dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct temp_sensor_10 {
45         u32 sensor_id;
46         u8 fru_type;
47         u8 value;
48         u8 throttle;
49         u8 reserved;
50 } __packed;
51
52 struct freq_sensor_1 {
53         u16 sensor_id;
54         u16 value;
55 } __packed;
56
57 struct freq_sensor_2 {
58         u32 sensor_id;
59         u16 value;
60 } __packed;
61
62 struct power_sensor_1 {
63         u16 sensor_id;
64         u32 update_tag;
65         u32 accumulator;
66         u16 value;
67 } __packed;
68
69 struct power_sensor_2 {
70         u32 sensor_id;
71         u8 function_id;
72         u8 apss_channel;
73         u16 reserved;
74         u32 update_tag;
75         u64 accumulator;
76         u16 value;
77 } __packed;
78
79 struct power_sensor_data {
80         u16 value;
81         u32 update_tag;
82         u64 accumulator;
83 } __packed;
84
85 struct power_sensor_data_and_time {
86         u16 update_time;
87         u16 value;
88         u32 update_tag;
89         u64 accumulator;
90 } __packed;
91
92 struct power_sensor_a0 {
93         u32 sensor_id;
94         struct power_sensor_data_and_time system;
95         u32 reserved;
96         struct power_sensor_data_and_time proc;
97         struct power_sensor_data vdd;
98         struct power_sensor_data vdn;
99 } __packed;
100
101 struct caps_sensor_2 {
102         u16 cap;
103         u16 system_power;
104         u16 n_cap;
105         u16 max;
106         u16 min;
107         u16 user;
108         u8 user_source;
109 } __packed;
110
111 struct caps_sensor_3 {
112         u16 cap;
113         u16 system_power;
114         u16 n_cap;
115         u16 max;
116         u16 hard_min;
117         u16 soft_min;
118         u16 user;
119         u8 user_source;
120 } __packed;
121
122 struct extended_sensor {
123         union {
124                 u8 name[4];
125                 u32 sensor_id;
126         };
127         u8 flags;
128         u8 reserved;
129         u8 data[6];
130 } __packed;
131
132 static int occ_poll(struct occ *occ)
133 {
134         int rc;
135         u8 cmd[7];
136         struct occ_poll_response_header *header;
137
138         /* big endian */
139         cmd[0] = 0;                     /* sequence number */
140         cmd[1] = 0;                     /* cmd type */
141         cmd[2] = 0;                     /* data length msb */
142         cmd[3] = 1;                     /* data length lsb */
143         cmd[4] = occ->poll_cmd_data;    /* data */
144         cmd[5] = 0;                     /* checksum msb */
145         cmd[6] = 0;                     /* checksum lsb */
146
147         /* mutex should already be locked if necessary */
148         rc = occ->send_cmd(occ, cmd, sizeof(cmd));
149         if (rc) {
150                 occ->last_error = rc;
151                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
152                         occ->error = rc;
153
154                 goto done;
155         }
156
157         /* clear error since communication was successful */
158         occ->error_count = 0;
159         occ->last_error = 0;
160         occ->error = 0;
161
162         /* check for safe state */
163         header = (struct occ_poll_response_header *)occ->resp.data;
164         if (header->occ_state == OCC_STATE_SAFE) {
165                 if (occ->last_safe) {
166                         if (time_after(jiffies,
167                                        occ->last_safe + OCC_SAFE_TIMEOUT))
168                                 occ->error = -EHOSTDOWN;
169                 } else {
170                         occ->last_safe = jiffies;
171                 }
172         } else {
173                 occ->last_safe = 0;
174         }
175
176 done:
177         occ_sysfs_poll_done(occ);
178         return rc;
179 }
180
181 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
182 {
183         int rc;
184         u8 cmd[8];
185         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
186
187         cmd[0] = 0;     /* sequence number */
188         cmd[1] = 0x22;  /* cmd type */
189         cmd[2] = 0;     /* data length msb */
190         cmd[3] = 2;     /* data length lsb */
191
192         memcpy(&cmd[4], &user_power_cap_be, 2);
193
194         cmd[6] = 0;     /* checksum msb */
195         cmd[7] = 0;     /* checksum lsb */
196
197         rc = mutex_lock_interruptible(&occ->lock);
198         if (rc)
199                 return rc;
200
201         rc = occ->send_cmd(occ, cmd, sizeof(cmd));
202
203         mutex_unlock(&occ->lock);
204
205         return rc;
206 }
207
208 int occ_update_response(struct occ *occ)
209 {
210         int rc = mutex_lock_interruptible(&occ->lock);
211
212         if (rc)
213                 return rc;
214
215         /* limit the maximum rate of polling the OCC */
216         if (time_after(jiffies, occ->next_update)) {
217                 rc = occ_poll(occ);
218                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
219         } else {
220                 rc = occ->last_error;
221         }
222
223         mutex_unlock(&occ->lock);
224         return rc;
225 }
226
227 static ssize_t occ_show_temp_1(struct device *dev,
228                                struct device_attribute *attr, char *buf)
229 {
230         int rc;
231         u32 val = 0;
232         struct temp_sensor_1 *temp;
233         struct occ *occ = dev_get_drvdata(dev);
234         struct occ_sensors *sensors = &occ->sensors;
235         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
236
237         rc = occ_update_response(occ);
238         if (rc)
239                 return rc;
240
241         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
242
243         switch (sattr->nr) {
244         case 0:
245                 val = get_unaligned_be16(&temp->sensor_id);
246                 break;
247         case 1:
248                 /*
249                  * If a sensor reading has expired and couldn't be refreshed,
250                  * OCC returns 0xFFFF for that sensor.
251                  */
252                 if (temp->value == 0xFFFF)
253                         return -EREMOTEIO;
254                 val = get_unaligned_be16(&temp->value) * 1000;
255                 break;
256         default:
257                 return -EINVAL;
258         }
259
260         return sysfs_emit(buf, "%u\n", val);
261 }
262
263 static ssize_t occ_show_temp_2(struct device *dev,
264                                struct device_attribute *attr, char *buf)
265 {
266         int rc;
267         u32 val = 0;
268         struct temp_sensor_2 *temp;
269         struct occ *occ = dev_get_drvdata(dev);
270         struct occ_sensors *sensors = &occ->sensors;
271         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
272
273         rc = occ_update_response(occ);
274         if (rc)
275                 return rc;
276
277         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
278
279         switch (sattr->nr) {
280         case 0:
281                 val = get_unaligned_be32(&temp->sensor_id);
282                 break;
283         case 1:
284                 val = temp->value;
285                 if (val == OCC_TEMP_SENSOR_FAULT)
286                         return -EREMOTEIO;
287
288                 /*
289                  * VRM doesn't return temperature, only alarm bit. This
290                  * attribute maps to tempX_alarm instead of tempX_input for
291                  * VRM
292                  */
293                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
294                         /* sensor not ready */
295                         if (val == 0)
296                                 return -EAGAIN;
297
298                         val *= 1000;
299                 }
300                 break;
301         case 2:
302                 val = temp->fru_type;
303                 break;
304         case 3:
305                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
306                 break;
307         default:
308                 return -EINVAL;
309         }
310
311         return sysfs_emit(buf, "%u\n", val);
312 }
313
314 static ssize_t occ_show_temp_10(struct device *dev,
315                                 struct device_attribute *attr, char *buf)
316 {
317         int rc;
318         u32 val = 0;
319         struct temp_sensor_10 *temp;
320         struct occ *occ = dev_get_drvdata(dev);
321         struct occ_sensors *sensors = &occ->sensors;
322         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
323
324         rc = occ_update_response(occ);
325         if (rc)
326                 return rc;
327
328         temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
329
330         switch (sattr->nr) {
331         case 0:
332                 val = get_unaligned_be32(&temp->sensor_id);
333                 break;
334         case 1:
335                 val = temp->value;
336                 if (val == OCC_TEMP_SENSOR_FAULT)
337                         return -EREMOTEIO;
338
339                 /* sensor not ready */
340                 if (val == 0)
341                         return -EAGAIN;
342
343                 val *= 1000;
344                 break;
345         case 2:
346                 val = temp->fru_type;
347                 break;
348         case 3:
349                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
350                 break;
351         case 4:
352                 val = temp->throttle * 1000;
353                 break;
354         default:
355                 return -EINVAL;
356         }
357
358         return sysfs_emit(buf, "%u\n", val);
359 }
360
361 static ssize_t occ_show_freq_1(struct device *dev,
362                                struct device_attribute *attr, char *buf)
363 {
364         int rc;
365         u16 val = 0;
366         struct freq_sensor_1 *freq;
367         struct occ *occ = dev_get_drvdata(dev);
368         struct occ_sensors *sensors = &occ->sensors;
369         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
370
371         rc = occ_update_response(occ);
372         if (rc)
373                 return rc;
374
375         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
376
377         switch (sattr->nr) {
378         case 0:
379                 val = get_unaligned_be16(&freq->sensor_id);
380                 break;
381         case 1:
382                 val = get_unaligned_be16(&freq->value);
383                 break;
384         default:
385                 return -EINVAL;
386         }
387
388         return sysfs_emit(buf, "%u\n", val);
389 }
390
391 static ssize_t occ_show_freq_2(struct device *dev,
392                                struct device_attribute *attr, char *buf)
393 {
394         int rc;
395         u32 val = 0;
396         struct freq_sensor_2 *freq;
397         struct occ *occ = dev_get_drvdata(dev);
398         struct occ_sensors *sensors = &occ->sensors;
399         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
400
401         rc = occ_update_response(occ);
402         if (rc)
403                 return rc;
404
405         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
406
407         switch (sattr->nr) {
408         case 0:
409                 val = get_unaligned_be32(&freq->sensor_id);
410                 break;
411         case 1:
412                 val = get_unaligned_be16(&freq->value);
413                 break;
414         default:
415                 return -EINVAL;
416         }
417
418         return sysfs_emit(buf, "%u\n", val);
419 }
420
421 static ssize_t occ_show_power_1(struct device *dev,
422                                 struct device_attribute *attr, char *buf)
423 {
424         int rc;
425         u64 val = 0;
426         struct power_sensor_1 *power;
427         struct occ *occ = dev_get_drvdata(dev);
428         struct occ_sensors *sensors = &occ->sensors;
429         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
430
431         rc = occ_update_response(occ);
432         if (rc)
433                 return rc;
434
435         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
436
437         switch (sattr->nr) {
438         case 0:
439                 val = get_unaligned_be16(&power->sensor_id);
440                 break;
441         case 1:
442                 val = get_unaligned_be32(&power->accumulator) /
443                         get_unaligned_be32(&power->update_tag);
444                 val *= 1000000ULL;
445                 break;
446         case 2:
447                 val = (u64)get_unaligned_be32(&power->update_tag) *
448                            occ->powr_sample_time_us;
449                 break;
450         case 3:
451                 val = get_unaligned_be16(&power->value) * 1000000ULL;
452                 break;
453         default:
454                 return -EINVAL;
455         }
456
457         return sysfs_emit(buf, "%llu\n", val);
458 }
459
460 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
461 {
462         u64 divisor = get_unaligned_be32(samples);
463
464         return (divisor == 0) ? 0 :
465                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
466 }
467
468 static ssize_t occ_show_power_2(struct device *dev,
469                                 struct device_attribute *attr, char *buf)
470 {
471         int rc;
472         u64 val = 0;
473         struct power_sensor_2 *power;
474         struct occ *occ = dev_get_drvdata(dev);
475         struct occ_sensors *sensors = &occ->sensors;
476         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
477
478         rc = occ_update_response(occ);
479         if (rc)
480                 return rc;
481
482         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
483
484         switch (sattr->nr) {
485         case 0:
486                 return sysfs_emit(buf, "%u_%u_%u\n",
487                                   get_unaligned_be32(&power->sensor_id),
488                                   power->function_id, power->apss_channel);
489         case 1:
490                 val = occ_get_powr_avg(&power->accumulator,
491                                        &power->update_tag);
492                 break;
493         case 2:
494                 val = (u64)get_unaligned_be32(&power->update_tag) *
495                            occ->powr_sample_time_us;
496                 break;
497         case 3:
498                 val = get_unaligned_be16(&power->value) * 1000000ULL;
499                 break;
500         default:
501                 return -EINVAL;
502         }
503
504         return sysfs_emit(buf, "%llu\n", val);
505 }
506
507 static ssize_t occ_show_power_a0(struct device *dev,
508                                  struct device_attribute *attr, char *buf)
509 {
510         int rc;
511         u64 val = 0;
512         struct power_sensor_a0 *power;
513         struct occ *occ = dev_get_drvdata(dev);
514         struct occ_sensors *sensors = &occ->sensors;
515         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
516
517         rc = occ_update_response(occ);
518         if (rc)
519                 return rc;
520
521         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
522
523         switch (sattr->nr) {
524         case 0:
525                 return sysfs_emit(buf, "%u_system\n",
526                                   get_unaligned_be32(&power->sensor_id));
527         case 1:
528                 val = occ_get_powr_avg(&power->system.accumulator,
529                                        &power->system.update_tag);
530                 break;
531         case 2:
532                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
533                            occ->powr_sample_time_us;
534                 break;
535         case 3:
536                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
537                 break;
538         case 4:
539                 return sysfs_emit(buf, "%u_proc\n",
540                                   get_unaligned_be32(&power->sensor_id));
541         case 5:
542                 val = occ_get_powr_avg(&power->proc.accumulator,
543                                        &power->proc.update_tag);
544                 break;
545         case 6:
546                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
547                            occ->powr_sample_time_us;
548                 break;
549         case 7:
550                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
551                 break;
552         case 8:
553                 return sysfs_emit(buf, "%u_vdd\n",
554                                   get_unaligned_be32(&power->sensor_id));
555         case 9:
556                 val = occ_get_powr_avg(&power->vdd.accumulator,
557                                        &power->vdd.update_tag);
558                 break;
559         case 10:
560                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
561                            occ->powr_sample_time_us;
562                 break;
563         case 11:
564                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
565                 break;
566         case 12:
567                 return sysfs_emit(buf, "%u_vdn\n",
568                                   get_unaligned_be32(&power->sensor_id));
569         case 13:
570                 val = occ_get_powr_avg(&power->vdn.accumulator,
571                                        &power->vdn.update_tag);
572                 break;
573         case 14:
574                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
575                            occ->powr_sample_time_us;
576                 break;
577         case 15:
578                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
579                 break;
580         default:
581                 return -EINVAL;
582         }
583
584         return sysfs_emit(buf, "%llu\n", val);
585 }
586
587 static ssize_t occ_show_caps_1_2(struct device *dev,
588                                  struct device_attribute *attr, char *buf)
589 {
590         int rc;
591         u64 val = 0;
592         struct caps_sensor_2 *caps;
593         struct occ *occ = dev_get_drvdata(dev);
594         struct occ_sensors *sensors = &occ->sensors;
595         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
596
597         rc = occ_update_response(occ);
598         if (rc)
599                 return rc;
600
601         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
602
603         switch (sattr->nr) {
604         case 0:
605                 return sysfs_emit(buf, "system\n");
606         case 1:
607                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
608                 break;
609         case 2:
610                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
611                 break;
612         case 3:
613                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
614                 break;
615         case 4:
616                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
617                 break;
618         case 5:
619                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
620                 break;
621         case 6:
622                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
623                 break;
624         case 7:
625                 if (occ->sensors.caps.version == 1)
626                         return -EINVAL;
627
628                 val = caps->user_source;
629                 break;
630         default:
631                 return -EINVAL;
632         }
633
634         return sysfs_emit(buf, "%llu\n", val);
635 }
636
637 static ssize_t occ_show_caps_3(struct device *dev,
638                                struct device_attribute *attr, char *buf)
639 {
640         int rc;
641         u64 val = 0;
642         struct caps_sensor_3 *caps;
643         struct occ *occ = dev_get_drvdata(dev);
644         struct occ_sensors *sensors = &occ->sensors;
645         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
646
647         rc = occ_update_response(occ);
648         if (rc)
649                 return rc;
650
651         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
652
653         switch (sattr->nr) {
654         case 0:
655                 return sysfs_emit(buf, "system\n");
656         case 1:
657                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
658                 break;
659         case 2:
660                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
661                 break;
662         case 3:
663                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
664                 break;
665         case 4:
666                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
667                 break;
668         case 5:
669                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
670                 break;
671         case 6:
672                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
673                 break;
674         case 7:
675                 val = caps->user_source;
676                 break;
677         case 8:
678                 val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
679                 break;
680         default:
681                 return -EINVAL;
682         }
683
684         return sysfs_emit(buf, "%llu\n", val);
685 }
686
687 static ssize_t occ_store_caps_user(struct device *dev,
688                                    struct device_attribute *attr,
689                                    const char *buf, size_t count)
690 {
691         int rc;
692         u16 user_power_cap;
693         unsigned long long value;
694         struct occ *occ = dev_get_drvdata(dev);
695
696         rc = kstrtoull(buf, 0, &value);
697         if (rc)
698                 return rc;
699
700         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
701
702         rc = occ_set_user_power_cap(occ, user_power_cap);
703         if (rc)
704                 return rc;
705
706         return count;
707 }
708
709 static ssize_t occ_show_extended(struct device *dev,
710                                  struct device_attribute *attr, char *buf)
711 {
712         int rc;
713         struct extended_sensor *extn;
714         struct occ *occ = dev_get_drvdata(dev);
715         struct occ_sensors *sensors = &occ->sensors;
716         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
717
718         rc = occ_update_response(occ);
719         if (rc)
720                 return rc;
721
722         extn = ((struct extended_sensor *)sensors->extended.data) +
723                 sattr->index;
724
725         switch (sattr->nr) {
726         case 0:
727                 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
728                         rc = sysfs_emit(buf, "%u",
729                                         get_unaligned_be32(&extn->sensor_id));
730                 } else {
731                         rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
732                                         extn->name[0], extn->name[1],
733                                         extn->name[2], extn->name[3]);
734                 }
735                 break;
736         case 1:
737                 rc = sysfs_emit(buf, "%02x\n", extn->flags);
738                 break;
739         case 2:
740                 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
741                                 extn->data[0], extn->data[1], extn->data[2],
742                                 extn->data[3], extn->data[4], extn->data[5]);
743                 break;
744         default:
745                 return -EINVAL;
746         }
747
748         return rc;
749 }
750
751 /*
752  * Some helper macros to make it easier to define an occ_attribute. Since these
753  * are dynamically allocated, we shouldn't use the existing kernel macros which
754  * stringify the name argument.
755  */
756 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
757         .attr   = {                                                     \
758                 .name = _name,                                          \
759                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
760         },                                                              \
761         .show   = _show,                                                \
762         .store  = _store,                                               \
763 }
764
765 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
766         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
767         .index          = _index,                                       \
768         .nr             = _nr,                                          \
769 }
770
771 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
772         ((struct sensor_device_attribute_2)                             \
773                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
774
775 /*
776  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
777  * use our own instead of the built-in hwmon attribute types.
778  */
779 static int occ_setup_sensor_attrs(struct occ *occ)
780 {
781         unsigned int i, s, num_attrs = 0;
782         struct device *dev = occ->bus_dev;
783         struct occ_sensors *sensors = &occ->sensors;
784         struct occ_attribute *attr;
785         struct temp_sensor_2 *temp;
786         ssize_t (*show_temp)(struct device *, struct device_attribute *,
787                              char *) = occ_show_temp_1;
788         ssize_t (*show_freq)(struct device *, struct device_attribute *,
789                              char *) = occ_show_freq_1;
790         ssize_t (*show_power)(struct device *, struct device_attribute *,
791                               char *) = occ_show_power_1;
792         ssize_t (*show_caps)(struct device *, struct device_attribute *,
793                              char *) = occ_show_caps_1_2;
794
795         switch (sensors->temp.version) {
796         case 1:
797                 num_attrs += (sensors->temp.num_sensors * 2);
798                 break;
799         case 2:
800                 num_attrs += (sensors->temp.num_sensors * 4);
801                 show_temp = occ_show_temp_2;
802                 break;
803         case 0x10:
804                 num_attrs += (sensors->temp.num_sensors * 5);
805                 show_temp = occ_show_temp_10;
806                 break;
807         default:
808                 sensors->temp.num_sensors = 0;
809         }
810
811         switch (sensors->freq.version) {
812         case 2:
813                 show_freq = occ_show_freq_2;
814                 fallthrough;
815         case 1:
816                 num_attrs += (sensors->freq.num_sensors * 2);
817                 break;
818         default:
819                 sensors->freq.num_sensors = 0;
820         }
821
822         switch (sensors->power.version) {
823         case 2:
824                 show_power = occ_show_power_2;
825                 fallthrough;
826         case 1:
827                 num_attrs += (sensors->power.num_sensors * 4);
828                 break;
829         case 0xA0:
830                 num_attrs += (sensors->power.num_sensors * 16);
831                 show_power = occ_show_power_a0;
832                 break;
833         default:
834                 sensors->power.num_sensors = 0;
835         }
836
837         switch (sensors->caps.version) {
838         case 1:
839                 num_attrs += (sensors->caps.num_sensors * 7);
840                 break;
841         case 2:
842                 num_attrs += (sensors->caps.num_sensors * 8);
843                 break;
844         case 3:
845                 show_caps = occ_show_caps_3;
846                 num_attrs += (sensors->caps.num_sensors * 9);
847                 break;
848         default:
849                 sensors->caps.num_sensors = 0;
850         }
851
852         switch (sensors->extended.version) {
853         case 1:
854                 num_attrs += (sensors->extended.num_sensors * 3);
855                 break;
856         default:
857                 sensors->extended.num_sensors = 0;
858         }
859
860         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
861                                   GFP_KERNEL);
862         if (!occ->attrs)
863                 return -ENOMEM;
864
865         /* null-terminated list */
866         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
867                                         num_attrs + 1, GFP_KERNEL);
868         if (!occ->group.attrs)
869                 return -ENOMEM;
870
871         attr = occ->attrs;
872
873         for (i = 0; i < sensors->temp.num_sensors; ++i) {
874                 s = i + 1;
875                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
876
877                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
878                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
879                                              0, i);
880                 attr++;
881
882                 if (sensors->temp.version == 2 &&
883                     temp->fru_type == OCC_FRU_TYPE_VRM) {
884                         snprintf(attr->name, sizeof(attr->name),
885                                  "temp%d_alarm", s);
886                 } else {
887                         snprintf(attr->name, sizeof(attr->name),
888                                  "temp%d_input", s);
889                 }
890
891                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
892                                              1, i);
893                 attr++;
894
895                 if (sensors->temp.version > 1) {
896                         snprintf(attr->name, sizeof(attr->name),
897                                  "temp%d_fru_type", s);
898                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
899                                                      show_temp, NULL, 2, i);
900                         attr++;
901
902                         snprintf(attr->name, sizeof(attr->name),
903                                  "temp%d_fault", s);
904                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
905                                                      show_temp, NULL, 3, i);
906                         attr++;
907
908                         if (sensors->temp.version == 0x10) {
909                                 snprintf(attr->name, sizeof(attr->name),
910                                          "temp%d_max", s);
911                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912                                                              show_temp, NULL,
913                                                              4, i);
914                                 attr++;
915                         }
916                 }
917         }
918
919         for (i = 0; i < sensors->freq.num_sensors; ++i) {
920                 s = i + 1;
921
922                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
923                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
924                                              0, i);
925                 attr++;
926
927                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
928                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
929                                              1, i);
930                 attr++;
931         }
932
933         if (sensors->power.version == 0xA0) {
934                 /*
935                  * Special case for many-attribute power sensor. Split it into
936                  * a sensor number per power type, emulating several sensors.
937                  */
938                 for (i = 0; i < sensors->power.num_sensors; ++i) {
939                         unsigned int j;
940                         unsigned int nr = 0;
941
942                         s = (i * 4) + 1;
943
944                         for (j = 0; j < 4; ++j) {
945                                 snprintf(attr->name, sizeof(attr->name),
946                                          "power%d_label", s);
947                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
948                                                              show_power, NULL,
949                                                              nr++, i);
950                                 attr++;
951
952                                 snprintf(attr->name, sizeof(attr->name),
953                                          "power%d_average", s);
954                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
955                                                              show_power, NULL,
956                                                              nr++, i);
957                                 attr++;
958
959                                 snprintf(attr->name, sizeof(attr->name),
960                                          "power%d_average_interval", s);
961                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
962                                                              show_power, NULL,
963                                                              nr++, i);
964                                 attr++;
965
966                                 snprintf(attr->name, sizeof(attr->name),
967                                          "power%d_input", s);
968                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969                                                              show_power, NULL,
970                                                              nr++, i);
971                                 attr++;
972
973                                 s++;
974                         }
975                 }
976
977                 s = (sensors->power.num_sensors * 4) + 1;
978         } else {
979                 for (i = 0; i < sensors->power.num_sensors; ++i) {
980                         s = i + 1;
981
982                         snprintf(attr->name, sizeof(attr->name),
983                                  "power%d_label", s);
984                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
985                                                      show_power, NULL, 0, i);
986                         attr++;
987
988                         snprintf(attr->name, sizeof(attr->name),
989                                  "power%d_average", s);
990                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991                                                      show_power, NULL, 1, i);
992                         attr++;
993
994                         snprintf(attr->name, sizeof(attr->name),
995                                  "power%d_average_interval", s);
996                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
997                                                      show_power, NULL, 2, i);
998                         attr++;
999
1000                         snprintf(attr->name, sizeof(attr->name),
1001                                  "power%d_input", s);
1002                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003                                                      show_power, NULL, 3, i);
1004                         attr++;
1005                 }
1006
1007                 s = sensors->power.num_sensors + 1;
1008         }
1009
1010         if (sensors->caps.num_sensors >= 1) {
1011                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1012                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1013                                              0, 0);
1014                 attr++;
1015
1016                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1017                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1018                                              1, 0);
1019                 attr++;
1020
1021                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1022                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1023                                              2, 0);
1024                 attr++;
1025
1026                 snprintf(attr->name, sizeof(attr->name),
1027                          "power%d_cap_not_redundant", s);
1028                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1029                                              3, 0);
1030                 attr++;
1031
1032                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1033                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1034                                              4, 0);
1035                 attr++;
1036
1037                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1038                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1039                                              5, 0);
1040                 attr++;
1041
1042                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1043                          s);
1044                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1045                                              occ_store_caps_user, 6, 0);
1046                 attr++;
1047
1048                 if (sensors->caps.version > 1) {
1049                         snprintf(attr->name, sizeof(attr->name),
1050                                  "power%d_cap_user_source", s);
1051                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1052                                                      show_caps, NULL, 7, 0);
1053                         attr++;
1054
1055                         if (sensors->caps.version > 2) {
1056                                 snprintf(attr->name, sizeof(attr->name),
1057                                          "power%d_cap_min_soft", s);
1058                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1059                                                              show_caps, NULL,
1060                                                              8, 0);
1061                                 attr++;
1062                         }
1063                 }
1064         }
1065
1066         for (i = 0; i < sensors->extended.num_sensors; ++i) {
1067                 s = i + 1;
1068
1069                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1070                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1071                                              occ_show_extended, NULL, 0, i);
1072                 attr++;
1073
1074                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1075                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1076                                              occ_show_extended, NULL, 1, i);
1077                 attr++;
1078
1079                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1080                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1081                                              occ_show_extended, NULL, 2, i);
1082                 attr++;
1083         }
1084
1085         /* put the sensors in the group */
1086         for (i = 0; i < num_attrs; ++i) {
1087                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1088                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1089         }
1090
1091         return 0;
1092 }
1093
1094 /* only need to do this once at startup, as OCC won't change sensors on us */
1095 static void occ_parse_poll_response(struct occ *occ)
1096 {
1097         unsigned int i, old_offset, offset = 0, size = 0;
1098         struct occ_sensor *sensor;
1099         struct occ_sensors *sensors = &occ->sensors;
1100         struct occ_response *resp = &occ->resp;
1101         struct occ_poll_response *poll =
1102                 (struct occ_poll_response *)&resp->data[0];
1103         struct occ_poll_response_header *header = &poll->header;
1104         struct occ_sensor_data_block *block = &poll->block;
1105
1106         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1107                  header->occ_code_level);
1108
1109         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1110                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1111                 old_offset = offset;
1112                 offset = (block->header.num_sensors *
1113                           block->header.sensor_length) + sizeof(block->header);
1114                 size += offset;
1115
1116                 /* validate all the length/size fields */
1117                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1118                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1119                         return;
1120                 }
1121
1122                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1123                         old_offset, offset - 1, block->header.eye_catcher,
1124                         block->header.num_sensors);
1125
1126                 /* match sensor block type */
1127                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1128                         sensor = &sensors->temp;
1129                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1130                         sensor = &sensors->freq;
1131                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1132                         sensor = &sensors->power;
1133                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1134                         sensor = &sensors->caps;
1135                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1136                         sensor = &sensors->extended;
1137                 else {
1138                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1139                                  block->header.eye_catcher);
1140                         continue;
1141                 }
1142
1143                 sensor->num_sensors = block->header.num_sensors;
1144                 sensor->version = block->header.sensor_format;
1145                 sensor->data = &block->data;
1146         }
1147
1148         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1149                 sizeof(*header), size + sizeof(*header));
1150 }
1151
1152 int occ_active(struct occ *occ, bool active)
1153 {
1154         int rc = mutex_lock_interruptible(&occ->lock);
1155
1156         if (rc)
1157                 return rc;
1158
1159         if (active) {
1160                 if (occ->active) {
1161                         rc = -EALREADY;
1162                         goto unlock;
1163                 }
1164
1165                 occ->error_count = 0;
1166                 occ->last_safe = 0;
1167
1168                 rc = occ_poll(occ);
1169                 if (rc < 0) {
1170                         dev_err(occ->bus_dev,
1171                                 "failed to get OCC poll response=%02x: %d\n",
1172                                 occ->resp.return_status, rc);
1173                         goto unlock;
1174                 }
1175
1176                 occ->active = true;
1177                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1178                 occ_parse_poll_response(occ);
1179
1180                 rc = occ_setup_sensor_attrs(occ);
1181                 if (rc) {
1182                         dev_err(occ->bus_dev,
1183                                 "failed to setup sensor attrs: %d\n", rc);
1184                         goto unlock;
1185                 }
1186
1187                 occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
1188                                                                "occ", occ,
1189                                                                occ->groups);
1190                 if (IS_ERR(occ->hwmon)) {
1191                         rc = PTR_ERR(occ->hwmon);
1192                         occ->hwmon = NULL;
1193                         dev_err(occ->bus_dev,
1194                                 "failed to register hwmon device: %d\n", rc);
1195                         goto unlock;
1196                 }
1197         } else {
1198                 if (!occ->active) {
1199                         rc = -EALREADY;
1200                         goto unlock;
1201                 }
1202
1203                 if (occ->hwmon)
1204                         hwmon_device_unregister(occ->hwmon);
1205                 occ->active = false;
1206                 occ->hwmon = NULL;
1207         }
1208
1209 unlock:
1210         mutex_unlock(&occ->lock);
1211         return rc;
1212 }
1213
1214 int occ_setup(struct occ *occ)
1215 {
1216         int rc;
1217
1218         mutex_init(&occ->lock);
1219         occ->groups[0] = &occ->group;
1220
1221         rc = occ_setup_sysfs(occ);
1222         if (rc)
1223                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1224
1225         return rc;
1226 }
1227 EXPORT_SYMBOL_GPL(occ_setup);
1228
1229 void occ_shutdown(struct occ *occ)
1230 {
1231         mutex_lock(&occ->lock);
1232
1233         occ_shutdown_sysfs(occ);
1234
1235         if (occ->hwmon)
1236                 hwmon_device_unregister(occ->hwmon);
1237         occ->hwmon = NULL;
1238
1239         mutex_unlock(&occ->lock);
1240 }
1241 EXPORT_SYMBOL_GPL(occ_shutdown);
1242
1243 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1244 MODULE_DESCRIPTION("Common OCC hwmon code");
1245 MODULE_LICENSE("GPL");