Merge tag 'for-4.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / hwtracing / coresight / coresight-etm-perf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/workqueue.h>
18
19 #include "coresight-etm-perf.h"
20 #include "coresight-priv.h"
21
22 static struct pmu etm_pmu;
23 static bool etm_perf_up;
24
25 /**
26  * struct etm_event_data - Coresight specifics associated to an event
27  * @work:               Handle to free allocated memory outside IRQ context.
28  * @mask:               Hold the CPU(s) this event was set for.
29  * @snk_config:         The sink configuration.
30  * @path:               An array of path, each slot for one CPU.
31  */
32 struct etm_event_data {
33         struct work_struct work;
34         cpumask_t mask;
35         void *snk_config;
36         struct list_head **path;
37 };
38
39 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
40 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
41
42 /* ETMv3.5/PTM's ETMCR is 'config' */
43 PMU_FORMAT_ATTR(cycacc,         "config:" __stringify(ETM_OPT_CYCACC));
44 PMU_FORMAT_ATTR(timestamp,      "config:" __stringify(ETM_OPT_TS));
45 PMU_FORMAT_ATTR(retstack,       "config:" __stringify(ETM_OPT_RETSTK));
46
47 static struct attribute *etm_config_formats_attr[] = {
48         &format_attr_cycacc.attr,
49         &format_attr_timestamp.attr,
50         &format_attr_retstack.attr,
51         NULL,
52 };
53
54 static const struct attribute_group etm_pmu_format_group = {
55         .name   = "format",
56         .attrs  = etm_config_formats_attr,
57 };
58
59 static const struct attribute_group *etm_pmu_attr_groups[] = {
60         &etm_pmu_format_group,
61         NULL,
62 };
63
64 static void etm_event_read(struct perf_event *event) {}
65
66 static int etm_addr_filters_alloc(struct perf_event *event)
67 {
68         struct etm_filters *filters;
69         int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
70
71         filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
72         if (!filters)
73                 return -ENOMEM;
74
75         if (event->parent)
76                 memcpy(filters, event->parent->hw.addr_filters,
77                        sizeof(*filters));
78
79         event->hw.addr_filters = filters;
80
81         return 0;
82 }
83
84 static void etm_event_destroy(struct perf_event *event)
85 {
86         kfree(event->hw.addr_filters);
87         event->hw.addr_filters = NULL;
88 }
89
90 static int etm_event_init(struct perf_event *event)
91 {
92         int ret = 0;
93
94         if (event->attr.type != etm_pmu.type) {
95                 ret = -ENOENT;
96                 goto out;
97         }
98
99         ret = etm_addr_filters_alloc(event);
100         if (ret)
101                 goto out;
102
103         event->destroy = etm_event_destroy;
104 out:
105         return ret;
106 }
107
108 static void free_event_data(struct work_struct *work)
109 {
110         int cpu;
111         cpumask_t *mask;
112         struct etm_event_data *event_data;
113         struct coresight_device *sink;
114
115         event_data = container_of(work, struct etm_event_data, work);
116         mask = &event_data->mask;
117         /*
118          * First deal with the sink configuration.  See comment in
119          * etm_setup_aux() about why we take the first available path.
120          */
121         if (event_data->snk_config) {
122                 cpu = cpumask_first(mask);
123                 sink = coresight_get_sink(event_data->path[cpu]);
124                 if (sink_ops(sink)->free_buffer)
125                         sink_ops(sink)->free_buffer(event_data->snk_config);
126         }
127
128         for_each_cpu(cpu, mask) {
129                 if (!(IS_ERR_OR_NULL(event_data->path[cpu])))
130                         coresight_release_path(event_data->path[cpu]);
131         }
132
133         kfree(event_data->path);
134         kfree(event_data);
135 }
136
137 static void *alloc_event_data(int cpu)
138 {
139         int size;
140         cpumask_t *mask;
141         struct etm_event_data *event_data;
142
143         /* First get memory for the session's data */
144         event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
145         if (!event_data)
146                 return NULL;
147
148         /* Make sure nothing disappears under us */
149         get_online_cpus();
150         size = num_online_cpus();
151
152         mask = &event_data->mask;
153         if (cpu != -1)
154                 cpumask_set_cpu(cpu, mask);
155         else
156                 cpumask_copy(mask, cpu_online_mask);
157         put_online_cpus();
158
159         /*
160          * Each CPU has a single path between source and destination.  As such
161          * allocate an array using CPU numbers as indexes.  That way a path
162          * for any CPU can easily be accessed at any given time.  We proceed
163          * the same way for sessions involving a single CPU.  The cost of
164          * unused memory when dealing with single CPU trace scenarios is small
165          * compared to the cost of searching through an optimized array.
166          */
167         event_data->path = kcalloc(size,
168                                    sizeof(struct list_head *), GFP_KERNEL);
169         if (!event_data->path) {
170                 kfree(event_data);
171                 return NULL;
172         }
173
174         return event_data;
175 }
176
177 static void etm_free_aux(void *data)
178 {
179         struct etm_event_data *event_data = data;
180
181         schedule_work(&event_data->work);
182 }
183
184 static void *etm_setup_aux(int event_cpu, void **pages,
185                            int nr_pages, bool overwrite)
186 {
187         int cpu;
188         cpumask_t *mask;
189         struct coresight_device *sink;
190         struct etm_event_data *event_data = NULL;
191
192         event_data = alloc_event_data(event_cpu);
193         if (!event_data)
194                 return NULL;
195         INIT_WORK(&event_data->work, free_event_data);
196
197         /*
198          * In theory nothing prevent tracers in a trace session from being
199          * associated with different sinks, nor having a sink per tracer.  But
200          * until we have HW with this kind of topology we need to assume tracers
201          * in a trace session are using the same sink.  Therefore go through
202          * the coresight bus and pick the first enabled sink.
203          *
204          * When operated from sysFS users are responsible to enable the sink
205          * while from perf, the perf tools will do it based on the choice made
206          * on the cmd line.  As such the "enable_sink" flag in sysFS is reset.
207          */
208         sink = coresight_get_enabled_sink(true);
209         if (!sink)
210                 goto err;
211
212         mask = &event_data->mask;
213
214         /* Setup the path for each CPU in a trace session */
215         for_each_cpu(cpu, mask) {
216                 struct coresight_device *csdev;
217
218                 csdev = per_cpu(csdev_src, cpu);
219                 if (!csdev)
220                         goto err;
221
222                 /*
223                  * Building a path doesn't enable it, it simply builds a
224                  * list of devices from source to sink that can be
225                  * referenced later when the path is actually needed.
226                  */
227                 event_data->path[cpu] = coresight_build_path(csdev, sink);
228                 if (IS_ERR(event_data->path[cpu]))
229                         goto err;
230         }
231
232         if (!sink_ops(sink)->alloc_buffer)
233                 goto err;
234
235         cpu = cpumask_first(mask);
236         /* Get the AUX specific data from the sink buffer */
237         event_data->snk_config =
238                         sink_ops(sink)->alloc_buffer(sink, cpu, pages,
239                                                      nr_pages, overwrite);
240         if (!event_data->snk_config)
241                 goto err;
242
243 out:
244         return event_data;
245
246 err:
247         etm_free_aux(event_data);
248         event_data = NULL;
249         goto out;
250 }
251
252 static void etm_event_start(struct perf_event *event, int flags)
253 {
254         int cpu = smp_processor_id();
255         struct etm_event_data *event_data;
256         struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
257         struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
258
259         if (!csdev)
260                 goto fail;
261
262         /*
263          * Deal with the ring buffer API and get a handle on the
264          * session's information.
265          */
266         event_data = perf_aux_output_begin(handle, event);
267         if (!event_data)
268                 goto fail;
269
270         /* We need a sink, no need to continue without one */
271         sink = coresight_get_sink(event_data->path[cpu]);
272         if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
273                 goto fail_end_stop;
274
275         /* Configure the sink */
276         if (sink_ops(sink)->set_buffer(sink, handle,
277                                        event_data->snk_config))
278                 goto fail_end_stop;
279
280         /* Nothing will happen without a path */
281         if (coresight_enable_path(event_data->path[cpu], CS_MODE_PERF))
282                 goto fail_end_stop;
283
284         /* Tell the perf core the event is alive */
285         event->hw.state = 0;
286
287         /* Finally enable the tracer */
288         if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
289                 goto fail_end_stop;
290
291 out:
292         return;
293
294 fail_end_stop:
295         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
296         perf_aux_output_end(handle, 0);
297 fail:
298         event->hw.state = PERF_HES_STOPPED;
299         goto out;
300 }
301
302 static void etm_event_stop(struct perf_event *event, int mode)
303 {
304         int cpu = smp_processor_id();
305         unsigned long size;
306         struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
307         struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
308         struct etm_event_data *event_data = perf_get_aux(handle);
309
310         if (event->hw.state == PERF_HES_STOPPED)
311                 return;
312
313         if (!csdev)
314                 return;
315
316         sink = coresight_get_sink(event_data->path[cpu]);
317         if (!sink)
318                 return;
319
320         /* stop tracer */
321         source_ops(csdev)->disable(csdev, event);
322
323         /* tell the core */
324         event->hw.state = PERF_HES_STOPPED;
325
326         if (mode & PERF_EF_UPDATE) {
327                 if (WARN_ON_ONCE(handle->event != event))
328                         return;
329
330                 /* update trace information */
331                 if (!sink_ops(sink)->update_buffer)
332                         return;
333
334                 sink_ops(sink)->update_buffer(sink, handle,
335                                               event_data->snk_config);
336
337                 if (!sink_ops(sink)->reset_buffer)
338                         return;
339
340                 size = sink_ops(sink)->reset_buffer(sink, handle,
341                                                     event_data->snk_config);
342
343                 perf_aux_output_end(handle, size);
344         }
345
346         /* Disabling the path make its elements available to other sessions */
347         coresight_disable_path(event_data->path[cpu]);
348 }
349
350 static int etm_event_add(struct perf_event *event, int mode)
351 {
352         int ret = 0;
353         struct hw_perf_event *hwc = &event->hw;
354
355         if (mode & PERF_EF_START) {
356                 etm_event_start(event, 0);
357                 if (hwc->state & PERF_HES_STOPPED)
358                         ret = -EINVAL;
359         } else {
360                 hwc->state = PERF_HES_STOPPED;
361         }
362
363         return ret;
364 }
365
366 static void etm_event_del(struct perf_event *event, int mode)
367 {
368         etm_event_stop(event, PERF_EF_UPDATE);
369 }
370
371 static int etm_addr_filters_validate(struct list_head *filters)
372 {
373         bool range = false, address = false;
374         int index = 0;
375         struct perf_addr_filter *filter;
376
377         list_for_each_entry(filter, filters, entry) {
378                 /*
379                  * No need to go further if there's no more
380                  * room for filters.
381                  */
382                 if (++index > ETM_ADDR_CMP_MAX)
383                         return -EOPNOTSUPP;
384
385                 /* filter::size==0 means single address trigger */
386                 if (filter->size) {
387                         /*
388                          * The existing code relies on START/STOP filters
389                          * being address filters.
390                          */
391                         if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
392                             filter->action == PERF_ADDR_FILTER_ACTION_STOP)
393                                 return -EOPNOTSUPP;
394
395                         range = true;
396                 } else
397                         address = true;
398
399                 /*
400                  * At this time we don't allow range and start/stop filtering
401                  * to cohabitate, they have to be mutually exclusive.
402                  */
403                 if (range && address)
404                         return -EOPNOTSUPP;
405         }
406
407         return 0;
408 }
409
410 static void etm_addr_filters_sync(struct perf_event *event)
411 {
412         struct perf_addr_filters_head *head = perf_event_addr_filters(event);
413         unsigned long start, stop, *offs = event->addr_filters_offs;
414         struct etm_filters *filters = event->hw.addr_filters;
415         struct etm_filter *etm_filter;
416         struct perf_addr_filter *filter;
417         int i = 0;
418
419         list_for_each_entry(filter, &head->list, entry) {
420                 start = filter->offset + offs[i];
421                 stop = start + filter->size;
422                 etm_filter = &filters->etm_filter[i];
423
424                 switch (filter->action) {
425                 case PERF_ADDR_FILTER_ACTION_FILTER:
426                         etm_filter->start_addr = start;
427                         etm_filter->stop_addr = stop;
428                         etm_filter->type = ETM_ADDR_TYPE_RANGE;
429                         break;
430                 case PERF_ADDR_FILTER_ACTION_START:
431                         etm_filter->start_addr = start;
432                         etm_filter->type = ETM_ADDR_TYPE_START;
433                         break;
434                 case PERF_ADDR_FILTER_ACTION_STOP:
435                         etm_filter->stop_addr = stop;
436                         etm_filter->type = ETM_ADDR_TYPE_STOP;
437                         break;
438                 }
439                 i++;
440         }
441
442         filters->nr_filters = i;
443 }
444
445 int etm_perf_symlink(struct coresight_device *csdev, bool link)
446 {
447         char entry[sizeof("cpu9999999")];
448         int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
449         struct device *pmu_dev = etm_pmu.dev;
450         struct device *cs_dev = &csdev->dev;
451
452         sprintf(entry, "cpu%d", cpu);
453
454         if (!etm_perf_up)
455                 return -EPROBE_DEFER;
456
457         if (link) {
458                 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
459                 if (ret)
460                         return ret;
461                 per_cpu(csdev_src, cpu) = csdev;
462         } else {
463                 sysfs_remove_link(&pmu_dev->kobj, entry);
464                 per_cpu(csdev_src, cpu) = NULL;
465         }
466
467         return 0;
468 }
469
470 static int __init etm_perf_init(void)
471 {
472         int ret;
473
474         etm_pmu.capabilities            = PERF_PMU_CAP_EXCLUSIVE;
475
476         etm_pmu.attr_groups             = etm_pmu_attr_groups;
477         etm_pmu.task_ctx_nr             = perf_sw_context;
478         etm_pmu.read                    = etm_event_read;
479         etm_pmu.event_init              = etm_event_init;
480         etm_pmu.setup_aux               = etm_setup_aux;
481         etm_pmu.free_aux                = etm_free_aux;
482         etm_pmu.start                   = etm_event_start;
483         etm_pmu.stop                    = etm_event_stop;
484         etm_pmu.add                     = etm_event_add;
485         etm_pmu.del                     = etm_event_del;
486         etm_pmu.addr_filters_sync       = etm_addr_filters_sync;
487         etm_pmu.addr_filters_validate   = etm_addr_filters_validate;
488         etm_pmu.nr_addr_filters         = ETM_ADDR_CMP_MAX;
489
490         ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
491         if (ret == 0)
492                 etm_perf_up = true;
493
494         return ret;
495 }
496 device_initcall(etm_perf_init);