NULL,
430                 [ATA_CLOCK_66MHZ] = NULL
431         }
432 };
433
434 static struct hpt_timings hpt37x_timings = {
435         .pio_mask       = 0xcfc3ffff,
436         .dma_mask       = 0x31c001ff,
437         .ultra_mask     = 0x303c0000,
438         .clock_table    = {
439                 [ATA_CLOCK_25MHZ] = NULL,
440                 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
441                 [ATA_CLOCK_40MHZ] = NULL,
442                 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
443                 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
444         }
445 };
446
447 static const struct hpt_info hpt36x = {
448         .chip_name      = "HPT36x",
449         .chip_type      = HPT36x,
450         .udma_mask      = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
451         .dpll_clk       = 0,    /* no DPLL */
452         .timings        = &hpt36x_timings
453 };
454
455 static const struct hpt_info hpt370 = {
456         .chip_name      = "HPT370",
457         .chip_type      = HPT370,
458         .udma_mask      = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
459         .dpll_clk       = 48,
460         .timings        = &hpt37x_timings
461 };
462
463 static const struct hpt_info hpt370a = {
464         .chip_name      = "HPT370A",
465         .chip_type      = HPT370A,
466         .udma_mask      = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
467         .dpll_clk       = 48,
468         .timings        = &hpt37x_timings
469 };
470
471 static const struct hpt_info hpt374 = {
472         .chip_name      = "HPT374",
473         .chip_type      = HPT374,
474         .udma_mask      = ATA_UDMA5,
475         .dpll_clk       = 48,
476         .timings        = &hpt37x_timings
477 };
478
479 static const struct hpt_info hpt372 = {
480         .chip_name      = "HPT372",
481         .chip_type      = HPT372,
482         .udma_mask      = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
483         .dpll_clk       = 55,
484         .timings        = &hpt37x_timings
485 };
486
487 static const struct hpt_info hpt372a = {
488         .chip_name      = "HPT372A",
489         .chip_type      = HPT372A,
490         .udma_mask      = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
491         .dpll_clk       = 66,
492         .timings        = &hpt37x_timings
493 };
494
495 static const struct hpt_info hpt302 = {
496         .chip_name      = "HPT302",
497         .chip_type      = HPT302,
498         .udma_mask      = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
499         .dpll_clk       = 66,
500         .timings        = &hpt37x_timings
501 };
502
503 static const struct hpt_info hpt371 = {
504         .chip_name      = "HPT371",
505         .chip_type      = HPT371,
506         .udma_mask      = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
507         .dpll_clk       = 66,
508         .timings        = &hpt37x_timings
509 };
510
511 static const struct hpt_info hpt372n = {
512         .chip_name      = "HPT372N",
513         .chip_type      = HPT372N,
514         .udma_mask      = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
515         .dpll_clk       = 77,
516         .timings        = &hpt37x_timings
517 };
518
519 static const struct hpt_info hpt302n = {
520         .chip_name      = "HPT302N",
521         .chip_type      = HPT302N,
522         .udma_mask      = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
523         .dpll_clk       = 77,
524         .timings        = &hpt37x_timings
525 };
526
527 static const struct hpt_info hpt371n = {
528         .chip_name      = "HPT371N",
529         .chip_type      = HPT371N,
530         .udma_mask      = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
531         .dpll_clk       = 77,
532         .timings        = &hpt37x_timings
533 };
534
535 static bool check_in_drive_list(ide_drive_t *drive, const char **list)
536 {
537         return match_string(list, -1, (char *)&drive->id[ATA_ID_PROD]) >= 0;
538 }
539
540 static struct hpt_info *hpt3xx_get_info(struct device *dev)
541 {
542         struct ide_host *host   = dev_get_drvdata(dev);
543         struct hpt_info *info   = (struct hpt_info *)host->host_priv;
544
545         return dev == host->dev[1] ? info + 1 : info;
546 }
547
548 /*
549  * The Marvell bridge chips used on the HighPoint SATA cards do not seem
550  * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
551  */
552
553 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
554 {
555         ide_hwif_t *hwif        = drive->hwif;
556         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
557         u8 mask                 = hwif->ultra_mask;
558
559         switch (info->chip_type) {
560         case HPT36x:
561                 if (!HPT366_ALLOW_ATA66_4 ||
562                     check_in_drive_list(drive, bad_ata66_4))
563                         mask = ATA_UDMA3;
564
565                 if (!HPT366_ALLOW_ATA66_3 ||
566                     check_in_drive_list(drive, bad_ata66_3))
567                         mask = ATA_UDMA2;
568                 break;
569         case HPT370:
570                 if (!HPT370_ALLOW_ATA100_5 ||
571                     check_in_drive_list(drive, bad_ata100_5))
572                         mask = ATA_UDMA4;
573                 break;
574         case HPT370A:
575                 if (!HPT370_ALLOW_ATA100_5 ||
576                     check_in_drive_list(drive, bad_ata100_5))
577                         return ATA_UDMA4;
578                 fallthrough;
579         case HPT372 :
580         case HPT372A:
581         case HPT372N:
582         case HPT374 :
583                 if (ata_id_is_sata(drive->id))
584                         mask &= ~0x0e;
585                 fallthrough;
586         default:
587                 return mask;
588         }
589
590         return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
591 }
592
593 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
594 {
595         ide_hwif_t *hwif        = drive->hwif;
596         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
597
598         switch (info->chip_type) {
599         case HPT372 :
600         case HPT372A:
601         case HPT372N:
602         case HPT374 :
603                 if (ata_id_is_sata(drive->id))
604                         return 0x00;
605                 fallthrough;
606         default:
607                 return 0x07;
608         }
609 }
610
611 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
612 {
613         int i;
614
615         /*
616          * Lookup the transfer mode table to get the index into
617          * the timing table.
618          *
619          * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
620          */
621         for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
622                 if (xfer_speeds[i] == speed)
623                         break;
624
625         return info->timings->clock_table[info->clock][i];
626 }
627
628 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
629 {
630         struct pci_dev *dev     = to_pci_dev(hwif->dev);
631         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
632         struct hpt_timings *t   = info->timings;
633         u8  itr_addr            = 0x40 + (drive->dn * 4);
634         u32 old_itr             = 0;
635         const u8 speed          = drive->dma_mode;
636         u32 new_itr             = get_speed_setting(speed, info);
637         u32 itr_mask            = speed < XFER_MW_DMA_0 ? t->pio_mask :
638                                  (speed < XFER_UDMA_0   ? t->dma_mask :
639                                                           t->ultra_mask);
640
641         pci_read_config_dword(dev, itr_addr, &old_itr);
642         new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
643         /*
644          * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
645          * to avoid problems handling I/O errors later
646          */
647         new_itr &= ~0xc0000000;
648
649         pci_write_config_dword(dev, itr_addr, new_itr);
650 }
651
652 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
653 {
654         drive->dma_mode = drive->pio_mode;
655         hpt3xx_set_mode(hwif, drive);
656 }
657
658 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
659 {
660         ide_hwif_t *hwif        = drive->hwif;
661         struct pci_dev  *dev    = to_pci_dev(hwif->dev);
662         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
663
664         if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
665                 return;
666
667         if (info->chip_type >= HPT370) {
668                 u8 scr1 = 0;
669
670                 pci_read_config_byte(dev, 0x5a, &scr1);
671                 if (((scr1 & 0x10) >> 4) != mask) {
672                         if (mask)
673                                 scr1 |=  0x10;
674                         else
675                                 scr1 &= ~0x10;
676                         pci_write_config_byte(dev, 0x5a, scr1);
677                 }
678         } else if (mask)
679                 disable_irq(hwif->irq);
680         else
681                 enable_irq(hwif->irq);
682 }
683
684 /*
685  * This is specific to the HPT366 UDMA chipset
686  * by HighPoint|Triones Technologies, Inc.
687  */
688 static void hpt366_dma_lost_irq(ide_drive_t *drive)
689 {
690         struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
691         u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
692
693         pci_read_config_byte(dev, 0x50, &mcr1);
694         pci_read_config_byte(dev, 0x52, &mcr3);
695         pci_read_config_byte(dev, 0x5a, &scr1);
696         printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
697                 drive->name, __func__, mcr1, mcr3, scr1);
698         if (scr1 & 0x10)
699                 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
700         ide_dma_lost_irq(drive);
701 }
702
703 static void hpt370_clear_engine(ide_drive_t *drive)
704 {
705         ide_hwif_t *hwif = drive->hwif;
706         struct pci_dev *dev = to_pci_dev(hwif->dev);
707
708         pci_write_config_byte(dev, hwif->select_data, 0x37);
709         udelay(10);
710 }
711
712 static void hpt370_irq_timeout(ide_drive_t *drive)
713 {
714         ide_hwif_t *hwif        = drive->hwif;
715         struct pci_dev *dev     = to_pci_dev(hwif->dev);
716         u16 bfifo               = 0;
717         u8  dma_cmd;
718
719         pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
720         printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
721
722         /* get DMA command mode */
723         dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
724         /* stop DMA */
725         outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
726         hpt370_clear_engine(drive);
727 }
728
729 static void hpt370_dma_start(ide_drive_t *drive)
730 {
731 #ifdef HPT_RESET_STATE_ENGINE
732         hpt370_clear_engine(drive);
733 #endif
734         ide_dma_start(drive);
735 }
736
737 static int hpt370_dma_end(ide_drive_t *drive)
738 {
739         ide_hwif_t *hwif        = drive->hwif;
740         u8  dma_stat            = inb(hwif->dma_base + ATA_DMA_STATUS);
741
742         if (dma_stat & ATA_DMA_ACTIVE) {
743                 /* wait a little */
744                 udelay(20);
745                 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
746                 if (dma_stat & ATA_DMA_ACTIVE)
747                         hpt370_irq_timeout(drive);
748         }
749         return ide_dma_end(drive);
750 }
751
752 /* returns 1 if DMA IRQ issued, 0 otherwise */
753 static int hpt374_dma_test_irq(ide_drive_t *drive)
754 {
755         ide_hwif_t *hwif        = drive->hwif;
756         struct pci_dev *dev     = to_pci_dev(hwif->dev);
757         u16 bfifo               = 0;
758         u8  dma_stat;
759
760         pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
761         if (bfifo & 0x1FF) {
762 //              printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
763                 return 0;
764         }
765
766         dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
767         /* return 1 if INTR asserted */
768         if (dma_stat & ATA_DMA_INTR)
769                 return 1;
770
771         return 0;
772 }
773
774 static int hpt374_dma_end(ide_drive_t *drive)
775 {
776         ide_hwif_t *hwif        = drive->hwif;
777         struct pci_dev *dev     = to_pci_dev(hwif->dev);
778         u8 mcr  = 0, mcr_addr   = hwif->select_data;
779         u8 bwsr = 0, mask       = hwif->channel ? 0x02 : 0x01;
780
781         pci_read_config_byte(dev, 0x6a, &bwsr);
782         pci_read_config_byte(dev, mcr_addr, &mcr);
783         if (bwsr & mask)
784                 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
785         return ide_dma_end(drive);
786 }
787
788 /**
789  *      hpt3xxn_set_clock       -       perform clock switching dance
790  *      @hwif: hwif to switch
791  *      @mode: clocking mode (0x21 for write, 0x23 otherwise)
792  *
793  *      Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
794  */
795
796 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
797 {
798         unsigned long base = hwif->extra_base;
799         u8 scr2 = inb(base + 0x6b);
800
801         if ((scr2 & 0x7f) == mode)
802                 return;
803
804         /* Tristate the bus */
805         outb(0x80, base + 0x63);
806         outb(0x80, base + 0x67);
807
808         /* Switch clock and reset channels */
809         outb(mode, base + 0x6b);
810         outb(0xc0, base + 0x69);
811
812         /*
813          * Reset the state machines.
814          * NOTE: avoid accidentally enabling the disabled channels.
815          */
816         outb(inb(base + 0x60) | 0x32, base + 0x60);
817         outb(inb(base + 0x64) | 0x32, base + 0x64);
818
819         /* Complete reset */
820         outb(0x00, base + 0x69);
821
822         /* Reconnect channels to bus */
823         outb(0x00, base + 0x63);
824         outb(0x00, base + 0x67);
825 }
826
827 /**
828  *      hpt3xxn_rw_disk         -       prepare for I/O
829  *      @drive: drive for command
830  *      @rq: block request structure
831  *
832  *      This is called when a disk I/O is issued to HPT3xxN.
833  *      We need it because of the clock switching.
834  */
835
836 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
837 {
838         hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
839 }
840
841 /**
842  *      hpt37x_calibrate_dpll   -       calibrate the DPLL
843  *      @dev: PCI device
844  *
845  *      Perform a calibration cycle on the DPLL.
846  *      Returns 1 if this succeeds
847  */
848 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
849 {
850         u32 dpll = (f_high << 16) | f_low | 0x100;
851         u8  scr2;
852         int i;
853
854         pci_write_config_dword(dev, 0x5c, dpll);
855
856         /* Wait for oscillator ready */
857         for(i = 0; i < 0x5000; ++i) {
858                 udelay(50);
859                 pci_read_config_byte(dev, 0x5b, &scr2);
860                 if (scr2 & 0x80)
861                         break;
862         }
863         /* See if it stays ready (we'll just bail out if it's not yet) */
864         for(i = 0; i < 0x1000; ++i) {
865                 pci_read_config_byte(dev, 0x5b, &scr2);
866                 /* DPLL destabilized? */
867                 if(!(scr2 & 0x80))
868                         return 0;
869         }
870         /* Turn off tuning, we have the DPLL set */
871         pci_read_config_dword (dev, 0x5c, &dpll);
872         pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
873         return 1;
874 }
875
876 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
877 {
878         struct ide_host *host   = pci_get_drvdata(dev);
879         struct hpt_info *info   = host->host_priv + (&dev->dev == host->dev[1]);
880         u8  chip_type           = info->chip_type;
881         u8  new_mcr, old_mcr    = 0;
882
883         /*
884          * Disable the "fast interrupt" prediction.  Don't hold off
885          * on interrupts. (== 0x01 despite what the docs say)
886          */
887         pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
888
889         if (chip_type >= HPT374)
890                 new_mcr = old_mcr & ~0x07;
891         else if (chip_type >= HPT370) {
892                 new_mcr = old_mcr;
893                 new_mcr &= ~0x02;
894 #ifdef HPT_DELAY_INTERRUPT
895                 new_mcr &= ~0x01;
896 #else
897                 new_mcr |=  0x01;
898 #endif
899         } else                                  /* HPT366 and HPT368  */
900                 new_mcr = old_mcr & ~0x80;
901
902         if (new_mcr != old_mcr)
903                 pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
904 }
905
906 static int init_chipset_hpt366(struct pci_dev *dev)
907 {
908         unsigned long io_base   = pci_resource_start(dev, 4);
909         struct hpt_info *info   = hpt3xx_get_info(&dev->dev);
910         const char *name        = DRV_NAME;
911         u8 pci_clk,  dpll_clk   = 0;    /* PCI and DPLL clock in MHz */
912         u8 chip_type;
913         enum ata_clock  clock;
914
915         chip_type = info->chip_type;
916
917         pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
918         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
919         pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
920         pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
921
922         /*
923          * First, try to estimate the PCI clock frequency...
924          */
925         if (chip_type >= HPT370) {
926                 u8  scr1  = 0;
927                 u16 f_cnt = 0;
928                 u32 temp  = 0;
929
930                 /* Interrupt force enable. */
931                 pci_read_config_byte(dev, 0x5a, &scr1);
932                 if (scr1 & 0x10)
933                         pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
934
935                 /*
936                  * HighPoint does this for HPT372A.
937                  * NOTE: This register is only writeable via I/O space.
938                  */
939                 if (chip_type == HPT372A)
940                         outb(0x0e, io_base + 0x9c);
941
942                 /*
943                  * Default to PCI clock. Make sure MA15/16 are set to output
944                  * to prevent drives having problems with 40-pin cables.
945                  */
946                 pci_write_config_byte(dev, 0x5b, 0x23);
947
948                 /*
949                  * We'll have to read f_CNT value in order to determine
950                  * the PCI clock frequency according to the following ratio:
951                  *
952                  * f_CNT = Fpci * 192 / Fdpll
953                  *
954                  * First try reading the register in which the HighPoint BIOS
955                  * saves f_CNT value before  reprogramming the DPLL from its
956                  * default setting (which differs for the various chips).
957                  *
958                  * NOTE: This register is only accessible via I/O space;
959                  * HPT374 BIOS only saves it for the function 0, so we have to
960                  * always read it from there -- no need to check the result of
961                  * pci_get_slot() for the function 0 as the whole device has
962                  * been already "pinned" (via function 1) in init_setup_hpt374()
963                  */
964                 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
965                         struct pci_dev  *dev1 = pci_get_slot(dev->bus,
966                                                              dev->devfn - 1);
967                         unsigned long io_base = pci_resource_start(dev1, 4);
968
969                         temp =  inl(io_base + 0x90);
970                         pci_dev_put(dev1);
971                 } else
972                         temp =  inl(io_base + 0x90);
973
974                 /*
975                  * In case the signature check fails, we'll have to
976                  * resort to reading the f_CNT register itself in hopes
977                  * that nobody has touched the DPLL yet...
978                  */
979                 if ((temp & 0xFFFFF000) != 0xABCDE000) {
980                         int i;
981
982                         printk(KERN_WARNING "%s %s: no clock data saved by "
983                                 "BIOS\n", name, pci_name(dev));
984
985                         /* Calculate the average value of f_CNT. */
986                         for (temp = i = 0; i < 128; i++) {
987                                 pci_read_config_word(dev, 0x78, &f_cnt);
988                                 temp += f_cnt & 0x1ff;
989                                 mdelay(1);
990                         }
991                         f_cnt = temp / 128;
992                 } else
993                         f_cnt = temp & 0x1ff;
994
995                 dpll_clk = info->dpll_clk;
996                 pci_clk  = (f_cnt * dpll_clk) / 192;
997
998                 /* Clamp PCI clock to bands. */
999                 if (pci_clk < 40)
1000                         pci_clk = 33;
1001                 else if(pci_clk < 45)
1002                         pci_clk = 40;
1003                 else if(pci_clk < 55)
1004                         pci_clk = 50;
1005                 else
1006                         pci_clk = 66;
1007
1008                 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1009                         "assuming %d MHz PCI\n", name, pci_name(dev),
1010                         dpll_clk, f_cnt, pci_clk);
1011         } else {
1012                 u32 itr1 = 0;
1013
1014                 pci_read_config_dword(dev, 0x40, &itr1);
1015
1016                 /* Detect PCI clock by looking at cmd_high_time. */
1017                 switch ((itr1 >> 8) & 0x0f) {
1018                         case 0x09:
1019                                 pci_clk = 40;
1020                                 break;
1021                         case 0x05:
1022                                 pci_clk = 25;
1023                                 break;
1024                         case 0x07:
1025                         default:
1026                                 pci_clk = 33;
1027                                 break;
1028                 }
1029         }
1030
1031         /* Let's assume we'll use PCI clock for the ATA clock... */
1032         switch (pci_clk) {
1033                 case 25:
1034                         clock = ATA_CLOCK_25MHZ;
1035                         break;
1036                 case 33:
1037                 default:
1038                         clock = ATA_CLOCK_33MHZ;
1039                         break;
1040                 case 40:
1041                         clock = ATA_CLOCK_40MHZ;
1042                         break;
1043                 case 50:
1044                         clock = ATA_CLOCK_50MHZ;
1045                         break;
1046                 case 66:
1047                         clock = ATA_CLOCK_66MHZ;
1048                         break;
1049         }
1050
1051         /*
1052          * Only try the DPLL if we don't have a table for the PCI clock that
1053          * we are running at for HPT370/A, always use it  for anything newer...
1054          *
1055          * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1056          * We also  don't like using  the DPLL because this causes glitches
1057          * on PRST-/SRST- when the state engine gets reset...
1058          */
1059         if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1060                 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1061                 int adjust;
1062
1063                  /*
1064                   * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1065                   * supported/enabled, use 50 MHz DPLL clock otherwise...
1066                   */
1067                 if (info->udma_mask == ATA_UDMA6) {
1068                         dpll_clk = 66;
1069                         clock = ATA_CLOCK_66MHZ;
1070                 } else if (dpll_clk) {  /* HPT36x chips don't have DPLL */
1071                         dpll_clk = 50;
1072                         clock = ATA_CLOCK_50MHZ;
1073                 }
1074
1075                 if (info->timings->clock_table[clock] == NULL) {
1076                         printk(KERN_ERR "%s %s: unknown bus timing!\n",
1077                                 name, pci_name(dev));
1078                         return -EIO;
1079                 }
1080
1081                 /* Select the DPLL clock. */
1082                 pci_write_config_byte(dev, 0x5b, 0x21);
1083
1084                 /*
1085                  * Adjust the DPLL based upon PCI clock, enable it,
1086                  * and wait for stabilization...
1087                  */
1088                 f_low = (pci_clk * 48) / dpll_clk;
1089
1090                 for (adjust = 0; adjust < 8; adjust++) {
1091                         if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1092                                 break;
1093
1094                         /*
1095                          * See if it'll settle at a fractionally different clock
1096                          */
1097                         if (adjust & 1)
1098                                 f_low -= adjust >> 1;
1099                         else
1100                                 f_low += adjust >> 1;
1101                 }
1102                 if (adjust == 8) {
1103                         printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1104                                 name, pci_name(dev));
1105                         return -EIO;
1106                 }
1107
1108                 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1109                         name, pci_name(dev), dpll_clk);
1110         } else {
1111                 /* Mark the fact that we're not using the DPLL. */
1112                 dpll_clk = 0;
1113
1114                 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1115                         name, pci_name(dev), pci_clk);
1116         }
1117
1118         /* Store the clock frequencies. */
1119         info->dpll_clk  = dpll_clk;
1120         info->pci_clk   = pci_clk;
1121         info->clock     = clock;
1122
1123         if (chip_type >= HPT370) {
1124                 u8  mcr1, mcr4;
1125
1126                 /*
1127                  * Reset the state engines.
1128                  * NOTE: Avoid accidentally enabling the disabled channels.
1129                  */
1130                 pci_read_config_byte (dev, 0x50, &mcr1);
1131                 pci_read_config_byte (dev, 0x54, &mcr4);
1132                 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1133                 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1134                 udelay(100);
1135         }
1136
1137         /*
1138          * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1139          * the MISC. register to stretch the UltraDMA Tss timing.
1140          * NOTE: This register is only writeable via I/O space.
1141          */
1142         if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1143                 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1144
1145         hpt3xx_disable_fast_irq(dev, 0x50);
1146         hpt3xx_disable_fast_irq(dev, 0x54);
1147
1148         return 0;
1149 }
1150
1151 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1152 {
1153         struct pci_dev  *dev    = to_pci_dev(hwif->dev);
1154         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
1155         u8 chip_type            = info->chip_type;
1156         u8 scr1 = 0, ata66      = hwif->channel ? 0x01 : 0x02;
1157
1158         /*
1159          * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1160          * address lines to access an external EEPROM.  To read valid
1161          * cable detect state the pins must be enabled as inputs.
1162          */
1163         if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1164                 /*
1165                  * HPT374 PCI function 1
1166                  * - set bit 15 of reg 0x52 to enable TCBLID as input
1167                  * - set bit 15 of reg 0x56 to enable FCBLID as input
1168                  */
1169                 u8  mcr_addr = hwif->select_data + 2;
1170                 u16 mcr;
1171
1172                 pci_read_config_word(dev, mcr_addr, &mcr);
1173                 pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1174                 /* Debounce, then read cable ID register */
1175                 udelay(10);
1176                 pci_read_config_byte(dev, 0x5a, &scr1);
1177                 pci_write_config_word(dev, mcr_addr, mcr);
1178         } else if (chip_type >= HPT370) {
1179                 /*
1180                  * HPT370/372 and 374 pcifn 0
1181                  * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1182                  */
1183                 u8 scr2 = 0;
1184
1185                 pci_read_config_byte(dev, 0x5b, &scr2);
1186                 pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1187                 /* Debounce, then read cable ID register */
1188                 udelay(10);
1189                 pci_read_config_byte(dev, 0x5a, &scr1);
1190                 pci_write_config_byte(dev, 0x5b, scr2);
1191         } else
1192                 pci_read_config_byte(dev, 0x5a, &scr1);
1193
1194         return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1195 }
1196
1197 static void init_hwif_hpt366(ide_hwif_t *hwif)
1198 {
1199         struct hpt_info *info   = hpt3xx_get_info(hwif->dev);
1200         u8  chip_type           = info->chip_type;
1201
1202         /* Cache the channel's MISC. control registers' offset */
1203         hwif->select_data       = hwif->channel ? 0x54 : 0x50;
1204
1205         /*
1206          * HPT3xxN chips have some complications:
1207          *
1208          * - on 33 MHz PCI we must clock switch
1209          * - on 66 MHz PCI we must NOT use the PCI clock
1210          */
1211         if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1212                 /*
1213                  * Clock is shared between the channels,
1214                  * so we'll have to serialize them... :-(
1215                  */
1216                 hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1217                 hwif->rw_disk = &hpt3xxn_rw_disk;
1218         }
1219 }
1220
1221 static int init_dma_hpt366(ide_hwif_t *hwif,
1222                                      const struct ide_port_info *d)
1223 {
1224         struct pci_dev *dev = to_pci_dev(hwif->dev);
1225         unsigned long flags, base = ide_pci_dma_base(hwif, d);
1226         u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1227
1228         if (base == 0)
1229                 return -1;
1230
1231         hwif->dma_base = base;
1232
1233         if (ide_pci_check_simplex(hwif, d) < 0)
1234                 return -1;
1235
1236         if (ide_pci_set_master(dev, d->name) < 0)
1237                 return -1;
1238
1239         dma_old = inb(base + 2);
1240
1241         local_irq_save(flags);
1242
1243         dma_new = dma_old;
1244         pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1245         pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1246
1247         if (masterdma & 0x30)   dma_new |= 0x20;
1248         if ( slavedma & 0x30)   dma_new |= 0x40;
1249         if (dma_new != dma_old)
1250                 outb(dma_new, base + 2);
1251
1252         local_irq_restore(flags);
1253
1254         printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1255                          hwif->name, base, base + 7);
1256
1257         hwif->extra_base = base + (hwif->channel ? 8 : 16);
1258
1259         if (ide_allocate_dma_engine(hwif))
1260                 return -1;
1261
1262         return 0;
1263 }
1264
1265 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1266 {
1267         if (dev2->irq != dev->irq) {
1268                 /* FIXME: we need a core pci_set_interrupt() */
1269                 dev2->irq = dev->irq;
1270                 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1271                         "fixed\n", pci_name(dev2));
1272         }
1273 }
1274
1275 static void hpt371_init(struct pci_dev *dev)
1276 {
1277         u8 mcr1 = 0;
1278
1279         /*
1280          * HPT371 chips physically have only one channel, the secondary one,
1281          * but the primary channel registers do exist!  Go figure...
1282          * So,  we manually disable the non-existing channel here
1283          * (if the BIOS hasn't done this already).
1284          */
1285         pci_read_config_byte(dev, 0x50, &mcr1);
1286         if (mcr1 & 0x04)
1287                 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1288 }
1289
1290 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1291 {
1292         u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1293
1294         /*
1295          * Now we'll have to force both channels enabled if
1296          * at least one of them has been enabled by BIOS...
1297          */
1298         pci_read_config_byte(dev, 0x50, &mcr1);
1299         if (mcr1 & 0x30)
1300                 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1301
1302         pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1303         pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1304
1305         if (pin1 != pin2 && dev->irq == dev2->irq) {
1306                 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1307                         "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1308                 return 1;
1309         }
1310
1311         return 0;
1312 }
1313
1314 #define IDE_HFLAGS_HPT3XX \
1315         (IDE_HFLAG_NO_ATAPI_DMA | \
1316          IDE_HFLAG_OFF_BOARD)
1317
1318 static const struct ide_port_ops hpt3xx_port_ops = {
1319         .set_pio_mode           = hpt3xx_set_pio_mode,
1320         .set_dma_mode           = hpt3xx_set_mode,
1321         .maskproc               = hpt3xx_maskproc,
1322         .mdma_filter            = hpt3xx_mdma_filter,
1323         .udma_filter            = hpt3xx_udma_filter,
1324         .cable_detect           = hpt3xx_cable_detect,
1325 };
1326
1327 static const struct ide_dma_ops hpt37x_dma_ops = {
1328         .dma_host_set           = ide_dma_host_set,
1329         .dma_setup              = ide_dma_setup,
1330         .dma_start              = ide_dma_start,
1331         .dma_end                = hpt374_dma_end,
1332         .dma_test_irq           = hpt374_dma_test_irq,
1333         .dma_lost_irq           = ide_dma_lost_irq,
1334         .dma_timer_expiry       = ide_dma_sff_timer_expiry,
1335         .dma_sff_read_status    = ide_dma_sff_read_status,
1336 };
1337
1338 static const struct ide_dma_ops hpt370_dma_ops = {
1339         .dma_host_set           = ide_dma_host_set,
1340         .dma_setup              = ide_dma_setup,
1341         .dma_start              = hpt370_dma_start,
1342         .dma_end                = hpt370_dma_end,
1343         .dma_test_irq           = ide_dma_test_irq,
1344         .dma_lost_irq           = ide_dma_lost_irq,
1345         .dma_timer_expiry       = ide_dma_sff_timer_expiry,
1346         .dma_clear              = hpt370_irq_timeout,
1347         .dma_sff_read_status    = ide_dma_sff_read_status,
1348 };
1349
1350 static const struct ide_dma_ops hpt36x_dma_ops = {
1351         .dma_host_set           = ide_dma_host_set,
1352         .dma_setup              = ide_dma_setup,
1353         .dma_start              = ide_dma_start,
1354         .dma_end                = ide_dma_end,
1355         .dma_test_irq           = ide_dma_test_irq,
1356         .dma_lost_irq           = hpt366_dma_lost_irq,
1357         .dma_timer_expiry       = ide_dma_sff_timer_expiry,
1358         .dma_sff_read_status    = ide_dma_sff_read_status,
1359 };
1360
1361 static const struct ide_port_info hpt366_chipsets[] = {
1362         {       /* 0: HPT36x */
1363                 .name           = DRV_NAME,
1364                 .init_chipset   = init_chipset_hpt366,
1365                 .init_hwif      = init_hwif_hpt366,
1366                 .init_dma       = init_dma_hpt366,
1367                 /*
1368                  * HPT36x chips have one channel per function and have
1369                  * both channel enable bits located differently and visible
1370                  * to both functions -- really stupid design decision... :-(
1371                  * Bit 4 is for the primary channel, bit 5 for the secondary.
1372                  */
1373                 .enablebits     = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1374                 .port_ops       = &hpt3xx_port_ops,
1375                 .dma_ops        = &hpt36x_dma_ops,
1376                 .host_flags     = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1377                 .pio_mask       = ATA_PIO4,
1378                 .mwdma_mask     = ATA_MWDMA2,
1379         },
1380         {       /* 1: HPT3xx */
1381                 .name           = DRV_NAME,
1382                 .init_chipset   = init_chipset_hpt366,
1383                 .init_hwif      = init_hwif_hpt366,
1384                 .init_dma       = init_dma_hpt366,
1385                 .enablebits     = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1386                 .port_ops       = &hpt3xx_port_ops,
1387                 .dma_ops        = &hpt37x_dma_ops,
1388                 .host_flags     = IDE_HFLAGS_HPT3XX,
1389                 .pio_mask       = ATA_PIO4,
1390                 .mwdma_mask     = ATA_MWDMA2,
1391         }
1392 };
1393
1394 /**
1395  *      hpt366_init_one -       called when an HPT366 is found
1396  *      @dev: the hpt366 device
1397  *      @id: the matching pci id
1398  *
1399  *      Called when the PCI registration layer (or the IDE initialization)
1400  *      finds a device matching our IDE device tables.
1401  */
1402 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1403 {
1404         const struct hpt_info *info = NULL;
1405         struct hpt_info *dyn_info;
1406         struct pci_dev *dev2 = NULL;
1407         struct ide_port_info d;
1408         u8 idx = id->driver_data;
1409         u8 rev = dev->revision;
1410         int ret;
1411
1412         if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1413                 return -ENODEV;
1414
1415         switch (idx) {
1416         case 0:
1417                 if (rev < 3)
1418                         info = &hpt36x;
1419                 else {
1420                         switch (min_t(u8, rev, 6)) {
1421                         case 3: info = &hpt370;  break;
1422                         case 4: info = &hpt370a; break;
1423                         case 5: info = &hpt372;  break;
1424                         case 6: info = &hpt372n; break;
1425                         }
1426                         idx++;
1427                 }
1428                 break;
1429         case 1:
1430                 info = (rev > 1) ? &hpt372n : &hpt372a;
1431                 break;
1432         case 2:
1433                 info = (rev > 1) ? &hpt302n : &hpt302;
1434                 break;
1435         case 3:
1436                 hpt371_init(dev);
1437                 info = (rev > 1) ? &hpt371n : &hpt371;
1438                 break;
1439         case 4:
1440                 info = &hpt374;
1441                 break;
1442         case 5:
1443                 info = &hpt372n;
1444                 break;
1445         }
1446
1447         printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1448
1449         d = hpt366_chipsets[min_t(u8, idx, 1)];
1450
1451         d.udma_mask = info->udma_mask;
1452
1453         /* fixup ->dma_ops for HPT370/HPT370A */
1454         if (info == &hpt370 || info == &hpt370a)
1455                 d.dma_ops = &hpt370_dma_ops;
1456
1457         if (info == &hpt36x || info == &hpt374)
1458                 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1459
1460         dyn_info = kcalloc(dev2 ? 2 : 1, sizeof(*dyn_info), GFP_KERNEL);
1461         if (dyn_info == NULL) {
1462                 printk(KERN_ERR "%s %s: out of memory!\n",
1463                         d.name, pci_name(dev));
1464                 pci_dev_put(dev2);
1465                 return -ENOMEM;
1466         }
1467
1468         /*
1469          * Copy everything from a static "template" structure
1470          * to just allocated per-chip hpt_info structure.
1471          */
1472         memcpy(dyn_info, info, sizeof(*dyn_info));
1473
1474         if (dev2) {
1475                 memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1476
1477                 if (info == &hpt374)
1478                         hpt374_init(dev, dev2);
1479                 else {
1480                         if (hpt36x_init(dev, dev2))
1481                                 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1482                 }
1483
1484                 ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1485                 if (ret < 0) {
1486                         pci_dev_put(dev2);
1487                         kfree(dyn_info);
1488                 }
1489                 return ret;
1490         }
1491
1492         ret = ide_pci_init_one(dev, &d, dyn_info);
1493         if (ret < 0)
1494                 kfree(dyn_info);
1495
1496         return ret;
1497 }
1498
1499 static void hpt366_remove(struct pci_dev *dev)
1500 {
1501         struct ide_host *host = pci_get_drvdata(dev);
1502         struct ide_info *info = host->host_priv;
1503         struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1504
1505         ide_pci_remove(dev);
1506         pci_dev_put(dev2);
1507         kfree(info);
1508 }
1509
1510 static const struct pci_device_id hpt366_pci_tbl[] = {
1511         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1512         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1513         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1514         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1515         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1516         { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1517         { 0, },
1518 };
1519 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1520
1521 static struct pci_driver hpt366_pci_driver = {
1522         .name           = "HPT366_IDE",
1523         .id_table       = hpt366_pci_tbl,
1524         .probe          = hpt366_init_one,
1525         .remove         = hpt366_remove,
1526         .suspend        = ide_pci_suspend,
1527         .resume         = ide_pci_resume,
1528 };
1529
1530 static int __init hpt366_ide_init(void)
1531 {
1532         return ide_pci_register_driver(&hpt366_pci_driver);
1533 }
1534
1535 static void __exit hpt366_ide_exit(void)
1536 {
1537         pci_unregister_driver(&hpt366_pci_driver);
1538 }
1539
1540 module_init(hpt366_ide_init);
1541 module_exit(hpt366_ide_exit);
1542
1543 MODULE_AUTHOR("Andre Hedrick");
1544 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1545 MODULE_LICENSE("GPL");