Merge tag 'mips_5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49         struct list_head node;
50         struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device  *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57 static int hyperv_cpuhp_online;
58
59 static void *hv_panic_page;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62                               void *args)
63 {
64         struct pt_regs *regs;
65
66         regs = current_pt_regs();
67
68         hyperv_report_panic(regs, val);
69         return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73                             void *args)
74 {
75         struct die_args *die = (struct die_args *)args;
76         struct pt_regs *regs = die->regs;
77
78         hyperv_report_panic(regs, val);
79         return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83         .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86         .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96         if (hv_acpi_dev == NULL)
97                 return -ENODEV;
98
99         return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105         int i;
106         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112         return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117         return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(const struct vmbus_channel *channel,
121                            const struct hv_monitor_page *monitor_page)
122 {
123         u8 monitor_group = channel_monitor_group(channel);
124
125         return monitor_page->trigger_group[monitor_group].pending;
126 }
127
128 static u32 channel_latency(const struct vmbus_channel *channel,
129                            const struct hv_monitor_page *monitor_page)
130 {
131         u8 monitor_group = channel_monitor_group(channel);
132         u8 monitor_offset = channel_monitor_offset(channel);
133
134         return monitor_page->latency[monitor_group][monitor_offset];
135 }
136
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138                            struct hv_monitor_page *monitor_page)
139 {
140         u8 monitor_group = channel_monitor_group(channel);
141         u8 monitor_offset = channel_monitor_offset(channel);
142         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146                        char *buf)
147 {
148         struct hv_device *hv_dev = device_to_hv_device(dev);
149
150         if (!hv_dev->channel)
151                 return -ENODEV;
152         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157                           char *buf)
158 {
159         struct hv_device *hv_dev = device_to_hv_device(dev);
160
161         if (!hv_dev->channel)
162                 return -ENODEV;
163         return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166
167 static ssize_t monitor_id_show(struct device *dev,
168                                struct device_attribute *dev_attr, char *buf)
169 {
170         struct hv_device *hv_dev = device_to_hv_device(dev);
171
172         if (!hv_dev->channel)
173                 return -ENODEV;
174         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177
178 static ssize_t class_id_show(struct device *dev,
179                                struct device_attribute *dev_attr, char *buf)
180 {
181         struct hv_device *hv_dev = device_to_hv_device(dev);
182
183         if (!hv_dev->channel)
184                 return -ENODEV;
185         return sprintf(buf, "{%pUl}\n",
186                        hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189
190 static ssize_t device_id_show(struct device *dev,
191                               struct device_attribute *dev_attr, char *buf)
192 {
193         struct hv_device *hv_dev = device_to_hv_device(dev);
194
195         if (!hv_dev->channel)
196                 return -ENODEV;
197         return sprintf(buf, "{%pUl}\n",
198                        hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201
202 static ssize_t modalias_show(struct device *dev,
203                              struct device_attribute *dev_attr, char *buf)
204 {
205         struct hv_device *hv_dev = device_to_hv_device(dev);
206         char alias_name[VMBUS_ALIAS_LEN + 1];
207
208         print_alias_name(hv_dev, alias_name);
209         return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215                               struct device_attribute *attr, char *buf)
216 {
217         struct hv_device *hv_dev = device_to_hv_device(dev);
218
219         if (!hv_dev->channel)
220                 return -ENODEV;
221
222         return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226
227 static ssize_t server_monitor_pending_show(struct device *dev,
228                                            struct device_attribute *dev_attr,
229                                            char *buf)
230 {
231         struct hv_device *hv_dev = device_to_hv_device(dev);
232
233         if (!hv_dev->channel)
234                 return -ENODEV;
235         return sprintf(buf, "%d\n",
236                        channel_pending(hv_dev->channel,
237                                        vmbus_connection.monitor_pages[0]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
241 static ssize_t client_monitor_pending_show(struct device *dev,
242                                            struct device_attribute *dev_attr,
243                                            char *buf)
244 {
245         struct hv_device *hv_dev = device_to_hv_device(dev);
246
247         if (!hv_dev->channel)
248                 return -ENODEV;
249         return sprintf(buf, "%d\n",
250                        channel_pending(hv_dev->channel,
251                                        vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
255 static ssize_t server_monitor_latency_show(struct device *dev,
256                                            struct device_attribute *dev_attr,
257                                            char *buf)
258 {
259         struct hv_device *hv_dev = device_to_hv_device(dev);
260
261         if (!hv_dev->channel)
262                 return -ENODEV;
263         return sprintf(buf, "%d\n",
264                        channel_latency(hv_dev->channel,
265                                        vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
269 static ssize_t client_monitor_latency_show(struct device *dev,
270                                            struct device_attribute *dev_attr,
271                                            char *buf)
272 {
273         struct hv_device *hv_dev = device_to_hv_device(dev);
274
275         if (!hv_dev->channel)
276                 return -ENODEV;
277         return sprintf(buf, "%d\n",
278                        channel_latency(hv_dev->channel,
279                                        vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284                                            struct device_attribute *dev_attr,
285                                            char *buf)
286 {
287         struct hv_device *hv_dev = device_to_hv_device(dev);
288
289         if (!hv_dev->channel)
290                 return -ENODEV;
291         return sprintf(buf, "%d\n",
292                        channel_conn_id(hv_dev->channel,
293                                        vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298                                            struct device_attribute *dev_attr,
299                                            char *buf)
300 {
301         struct hv_device *hv_dev = device_to_hv_device(dev);
302
303         if (!hv_dev->channel)
304                 return -ENODEV;
305         return sprintf(buf, "%d\n",
306                        channel_conn_id(hv_dev->channel,
307                                        vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
311 static ssize_t out_intr_mask_show(struct device *dev,
312                                   struct device_attribute *dev_attr, char *buf)
313 {
314         struct hv_device *hv_dev = device_to_hv_device(dev);
315         struct hv_ring_buffer_debug_info outbound;
316         int ret;
317
318         if (!hv_dev->channel)
319                 return -ENODEV;
320
321         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322                                           &outbound);
323         if (ret < 0)
324                 return ret;
325
326         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329
330 static ssize_t out_read_index_show(struct device *dev,
331                                    struct device_attribute *dev_attr, char *buf)
332 {
333         struct hv_device *hv_dev = device_to_hv_device(dev);
334         struct hv_ring_buffer_debug_info outbound;
335         int ret;
336
337         if (!hv_dev->channel)
338                 return -ENODEV;
339
340         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341                                           &outbound);
342         if (ret < 0)
343                 return ret;
344         return sprintf(buf, "%d\n", outbound.current_read_index);
345 }
346 static DEVICE_ATTR_RO(out_read_index);
347
348 static ssize_t out_write_index_show(struct device *dev,
349                                     struct device_attribute *dev_attr,
350                                     char *buf)
351 {
352         struct hv_device *hv_dev = device_to_hv_device(dev);
353         struct hv_ring_buffer_debug_info outbound;
354         int ret;
355
356         if (!hv_dev->channel)
357                 return -ENODEV;
358
359         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360                                           &outbound);
361         if (ret < 0)
362                 return ret;
363         return sprintf(buf, "%d\n", outbound.current_write_index);
364 }
365 static DEVICE_ATTR_RO(out_write_index);
366
367 static ssize_t out_read_bytes_avail_show(struct device *dev,
368                                          struct device_attribute *dev_attr,
369                                          char *buf)
370 {
371         struct hv_device *hv_dev = device_to_hv_device(dev);
372         struct hv_ring_buffer_debug_info outbound;
373         int ret;
374
375         if (!hv_dev->channel)
376                 return -ENODEV;
377
378         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379                                           &outbound);
380         if (ret < 0)
381                 return ret;
382         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
383 }
384 static DEVICE_ATTR_RO(out_read_bytes_avail);
385
386 static ssize_t out_write_bytes_avail_show(struct device *dev,
387                                           struct device_attribute *dev_attr,
388                                           char *buf)
389 {
390         struct hv_device *hv_dev = device_to_hv_device(dev);
391         struct hv_ring_buffer_debug_info outbound;
392         int ret;
393
394         if (!hv_dev->channel)
395                 return -ENODEV;
396
397         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398                                           &outbound);
399         if (ret < 0)
400                 return ret;
401         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
402 }
403 static DEVICE_ATTR_RO(out_write_bytes_avail);
404
405 static ssize_t in_intr_mask_show(struct device *dev,
406                                  struct device_attribute *dev_attr, char *buf)
407 {
408         struct hv_device *hv_dev = device_to_hv_device(dev);
409         struct hv_ring_buffer_debug_info inbound;
410         int ret;
411
412         if (!hv_dev->channel)
413                 return -ENODEV;
414
415         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
416         if (ret < 0)
417                 return ret;
418
419         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
420 }
421 static DEVICE_ATTR_RO(in_intr_mask);
422
423 static ssize_t in_read_index_show(struct device *dev,
424                                   struct device_attribute *dev_attr, char *buf)
425 {
426         struct hv_device *hv_dev = device_to_hv_device(dev);
427         struct hv_ring_buffer_debug_info inbound;
428         int ret;
429
430         if (!hv_dev->channel)
431                 return -ENODEV;
432
433         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434         if (ret < 0)
435                 return ret;
436
437         return sprintf(buf, "%d\n", inbound.current_read_index);
438 }
439 static DEVICE_ATTR_RO(in_read_index);
440
441 static ssize_t in_write_index_show(struct device *dev,
442                                    struct device_attribute *dev_attr, char *buf)
443 {
444         struct hv_device *hv_dev = device_to_hv_device(dev);
445         struct hv_ring_buffer_debug_info inbound;
446         int ret;
447
448         if (!hv_dev->channel)
449                 return -ENODEV;
450
451         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452         if (ret < 0)
453                 return ret;
454
455         return sprintf(buf, "%d\n", inbound.current_write_index);
456 }
457 static DEVICE_ATTR_RO(in_write_index);
458
459 static ssize_t in_read_bytes_avail_show(struct device *dev,
460                                         struct device_attribute *dev_attr,
461                                         char *buf)
462 {
463         struct hv_device *hv_dev = device_to_hv_device(dev);
464         struct hv_ring_buffer_debug_info inbound;
465         int ret;
466
467         if (!hv_dev->channel)
468                 return -ENODEV;
469
470         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471         if (ret < 0)
472                 return ret;
473
474         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
475 }
476 static DEVICE_ATTR_RO(in_read_bytes_avail);
477
478 static ssize_t in_write_bytes_avail_show(struct device *dev,
479                                          struct device_attribute *dev_attr,
480                                          char *buf)
481 {
482         struct hv_device *hv_dev = device_to_hv_device(dev);
483         struct hv_ring_buffer_debug_info inbound;
484         int ret;
485
486         if (!hv_dev->channel)
487                 return -ENODEV;
488
489         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490         if (ret < 0)
491                 return ret;
492
493         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
494 }
495 static DEVICE_ATTR_RO(in_write_bytes_avail);
496
497 static ssize_t channel_vp_mapping_show(struct device *dev,
498                                        struct device_attribute *dev_attr,
499                                        char *buf)
500 {
501         struct hv_device *hv_dev = device_to_hv_device(dev);
502         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
503         unsigned long flags;
504         int buf_size = PAGE_SIZE, n_written, tot_written;
505         struct list_head *cur;
506
507         if (!channel)
508                 return -ENODEV;
509
510         tot_written = snprintf(buf, buf_size, "%u:%u\n",
511                 channel->offermsg.child_relid, channel->target_cpu);
512
513         spin_lock_irqsave(&channel->lock, flags);
514
515         list_for_each(cur, &channel->sc_list) {
516                 if (tot_written >= buf_size - 1)
517                         break;
518
519                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
520                 n_written = scnprintf(buf + tot_written,
521                                      buf_size - tot_written,
522                                      "%u:%u\n",
523                                      cur_sc->offermsg.child_relid,
524                                      cur_sc->target_cpu);
525                 tot_written += n_written;
526         }
527
528         spin_unlock_irqrestore(&channel->lock, flags);
529
530         return tot_written;
531 }
532 static DEVICE_ATTR_RO(channel_vp_mapping);
533
534 static ssize_t vendor_show(struct device *dev,
535                            struct device_attribute *dev_attr,
536                            char *buf)
537 {
538         struct hv_device *hv_dev = device_to_hv_device(dev);
539         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
540 }
541 static DEVICE_ATTR_RO(vendor);
542
543 static ssize_t device_show(struct device *dev,
544                            struct device_attribute *dev_attr,
545                            char *buf)
546 {
547         struct hv_device *hv_dev = device_to_hv_device(dev);
548         return sprintf(buf, "0x%x\n", hv_dev->device_id);
549 }
550 static DEVICE_ATTR_RO(device);
551
552 static ssize_t driver_override_store(struct device *dev,
553                                      struct device_attribute *attr,
554                                      const char *buf, size_t count)
555 {
556         struct hv_device *hv_dev = device_to_hv_device(dev);
557         char *driver_override, *old, *cp;
558
559         /* We need to keep extra room for a newline */
560         if (count >= (PAGE_SIZE - 1))
561                 return -EINVAL;
562
563         driver_override = kstrndup(buf, count, GFP_KERNEL);
564         if (!driver_override)
565                 return -ENOMEM;
566
567         cp = strchr(driver_override, '\n');
568         if (cp)
569                 *cp = '\0';
570
571         device_lock(dev);
572         old = hv_dev->driver_override;
573         if (strlen(driver_override)) {
574                 hv_dev->driver_override = driver_override;
575         } else {
576                 kfree(driver_override);
577                 hv_dev->driver_override = NULL;
578         }
579         device_unlock(dev);
580
581         kfree(old);
582
583         return count;
584 }
585
586 static ssize_t driver_override_show(struct device *dev,
587                                     struct device_attribute *attr, char *buf)
588 {
589         struct hv_device *hv_dev = device_to_hv_device(dev);
590         ssize_t len;
591
592         device_lock(dev);
593         len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
594         device_unlock(dev);
595
596         return len;
597 }
598 static DEVICE_ATTR_RW(driver_override);
599
600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601 static struct attribute *vmbus_dev_attrs[] = {
602         &dev_attr_id.attr,
603         &dev_attr_state.attr,
604         &dev_attr_monitor_id.attr,
605         &dev_attr_class_id.attr,
606         &dev_attr_device_id.attr,
607         &dev_attr_modalias.attr,
608 #ifdef CONFIG_NUMA
609         &dev_attr_numa_node.attr,
610 #endif
611         &dev_attr_server_monitor_pending.attr,
612         &dev_attr_client_monitor_pending.attr,
613         &dev_attr_server_monitor_latency.attr,
614         &dev_attr_client_monitor_latency.attr,
615         &dev_attr_server_monitor_conn_id.attr,
616         &dev_attr_client_monitor_conn_id.attr,
617         &dev_attr_out_intr_mask.attr,
618         &dev_attr_out_read_index.attr,
619         &dev_attr_out_write_index.attr,
620         &dev_attr_out_read_bytes_avail.attr,
621         &dev_attr_out_write_bytes_avail.attr,
622         &dev_attr_in_intr_mask.attr,
623         &dev_attr_in_read_index.attr,
624         &dev_attr_in_write_index.attr,
625         &dev_attr_in_read_bytes_avail.attr,
626         &dev_attr_in_write_bytes_avail.attr,
627         &dev_attr_channel_vp_mapping.attr,
628         &dev_attr_vendor.attr,
629         &dev_attr_device.attr,
630         &dev_attr_driver_override.attr,
631         NULL,
632 };
633
634 /*
635  * Device-level attribute_group callback function. Returns the permission for
636  * each attribute, and returns 0 if an attribute is not visible.
637  */
638 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
639                                          struct attribute *attr, int idx)
640 {
641         struct device *dev = kobj_to_dev(kobj);
642         const struct hv_device *hv_dev = device_to_hv_device(dev);
643
644         /* Hide the monitor attributes if the monitor mechanism is not used. */
645         if (!hv_dev->channel->offermsg.monitor_allocated &&
646             (attr == &dev_attr_monitor_id.attr ||
647              attr == &dev_attr_server_monitor_pending.attr ||
648              attr == &dev_attr_client_monitor_pending.attr ||
649              attr == &dev_attr_server_monitor_latency.attr ||
650              attr == &dev_attr_client_monitor_latency.attr ||
651              attr == &dev_attr_server_monitor_conn_id.attr ||
652              attr == &dev_attr_client_monitor_conn_id.attr))
653                 return 0;
654
655         return attr->mode;
656 }
657
658 static const struct attribute_group vmbus_dev_group = {
659         .attrs = vmbus_dev_attrs,
660         .is_visible = vmbus_dev_attr_is_visible
661 };
662 __ATTRIBUTE_GROUPS(vmbus_dev);
663
664 /*
665  * vmbus_uevent - add uevent for our device
666  *
667  * This routine is invoked when a device is added or removed on the vmbus to
668  * generate a uevent to udev in the userspace. The udev will then look at its
669  * rule and the uevent generated here to load the appropriate driver
670  *
671  * The alias string will be of the form vmbus:guid where guid is the string
672  * representation of the device guid (each byte of the guid will be
673  * represented with two hex characters.
674  */
675 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
676 {
677         struct hv_device *dev = device_to_hv_device(device);
678         int ret;
679         char alias_name[VMBUS_ALIAS_LEN + 1];
680
681         print_alias_name(dev, alias_name);
682         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
683         return ret;
684 }
685
686 static const struct hv_vmbus_device_id *
687 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
688 {
689         if (id == NULL)
690                 return NULL; /* empty device table */
691
692         for (; !guid_is_null(&id->guid); id++)
693                 if (guid_equal(&id->guid, guid))
694                         return id;
695
696         return NULL;
697 }
698
699 static const struct hv_vmbus_device_id *
700 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
701 {
702         const struct hv_vmbus_device_id *id = NULL;
703         struct vmbus_dynid *dynid;
704
705         spin_lock(&drv->dynids.lock);
706         list_for_each_entry(dynid, &drv->dynids.list, node) {
707                 if (guid_equal(&dynid->id.guid, guid)) {
708                         id = &dynid->id;
709                         break;
710                 }
711         }
712         spin_unlock(&drv->dynids.lock);
713
714         return id;
715 }
716
717 static const struct hv_vmbus_device_id vmbus_device_null;
718
719 /*
720  * Return a matching hv_vmbus_device_id pointer.
721  * If there is no match, return NULL.
722  */
723 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
724                                                         struct hv_device *dev)
725 {
726         const guid_t *guid = &dev->dev_type;
727         const struct hv_vmbus_device_id *id;
728
729         /* When driver_override is set, only bind to the matching driver */
730         if (dev->driver_override && strcmp(dev->driver_override, drv->name))
731                 return NULL;
732
733         /* Look at the dynamic ids first, before the static ones */
734         id = hv_vmbus_dynid_match(drv, guid);
735         if (!id)
736                 id = hv_vmbus_dev_match(drv->id_table, guid);
737
738         /* driver_override will always match, send a dummy id */
739         if (!id && dev->driver_override)
740                 id = &vmbus_device_null;
741
742         return id;
743 }
744
745 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
746 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
747 {
748         struct vmbus_dynid *dynid;
749
750         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
751         if (!dynid)
752                 return -ENOMEM;
753
754         dynid->id.guid = *guid;
755
756         spin_lock(&drv->dynids.lock);
757         list_add_tail(&dynid->node, &drv->dynids.list);
758         spin_unlock(&drv->dynids.lock);
759
760         return driver_attach(&drv->driver);
761 }
762
763 static void vmbus_free_dynids(struct hv_driver *drv)
764 {
765         struct vmbus_dynid *dynid, *n;
766
767         spin_lock(&drv->dynids.lock);
768         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
769                 list_del(&dynid->node);
770                 kfree(dynid);
771         }
772         spin_unlock(&drv->dynids.lock);
773 }
774
775 /*
776  * store_new_id - sysfs frontend to vmbus_add_dynid()
777  *
778  * Allow GUIDs to be added to an existing driver via sysfs.
779  */
780 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
781                             size_t count)
782 {
783         struct hv_driver *drv = drv_to_hv_drv(driver);
784         guid_t guid;
785         ssize_t retval;
786
787         retval = guid_parse(buf, &guid);
788         if (retval)
789                 return retval;
790
791         if (hv_vmbus_dynid_match(drv, &guid))
792                 return -EEXIST;
793
794         retval = vmbus_add_dynid(drv, &guid);
795         if (retval)
796                 return retval;
797         return count;
798 }
799 static DRIVER_ATTR_WO(new_id);
800
801 /*
802  * store_remove_id - remove a PCI device ID from this driver
803  *
804  * Removes a dynamic pci device ID to this driver.
805  */
806 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
807                                size_t count)
808 {
809         struct hv_driver *drv = drv_to_hv_drv(driver);
810         struct vmbus_dynid *dynid, *n;
811         guid_t guid;
812         ssize_t retval;
813
814         retval = guid_parse(buf, &guid);
815         if (retval)
816                 return retval;
817
818         retval = -ENODEV;
819         spin_lock(&drv->dynids.lock);
820         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
821                 struct hv_vmbus_device_id *id = &dynid->id;
822
823                 if (guid_equal(&id->guid, &guid)) {
824                         list_del(&dynid->node);
825                         kfree(dynid);
826                         retval = count;
827                         break;
828                 }
829         }
830         spin_unlock(&drv->dynids.lock);
831
832         return retval;
833 }
834 static DRIVER_ATTR_WO(remove_id);
835
836 static struct attribute *vmbus_drv_attrs[] = {
837         &driver_attr_new_id.attr,
838         &driver_attr_remove_id.attr,
839         NULL,
840 };
841 ATTRIBUTE_GROUPS(vmbus_drv);
842
843
844 /*
845  * vmbus_match - Attempt to match the specified device to the specified driver
846  */
847 static int vmbus_match(struct device *device, struct device_driver *driver)
848 {
849         struct hv_driver *drv = drv_to_hv_drv(driver);
850         struct hv_device *hv_dev = device_to_hv_device(device);
851
852         /* The hv_sock driver handles all hv_sock offers. */
853         if (is_hvsock_channel(hv_dev->channel))
854                 return drv->hvsock;
855
856         if (hv_vmbus_get_id(drv, hv_dev))
857                 return 1;
858
859         return 0;
860 }
861
862 /*
863  * vmbus_probe - Add the new vmbus's child device
864  */
865 static int vmbus_probe(struct device *child_device)
866 {
867         int ret = 0;
868         struct hv_driver *drv =
869                         drv_to_hv_drv(child_device->driver);
870         struct hv_device *dev = device_to_hv_device(child_device);
871         const struct hv_vmbus_device_id *dev_id;
872
873         dev_id = hv_vmbus_get_id(drv, dev);
874         if (drv->probe) {
875                 ret = drv->probe(dev, dev_id);
876                 if (ret != 0)
877                         pr_err("probe failed for device %s (%d)\n",
878                                dev_name(child_device), ret);
879
880         } else {
881                 pr_err("probe not set for driver %s\n",
882                        dev_name(child_device));
883                 ret = -ENODEV;
884         }
885         return ret;
886 }
887
888 /*
889  * vmbus_remove - Remove a vmbus device
890  */
891 static int vmbus_remove(struct device *child_device)
892 {
893         struct hv_driver *drv;
894         struct hv_device *dev = device_to_hv_device(child_device);
895
896         if (child_device->driver) {
897                 drv = drv_to_hv_drv(child_device->driver);
898                 if (drv->remove)
899                         drv->remove(dev);
900         }
901
902         return 0;
903 }
904
905
906 /*
907  * vmbus_shutdown - Shutdown a vmbus device
908  */
909 static void vmbus_shutdown(struct device *child_device)
910 {
911         struct hv_driver *drv;
912         struct hv_device *dev = device_to_hv_device(child_device);
913
914
915         /* The device may not be attached yet */
916         if (!child_device->driver)
917                 return;
918
919         drv = drv_to_hv_drv(child_device->driver);
920
921         if (drv->shutdown)
922                 drv->shutdown(dev);
923 }
924
925
926 /*
927  * vmbus_device_release - Final callback release of the vmbus child device
928  */
929 static void vmbus_device_release(struct device *device)
930 {
931         struct hv_device *hv_dev = device_to_hv_device(device);
932         struct vmbus_channel *channel = hv_dev->channel;
933
934         mutex_lock(&vmbus_connection.channel_mutex);
935         hv_process_channel_removal(channel);
936         mutex_unlock(&vmbus_connection.channel_mutex);
937         kfree(hv_dev);
938 }
939
940 /* The one and only one */
941 static struct bus_type  hv_bus = {
942         .name =         "vmbus",
943         .match =                vmbus_match,
944         .shutdown =             vmbus_shutdown,
945         .remove =               vmbus_remove,
946         .probe =                vmbus_probe,
947         .uevent =               vmbus_uevent,
948         .dev_groups =           vmbus_dev_groups,
949         .drv_groups =           vmbus_drv_groups,
950 };
951
952 struct onmessage_work_context {
953         struct work_struct work;
954         struct hv_message msg;
955 };
956
957 static void vmbus_onmessage_work(struct work_struct *work)
958 {
959         struct onmessage_work_context *ctx;
960
961         /* Do not process messages if we're in DISCONNECTED state */
962         if (vmbus_connection.conn_state == DISCONNECTED)
963                 return;
964
965         ctx = container_of(work, struct onmessage_work_context,
966                            work);
967         vmbus_onmessage(&ctx->msg);
968         kfree(ctx);
969 }
970
971 static void hv_process_timer_expiration(struct hv_message *msg,
972                                         struct hv_per_cpu_context *hv_cpu)
973 {
974         struct clock_event_device *dev = hv_cpu->clk_evt;
975
976         if (dev->event_handler)
977                 dev->event_handler(dev);
978
979         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
980 }
981
982 void vmbus_on_msg_dpc(unsigned long data)
983 {
984         struct hv_per_cpu_context *hv_cpu = (void *)data;
985         void *page_addr = hv_cpu->synic_message_page;
986         struct hv_message *msg = (struct hv_message *)page_addr +
987                                   VMBUS_MESSAGE_SINT;
988         struct vmbus_channel_message_header *hdr;
989         const struct vmbus_channel_message_table_entry *entry;
990         struct onmessage_work_context *ctx;
991         u32 message_type = msg->header.message_type;
992
993         if (message_type == HVMSG_NONE)
994                 /* no msg */
995                 return;
996
997         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
998
999         trace_vmbus_on_msg_dpc(hdr);
1000
1001         if (hdr->msgtype >= CHANNELMSG_COUNT) {
1002                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1003                 goto msg_handled;
1004         }
1005
1006         entry = &channel_message_table[hdr->msgtype];
1007         if (entry->handler_type == VMHT_BLOCKING) {
1008                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1009                 if (ctx == NULL)
1010                         return;
1011
1012                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1013                 memcpy(&ctx->msg, msg, sizeof(*msg));
1014
1015                 /*
1016                  * The host can generate a rescind message while we
1017                  * may still be handling the original offer. We deal with
1018                  * this condition by ensuring the processing is done on the
1019                  * same CPU.
1020                  */
1021                 switch (hdr->msgtype) {
1022                 case CHANNELMSG_RESCIND_CHANNELOFFER:
1023                         /*
1024                          * If we are handling the rescind message;
1025                          * schedule the work on the global work queue.
1026                          */
1027                         schedule_work_on(vmbus_connection.connect_cpu,
1028                                          &ctx->work);
1029                         break;
1030
1031                 case CHANNELMSG_OFFERCHANNEL:
1032                         atomic_inc(&vmbus_connection.offer_in_progress);
1033                         queue_work_on(vmbus_connection.connect_cpu,
1034                                       vmbus_connection.work_queue,
1035                                       &ctx->work);
1036                         break;
1037
1038                 default:
1039                         queue_work(vmbus_connection.work_queue, &ctx->work);
1040                 }
1041         } else
1042                 entry->message_handler(hdr);
1043
1044 msg_handled:
1045         vmbus_signal_eom(msg, message_type);
1046 }
1047
1048
1049 /*
1050  * Direct callback for channels using other deferred processing
1051  */
1052 static void vmbus_channel_isr(struct vmbus_channel *channel)
1053 {
1054         void (*callback_fn)(void *);
1055
1056         callback_fn = READ_ONCE(channel->onchannel_callback);
1057         if (likely(callback_fn != NULL))
1058                 (*callback_fn)(channel->channel_callback_context);
1059 }
1060
1061 /*
1062  * Schedule all channels with events pending
1063  */
1064 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1065 {
1066         unsigned long *recv_int_page;
1067         u32 maxbits, relid;
1068
1069         if (vmbus_proto_version < VERSION_WIN8) {
1070                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1071                 recv_int_page = vmbus_connection.recv_int_page;
1072         } else {
1073                 /*
1074                  * When the host is win8 and beyond, the event page
1075                  * can be directly checked to get the id of the channel
1076                  * that has the interrupt pending.
1077                  */
1078                 void *page_addr = hv_cpu->synic_event_page;
1079                 union hv_synic_event_flags *event
1080                         = (union hv_synic_event_flags *)page_addr +
1081                                                  VMBUS_MESSAGE_SINT;
1082
1083                 maxbits = HV_EVENT_FLAGS_COUNT;
1084                 recv_int_page = event->flags;
1085         }
1086
1087         if (unlikely(!recv_int_page))
1088                 return;
1089
1090         for_each_set_bit(relid, recv_int_page, maxbits) {
1091                 struct vmbus_channel *channel;
1092
1093                 if (!sync_test_and_clear_bit(relid, recv_int_page))
1094                         continue;
1095
1096                 /* Special case - vmbus channel protocol msg */
1097                 if (relid == 0)
1098                         continue;
1099
1100                 rcu_read_lock();
1101
1102                 /* Find channel based on relid */
1103                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1104                         if (channel->offermsg.child_relid != relid)
1105                                 continue;
1106
1107                         if (channel->rescind)
1108                                 continue;
1109
1110                         trace_vmbus_chan_sched(channel);
1111
1112                         ++channel->interrupts;
1113
1114                         switch (channel->callback_mode) {
1115                         case HV_CALL_ISR:
1116                                 vmbus_channel_isr(channel);
1117                                 break;
1118
1119                         case HV_CALL_BATCHED:
1120                                 hv_begin_read(&channel->inbound);
1121                                 /* fallthrough */
1122                         case HV_CALL_DIRECT:
1123                                 tasklet_schedule(&channel->callback_event);
1124                         }
1125                 }
1126
1127                 rcu_read_unlock();
1128         }
1129 }
1130
1131 static void vmbus_isr(void)
1132 {
1133         struct hv_per_cpu_context *hv_cpu
1134                 = this_cpu_ptr(hv_context.cpu_context);
1135         void *page_addr = hv_cpu->synic_event_page;
1136         struct hv_message *msg;
1137         union hv_synic_event_flags *event;
1138         bool handled = false;
1139
1140         if (unlikely(page_addr == NULL))
1141                 return;
1142
1143         event = (union hv_synic_event_flags *)page_addr +
1144                                          VMBUS_MESSAGE_SINT;
1145         /*
1146          * Check for events before checking for messages. This is the order
1147          * in which events and messages are checked in Windows guests on
1148          * Hyper-V, and the Windows team suggested we do the same.
1149          */
1150
1151         if ((vmbus_proto_version == VERSION_WS2008) ||
1152                 (vmbus_proto_version == VERSION_WIN7)) {
1153
1154                 /* Since we are a child, we only need to check bit 0 */
1155                 if (sync_test_and_clear_bit(0, event->flags))
1156                         handled = true;
1157         } else {
1158                 /*
1159                  * Our host is win8 or above. The signaling mechanism
1160                  * has changed and we can directly look at the event page.
1161                  * If bit n is set then we have an interrup on the channel
1162                  * whose id is n.
1163                  */
1164                 handled = true;
1165         }
1166
1167         if (handled)
1168                 vmbus_chan_sched(hv_cpu);
1169
1170         page_addr = hv_cpu->synic_message_page;
1171         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1172
1173         /* Check if there are actual msgs to be processed */
1174         if (msg->header.message_type != HVMSG_NONE) {
1175                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1176                         hv_process_timer_expiration(msg, hv_cpu);
1177                 else
1178                         tasklet_schedule(&hv_cpu->msg_dpc);
1179         }
1180
1181         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1182 }
1183
1184 /*
1185  * Boolean to control whether to report panic messages over Hyper-V.
1186  *
1187  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1188  */
1189 static int sysctl_record_panic_msg = 1;
1190
1191 /*
1192  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1193  * buffer and call into Hyper-V to transfer the data.
1194  */
1195 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1196                          enum kmsg_dump_reason reason)
1197 {
1198         size_t bytes_written;
1199         phys_addr_t panic_pa;
1200
1201         /* We are only interested in panics. */
1202         if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1203                 return;
1204
1205         panic_pa = virt_to_phys(hv_panic_page);
1206
1207         /*
1208          * Write dump contents to the page. No need to synchronize; panic should
1209          * be single-threaded.
1210          */
1211         kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1212                              &bytes_written);
1213         if (bytes_written)
1214                 hyperv_report_panic_msg(panic_pa, bytes_written);
1215 }
1216
1217 static struct kmsg_dumper hv_kmsg_dumper = {
1218         .dump = hv_kmsg_dump,
1219 };
1220
1221 static struct ctl_table_header *hv_ctl_table_hdr;
1222 static int zero;
1223 static int one = 1;
1224
1225 /*
1226  * sysctl option to allow the user to control whether kmsg data should be
1227  * reported to Hyper-V on panic.
1228  */
1229 static struct ctl_table hv_ctl_table[] = {
1230         {
1231                 .procname       = "hyperv_record_panic_msg",
1232                 .data           = &sysctl_record_panic_msg,
1233                 .maxlen         = sizeof(int),
1234                 .mode           = 0644,
1235                 .proc_handler   = proc_dointvec_minmax,
1236                 .extra1         = &zero,
1237                 .extra2         = &one
1238         },
1239         {}
1240 };
1241
1242 static struct ctl_table hv_root_table[] = {
1243         {
1244                 .procname       = "kernel",
1245                 .mode           = 0555,
1246                 .child          = hv_ctl_table
1247         },
1248         {}
1249 };
1250
1251 /*
1252  * vmbus_bus_init -Main vmbus driver initialization routine.
1253  *
1254  * Here, we
1255  *      - initialize the vmbus driver context
1256  *      - invoke the vmbus hv main init routine
1257  *      - retrieve the channel offers
1258  */
1259 static int vmbus_bus_init(void)
1260 {
1261         int ret;
1262
1263         /* Hypervisor initialization...setup hypercall page..etc */
1264         ret = hv_init();
1265         if (ret != 0) {
1266                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1267                 return ret;
1268         }
1269
1270         ret = bus_register(&hv_bus);
1271         if (ret)
1272                 return ret;
1273
1274         hv_setup_vmbus_irq(vmbus_isr);
1275
1276         ret = hv_synic_alloc();
1277         if (ret)
1278                 goto err_alloc;
1279         /*
1280          * Initialize the per-cpu interrupt state and
1281          * connect to the host.
1282          */
1283         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1284                                 hv_synic_init, hv_synic_cleanup);
1285         if (ret < 0)
1286                 goto err_alloc;
1287         hyperv_cpuhp_online = ret;
1288
1289         ret = vmbus_connect();
1290         if (ret)
1291                 goto err_connect;
1292
1293         /*
1294          * Only register if the crash MSRs are available
1295          */
1296         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1297                 u64 hyperv_crash_ctl;
1298                 /*
1299                  * Sysctl registration is not fatal, since by default
1300                  * reporting is enabled.
1301                  */
1302                 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1303                 if (!hv_ctl_table_hdr)
1304                         pr_err("Hyper-V: sysctl table register error");
1305
1306                 /*
1307                  * Register for panic kmsg callback only if the right
1308                  * capability is supported by the hypervisor.
1309                  */
1310                 hv_get_crash_ctl(hyperv_crash_ctl);
1311                 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1312                         hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1313                         if (hv_panic_page) {
1314                                 ret = kmsg_dump_register(&hv_kmsg_dumper);
1315                                 if (ret)
1316                                         pr_err("Hyper-V: kmsg dump register "
1317                                                 "error 0x%x\n", ret);
1318                         } else
1319                                 pr_err("Hyper-V: panic message page memory "
1320                                         "allocation failed");
1321                 }
1322
1323                 register_die_notifier(&hyperv_die_block);
1324                 atomic_notifier_chain_register(&panic_notifier_list,
1325                                                &hyperv_panic_block);
1326         }
1327
1328         vmbus_request_offers();
1329
1330         return 0;
1331
1332 err_connect:
1333         cpuhp_remove_state(hyperv_cpuhp_online);
1334 err_alloc:
1335         hv_synic_free();
1336         hv_remove_vmbus_irq();
1337
1338         bus_unregister(&hv_bus);
1339         free_page((unsigned long)hv_panic_page);
1340         unregister_sysctl_table(hv_ctl_table_hdr);
1341         hv_ctl_table_hdr = NULL;
1342         return ret;
1343 }
1344
1345 /**
1346  * __vmbus_child_driver_register() - Register a vmbus's driver
1347  * @hv_driver: Pointer to driver structure you want to register
1348  * @owner: owner module of the drv
1349  * @mod_name: module name string
1350  *
1351  * Registers the given driver with Linux through the 'driver_register()' call
1352  * and sets up the hyper-v vmbus handling for this driver.
1353  * It will return the state of the 'driver_register()' call.
1354  *
1355  */
1356 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1357 {
1358         int ret;
1359
1360         pr_info("registering driver %s\n", hv_driver->name);
1361
1362         ret = vmbus_exists();
1363         if (ret < 0)
1364                 return ret;
1365
1366         hv_driver->driver.name = hv_driver->name;
1367         hv_driver->driver.owner = owner;
1368         hv_driver->driver.mod_name = mod_name;
1369         hv_driver->driver.bus = &hv_bus;
1370
1371         spin_lock_init(&hv_driver->dynids.lock);
1372         INIT_LIST_HEAD(&hv_driver->dynids.list);
1373
1374         ret = driver_register(&hv_driver->driver);
1375
1376         return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1379
1380 /**
1381  * vmbus_driver_unregister() - Unregister a vmbus's driver
1382  * @hv_driver: Pointer to driver structure you want to
1383  *             un-register
1384  *
1385  * Un-register the given driver that was previous registered with a call to
1386  * vmbus_driver_register()
1387  */
1388 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1389 {
1390         pr_info("unregistering driver %s\n", hv_driver->name);
1391
1392         if (!vmbus_exists()) {
1393                 driver_unregister(&hv_driver->driver);
1394                 vmbus_free_dynids(hv_driver);
1395         }
1396 }
1397 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1398
1399
1400 /*
1401  * Called when last reference to channel is gone.
1402  */
1403 static void vmbus_chan_release(struct kobject *kobj)
1404 {
1405         struct vmbus_channel *channel
1406                 = container_of(kobj, struct vmbus_channel, kobj);
1407
1408         kfree_rcu(channel, rcu);
1409 }
1410
1411 struct vmbus_chan_attribute {
1412         struct attribute attr;
1413         ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1414         ssize_t (*store)(struct vmbus_channel *chan,
1415                          const char *buf, size_t count);
1416 };
1417 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1418         struct vmbus_chan_attribute chan_attr_##_name \
1419                 = __ATTR(_name, _mode, _show, _store)
1420 #define VMBUS_CHAN_ATTR_RW(_name) \
1421         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1422 #define VMBUS_CHAN_ATTR_RO(_name) \
1423         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1424 #define VMBUS_CHAN_ATTR_WO(_name) \
1425         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1426
1427 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1428                                     struct attribute *attr, char *buf)
1429 {
1430         const struct vmbus_chan_attribute *attribute
1431                 = container_of(attr, struct vmbus_chan_attribute, attr);
1432         struct vmbus_channel *chan
1433                 = container_of(kobj, struct vmbus_channel, kobj);
1434
1435         if (!attribute->show)
1436                 return -EIO;
1437
1438         return attribute->show(chan, buf);
1439 }
1440
1441 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1442         .show = vmbus_chan_attr_show,
1443 };
1444
1445 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1446 {
1447         struct hv_ring_buffer_info *rbi = &channel->outbound;
1448         ssize_t ret;
1449
1450         mutex_lock(&rbi->ring_buffer_mutex);
1451         if (!rbi->ring_buffer) {
1452                 mutex_unlock(&rbi->ring_buffer_mutex);
1453                 return -EINVAL;
1454         }
1455
1456         ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1457         mutex_unlock(&rbi->ring_buffer_mutex);
1458         return ret;
1459 }
1460 static VMBUS_CHAN_ATTR_RO(out_mask);
1461
1462 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1463 {
1464         struct hv_ring_buffer_info *rbi = &channel->inbound;
1465         ssize_t ret;
1466
1467         mutex_lock(&rbi->ring_buffer_mutex);
1468         if (!rbi->ring_buffer) {
1469                 mutex_unlock(&rbi->ring_buffer_mutex);
1470                 return -EINVAL;
1471         }
1472
1473         ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1474         mutex_unlock(&rbi->ring_buffer_mutex);
1475         return ret;
1476 }
1477 static VMBUS_CHAN_ATTR_RO(in_mask);
1478
1479 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1480 {
1481         struct hv_ring_buffer_info *rbi = &channel->inbound;
1482         ssize_t ret;
1483
1484         mutex_lock(&rbi->ring_buffer_mutex);
1485         if (!rbi->ring_buffer) {
1486                 mutex_unlock(&rbi->ring_buffer_mutex);
1487                 return -EINVAL;
1488         }
1489
1490         ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1491         mutex_unlock(&rbi->ring_buffer_mutex);
1492         return ret;
1493 }
1494 static VMBUS_CHAN_ATTR_RO(read_avail);
1495
1496 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1497 {
1498         struct hv_ring_buffer_info *rbi = &channel->outbound;
1499         ssize_t ret;
1500
1501         mutex_lock(&rbi->ring_buffer_mutex);
1502         if (!rbi->ring_buffer) {
1503                 mutex_unlock(&rbi->ring_buffer_mutex);
1504                 return -EINVAL;
1505         }
1506
1507         ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1508         mutex_unlock(&rbi->ring_buffer_mutex);
1509         return ret;
1510 }
1511 static VMBUS_CHAN_ATTR_RO(write_avail);
1512
1513 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1514 {
1515         return sprintf(buf, "%u\n", channel->target_cpu);
1516 }
1517 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1518
1519 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1520                                     char *buf)
1521 {
1522         return sprintf(buf, "%d\n",
1523                        channel_pending(channel,
1524                                        vmbus_connection.monitor_pages[1]));
1525 }
1526 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1527
1528 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1529                                     char *buf)
1530 {
1531         return sprintf(buf, "%d\n",
1532                        channel_latency(channel,
1533                                        vmbus_connection.monitor_pages[1]));
1534 }
1535 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1536
1537 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1538 {
1539         return sprintf(buf, "%llu\n", channel->interrupts);
1540 }
1541 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1542
1543 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1544 {
1545         return sprintf(buf, "%llu\n", channel->sig_events);
1546 }
1547 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1548
1549 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1550                                          char *buf)
1551 {
1552         return sprintf(buf, "%llu\n",
1553                        (unsigned long long)channel->intr_in_full);
1554 }
1555 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1556
1557 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1558                                            char *buf)
1559 {
1560         return sprintf(buf, "%llu\n",
1561                        (unsigned long long)channel->intr_out_empty);
1562 }
1563 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1564
1565 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1566                                            char *buf)
1567 {
1568         return sprintf(buf, "%llu\n",
1569                        (unsigned long long)channel->out_full_first);
1570 }
1571 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1572
1573 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1574                                            char *buf)
1575 {
1576         return sprintf(buf, "%llu\n",
1577                        (unsigned long long)channel->out_full_total);
1578 }
1579 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1580
1581 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1582                                           char *buf)
1583 {
1584         return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1585 }
1586 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1587
1588 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1589                                   char *buf)
1590 {
1591         return sprintf(buf, "%u\n",
1592                        channel->offermsg.offer.sub_channel_index);
1593 }
1594 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1595
1596 static struct attribute *vmbus_chan_attrs[] = {
1597         &chan_attr_out_mask.attr,
1598         &chan_attr_in_mask.attr,
1599         &chan_attr_read_avail.attr,
1600         &chan_attr_write_avail.attr,
1601         &chan_attr_cpu.attr,
1602         &chan_attr_pending.attr,
1603         &chan_attr_latency.attr,
1604         &chan_attr_interrupts.attr,
1605         &chan_attr_events.attr,
1606         &chan_attr_intr_in_full.attr,
1607         &chan_attr_intr_out_empty.attr,
1608         &chan_attr_out_full_first.attr,
1609         &chan_attr_out_full_total.attr,
1610         &chan_attr_monitor_id.attr,
1611         &chan_attr_subchannel_id.attr,
1612         NULL
1613 };
1614
1615 /*
1616  * Channel-level attribute_group callback function. Returns the permission for
1617  * each attribute, and returns 0 if an attribute is not visible.
1618  */
1619 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1620                                           struct attribute *attr, int idx)
1621 {
1622         const struct vmbus_channel *channel =
1623                 container_of(kobj, struct vmbus_channel, kobj);
1624
1625         /* Hide the monitor attributes if the monitor mechanism is not used. */
1626         if (!channel->offermsg.monitor_allocated &&
1627             (attr == &chan_attr_pending.attr ||
1628              attr == &chan_attr_latency.attr ||
1629              attr == &chan_attr_monitor_id.attr))
1630                 return 0;
1631
1632         return attr->mode;
1633 }
1634
1635 static struct attribute_group vmbus_chan_group = {
1636         .attrs = vmbus_chan_attrs,
1637         .is_visible = vmbus_chan_attr_is_visible
1638 };
1639
1640 static struct kobj_type vmbus_chan_ktype = {
1641         .sysfs_ops = &vmbus_chan_sysfs_ops,
1642         .release = vmbus_chan_release,
1643 };
1644
1645 /*
1646  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1647  */
1648 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1649 {
1650         const struct device *device = &dev->device;
1651         struct kobject *kobj = &channel->kobj;
1652         u32 relid = channel->offermsg.child_relid;
1653         int ret;
1654
1655         kobj->kset = dev->channels_kset;
1656         ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1657                                    "%u", relid);
1658         if (ret)
1659                 return ret;
1660
1661         ret = sysfs_create_group(kobj, &vmbus_chan_group);
1662
1663         if (ret) {
1664                 /*
1665                  * The calling functions' error handling paths will cleanup the
1666                  * empty channel directory.
1667                  */
1668                 dev_err(device, "Unable to set up channel sysfs files\n");
1669                 return ret;
1670         }
1671
1672         kobject_uevent(kobj, KOBJ_ADD);
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1679  */
1680 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1681 {
1682         sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1683 }
1684
1685 /*
1686  * vmbus_device_create - Creates and registers a new child device
1687  * on the vmbus.
1688  */
1689 struct hv_device *vmbus_device_create(const guid_t *type,
1690                                       const guid_t *instance,
1691                                       struct vmbus_channel *channel)
1692 {
1693         struct hv_device *child_device_obj;
1694
1695         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1696         if (!child_device_obj) {
1697                 pr_err("Unable to allocate device object for child device\n");
1698                 return NULL;
1699         }
1700
1701         child_device_obj->channel = channel;
1702         guid_copy(&child_device_obj->dev_type, type);
1703         guid_copy(&child_device_obj->dev_instance, instance);
1704         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1705
1706         return child_device_obj;
1707 }
1708
1709 /*
1710  * vmbus_device_register - Register the child device
1711  */
1712 int vmbus_device_register(struct hv_device *child_device_obj)
1713 {
1714         struct kobject *kobj = &child_device_obj->device.kobj;
1715         int ret;
1716
1717         dev_set_name(&child_device_obj->device, "%pUl",
1718                      child_device_obj->channel->offermsg.offer.if_instance.b);
1719
1720         child_device_obj->device.bus = &hv_bus;
1721         child_device_obj->device.parent = &hv_acpi_dev->dev;
1722         child_device_obj->device.release = vmbus_device_release;
1723
1724         /*
1725          * Register with the LDM. This will kick off the driver/device
1726          * binding...which will eventually call vmbus_match() and vmbus_probe()
1727          */
1728         ret = device_register(&child_device_obj->device);
1729         if (ret) {
1730                 pr_err("Unable to register child device\n");
1731                 return ret;
1732         }
1733
1734         child_device_obj->channels_kset = kset_create_and_add("channels",
1735                                                               NULL, kobj);
1736         if (!child_device_obj->channels_kset) {
1737                 ret = -ENOMEM;
1738                 goto err_dev_unregister;
1739         }
1740
1741         ret = vmbus_add_channel_kobj(child_device_obj,
1742                                      child_device_obj->channel);
1743         if (ret) {
1744                 pr_err("Unable to register primary channeln");
1745                 goto err_kset_unregister;
1746         }
1747
1748         return 0;
1749
1750 err_kset_unregister:
1751         kset_unregister(child_device_obj->channels_kset);
1752
1753 err_dev_unregister:
1754         device_unregister(&child_device_obj->device);
1755         return ret;
1756 }
1757
1758 /*
1759  * vmbus_device_unregister - Remove the specified child device
1760  * from the vmbus.
1761  */
1762 void vmbus_device_unregister(struct hv_device *device_obj)
1763 {
1764         pr_debug("child device %s unregistered\n",
1765                 dev_name(&device_obj->device));
1766
1767         kset_unregister(device_obj->channels_kset);
1768
1769         /*
1770          * Kick off the process of unregistering the device.
1771          * This will call vmbus_remove() and eventually vmbus_device_release()
1772          */
1773         device_unregister(&device_obj->device);
1774 }
1775
1776
1777 /*
1778  * VMBUS is an acpi enumerated device. Get the information we
1779  * need from DSDT.
1780  */
1781 #define VTPM_BASE_ADDRESS 0xfed40000
1782 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1783 {
1784         resource_size_t start = 0;
1785         resource_size_t end = 0;
1786         struct resource *new_res;
1787         struct resource **old_res = &hyperv_mmio;
1788         struct resource **prev_res = NULL;
1789
1790         switch (res->type) {
1791
1792         /*
1793          * "Address" descriptors are for bus windows. Ignore
1794          * "memory" descriptors, which are for registers on
1795          * devices.
1796          */
1797         case ACPI_RESOURCE_TYPE_ADDRESS32:
1798                 start = res->data.address32.address.minimum;
1799                 end = res->data.address32.address.maximum;
1800                 break;
1801
1802         case ACPI_RESOURCE_TYPE_ADDRESS64:
1803                 start = res->data.address64.address.minimum;
1804                 end = res->data.address64.address.maximum;
1805                 break;
1806
1807         default:
1808                 /* Unused resource type */
1809                 return AE_OK;
1810
1811         }
1812         /*
1813          * Ignore ranges that are below 1MB, as they're not
1814          * necessary or useful here.
1815          */
1816         if (end < 0x100000)
1817                 return AE_OK;
1818
1819         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1820         if (!new_res)
1821                 return AE_NO_MEMORY;
1822
1823         /* If this range overlaps the virtual TPM, truncate it. */
1824         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1825                 end = VTPM_BASE_ADDRESS;
1826
1827         new_res->name = "hyperv mmio";
1828         new_res->flags = IORESOURCE_MEM;
1829         new_res->start = start;
1830         new_res->end = end;
1831
1832         /*
1833          * If two ranges are adjacent, merge them.
1834          */
1835         do {
1836                 if (!*old_res) {
1837                         *old_res = new_res;
1838                         break;
1839                 }
1840
1841                 if (((*old_res)->end + 1) == new_res->start) {
1842                         (*old_res)->end = new_res->end;
1843                         kfree(new_res);
1844                         break;
1845                 }
1846
1847                 if ((*old_res)->start == new_res->end + 1) {
1848                         (*old_res)->start = new_res->start;
1849                         kfree(new_res);
1850                         break;
1851                 }
1852
1853                 if ((*old_res)->start > new_res->end) {
1854                         new_res->sibling = *old_res;
1855                         if (prev_res)
1856                                 (*prev_res)->sibling = new_res;
1857                         *old_res = new_res;
1858                         break;
1859                 }
1860
1861                 prev_res = old_res;
1862                 old_res = &(*old_res)->sibling;
1863
1864         } while (1);
1865
1866         return AE_OK;
1867 }
1868
1869 static int vmbus_acpi_remove(struct acpi_device *device)
1870 {
1871         struct resource *cur_res;
1872         struct resource *next_res;
1873
1874         if (hyperv_mmio) {
1875                 if (fb_mmio) {
1876                         __release_region(hyperv_mmio, fb_mmio->start,
1877                                          resource_size(fb_mmio));
1878                         fb_mmio = NULL;
1879                 }
1880
1881                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1882                         next_res = cur_res->sibling;
1883                         kfree(cur_res);
1884                 }
1885         }
1886
1887         return 0;
1888 }
1889
1890 static void vmbus_reserve_fb(void)
1891 {
1892         int size;
1893         /*
1894          * Make a claim for the frame buffer in the resource tree under the
1895          * first node, which will be the one below 4GB.  The length seems to
1896          * be underreported, particularly in a Generation 1 VM.  So start out
1897          * reserving a larger area and make it smaller until it succeeds.
1898          */
1899
1900         if (screen_info.lfb_base) {
1901                 if (efi_enabled(EFI_BOOT))
1902                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1903                 else
1904                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1905
1906                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1907                         fb_mmio = __request_region(hyperv_mmio,
1908                                                    screen_info.lfb_base, size,
1909                                                    fb_mmio_name, 0);
1910                 }
1911         }
1912 }
1913
1914 /**
1915  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1916  * @new:                If successful, supplied a pointer to the
1917  *                      allocated MMIO space.
1918  * @device_obj:         Identifies the caller
1919  * @min:                Minimum guest physical address of the
1920  *                      allocation
1921  * @max:                Maximum guest physical address
1922  * @size:               Size of the range to be allocated
1923  * @align:              Alignment of the range to be allocated
1924  * @fb_overlap_ok:      Whether this allocation can be allowed
1925  *                      to overlap the video frame buffer.
1926  *
1927  * This function walks the resources granted to VMBus by the
1928  * _CRS object in the ACPI namespace underneath the parent
1929  * "bridge" whether that's a root PCI bus in the Generation 1
1930  * case or a Module Device in the Generation 2 case.  It then
1931  * attempts to allocate from the global MMIO pool in a way that
1932  * matches the constraints supplied in these parameters and by
1933  * that _CRS.
1934  *
1935  * Return: 0 on success, -errno on failure
1936  */
1937 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1938                         resource_size_t min, resource_size_t max,
1939                         resource_size_t size, resource_size_t align,
1940                         bool fb_overlap_ok)
1941 {
1942         struct resource *iter, *shadow;
1943         resource_size_t range_min, range_max, start;
1944         const char *dev_n = dev_name(&device_obj->device);
1945         int retval;
1946
1947         retval = -ENXIO;
1948         down(&hyperv_mmio_lock);
1949
1950         /*
1951          * If overlaps with frame buffers are allowed, then first attempt to
1952          * make the allocation from within the reserved region.  Because it
1953          * is already reserved, no shadow allocation is necessary.
1954          */
1955         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1956             !(max < fb_mmio->start)) {
1957
1958                 range_min = fb_mmio->start;
1959                 range_max = fb_mmio->end;
1960                 start = (range_min + align - 1) & ~(align - 1);
1961                 for (; start + size - 1 <= range_max; start += align) {
1962                         *new = request_mem_region_exclusive(start, size, dev_n);
1963                         if (*new) {
1964                                 retval = 0;
1965                                 goto exit;
1966                         }
1967                 }
1968         }
1969
1970         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1971                 if ((iter->start >= max) || (iter->end <= min))
1972                         continue;
1973
1974                 range_min = iter->start;
1975                 range_max = iter->end;
1976                 start = (range_min + align - 1) & ~(align - 1);
1977                 for (; start + size - 1 <= range_max; start += align) {
1978                         shadow = __request_region(iter, start, size, NULL,
1979                                                   IORESOURCE_BUSY);
1980                         if (!shadow)
1981                                 continue;
1982
1983                         *new = request_mem_region_exclusive(start, size, dev_n);
1984                         if (*new) {
1985                                 shadow->name = (char *)*new;
1986                                 retval = 0;
1987                                 goto exit;
1988                         }
1989
1990                         __release_region(iter, start, size);
1991                 }
1992         }
1993
1994 exit:
1995         up(&hyperv_mmio_lock);
1996         return retval;
1997 }
1998 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1999
2000 /**
2001  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2002  * @start:              Base address of region to release.
2003  * @size:               Size of the range to be allocated
2004  *
2005  * This function releases anything requested by
2006  * vmbus_mmio_allocate().
2007  */
2008 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2009 {
2010         struct resource *iter;
2011
2012         down(&hyperv_mmio_lock);
2013         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2014                 if ((iter->start >= start + size) || (iter->end <= start))
2015                         continue;
2016
2017                 __release_region(iter, start, size);
2018         }
2019         release_mem_region(start, size);
2020         up(&hyperv_mmio_lock);
2021
2022 }
2023 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2024
2025 static int vmbus_acpi_add(struct acpi_device *device)
2026 {
2027         acpi_status result;
2028         int ret_val = -ENODEV;
2029         struct acpi_device *ancestor;
2030
2031         hv_acpi_dev = device;
2032
2033         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2034                                         vmbus_walk_resources, NULL);
2035
2036         if (ACPI_FAILURE(result))
2037                 goto acpi_walk_err;
2038         /*
2039          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2040          * firmware) is the VMOD that has the mmio ranges. Get that.
2041          */
2042         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2043                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2044                                              vmbus_walk_resources, NULL);
2045
2046                 if (ACPI_FAILURE(result))
2047                         continue;
2048                 if (hyperv_mmio) {
2049                         vmbus_reserve_fb();
2050                         break;
2051                 }
2052         }
2053         ret_val = 0;
2054
2055 acpi_walk_err:
2056         complete(&probe_event);
2057         if (ret_val)
2058                 vmbus_acpi_remove(device);
2059         return ret_val;
2060 }
2061
2062 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2063         {"VMBUS", 0},
2064         {"VMBus", 0},
2065         {"", 0},
2066 };
2067 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2068
2069 static struct acpi_driver vmbus_acpi_driver = {
2070         .name = "vmbus",
2071         .ids = vmbus_acpi_device_ids,
2072         .ops = {
2073                 .add = vmbus_acpi_add,
2074                 .remove = vmbus_acpi_remove,
2075         },
2076 };
2077
2078 static void hv_kexec_handler(void)
2079 {
2080         hv_synic_clockevents_cleanup();
2081         vmbus_initiate_unload(false);
2082         vmbus_connection.conn_state = DISCONNECTED;
2083         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2084         mb();
2085         cpuhp_remove_state(hyperv_cpuhp_online);
2086         hyperv_cleanup();
2087 };
2088
2089 static void hv_crash_handler(struct pt_regs *regs)
2090 {
2091         vmbus_initiate_unload(true);
2092         /*
2093          * In crash handler we can't schedule synic cleanup for all CPUs,
2094          * doing the cleanup for current CPU only. This should be sufficient
2095          * for kdump.
2096          */
2097         vmbus_connection.conn_state = DISCONNECTED;
2098         hv_synic_cleanup(smp_processor_id());
2099         hyperv_cleanup();
2100 };
2101
2102 static int __init hv_acpi_init(void)
2103 {
2104         int ret, t;
2105
2106         if (!hv_is_hyperv_initialized())
2107                 return -ENODEV;
2108
2109         init_completion(&probe_event);
2110
2111         /*
2112          * Get ACPI resources first.
2113          */
2114         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2115
2116         if (ret)
2117                 return ret;
2118
2119         t = wait_for_completion_timeout(&probe_event, 5*HZ);
2120         if (t == 0) {
2121                 ret = -ETIMEDOUT;
2122                 goto cleanup;
2123         }
2124
2125         ret = vmbus_bus_init();
2126         if (ret)
2127                 goto cleanup;
2128
2129         hv_setup_kexec_handler(hv_kexec_handler);
2130         hv_setup_crash_handler(hv_crash_handler);
2131
2132         return 0;
2133
2134 cleanup:
2135         acpi_bus_unregister_driver(&vmbus_acpi_driver);
2136         hv_acpi_dev = NULL;
2137         return ret;
2138 }
2139
2140 static void __exit vmbus_exit(void)
2141 {
2142         int cpu;
2143
2144         hv_remove_kexec_handler();
2145         hv_remove_crash_handler();
2146         vmbus_connection.conn_state = DISCONNECTED;
2147         hv_synic_clockevents_cleanup();
2148         vmbus_disconnect();
2149         hv_remove_vmbus_irq();
2150         for_each_online_cpu(cpu) {
2151                 struct hv_per_cpu_context *hv_cpu
2152                         = per_cpu_ptr(hv_context.cpu_context, cpu);
2153
2154                 tasklet_kill(&hv_cpu->msg_dpc);
2155         }
2156         vmbus_free_channels();
2157
2158         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2159                 kmsg_dump_unregister(&hv_kmsg_dumper);
2160                 unregister_die_notifier(&hyperv_die_block);
2161                 atomic_notifier_chain_unregister(&panic_notifier_list,
2162                                                  &hyperv_panic_block);
2163         }
2164
2165         free_page((unsigned long)hv_panic_page);
2166         unregister_sysctl_table(hv_ctl_table_hdr);
2167         hv_ctl_table_hdr = NULL;
2168         bus_unregister(&hv_bus);
2169
2170         cpuhp_remove_state(hyperv_cpuhp_online);
2171         hv_synic_free();
2172         acpi_bus_unregister_driver(&vmbus_acpi_driver);
2173 }
2174
2175
2176 MODULE_LICENSE("GPL");
2177
2178 subsys_initcall(hv_acpi_init);
2179 module_exit(vmbus_exit);