Merge tag 'arm-soc/for-5.9/devicetree-fixes' of https://github.com/Broadcom/stblinux...
[linux-2.6-microblaze.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct freq_sensor_1 {
45         u16 sensor_id;
46         u16 value;
47 } __packed;
48
49 struct freq_sensor_2 {
50         u32 sensor_id;
51         u16 value;
52 } __packed;
53
54 struct power_sensor_1 {
55         u16 sensor_id;
56         u32 update_tag;
57         u32 accumulator;
58         u16 value;
59 } __packed;
60
61 struct power_sensor_2 {
62         u32 sensor_id;
63         u8 function_id;
64         u8 apss_channel;
65         u16 reserved;
66         u32 update_tag;
67         u64 accumulator;
68         u16 value;
69 } __packed;
70
71 struct power_sensor_data {
72         u16 value;
73         u32 update_tag;
74         u64 accumulator;
75 } __packed;
76
77 struct power_sensor_data_and_time {
78         u16 update_time;
79         u16 value;
80         u32 update_tag;
81         u64 accumulator;
82 } __packed;
83
84 struct power_sensor_a0 {
85         u32 sensor_id;
86         struct power_sensor_data_and_time system;
87         u32 reserved;
88         struct power_sensor_data_and_time proc;
89         struct power_sensor_data vdd;
90         struct power_sensor_data vdn;
91 } __packed;
92
93 struct caps_sensor_2 {
94         u16 cap;
95         u16 system_power;
96         u16 n_cap;
97         u16 max;
98         u16 min;
99         u16 user;
100         u8 user_source;
101 } __packed;
102
103 struct caps_sensor_3 {
104         u16 cap;
105         u16 system_power;
106         u16 n_cap;
107         u16 max;
108         u16 hard_min;
109         u16 soft_min;
110         u16 user;
111         u8 user_source;
112 } __packed;
113
114 struct extended_sensor {
115         union {
116                 u8 name[4];
117                 u32 sensor_id;
118         };
119         u8 flags;
120         u8 reserved;
121         u8 data[6];
122 } __packed;
123
124 static int occ_poll(struct occ *occ)
125 {
126         int rc;
127         u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
128         u8 cmd[8];
129         struct occ_poll_response_header *header;
130
131         /* big endian */
132         cmd[0] = occ->seq_no++;         /* sequence number */
133         cmd[1] = 0;                     /* cmd type */
134         cmd[2] = 0;                     /* data length msb */
135         cmd[3] = 1;                     /* data length lsb */
136         cmd[4] = occ->poll_cmd_data;    /* data */
137         cmd[5] = checksum >> 8;         /* checksum msb */
138         cmd[6] = checksum & 0xFF;       /* checksum lsb */
139         cmd[7] = 0;
140
141         /* mutex should already be locked if necessary */
142         rc = occ->send_cmd(occ, cmd);
143         if (rc) {
144                 occ->last_error = rc;
145                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
146                         occ->error = rc;
147
148                 goto done;
149         }
150
151         /* clear error since communication was successful */
152         occ->error_count = 0;
153         occ->last_error = 0;
154         occ->error = 0;
155
156         /* check for safe state */
157         header = (struct occ_poll_response_header *)occ->resp.data;
158         if (header->occ_state == OCC_STATE_SAFE) {
159                 if (occ->last_safe) {
160                         if (time_after(jiffies,
161                                        occ->last_safe + OCC_SAFE_TIMEOUT))
162                                 occ->error = -EHOSTDOWN;
163                 } else {
164                         occ->last_safe = jiffies;
165                 }
166         } else {
167                 occ->last_safe = 0;
168         }
169
170 done:
171         occ_sysfs_poll_done(occ);
172         return rc;
173 }
174
175 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
176 {
177         int rc;
178         u8 cmd[8];
179         u16 checksum = 0x24;
180         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
181
182         cmd[0] = 0;
183         cmd[1] = 0x22;
184         cmd[2] = 0;
185         cmd[3] = 2;
186
187         memcpy(&cmd[4], &user_power_cap_be, 2);
188
189         checksum += cmd[4] + cmd[5];
190         cmd[6] = checksum >> 8;
191         cmd[7] = checksum & 0xFF;
192
193         rc = mutex_lock_interruptible(&occ->lock);
194         if (rc)
195                 return rc;
196
197         rc = occ->send_cmd(occ, cmd);
198
199         mutex_unlock(&occ->lock);
200
201         return rc;
202 }
203
204 int occ_update_response(struct occ *occ)
205 {
206         int rc = mutex_lock_interruptible(&occ->lock);
207
208         if (rc)
209                 return rc;
210
211         /* limit the maximum rate of polling the OCC */
212         if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
213                 rc = occ_poll(occ);
214                 occ->last_update = jiffies;
215         } else {
216                 rc = occ->last_error;
217         }
218
219         mutex_unlock(&occ->lock);
220         return rc;
221 }
222
223 static ssize_t occ_show_temp_1(struct device *dev,
224                                struct device_attribute *attr, char *buf)
225 {
226         int rc;
227         u32 val = 0;
228         struct temp_sensor_1 *temp;
229         struct occ *occ = dev_get_drvdata(dev);
230         struct occ_sensors *sensors = &occ->sensors;
231         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
232
233         rc = occ_update_response(occ);
234         if (rc)
235                 return rc;
236
237         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
238
239         switch (sattr->nr) {
240         case 0:
241                 val = get_unaligned_be16(&temp->sensor_id);
242                 break;
243         case 1:
244                 /*
245                  * If a sensor reading has expired and couldn't be refreshed,
246                  * OCC returns 0xFFFF for that sensor.
247                  */
248                 if (temp->value == 0xFFFF)
249                         return -EREMOTEIO;
250                 val = get_unaligned_be16(&temp->value) * 1000;
251                 break;
252         default:
253                 return -EINVAL;
254         }
255
256         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
257 }
258
259 static ssize_t occ_show_temp_2(struct device *dev,
260                                struct device_attribute *attr, char *buf)
261 {
262         int rc;
263         u32 val = 0;
264         struct temp_sensor_2 *temp;
265         struct occ *occ = dev_get_drvdata(dev);
266         struct occ_sensors *sensors = &occ->sensors;
267         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
268
269         rc = occ_update_response(occ);
270         if (rc)
271                 return rc;
272
273         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
274
275         switch (sattr->nr) {
276         case 0:
277                 val = get_unaligned_be32(&temp->sensor_id);
278                 break;
279         case 1:
280                 val = temp->value;
281                 if (val == OCC_TEMP_SENSOR_FAULT)
282                         return -EREMOTEIO;
283
284                 /*
285                  * VRM doesn't return temperature, only alarm bit. This
286                  * attribute maps to tempX_alarm instead of tempX_input for
287                  * VRM
288                  */
289                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290                         /* sensor not ready */
291                         if (val == 0)
292                                 return -EAGAIN;
293
294                         val *= 1000;
295                 }
296                 break;
297         case 2:
298                 val = temp->fru_type;
299                 break;
300         case 3:
301                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
302                 break;
303         default:
304                 return -EINVAL;
305         }
306
307         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
308 }
309
310 static ssize_t occ_show_freq_1(struct device *dev,
311                                struct device_attribute *attr, char *buf)
312 {
313         int rc;
314         u16 val = 0;
315         struct freq_sensor_1 *freq;
316         struct occ *occ = dev_get_drvdata(dev);
317         struct occ_sensors *sensors = &occ->sensors;
318         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
319
320         rc = occ_update_response(occ);
321         if (rc)
322                 return rc;
323
324         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
325
326         switch (sattr->nr) {
327         case 0:
328                 val = get_unaligned_be16(&freq->sensor_id);
329                 break;
330         case 1:
331                 val = get_unaligned_be16(&freq->value);
332                 break;
333         default:
334                 return -EINVAL;
335         }
336
337         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
338 }
339
340 static ssize_t occ_show_freq_2(struct device *dev,
341                                struct device_attribute *attr, char *buf)
342 {
343         int rc;
344         u32 val = 0;
345         struct freq_sensor_2 *freq;
346         struct occ *occ = dev_get_drvdata(dev);
347         struct occ_sensors *sensors = &occ->sensors;
348         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
349
350         rc = occ_update_response(occ);
351         if (rc)
352                 return rc;
353
354         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
355
356         switch (sattr->nr) {
357         case 0:
358                 val = get_unaligned_be32(&freq->sensor_id);
359                 break;
360         case 1:
361                 val = get_unaligned_be16(&freq->value);
362                 break;
363         default:
364                 return -EINVAL;
365         }
366
367         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
368 }
369
370 static ssize_t occ_show_power_1(struct device *dev,
371                                 struct device_attribute *attr, char *buf)
372 {
373         int rc;
374         u64 val = 0;
375         struct power_sensor_1 *power;
376         struct occ *occ = dev_get_drvdata(dev);
377         struct occ_sensors *sensors = &occ->sensors;
378         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
379
380         rc = occ_update_response(occ);
381         if (rc)
382                 return rc;
383
384         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
385
386         switch (sattr->nr) {
387         case 0:
388                 val = get_unaligned_be16(&power->sensor_id);
389                 break;
390         case 1:
391                 val = get_unaligned_be32(&power->accumulator) /
392                         get_unaligned_be32(&power->update_tag);
393                 val *= 1000000ULL;
394                 break;
395         case 2:
396                 val = (u64)get_unaligned_be32(&power->update_tag) *
397                            occ->powr_sample_time_us;
398                 break;
399         case 3:
400                 val = get_unaligned_be16(&power->value) * 1000000ULL;
401                 break;
402         default:
403                 return -EINVAL;
404         }
405
406         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
407 }
408
409 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
410 {
411         u64 divisor = get_unaligned_be32(samples);
412
413         return (divisor == 0) ? 0 :
414                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
415 }
416
417 static ssize_t occ_show_power_2(struct device *dev,
418                                 struct device_attribute *attr, char *buf)
419 {
420         int rc;
421         u64 val = 0;
422         struct power_sensor_2 *power;
423         struct occ *occ = dev_get_drvdata(dev);
424         struct occ_sensors *sensors = &occ->sensors;
425         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
426
427         rc = occ_update_response(occ);
428         if (rc)
429                 return rc;
430
431         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
432
433         switch (sattr->nr) {
434         case 0:
435                 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
436                                 get_unaligned_be32(&power->sensor_id),
437                                 power->function_id, power->apss_channel);
438         case 1:
439                 val = occ_get_powr_avg(&power->accumulator,
440                                        &power->update_tag);
441                 break;
442         case 2:
443                 val = (u64)get_unaligned_be32(&power->update_tag) *
444                            occ->powr_sample_time_us;
445                 break;
446         case 3:
447                 val = get_unaligned_be16(&power->value) * 1000000ULL;
448                 break;
449         default:
450                 return -EINVAL;
451         }
452
453         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
454 }
455
456 static ssize_t occ_show_power_a0(struct device *dev,
457                                  struct device_attribute *attr, char *buf)
458 {
459         int rc;
460         u64 val = 0;
461         struct power_sensor_a0 *power;
462         struct occ *occ = dev_get_drvdata(dev);
463         struct occ_sensors *sensors = &occ->sensors;
464         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
465
466         rc = occ_update_response(occ);
467         if (rc)
468                 return rc;
469
470         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
471
472         switch (sattr->nr) {
473         case 0:
474                 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
475                                 get_unaligned_be32(&power->sensor_id));
476         case 1:
477                 val = occ_get_powr_avg(&power->system.accumulator,
478                                        &power->system.update_tag);
479                 break;
480         case 2:
481                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
482                            occ->powr_sample_time_us;
483                 break;
484         case 3:
485                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
486                 break;
487         case 4:
488                 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
489                                 get_unaligned_be32(&power->sensor_id));
490         case 5:
491                 val = occ_get_powr_avg(&power->proc.accumulator,
492                                        &power->proc.update_tag);
493                 break;
494         case 6:
495                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
496                            occ->powr_sample_time_us;
497                 break;
498         case 7:
499                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
500                 break;
501         case 8:
502                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
503                                 get_unaligned_be32(&power->sensor_id));
504         case 9:
505                 val = occ_get_powr_avg(&power->vdd.accumulator,
506                                        &power->vdd.update_tag);
507                 break;
508         case 10:
509                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
510                            occ->powr_sample_time_us;
511                 break;
512         case 11:
513                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
514                 break;
515         case 12:
516                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
517                                 get_unaligned_be32(&power->sensor_id));
518         case 13:
519                 val = occ_get_powr_avg(&power->vdn.accumulator,
520                                        &power->vdn.update_tag);
521                 break;
522         case 14:
523                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
524                            occ->powr_sample_time_us;
525                 break;
526         case 15:
527                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
528                 break;
529         default:
530                 return -EINVAL;
531         }
532
533         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
534 }
535
536 static ssize_t occ_show_caps_1_2(struct device *dev,
537                                  struct device_attribute *attr, char *buf)
538 {
539         int rc;
540         u64 val = 0;
541         struct caps_sensor_2 *caps;
542         struct occ *occ = dev_get_drvdata(dev);
543         struct occ_sensors *sensors = &occ->sensors;
544         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
545
546         rc = occ_update_response(occ);
547         if (rc)
548                 return rc;
549
550         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
551
552         switch (sattr->nr) {
553         case 0:
554                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
555         case 1:
556                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
557                 break;
558         case 2:
559                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
560                 break;
561         case 3:
562                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
563                 break;
564         case 4:
565                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
566                 break;
567         case 5:
568                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
569                 break;
570         case 6:
571                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
572                 break;
573         case 7:
574                 if (occ->sensors.caps.version == 1)
575                         return -EINVAL;
576
577                 val = caps->user_source;
578                 break;
579         default:
580                 return -EINVAL;
581         }
582
583         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
584 }
585
586 static ssize_t occ_show_caps_3(struct device *dev,
587                                struct device_attribute *attr, char *buf)
588 {
589         int rc;
590         u64 val = 0;
591         struct caps_sensor_3 *caps;
592         struct occ *occ = dev_get_drvdata(dev);
593         struct occ_sensors *sensors = &occ->sensors;
594         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
595
596         rc = occ_update_response(occ);
597         if (rc)
598                 return rc;
599
600         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
601
602         switch (sattr->nr) {
603         case 0:
604                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
605         case 1:
606                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
607                 break;
608         case 2:
609                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
610                 break;
611         case 3:
612                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
613                 break;
614         case 4:
615                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
616                 break;
617         case 5:
618                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
619                 break;
620         case 6:
621                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
622                 break;
623         case 7:
624                 val = caps->user_source;
625                 break;
626         default:
627                 return -EINVAL;
628         }
629
630         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
631 }
632
633 static ssize_t occ_store_caps_user(struct device *dev,
634                                    struct device_attribute *attr,
635                                    const char *buf, size_t count)
636 {
637         int rc;
638         u16 user_power_cap;
639         unsigned long long value;
640         struct occ *occ = dev_get_drvdata(dev);
641
642         rc = kstrtoull(buf, 0, &value);
643         if (rc)
644                 return rc;
645
646         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
647
648         rc = occ_set_user_power_cap(occ, user_power_cap);
649         if (rc)
650                 return rc;
651
652         return count;
653 }
654
655 static ssize_t occ_show_extended(struct device *dev,
656                                  struct device_attribute *attr, char *buf)
657 {
658         int rc;
659         struct extended_sensor *extn;
660         struct occ *occ = dev_get_drvdata(dev);
661         struct occ_sensors *sensors = &occ->sensors;
662         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
663
664         rc = occ_update_response(occ);
665         if (rc)
666                 return rc;
667
668         extn = ((struct extended_sensor *)sensors->extended.data) +
669                 sattr->index;
670
671         switch (sattr->nr) {
672         case 0:
673                 if (extn->flags & EXTN_FLAG_SENSOR_ID)
674                         rc = snprintf(buf, PAGE_SIZE - 1, "%u",
675                                       get_unaligned_be32(&extn->sensor_id));
676                 else
677                         rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
678                                       extn->name[0], extn->name[1],
679                                       extn->name[2], extn->name[3]);
680                 break;
681         case 1:
682                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
683                 break;
684         case 2:
685                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
686                               extn->data[0], extn->data[1], extn->data[2],
687                               extn->data[3], extn->data[4], extn->data[5]);
688                 break;
689         default:
690                 return -EINVAL;
691         }
692
693         return rc;
694 }
695
696 /*
697  * Some helper macros to make it easier to define an occ_attribute. Since these
698  * are dynamically allocated, we shouldn't use the existing kernel macros which
699  * stringify the name argument.
700  */
701 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
702         .attr   = {                                                     \
703                 .name = _name,                                          \
704                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
705         },                                                              \
706         .show   = _show,                                                \
707         .store  = _store,                                               \
708 }
709
710 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
711         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
712         .index          = _index,                                       \
713         .nr             = _nr,                                          \
714 }
715
716 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
717         ((struct sensor_device_attribute_2)                             \
718                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
719
720 /*
721  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
722  * use our own instead of the built-in hwmon attribute types.
723  */
724 static int occ_setup_sensor_attrs(struct occ *occ)
725 {
726         unsigned int i, s, num_attrs = 0;
727         struct device *dev = occ->bus_dev;
728         struct occ_sensors *sensors = &occ->sensors;
729         struct occ_attribute *attr;
730         struct temp_sensor_2 *temp;
731         ssize_t (*show_temp)(struct device *, struct device_attribute *,
732                              char *) = occ_show_temp_1;
733         ssize_t (*show_freq)(struct device *, struct device_attribute *,
734                              char *) = occ_show_freq_1;
735         ssize_t (*show_power)(struct device *, struct device_attribute *,
736                               char *) = occ_show_power_1;
737         ssize_t (*show_caps)(struct device *, struct device_attribute *,
738                              char *) = occ_show_caps_1_2;
739
740         switch (sensors->temp.version) {
741         case 1:
742                 num_attrs += (sensors->temp.num_sensors * 2);
743                 break;
744         case 2:
745                 num_attrs += (sensors->temp.num_sensors * 4);
746                 show_temp = occ_show_temp_2;
747                 break;
748         default:
749                 sensors->temp.num_sensors = 0;
750         }
751
752         switch (sensors->freq.version) {
753         case 2:
754                 show_freq = occ_show_freq_2;
755                 /* fall through */
756         case 1:
757                 num_attrs += (sensors->freq.num_sensors * 2);
758                 break;
759         default:
760                 sensors->freq.num_sensors = 0;
761         }
762
763         switch (sensors->power.version) {
764         case 2:
765                 show_power = occ_show_power_2;
766                 /* fall through */
767         case 1:
768                 num_attrs += (sensors->power.num_sensors * 4);
769                 break;
770         case 0xA0:
771                 num_attrs += (sensors->power.num_sensors * 16);
772                 show_power = occ_show_power_a0;
773                 break;
774         default:
775                 sensors->power.num_sensors = 0;
776         }
777
778         switch (sensors->caps.version) {
779         case 1:
780                 num_attrs += (sensors->caps.num_sensors * 7);
781                 break;
782         case 3:
783                 show_caps = occ_show_caps_3;
784                 /* fall through */
785         case 2:
786                 num_attrs += (sensors->caps.num_sensors * 8);
787                 break;
788         default:
789                 sensors->caps.num_sensors = 0;
790         }
791
792         switch (sensors->extended.version) {
793         case 1:
794                 num_attrs += (sensors->extended.num_sensors * 3);
795                 break;
796         default:
797                 sensors->extended.num_sensors = 0;
798         }
799
800         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
801                                   GFP_KERNEL);
802         if (!occ->attrs)
803                 return -ENOMEM;
804
805         /* null-terminated list */
806         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
807                                         num_attrs + 1, GFP_KERNEL);
808         if (!occ->group.attrs)
809                 return -ENOMEM;
810
811         attr = occ->attrs;
812
813         for (i = 0; i < sensors->temp.num_sensors; ++i) {
814                 s = i + 1;
815                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
816
817                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
818                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
819                                              0, i);
820                 attr++;
821
822                 if (sensors->temp.version > 1 &&
823                     temp->fru_type == OCC_FRU_TYPE_VRM) {
824                         snprintf(attr->name, sizeof(attr->name),
825                                  "temp%d_alarm", s);
826                 } else {
827                         snprintf(attr->name, sizeof(attr->name),
828                                  "temp%d_input", s);
829                 }
830
831                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
832                                              1, i);
833                 attr++;
834
835                 if (sensors->temp.version > 1) {
836                         snprintf(attr->name, sizeof(attr->name),
837                                  "temp%d_fru_type", s);
838                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
839                                                      show_temp, NULL, 2, i);
840                         attr++;
841
842                         snprintf(attr->name, sizeof(attr->name),
843                                  "temp%d_fault", s);
844                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
845                                                      show_temp, NULL, 3, i);
846                         attr++;
847                 }
848         }
849
850         for (i = 0; i < sensors->freq.num_sensors; ++i) {
851                 s = i + 1;
852
853                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
854                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
855                                              0, i);
856                 attr++;
857
858                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
859                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
860                                              1, i);
861                 attr++;
862         }
863
864         if (sensors->power.version == 0xA0) {
865                 /*
866                  * Special case for many-attribute power sensor. Split it into
867                  * a sensor number per power type, emulating several sensors.
868                  */
869                 for (i = 0; i < sensors->power.num_sensors; ++i) {
870                         unsigned int j;
871                         unsigned int nr = 0;
872
873                         s = (i * 4) + 1;
874
875                         for (j = 0; j < 4; ++j) {
876                                 snprintf(attr->name, sizeof(attr->name),
877                                          "power%d_label", s);
878                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
879                                                              show_power, NULL,
880                                                              nr++, i);
881                                 attr++;
882
883                                 snprintf(attr->name, sizeof(attr->name),
884                                          "power%d_average", s);
885                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
886                                                              show_power, NULL,
887                                                              nr++, i);
888                                 attr++;
889
890                                 snprintf(attr->name, sizeof(attr->name),
891                                          "power%d_average_interval", s);
892                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
893                                                              show_power, NULL,
894                                                              nr++, i);
895                                 attr++;
896
897                                 snprintf(attr->name, sizeof(attr->name),
898                                          "power%d_input", s);
899                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
900                                                              show_power, NULL,
901                                                              nr++, i);
902                                 attr++;
903
904                                 s++;
905                         }
906                 }
907
908                 s = (sensors->power.num_sensors * 4) + 1;
909         } else {
910                 for (i = 0; i < sensors->power.num_sensors; ++i) {
911                         s = i + 1;
912
913                         snprintf(attr->name, sizeof(attr->name),
914                                  "power%d_label", s);
915                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
916                                                      show_power, NULL, 0, i);
917                         attr++;
918
919                         snprintf(attr->name, sizeof(attr->name),
920                                  "power%d_average", s);
921                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
922                                                      show_power, NULL, 1, i);
923                         attr++;
924
925                         snprintf(attr->name, sizeof(attr->name),
926                                  "power%d_average_interval", s);
927                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
928                                                      show_power, NULL, 2, i);
929                         attr++;
930
931                         snprintf(attr->name, sizeof(attr->name),
932                                  "power%d_input", s);
933                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
934                                                      show_power, NULL, 3, i);
935                         attr++;
936                 }
937
938                 s = sensors->power.num_sensors + 1;
939         }
940
941         if (sensors->caps.num_sensors >= 1) {
942                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
943                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
944                                              0, 0);
945                 attr++;
946
947                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
948                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
949                                              1, 0);
950                 attr++;
951
952                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
953                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
954                                              2, 0);
955                 attr++;
956
957                 snprintf(attr->name, sizeof(attr->name),
958                          "power%d_cap_not_redundant", s);
959                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
960                                              3, 0);
961                 attr++;
962
963                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
964                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
965                                              4, 0);
966                 attr++;
967
968                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
969                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
970                                              5, 0);
971                 attr++;
972
973                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
974                          s);
975                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
976                                              occ_store_caps_user, 6, 0);
977                 attr++;
978
979                 if (sensors->caps.version > 1) {
980                         snprintf(attr->name, sizeof(attr->name),
981                                  "power%d_cap_user_source", s);
982                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983                                                      show_caps, NULL, 7, 0);
984                         attr++;
985                 }
986         }
987
988         for (i = 0; i < sensors->extended.num_sensors; ++i) {
989                 s = i + 1;
990
991                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
992                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
993                                              occ_show_extended, NULL, 0, i);
994                 attr++;
995
996                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
997                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998                                              occ_show_extended, NULL, 1, i);
999                 attr++;
1000
1001                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1002                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003                                              occ_show_extended, NULL, 2, i);
1004                 attr++;
1005         }
1006
1007         /* put the sensors in the group */
1008         for (i = 0; i < num_attrs; ++i) {
1009                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1010                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1011         }
1012
1013         return 0;
1014 }
1015
1016 /* only need to do this once at startup, as OCC won't change sensors on us */
1017 static void occ_parse_poll_response(struct occ *occ)
1018 {
1019         unsigned int i, old_offset, offset = 0, size = 0;
1020         struct occ_sensor *sensor;
1021         struct occ_sensors *sensors = &occ->sensors;
1022         struct occ_response *resp = &occ->resp;
1023         struct occ_poll_response *poll =
1024                 (struct occ_poll_response *)&resp->data[0];
1025         struct occ_poll_response_header *header = &poll->header;
1026         struct occ_sensor_data_block *block = &poll->block;
1027
1028         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1029                  header->occ_code_level);
1030
1031         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1032                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1033                 old_offset = offset;
1034                 offset = (block->header.num_sensors *
1035                           block->header.sensor_length) + sizeof(block->header);
1036                 size += offset;
1037
1038                 /* validate all the length/size fields */
1039                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1040                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1041                         return;
1042                 }
1043
1044                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1045                         old_offset, offset - 1, block->header.eye_catcher,
1046                         block->header.num_sensors);
1047
1048                 /* match sensor block type */
1049                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1050                         sensor = &sensors->temp;
1051                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1052                         sensor = &sensors->freq;
1053                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1054                         sensor = &sensors->power;
1055                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1056                         sensor = &sensors->caps;
1057                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1058                         sensor = &sensors->extended;
1059                 else {
1060                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1061                                  block->header.eye_catcher);
1062                         continue;
1063                 }
1064
1065                 sensor->num_sensors = block->header.num_sensors;
1066                 sensor->version = block->header.sensor_format;
1067                 sensor->data = &block->data;
1068         }
1069
1070         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1071                 sizeof(*header), size + sizeof(*header));
1072 }
1073
1074 int occ_setup(struct occ *occ, const char *name)
1075 {
1076         int rc;
1077
1078         mutex_init(&occ->lock);
1079         occ->groups[0] = &occ->group;
1080
1081         /* no need to lock */
1082         rc = occ_poll(occ);
1083         if (rc == -ESHUTDOWN) {
1084                 dev_info(occ->bus_dev, "host is not ready\n");
1085                 return rc;
1086         } else if (rc < 0) {
1087                 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1088                         rc);
1089                 return rc;
1090         }
1091
1092         occ_parse_poll_response(occ);
1093
1094         rc = occ_setup_sensor_attrs(occ);
1095         if (rc) {
1096                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1097                         rc);
1098                 return rc;
1099         }
1100
1101         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1102                                                             occ, occ->groups);
1103         if (IS_ERR(occ->hwmon)) {
1104                 rc = PTR_ERR(occ->hwmon);
1105                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1106                         rc);
1107                 return rc;
1108         }
1109
1110         rc = occ_setup_sysfs(occ);
1111         if (rc)
1112                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1113
1114         return rc;
1115 }
1116 EXPORT_SYMBOL_GPL(occ_setup);
1117
1118 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1119 MODULE_DESCRIPTION("Common OCC hwmon code");
1120 MODULE_LICENSE("GPL");