Merge tag 'nios2-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[linux-2.6-microblaze.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/hyperv.h>
40 #include <asm/mshyperv.h>
41 #include <linux/notifier.h>
42 #include <linux/ptrace.h>
43 #include <linux/screen_info.h>
44 #include <linux/kdebug.h>
45 #include <linux/efi.h>
46 #include <linux/random.h>
47 #include "hyperv_vmbus.h"
48
49 struct vmbus_dynid {
50         struct list_head node;
51         struct hv_vmbus_device_id id;
52 };
53
54 static struct acpi_device  *hv_acpi_dev;
55
56 static struct completion probe_event;
57
58 static int hyperv_cpuhp_online;
59
60 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
61                               void *args)
62 {
63         struct pt_regs *regs;
64
65         regs = current_pt_regs();
66
67         hyperv_report_panic(regs, val);
68         return NOTIFY_DONE;
69 }
70
71 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
72                             void *args)
73 {
74         struct die_args *die = (struct die_args *)args;
75         struct pt_regs *regs = die->regs;
76
77         hyperv_report_panic(regs, val);
78         return NOTIFY_DONE;
79 }
80
81 static struct notifier_block hyperv_die_block = {
82         .notifier_call = hyperv_die_event,
83 };
84 static struct notifier_block hyperv_panic_block = {
85         .notifier_call = hyperv_panic_event,
86 };
87
88 static const char *fb_mmio_name = "fb_range";
89 static struct resource *fb_mmio;
90 static struct resource *hyperv_mmio;
91 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
92
93 static int vmbus_exists(void)
94 {
95         if (hv_acpi_dev == NULL)
96                 return -ENODEV;
97
98         return 0;
99 }
100
101 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
102 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
103 {
104         int i;
105         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
106                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
107 }
108
109 static u8 channel_monitor_group(const struct vmbus_channel *channel)
110 {
111         return (u8)channel->offermsg.monitorid / 32;
112 }
113
114 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
115 {
116         return (u8)channel->offermsg.monitorid % 32;
117 }
118
119 static u32 channel_pending(const struct vmbus_channel *channel,
120                            const struct hv_monitor_page *monitor_page)
121 {
122         u8 monitor_group = channel_monitor_group(channel);
123
124         return monitor_page->trigger_group[monitor_group].pending;
125 }
126
127 static u32 channel_latency(const struct vmbus_channel *channel,
128                            const struct hv_monitor_page *monitor_page)
129 {
130         u8 monitor_group = channel_monitor_group(channel);
131         u8 monitor_offset = channel_monitor_offset(channel);
132
133         return monitor_page->latency[monitor_group][monitor_offset];
134 }
135
136 static u32 channel_conn_id(struct vmbus_channel *channel,
137                            struct hv_monitor_page *monitor_page)
138 {
139         u8 monitor_group = channel_monitor_group(channel);
140         u8 monitor_offset = channel_monitor_offset(channel);
141         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
142 }
143
144 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
145                        char *buf)
146 {
147         struct hv_device *hv_dev = device_to_hv_device(dev);
148
149         if (!hv_dev->channel)
150                 return -ENODEV;
151         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
152 }
153 static DEVICE_ATTR_RO(id);
154
155 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
156                           char *buf)
157 {
158         struct hv_device *hv_dev = device_to_hv_device(dev);
159
160         if (!hv_dev->channel)
161                 return -ENODEV;
162         return sprintf(buf, "%d\n", hv_dev->channel->state);
163 }
164 static DEVICE_ATTR_RO(state);
165
166 static ssize_t monitor_id_show(struct device *dev,
167                                struct device_attribute *dev_attr, char *buf)
168 {
169         struct hv_device *hv_dev = device_to_hv_device(dev);
170
171         if (!hv_dev->channel)
172                 return -ENODEV;
173         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
174 }
175 static DEVICE_ATTR_RO(monitor_id);
176
177 static ssize_t class_id_show(struct device *dev,
178                                struct device_attribute *dev_attr, char *buf)
179 {
180         struct hv_device *hv_dev = device_to_hv_device(dev);
181
182         if (!hv_dev->channel)
183                 return -ENODEV;
184         return sprintf(buf, "{%pUl}\n",
185                        hv_dev->channel->offermsg.offer.if_type.b);
186 }
187 static DEVICE_ATTR_RO(class_id);
188
189 static ssize_t device_id_show(struct device *dev,
190                               struct device_attribute *dev_attr, char *buf)
191 {
192         struct hv_device *hv_dev = device_to_hv_device(dev);
193
194         if (!hv_dev->channel)
195                 return -ENODEV;
196         return sprintf(buf, "{%pUl}\n",
197                        hv_dev->channel->offermsg.offer.if_instance.b);
198 }
199 static DEVICE_ATTR_RO(device_id);
200
201 static ssize_t modalias_show(struct device *dev,
202                              struct device_attribute *dev_attr, char *buf)
203 {
204         struct hv_device *hv_dev = device_to_hv_device(dev);
205         char alias_name[VMBUS_ALIAS_LEN + 1];
206
207         print_alias_name(hv_dev, alias_name);
208         return sprintf(buf, "vmbus:%s\n", alias_name);
209 }
210 static DEVICE_ATTR_RO(modalias);
211
212 static ssize_t server_monitor_pending_show(struct device *dev,
213                                            struct device_attribute *dev_attr,
214                                            char *buf)
215 {
216         struct hv_device *hv_dev = device_to_hv_device(dev);
217
218         if (!hv_dev->channel)
219                 return -ENODEV;
220         return sprintf(buf, "%d\n",
221                        channel_pending(hv_dev->channel,
222                                        vmbus_connection.monitor_pages[1]));
223 }
224 static DEVICE_ATTR_RO(server_monitor_pending);
225
226 static ssize_t client_monitor_pending_show(struct device *dev,
227                                            struct device_attribute *dev_attr,
228                                            char *buf)
229 {
230         struct hv_device *hv_dev = device_to_hv_device(dev);
231
232         if (!hv_dev->channel)
233                 return -ENODEV;
234         return sprintf(buf, "%d\n",
235                        channel_pending(hv_dev->channel,
236                                        vmbus_connection.monitor_pages[1]));
237 }
238 static DEVICE_ATTR_RO(client_monitor_pending);
239
240 static ssize_t server_monitor_latency_show(struct device *dev,
241                                            struct device_attribute *dev_attr,
242                                            char *buf)
243 {
244         struct hv_device *hv_dev = device_to_hv_device(dev);
245
246         if (!hv_dev->channel)
247                 return -ENODEV;
248         return sprintf(buf, "%d\n",
249                        channel_latency(hv_dev->channel,
250                                        vmbus_connection.monitor_pages[0]));
251 }
252 static DEVICE_ATTR_RO(server_monitor_latency);
253
254 static ssize_t client_monitor_latency_show(struct device *dev,
255                                            struct device_attribute *dev_attr,
256                                            char *buf)
257 {
258         struct hv_device *hv_dev = device_to_hv_device(dev);
259
260         if (!hv_dev->channel)
261                 return -ENODEV;
262         return sprintf(buf, "%d\n",
263                        channel_latency(hv_dev->channel,
264                                        vmbus_connection.monitor_pages[1]));
265 }
266 static DEVICE_ATTR_RO(client_monitor_latency);
267
268 static ssize_t server_monitor_conn_id_show(struct device *dev,
269                                            struct device_attribute *dev_attr,
270                                            char *buf)
271 {
272         struct hv_device *hv_dev = device_to_hv_device(dev);
273
274         if (!hv_dev->channel)
275                 return -ENODEV;
276         return sprintf(buf, "%d\n",
277                        channel_conn_id(hv_dev->channel,
278                                        vmbus_connection.monitor_pages[0]));
279 }
280 static DEVICE_ATTR_RO(server_monitor_conn_id);
281
282 static ssize_t client_monitor_conn_id_show(struct device *dev,
283                                            struct device_attribute *dev_attr,
284                                            char *buf)
285 {
286         struct hv_device *hv_dev = device_to_hv_device(dev);
287
288         if (!hv_dev->channel)
289                 return -ENODEV;
290         return sprintf(buf, "%d\n",
291                        channel_conn_id(hv_dev->channel,
292                                        vmbus_connection.monitor_pages[1]));
293 }
294 static DEVICE_ATTR_RO(client_monitor_conn_id);
295
296 static ssize_t out_intr_mask_show(struct device *dev,
297                                   struct device_attribute *dev_attr, char *buf)
298 {
299         struct hv_device *hv_dev = device_to_hv_device(dev);
300         struct hv_ring_buffer_debug_info outbound;
301
302         if (!hv_dev->channel)
303                 return -ENODEV;
304         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
305         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
306 }
307 static DEVICE_ATTR_RO(out_intr_mask);
308
309 static ssize_t out_read_index_show(struct device *dev,
310                                    struct device_attribute *dev_attr, char *buf)
311 {
312         struct hv_device *hv_dev = device_to_hv_device(dev);
313         struct hv_ring_buffer_debug_info outbound;
314
315         if (!hv_dev->channel)
316                 return -ENODEV;
317         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
318         return sprintf(buf, "%d\n", outbound.current_read_index);
319 }
320 static DEVICE_ATTR_RO(out_read_index);
321
322 static ssize_t out_write_index_show(struct device *dev,
323                                     struct device_attribute *dev_attr,
324                                     char *buf)
325 {
326         struct hv_device *hv_dev = device_to_hv_device(dev);
327         struct hv_ring_buffer_debug_info outbound;
328
329         if (!hv_dev->channel)
330                 return -ENODEV;
331         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
332         return sprintf(buf, "%d\n", outbound.current_write_index);
333 }
334 static DEVICE_ATTR_RO(out_write_index);
335
336 static ssize_t out_read_bytes_avail_show(struct device *dev,
337                                          struct device_attribute *dev_attr,
338                                          char *buf)
339 {
340         struct hv_device *hv_dev = device_to_hv_device(dev);
341         struct hv_ring_buffer_debug_info outbound;
342
343         if (!hv_dev->channel)
344                 return -ENODEV;
345         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
346         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
347 }
348 static DEVICE_ATTR_RO(out_read_bytes_avail);
349
350 static ssize_t out_write_bytes_avail_show(struct device *dev,
351                                           struct device_attribute *dev_attr,
352                                           char *buf)
353 {
354         struct hv_device *hv_dev = device_to_hv_device(dev);
355         struct hv_ring_buffer_debug_info outbound;
356
357         if (!hv_dev->channel)
358                 return -ENODEV;
359         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
360         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
361 }
362 static DEVICE_ATTR_RO(out_write_bytes_avail);
363
364 static ssize_t in_intr_mask_show(struct device *dev,
365                                  struct device_attribute *dev_attr, char *buf)
366 {
367         struct hv_device *hv_dev = device_to_hv_device(dev);
368         struct hv_ring_buffer_debug_info inbound;
369
370         if (!hv_dev->channel)
371                 return -ENODEV;
372         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
373         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
374 }
375 static DEVICE_ATTR_RO(in_intr_mask);
376
377 static ssize_t in_read_index_show(struct device *dev,
378                                   struct device_attribute *dev_attr, char *buf)
379 {
380         struct hv_device *hv_dev = device_to_hv_device(dev);
381         struct hv_ring_buffer_debug_info inbound;
382
383         if (!hv_dev->channel)
384                 return -ENODEV;
385         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
386         return sprintf(buf, "%d\n", inbound.current_read_index);
387 }
388 static DEVICE_ATTR_RO(in_read_index);
389
390 static ssize_t in_write_index_show(struct device *dev,
391                                    struct device_attribute *dev_attr, char *buf)
392 {
393         struct hv_device *hv_dev = device_to_hv_device(dev);
394         struct hv_ring_buffer_debug_info inbound;
395
396         if (!hv_dev->channel)
397                 return -ENODEV;
398         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
399         return sprintf(buf, "%d\n", inbound.current_write_index);
400 }
401 static DEVICE_ATTR_RO(in_write_index);
402
403 static ssize_t in_read_bytes_avail_show(struct device *dev,
404                                         struct device_attribute *dev_attr,
405                                         char *buf)
406 {
407         struct hv_device *hv_dev = device_to_hv_device(dev);
408         struct hv_ring_buffer_debug_info inbound;
409
410         if (!hv_dev->channel)
411                 return -ENODEV;
412         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
413         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
414 }
415 static DEVICE_ATTR_RO(in_read_bytes_avail);
416
417 static ssize_t in_write_bytes_avail_show(struct device *dev,
418                                          struct device_attribute *dev_attr,
419                                          char *buf)
420 {
421         struct hv_device *hv_dev = device_to_hv_device(dev);
422         struct hv_ring_buffer_debug_info inbound;
423
424         if (!hv_dev->channel)
425                 return -ENODEV;
426         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
427         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
428 }
429 static DEVICE_ATTR_RO(in_write_bytes_avail);
430
431 static ssize_t channel_vp_mapping_show(struct device *dev,
432                                        struct device_attribute *dev_attr,
433                                        char *buf)
434 {
435         struct hv_device *hv_dev = device_to_hv_device(dev);
436         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
437         unsigned long flags;
438         int buf_size = PAGE_SIZE, n_written, tot_written;
439         struct list_head *cur;
440
441         if (!channel)
442                 return -ENODEV;
443
444         tot_written = snprintf(buf, buf_size, "%u:%u\n",
445                 channel->offermsg.child_relid, channel->target_cpu);
446
447         spin_lock_irqsave(&channel->lock, flags);
448
449         list_for_each(cur, &channel->sc_list) {
450                 if (tot_written >= buf_size - 1)
451                         break;
452
453                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
454                 n_written = scnprintf(buf + tot_written,
455                                      buf_size - tot_written,
456                                      "%u:%u\n",
457                                      cur_sc->offermsg.child_relid,
458                                      cur_sc->target_cpu);
459                 tot_written += n_written;
460         }
461
462         spin_unlock_irqrestore(&channel->lock, flags);
463
464         return tot_written;
465 }
466 static DEVICE_ATTR_RO(channel_vp_mapping);
467
468 static ssize_t vendor_show(struct device *dev,
469                            struct device_attribute *dev_attr,
470                            char *buf)
471 {
472         struct hv_device *hv_dev = device_to_hv_device(dev);
473         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
474 }
475 static DEVICE_ATTR_RO(vendor);
476
477 static ssize_t device_show(struct device *dev,
478                            struct device_attribute *dev_attr,
479                            char *buf)
480 {
481         struct hv_device *hv_dev = device_to_hv_device(dev);
482         return sprintf(buf, "0x%x\n", hv_dev->device_id);
483 }
484 static DEVICE_ATTR_RO(device);
485
486 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
487 static struct attribute *vmbus_dev_attrs[] = {
488         &dev_attr_id.attr,
489         &dev_attr_state.attr,
490         &dev_attr_monitor_id.attr,
491         &dev_attr_class_id.attr,
492         &dev_attr_device_id.attr,
493         &dev_attr_modalias.attr,
494         &dev_attr_server_monitor_pending.attr,
495         &dev_attr_client_monitor_pending.attr,
496         &dev_attr_server_monitor_latency.attr,
497         &dev_attr_client_monitor_latency.attr,
498         &dev_attr_server_monitor_conn_id.attr,
499         &dev_attr_client_monitor_conn_id.attr,
500         &dev_attr_out_intr_mask.attr,
501         &dev_attr_out_read_index.attr,
502         &dev_attr_out_write_index.attr,
503         &dev_attr_out_read_bytes_avail.attr,
504         &dev_attr_out_write_bytes_avail.attr,
505         &dev_attr_in_intr_mask.attr,
506         &dev_attr_in_read_index.attr,
507         &dev_attr_in_write_index.attr,
508         &dev_attr_in_read_bytes_avail.attr,
509         &dev_attr_in_write_bytes_avail.attr,
510         &dev_attr_channel_vp_mapping.attr,
511         &dev_attr_vendor.attr,
512         &dev_attr_device.attr,
513         NULL,
514 };
515 ATTRIBUTE_GROUPS(vmbus_dev);
516
517 /*
518  * vmbus_uevent - add uevent for our device
519  *
520  * This routine is invoked when a device is added or removed on the vmbus to
521  * generate a uevent to udev in the userspace. The udev will then look at its
522  * rule and the uevent generated here to load the appropriate driver
523  *
524  * The alias string will be of the form vmbus:guid where guid is the string
525  * representation of the device guid (each byte of the guid will be
526  * represented with two hex characters.
527  */
528 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
529 {
530         struct hv_device *dev = device_to_hv_device(device);
531         int ret;
532         char alias_name[VMBUS_ALIAS_LEN + 1];
533
534         print_alias_name(dev, alias_name);
535         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
536         return ret;
537 }
538
539 static const uuid_le null_guid;
540
541 static inline bool is_null_guid(const uuid_le *guid)
542 {
543         if (uuid_le_cmp(*guid, null_guid))
544                 return false;
545         return true;
546 }
547
548 /*
549  * Return a matching hv_vmbus_device_id pointer.
550  * If there is no match, return NULL.
551  */
552 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
553                                         const uuid_le *guid)
554 {
555         const struct hv_vmbus_device_id *id = NULL;
556         struct vmbus_dynid *dynid;
557
558         /* Look at the dynamic ids first, before the static ones */
559         spin_lock(&drv->dynids.lock);
560         list_for_each_entry(dynid, &drv->dynids.list, node) {
561                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
562                         id = &dynid->id;
563                         break;
564                 }
565         }
566         spin_unlock(&drv->dynids.lock);
567
568         if (id)
569                 return id;
570
571         id = drv->id_table;
572         if (id == NULL)
573                 return NULL; /* empty device table */
574
575         for (; !is_null_guid(&id->guid); id++)
576                 if (!uuid_le_cmp(id->guid, *guid))
577                         return id;
578
579         return NULL;
580 }
581
582 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
583 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
584 {
585         struct vmbus_dynid *dynid;
586
587         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
588         if (!dynid)
589                 return -ENOMEM;
590
591         dynid->id.guid = *guid;
592
593         spin_lock(&drv->dynids.lock);
594         list_add_tail(&dynid->node, &drv->dynids.list);
595         spin_unlock(&drv->dynids.lock);
596
597         return driver_attach(&drv->driver);
598 }
599
600 static void vmbus_free_dynids(struct hv_driver *drv)
601 {
602         struct vmbus_dynid *dynid, *n;
603
604         spin_lock(&drv->dynids.lock);
605         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
606                 list_del(&dynid->node);
607                 kfree(dynid);
608         }
609         spin_unlock(&drv->dynids.lock);
610 }
611
612 /*
613  * store_new_id - sysfs frontend to vmbus_add_dynid()
614  *
615  * Allow GUIDs to be added to an existing driver via sysfs.
616  */
617 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
618                             size_t count)
619 {
620         struct hv_driver *drv = drv_to_hv_drv(driver);
621         uuid_le guid;
622         ssize_t retval;
623
624         retval = uuid_le_to_bin(buf, &guid);
625         if (retval)
626                 return retval;
627
628         if (hv_vmbus_get_id(drv, &guid))
629                 return -EEXIST;
630
631         retval = vmbus_add_dynid(drv, &guid);
632         if (retval)
633                 return retval;
634         return count;
635 }
636 static DRIVER_ATTR_WO(new_id);
637
638 /*
639  * store_remove_id - remove a PCI device ID from this driver
640  *
641  * Removes a dynamic pci device ID to this driver.
642  */
643 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
644                                size_t count)
645 {
646         struct hv_driver *drv = drv_to_hv_drv(driver);
647         struct vmbus_dynid *dynid, *n;
648         uuid_le guid;
649         ssize_t retval;
650
651         retval = uuid_le_to_bin(buf, &guid);
652         if (retval)
653                 return retval;
654
655         retval = -ENODEV;
656         spin_lock(&drv->dynids.lock);
657         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
658                 struct hv_vmbus_device_id *id = &dynid->id;
659
660                 if (!uuid_le_cmp(id->guid, guid)) {
661                         list_del(&dynid->node);
662                         kfree(dynid);
663                         retval = count;
664                         break;
665                 }
666         }
667         spin_unlock(&drv->dynids.lock);
668
669         return retval;
670 }
671 static DRIVER_ATTR_WO(remove_id);
672
673 static struct attribute *vmbus_drv_attrs[] = {
674         &driver_attr_new_id.attr,
675         &driver_attr_remove_id.attr,
676         NULL,
677 };
678 ATTRIBUTE_GROUPS(vmbus_drv);
679
680
681 /*
682  * vmbus_match - Attempt to match the specified device to the specified driver
683  */
684 static int vmbus_match(struct device *device, struct device_driver *driver)
685 {
686         struct hv_driver *drv = drv_to_hv_drv(driver);
687         struct hv_device *hv_dev = device_to_hv_device(device);
688
689         /* The hv_sock driver handles all hv_sock offers. */
690         if (is_hvsock_channel(hv_dev->channel))
691                 return drv->hvsock;
692
693         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
694                 return 1;
695
696         return 0;
697 }
698
699 /*
700  * vmbus_probe - Add the new vmbus's child device
701  */
702 static int vmbus_probe(struct device *child_device)
703 {
704         int ret = 0;
705         struct hv_driver *drv =
706                         drv_to_hv_drv(child_device->driver);
707         struct hv_device *dev = device_to_hv_device(child_device);
708         const struct hv_vmbus_device_id *dev_id;
709
710         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
711         if (drv->probe) {
712                 ret = drv->probe(dev, dev_id);
713                 if (ret != 0)
714                         pr_err("probe failed for device %s (%d)\n",
715                                dev_name(child_device), ret);
716
717         } else {
718                 pr_err("probe not set for driver %s\n",
719                        dev_name(child_device));
720                 ret = -ENODEV;
721         }
722         return ret;
723 }
724
725 /*
726  * vmbus_remove - Remove a vmbus device
727  */
728 static int vmbus_remove(struct device *child_device)
729 {
730         struct hv_driver *drv;
731         struct hv_device *dev = device_to_hv_device(child_device);
732
733         if (child_device->driver) {
734                 drv = drv_to_hv_drv(child_device->driver);
735                 if (drv->remove)
736                         drv->remove(dev);
737         }
738
739         return 0;
740 }
741
742
743 /*
744  * vmbus_shutdown - Shutdown a vmbus device
745  */
746 static void vmbus_shutdown(struct device *child_device)
747 {
748         struct hv_driver *drv;
749         struct hv_device *dev = device_to_hv_device(child_device);
750
751
752         /* The device may not be attached yet */
753         if (!child_device->driver)
754                 return;
755
756         drv = drv_to_hv_drv(child_device->driver);
757
758         if (drv->shutdown)
759                 drv->shutdown(dev);
760 }
761
762
763 /*
764  * vmbus_device_release - Final callback release of the vmbus child device
765  */
766 static void vmbus_device_release(struct device *device)
767 {
768         struct hv_device *hv_dev = device_to_hv_device(device);
769         struct vmbus_channel *channel = hv_dev->channel;
770
771         mutex_lock(&vmbus_connection.channel_mutex);
772         hv_process_channel_removal(channel->offermsg.child_relid);
773         mutex_unlock(&vmbus_connection.channel_mutex);
774         kfree(hv_dev);
775
776 }
777
778 /* The one and only one */
779 static struct bus_type  hv_bus = {
780         .name =         "vmbus",
781         .match =                vmbus_match,
782         .shutdown =             vmbus_shutdown,
783         .remove =               vmbus_remove,
784         .probe =                vmbus_probe,
785         .uevent =               vmbus_uevent,
786         .dev_groups =           vmbus_dev_groups,
787         .drv_groups =           vmbus_drv_groups,
788 };
789
790 struct onmessage_work_context {
791         struct work_struct work;
792         struct hv_message msg;
793 };
794
795 static void vmbus_onmessage_work(struct work_struct *work)
796 {
797         struct onmessage_work_context *ctx;
798
799         /* Do not process messages if we're in DISCONNECTED state */
800         if (vmbus_connection.conn_state == DISCONNECTED)
801                 return;
802
803         ctx = container_of(work, struct onmessage_work_context,
804                            work);
805         vmbus_onmessage(&ctx->msg);
806         kfree(ctx);
807 }
808
809 static void hv_process_timer_expiration(struct hv_message *msg,
810                                         struct hv_per_cpu_context *hv_cpu)
811 {
812         struct clock_event_device *dev = hv_cpu->clk_evt;
813
814         if (dev->event_handler)
815                 dev->event_handler(dev);
816
817         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
818 }
819
820 void vmbus_on_msg_dpc(unsigned long data)
821 {
822         struct hv_per_cpu_context *hv_cpu = (void *)data;
823         void *page_addr = hv_cpu->synic_message_page;
824         struct hv_message *msg = (struct hv_message *)page_addr +
825                                   VMBUS_MESSAGE_SINT;
826         struct vmbus_channel_message_header *hdr;
827         const struct vmbus_channel_message_table_entry *entry;
828         struct onmessage_work_context *ctx;
829         u32 message_type = msg->header.message_type;
830
831         if (message_type == HVMSG_NONE)
832                 /* no msg */
833                 return;
834
835         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836
837         trace_vmbus_on_msg_dpc(hdr);
838
839         if (hdr->msgtype >= CHANNELMSG_COUNT) {
840                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
841                 goto msg_handled;
842         }
843
844         entry = &channel_message_table[hdr->msgtype];
845         if (entry->handler_type == VMHT_BLOCKING) {
846                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
847                 if (ctx == NULL)
848                         return;
849
850                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
851                 memcpy(&ctx->msg, msg, sizeof(*msg));
852
853                 /*
854                  * The host can generate a rescind message while we
855                  * may still be handling the original offer. We deal with
856                  * this condition by ensuring the processing is done on the
857                  * same CPU.
858                  */
859                 switch (hdr->msgtype) {
860                 case CHANNELMSG_RESCIND_CHANNELOFFER:
861                         /*
862                          * If we are handling the rescind message;
863                          * schedule the work on the global work queue.
864                          */
865                         schedule_work_on(vmbus_connection.connect_cpu,
866                                          &ctx->work);
867                         break;
868
869                 case CHANNELMSG_OFFERCHANNEL:
870                         atomic_inc(&vmbus_connection.offer_in_progress);
871                         queue_work_on(vmbus_connection.connect_cpu,
872                                       vmbus_connection.work_queue,
873                                       &ctx->work);
874                         break;
875
876                 default:
877                         queue_work(vmbus_connection.work_queue, &ctx->work);
878                 }
879         } else
880                 entry->message_handler(hdr);
881
882 msg_handled:
883         vmbus_signal_eom(msg, message_type);
884 }
885
886
887 /*
888  * Direct callback for channels using other deferred processing
889  */
890 static void vmbus_channel_isr(struct vmbus_channel *channel)
891 {
892         void (*callback_fn)(void *);
893
894         callback_fn = READ_ONCE(channel->onchannel_callback);
895         if (likely(callback_fn != NULL))
896                 (*callback_fn)(channel->channel_callback_context);
897 }
898
899 /*
900  * Schedule all channels with events pending
901  */
902 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
903 {
904         unsigned long *recv_int_page;
905         u32 maxbits, relid;
906
907         if (vmbus_proto_version < VERSION_WIN8) {
908                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
909                 recv_int_page = vmbus_connection.recv_int_page;
910         } else {
911                 /*
912                  * When the host is win8 and beyond, the event page
913                  * can be directly checked to get the id of the channel
914                  * that has the interrupt pending.
915                  */
916                 void *page_addr = hv_cpu->synic_event_page;
917                 union hv_synic_event_flags *event
918                         = (union hv_synic_event_flags *)page_addr +
919                                                  VMBUS_MESSAGE_SINT;
920
921                 maxbits = HV_EVENT_FLAGS_COUNT;
922                 recv_int_page = event->flags;
923         }
924
925         if (unlikely(!recv_int_page))
926                 return;
927
928         for_each_set_bit(relid, recv_int_page, maxbits) {
929                 struct vmbus_channel *channel;
930
931                 if (!sync_test_and_clear_bit(relid, recv_int_page))
932                         continue;
933
934                 /* Special case - vmbus channel protocol msg */
935                 if (relid == 0)
936                         continue;
937
938                 rcu_read_lock();
939
940                 /* Find channel based on relid */
941                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
942                         if (channel->offermsg.child_relid != relid)
943                                 continue;
944
945                         if (channel->rescind)
946                                 continue;
947
948                         trace_vmbus_chan_sched(channel);
949
950                         ++channel->interrupts;
951
952                         switch (channel->callback_mode) {
953                         case HV_CALL_ISR:
954                                 vmbus_channel_isr(channel);
955                                 break;
956
957                         case HV_CALL_BATCHED:
958                                 hv_begin_read(&channel->inbound);
959                                 /* fallthrough */
960                         case HV_CALL_DIRECT:
961                                 tasklet_schedule(&channel->callback_event);
962                         }
963                 }
964
965                 rcu_read_unlock();
966         }
967 }
968
969 static void vmbus_isr(void)
970 {
971         struct hv_per_cpu_context *hv_cpu
972                 = this_cpu_ptr(hv_context.cpu_context);
973         void *page_addr = hv_cpu->synic_event_page;
974         struct hv_message *msg;
975         union hv_synic_event_flags *event;
976         bool handled = false;
977
978         if (unlikely(page_addr == NULL))
979                 return;
980
981         event = (union hv_synic_event_flags *)page_addr +
982                                          VMBUS_MESSAGE_SINT;
983         /*
984          * Check for events before checking for messages. This is the order
985          * in which events and messages are checked in Windows guests on
986          * Hyper-V, and the Windows team suggested we do the same.
987          */
988
989         if ((vmbus_proto_version == VERSION_WS2008) ||
990                 (vmbus_proto_version == VERSION_WIN7)) {
991
992                 /* Since we are a child, we only need to check bit 0 */
993                 if (sync_test_and_clear_bit(0, event->flags))
994                         handled = true;
995         } else {
996                 /*
997                  * Our host is win8 or above. The signaling mechanism
998                  * has changed and we can directly look at the event page.
999                  * If bit n is set then we have an interrup on the channel
1000                  * whose id is n.
1001                  */
1002                 handled = true;
1003         }
1004
1005         if (handled)
1006                 vmbus_chan_sched(hv_cpu);
1007
1008         page_addr = hv_cpu->synic_message_page;
1009         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1010
1011         /* Check if there are actual msgs to be processed */
1012         if (msg->header.message_type != HVMSG_NONE) {
1013                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1014                         hv_process_timer_expiration(msg, hv_cpu);
1015                 else
1016                         tasklet_schedule(&hv_cpu->msg_dpc);
1017         }
1018
1019         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1020 }
1021
1022
1023 /*
1024  * vmbus_bus_init -Main vmbus driver initialization routine.
1025  *
1026  * Here, we
1027  *      - initialize the vmbus driver context
1028  *      - invoke the vmbus hv main init routine
1029  *      - retrieve the channel offers
1030  */
1031 static int vmbus_bus_init(void)
1032 {
1033         int ret;
1034
1035         /* Hypervisor initialization...setup hypercall page..etc */
1036         ret = hv_init();
1037         if (ret != 0) {
1038                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1039                 return ret;
1040         }
1041
1042         ret = bus_register(&hv_bus);
1043         if (ret)
1044                 return ret;
1045
1046         hv_setup_vmbus_irq(vmbus_isr);
1047
1048         ret = hv_synic_alloc();
1049         if (ret)
1050                 goto err_alloc;
1051         /*
1052          * Initialize the per-cpu interrupt state and
1053          * connect to the host.
1054          */
1055         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1056                                 hv_synic_init, hv_synic_cleanup);
1057         if (ret < 0)
1058                 goto err_alloc;
1059         hyperv_cpuhp_online = ret;
1060
1061         ret = vmbus_connect();
1062         if (ret)
1063                 goto err_connect;
1064
1065         /*
1066          * Only register if the crash MSRs are available
1067          */
1068         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1069                 register_die_notifier(&hyperv_die_block);
1070                 atomic_notifier_chain_register(&panic_notifier_list,
1071                                                &hyperv_panic_block);
1072         }
1073
1074         vmbus_request_offers();
1075
1076         return 0;
1077
1078 err_connect:
1079         cpuhp_remove_state(hyperv_cpuhp_online);
1080 err_alloc:
1081         hv_synic_free();
1082         hv_remove_vmbus_irq();
1083
1084         bus_unregister(&hv_bus);
1085
1086         return ret;
1087 }
1088
1089 /**
1090  * __vmbus_child_driver_register() - Register a vmbus's driver
1091  * @hv_driver: Pointer to driver structure you want to register
1092  * @owner: owner module of the drv
1093  * @mod_name: module name string
1094  *
1095  * Registers the given driver with Linux through the 'driver_register()' call
1096  * and sets up the hyper-v vmbus handling for this driver.
1097  * It will return the state of the 'driver_register()' call.
1098  *
1099  */
1100 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1101 {
1102         int ret;
1103
1104         pr_info("registering driver %s\n", hv_driver->name);
1105
1106         ret = vmbus_exists();
1107         if (ret < 0)
1108                 return ret;
1109
1110         hv_driver->driver.name = hv_driver->name;
1111         hv_driver->driver.owner = owner;
1112         hv_driver->driver.mod_name = mod_name;
1113         hv_driver->driver.bus = &hv_bus;
1114
1115         spin_lock_init(&hv_driver->dynids.lock);
1116         INIT_LIST_HEAD(&hv_driver->dynids.list);
1117
1118         ret = driver_register(&hv_driver->driver);
1119
1120         return ret;
1121 }
1122 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1123
1124 /**
1125  * vmbus_driver_unregister() - Unregister a vmbus's driver
1126  * @hv_driver: Pointer to driver structure you want to
1127  *             un-register
1128  *
1129  * Un-register the given driver that was previous registered with a call to
1130  * vmbus_driver_register()
1131  */
1132 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1133 {
1134         pr_info("unregistering driver %s\n", hv_driver->name);
1135
1136         if (!vmbus_exists()) {
1137                 driver_unregister(&hv_driver->driver);
1138                 vmbus_free_dynids(hv_driver);
1139         }
1140 }
1141 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1142
1143
1144 /*
1145  * Called when last reference to channel is gone.
1146  */
1147 static void vmbus_chan_release(struct kobject *kobj)
1148 {
1149         struct vmbus_channel *channel
1150                 = container_of(kobj, struct vmbus_channel, kobj);
1151
1152         kfree_rcu(channel, rcu);
1153 }
1154
1155 struct vmbus_chan_attribute {
1156         struct attribute attr;
1157         ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1158         ssize_t (*store)(struct vmbus_channel *chan,
1159                          const char *buf, size_t count);
1160 };
1161 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1162         struct vmbus_chan_attribute chan_attr_##_name \
1163                 = __ATTR(_name, _mode, _show, _store)
1164 #define VMBUS_CHAN_ATTR_RW(_name) \
1165         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1166 #define VMBUS_CHAN_ATTR_RO(_name) \
1167         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1168 #define VMBUS_CHAN_ATTR_WO(_name) \
1169         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1170
1171 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1172                                     struct attribute *attr, char *buf)
1173 {
1174         const struct vmbus_chan_attribute *attribute
1175                 = container_of(attr, struct vmbus_chan_attribute, attr);
1176         const struct vmbus_channel *chan
1177                 = container_of(kobj, struct vmbus_channel, kobj);
1178
1179         if (!attribute->show)
1180                 return -EIO;
1181
1182         return attribute->show(chan, buf);
1183 }
1184
1185 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1186         .show = vmbus_chan_attr_show,
1187 };
1188
1189 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1190 {
1191         const struct hv_ring_buffer_info *rbi = &channel->outbound;
1192
1193         return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1194 }
1195 static VMBUS_CHAN_ATTR_RO(out_mask);
1196
1197 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1198 {
1199         const struct hv_ring_buffer_info *rbi = &channel->inbound;
1200
1201         return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1202 }
1203 static VMBUS_CHAN_ATTR_RO(in_mask);
1204
1205 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1206 {
1207         const struct hv_ring_buffer_info *rbi = &channel->inbound;
1208
1209         return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1210 }
1211 static VMBUS_CHAN_ATTR_RO(read_avail);
1212
1213 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1214 {
1215         const struct hv_ring_buffer_info *rbi = &channel->outbound;
1216
1217         return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1218 }
1219 static VMBUS_CHAN_ATTR_RO(write_avail);
1220
1221 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1222 {
1223         return sprintf(buf, "%u\n", channel->target_cpu);
1224 }
1225 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1226
1227 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1228                                     char *buf)
1229 {
1230         return sprintf(buf, "%d\n",
1231                        channel_pending(channel,
1232                                        vmbus_connection.monitor_pages[1]));
1233 }
1234 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1235
1236 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1237                                     char *buf)
1238 {
1239         return sprintf(buf, "%d\n",
1240                        channel_latency(channel,
1241                                        vmbus_connection.monitor_pages[1]));
1242 }
1243 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1244
1245 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1246 {
1247         return sprintf(buf, "%llu\n", channel->interrupts);
1248 }
1249 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1250
1251 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1252 {
1253         return sprintf(buf, "%llu\n", channel->sig_events);
1254 }
1255 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1256
1257 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1258                                           char *buf)
1259 {
1260         return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1261 }
1262 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1263
1264 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1265                                   char *buf)
1266 {
1267         return sprintf(buf, "%u\n",
1268                        channel->offermsg.offer.sub_channel_index);
1269 }
1270 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1271
1272 static struct attribute *vmbus_chan_attrs[] = {
1273         &chan_attr_out_mask.attr,
1274         &chan_attr_in_mask.attr,
1275         &chan_attr_read_avail.attr,
1276         &chan_attr_write_avail.attr,
1277         &chan_attr_cpu.attr,
1278         &chan_attr_pending.attr,
1279         &chan_attr_latency.attr,
1280         &chan_attr_interrupts.attr,
1281         &chan_attr_events.attr,
1282         &chan_attr_monitor_id.attr,
1283         &chan_attr_subchannel_id.attr,
1284         NULL
1285 };
1286
1287 static struct kobj_type vmbus_chan_ktype = {
1288         .sysfs_ops = &vmbus_chan_sysfs_ops,
1289         .release = vmbus_chan_release,
1290         .default_attrs = vmbus_chan_attrs,
1291 };
1292
1293 /*
1294  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1295  */
1296 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1297 {
1298         struct kobject *kobj = &channel->kobj;
1299         u32 relid = channel->offermsg.child_relid;
1300         int ret;
1301
1302         kobj->kset = dev->channels_kset;
1303         ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1304                                    "%u", relid);
1305         if (ret)
1306                 return ret;
1307
1308         kobject_uevent(kobj, KOBJ_ADD);
1309
1310         return 0;
1311 }
1312
1313 /*
1314  * vmbus_device_create - Creates and registers a new child device
1315  * on the vmbus.
1316  */
1317 struct hv_device *vmbus_device_create(const uuid_le *type,
1318                                       const uuid_le *instance,
1319                                       struct vmbus_channel *channel)
1320 {
1321         struct hv_device *child_device_obj;
1322
1323         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1324         if (!child_device_obj) {
1325                 pr_err("Unable to allocate device object for child device\n");
1326                 return NULL;
1327         }
1328
1329         child_device_obj->channel = channel;
1330         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1331         memcpy(&child_device_obj->dev_instance, instance,
1332                sizeof(uuid_le));
1333         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1334
1335
1336         return child_device_obj;
1337 }
1338
1339 /*
1340  * vmbus_device_register - Register the child device
1341  */
1342 int vmbus_device_register(struct hv_device *child_device_obj)
1343 {
1344         struct kobject *kobj = &child_device_obj->device.kobj;
1345         int ret;
1346
1347         dev_set_name(&child_device_obj->device, "%pUl",
1348                      child_device_obj->channel->offermsg.offer.if_instance.b);
1349
1350         child_device_obj->device.bus = &hv_bus;
1351         child_device_obj->device.parent = &hv_acpi_dev->dev;
1352         child_device_obj->device.release = vmbus_device_release;
1353
1354         /*
1355          * Register with the LDM. This will kick off the driver/device
1356          * binding...which will eventually call vmbus_match() and vmbus_probe()
1357          */
1358         ret = device_register(&child_device_obj->device);
1359         if (ret) {
1360                 pr_err("Unable to register child device\n");
1361                 return ret;
1362         }
1363
1364         child_device_obj->channels_kset = kset_create_and_add("channels",
1365                                                               NULL, kobj);
1366         if (!child_device_obj->channels_kset) {
1367                 ret = -ENOMEM;
1368                 goto err_dev_unregister;
1369         }
1370
1371         ret = vmbus_add_channel_kobj(child_device_obj,
1372                                      child_device_obj->channel);
1373         if (ret) {
1374                 pr_err("Unable to register primary channeln");
1375                 goto err_kset_unregister;
1376         }
1377
1378         return 0;
1379
1380 err_kset_unregister:
1381         kset_unregister(child_device_obj->channels_kset);
1382
1383 err_dev_unregister:
1384         device_unregister(&child_device_obj->device);
1385         return ret;
1386 }
1387
1388 /*
1389  * vmbus_device_unregister - Remove the specified child device
1390  * from the vmbus.
1391  */
1392 void vmbus_device_unregister(struct hv_device *device_obj)
1393 {
1394         pr_debug("child device %s unregistered\n",
1395                 dev_name(&device_obj->device));
1396
1397         kset_unregister(device_obj->channels_kset);
1398
1399         /*
1400          * Kick off the process of unregistering the device.
1401          * This will call vmbus_remove() and eventually vmbus_device_release()
1402          */
1403         device_unregister(&device_obj->device);
1404 }
1405
1406
1407 /*
1408  * VMBUS is an acpi enumerated device. Get the information we
1409  * need from DSDT.
1410  */
1411 #define VTPM_BASE_ADDRESS 0xfed40000
1412 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1413 {
1414         resource_size_t start = 0;
1415         resource_size_t end = 0;
1416         struct resource *new_res;
1417         struct resource **old_res = &hyperv_mmio;
1418         struct resource **prev_res = NULL;
1419
1420         switch (res->type) {
1421
1422         /*
1423          * "Address" descriptors are for bus windows. Ignore
1424          * "memory" descriptors, which are for registers on
1425          * devices.
1426          */
1427         case ACPI_RESOURCE_TYPE_ADDRESS32:
1428                 start = res->data.address32.address.minimum;
1429                 end = res->data.address32.address.maximum;
1430                 break;
1431
1432         case ACPI_RESOURCE_TYPE_ADDRESS64:
1433                 start = res->data.address64.address.minimum;
1434                 end = res->data.address64.address.maximum;
1435                 break;
1436
1437         default:
1438                 /* Unused resource type */
1439                 return AE_OK;
1440
1441         }
1442         /*
1443          * Ignore ranges that are below 1MB, as they're not
1444          * necessary or useful here.
1445          */
1446         if (end < 0x100000)
1447                 return AE_OK;
1448
1449         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1450         if (!new_res)
1451                 return AE_NO_MEMORY;
1452
1453         /* If this range overlaps the virtual TPM, truncate it. */
1454         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1455                 end = VTPM_BASE_ADDRESS;
1456
1457         new_res->name = "hyperv mmio";
1458         new_res->flags = IORESOURCE_MEM;
1459         new_res->start = start;
1460         new_res->end = end;
1461
1462         /*
1463          * If two ranges are adjacent, merge them.
1464          */
1465         do {
1466                 if (!*old_res) {
1467                         *old_res = new_res;
1468                         break;
1469                 }
1470
1471                 if (((*old_res)->end + 1) == new_res->start) {
1472                         (*old_res)->end = new_res->end;
1473                         kfree(new_res);
1474                         break;
1475                 }
1476
1477                 if ((*old_res)->start == new_res->end + 1) {
1478                         (*old_res)->start = new_res->start;
1479                         kfree(new_res);
1480                         break;
1481                 }
1482
1483                 if ((*old_res)->start > new_res->end) {
1484                         new_res->sibling = *old_res;
1485                         if (prev_res)
1486                                 (*prev_res)->sibling = new_res;
1487                         *old_res = new_res;
1488                         break;
1489                 }
1490
1491                 prev_res = old_res;
1492                 old_res = &(*old_res)->sibling;
1493
1494         } while (1);
1495
1496         return AE_OK;
1497 }
1498
1499 static int vmbus_acpi_remove(struct acpi_device *device)
1500 {
1501         struct resource *cur_res;
1502         struct resource *next_res;
1503
1504         if (hyperv_mmio) {
1505                 if (fb_mmio) {
1506                         __release_region(hyperv_mmio, fb_mmio->start,
1507                                          resource_size(fb_mmio));
1508                         fb_mmio = NULL;
1509                 }
1510
1511                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1512                         next_res = cur_res->sibling;
1513                         kfree(cur_res);
1514                 }
1515         }
1516
1517         return 0;
1518 }
1519
1520 static void vmbus_reserve_fb(void)
1521 {
1522         int size;
1523         /*
1524          * Make a claim for the frame buffer in the resource tree under the
1525          * first node, which will be the one below 4GB.  The length seems to
1526          * be underreported, particularly in a Generation 1 VM.  So start out
1527          * reserving a larger area and make it smaller until it succeeds.
1528          */
1529
1530         if (screen_info.lfb_base) {
1531                 if (efi_enabled(EFI_BOOT))
1532                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1533                 else
1534                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1535
1536                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1537                         fb_mmio = __request_region(hyperv_mmio,
1538                                                    screen_info.lfb_base, size,
1539                                                    fb_mmio_name, 0);
1540                 }
1541         }
1542 }
1543
1544 /**
1545  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1546  * @new:                If successful, supplied a pointer to the
1547  *                      allocated MMIO space.
1548  * @device_obj:         Identifies the caller
1549  * @min:                Minimum guest physical address of the
1550  *                      allocation
1551  * @max:                Maximum guest physical address
1552  * @size:               Size of the range to be allocated
1553  * @align:              Alignment of the range to be allocated
1554  * @fb_overlap_ok:      Whether this allocation can be allowed
1555  *                      to overlap the video frame buffer.
1556  *
1557  * This function walks the resources granted to VMBus by the
1558  * _CRS object in the ACPI namespace underneath the parent
1559  * "bridge" whether that's a root PCI bus in the Generation 1
1560  * case or a Module Device in the Generation 2 case.  It then
1561  * attempts to allocate from the global MMIO pool in a way that
1562  * matches the constraints supplied in these parameters and by
1563  * that _CRS.
1564  *
1565  * Return: 0 on success, -errno on failure
1566  */
1567 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1568                         resource_size_t min, resource_size_t max,
1569                         resource_size_t size, resource_size_t align,
1570                         bool fb_overlap_ok)
1571 {
1572         struct resource *iter, *shadow;
1573         resource_size_t range_min, range_max, start;
1574         const char *dev_n = dev_name(&device_obj->device);
1575         int retval;
1576
1577         retval = -ENXIO;
1578         down(&hyperv_mmio_lock);
1579
1580         /*
1581          * If overlaps with frame buffers are allowed, then first attempt to
1582          * make the allocation from within the reserved region.  Because it
1583          * is already reserved, no shadow allocation is necessary.
1584          */
1585         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1586             !(max < fb_mmio->start)) {
1587
1588                 range_min = fb_mmio->start;
1589                 range_max = fb_mmio->end;
1590                 start = (range_min + align - 1) & ~(align - 1);
1591                 for (; start + size - 1 <= range_max; start += align) {
1592                         *new = request_mem_region_exclusive(start, size, dev_n);
1593                         if (*new) {
1594                                 retval = 0;
1595                                 goto exit;
1596                         }
1597                 }
1598         }
1599
1600         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1601                 if ((iter->start >= max) || (iter->end <= min))
1602                         continue;
1603
1604                 range_min = iter->start;
1605                 range_max = iter->end;
1606                 start = (range_min + align - 1) & ~(align - 1);
1607                 for (; start + size - 1 <= range_max; start += align) {
1608                         shadow = __request_region(iter, start, size, NULL,
1609                                                   IORESOURCE_BUSY);
1610                         if (!shadow)
1611                                 continue;
1612
1613                         *new = request_mem_region_exclusive(start, size, dev_n);
1614                         if (*new) {
1615                                 shadow->name = (char *)*new;
1616                                 retval = 0;
1617                                 goto exit;
1618                         }
1619
1620                         __release_region(iter, start, size);
1621                 }
1622         }
1623
1624 exit:
1625         up(&hyperv_mmio_lock);
1626         return retval;
1627 }
1628 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1629
1630 /**
1631  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1632  * @start:              Base address of region to release.
1633  * @size:               Size of the range to be allocated
1634  *
1635  * This function releases anything requested by
1636  * vmbus_mmio_allocate().
1637  */
1638 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1639 {
1640         struct resource *iter;
1641
1642         down(&hyperv_mmio_lock);
1643         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1644                 if ((iter->start >= start + size) || (iter->end <= start))
1645                         continue;
1646
1647                 __release_region(iter, start, size);
1648         }
1649         release_mem_region(start, size);
1650         up(&hyperv_mmio_lock);
1651
1652 }
1653 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1654
1655 static int vmbus_acpi_add(struct acpi_device *device)
1656 {
1657         acpi_status result;
1658         int ret_val = -ENODEV;
1659         struct acpi_device *ancestor;
1660
1661         hv_acpi_dev = device;
1662
1663         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1664                                         vmbus_walk_resources, NULL);
1665
1666         if (ACPI_FAILURE(result))
1667                 goto acpi_walk_err;
1668         /*
1669          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1670          * firmware) is the VMOD that has the mmio ranges. Get that.
1671          */
1672         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1673                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1674                                              vmbus_walk_resources, NULL);
1675
1676                 if (ACPI_FAILURE(result))
1677                         continue;
1678                 if (hyperv_mmio) {
1679                         vmbus_reserve_fb();
1680                         break;
1681                 }
1682         }
1683         ret_val = 0;
1684
1685 acpi_walk_err:
1686         complete(&probe_event);
1687         if (ret_val)
1688                 vmbus_acpi_remove(device);
1689         return ret_val;
1690 }
1691
1692 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1693         {"VMBUS", 0},
1694         {"VMBus", 0},
1695         {"", 0},
1696 };
1697 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1698
1699 static struct acpi_driver vmbus_acpi_driver = {
1700         .name = "vmbus",
1701         .ids = vmbus_acpi_device_ids,
1702         .ops = {
1703                 .add = vmbus_acpi_add,
1704                 .remove = vmbus_acpi_remove,
1705         },
1706 };
1707
1708 static void hv_kexec_handler(void)
1709 {
1710         hv_synic_clockevents_cleanup();
1711         vmbus_initiate_unload(false);
1712         vmbus_connection.conn_state = DISCONNECTED;
1713         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1714         mb();
1715         cpuhp_remove_state(hyperv_cpuhp_online);
1716         hyperv_cleanup();
1717 };
1718
1719 static void hv_crash_handler(struct pt_regs *regs)
1720 {
1721         vmbus_initiate_unload(true);
1722         /*
1723          * In crash handler we can't schedule synic cleanup for all CPUs,
1724          * doing the cleanup for current CPU only. This should be sufficient
1725          * for kdump.
1726          */
1727         vmbus_connection.conn_state = DISCONNECTED;
1728         hv_synic_cleanup(smp_processor_id());
1729         hyperv_cleanup();
1730 };
1731
1732 static int __init hv_acpi_init(void)
1733 {
1734         int ret, t;
1735
1736         if (!hv_is_hyperv_initialized())
1737                 return -ENODEV;
1738
1739         init_completion(&probe_event);
1740
1741         /*
1742          * Get ACPI resources first.
1743          */
1744         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1745
1746         if (ret)
1747                 return ret;
1748
1749         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1750         if (t == 0) {
1751                 ret = -ETIMEDOUT;
1752                 goto cleanup;
1753         }
1754
1755         ret = vmbus_bus_init();
1756         if (ret)
1757                 goto cleanup;
1758
1759         hv_setup_kexec_handler(hv_kexec_handler);
1760         hv_setup_crash_handler(hv_crash_handler);
1761
1762         return 0;
1763
1764 cleanup:
1765         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1766         hv_acpi_dev = NULL;
1767         return ret;
1768 }
1769
1770 static void __exit vmbus_exit(void)
1771 {
1772         int cpu;
1773
1774         hv_remove_kexec_handler();
1775         hv_remove_crash_handler();
1776         vmbus_connection.conn_state = DISCONNECTED;
1777         hv_synic_clockevents_cleanup();
1778         vmbus_disconnect();
1779         hv_remove_vmbus_irq();
1780         for_each_online_cpu(cpu) {
1781                 struct hv_per_cpu_context *hv_cpu
1782                         = per_cpu_ptr(hv_context.cpu_context, cpu);
1783
1784                 tasklet_kill(&hv_cpu->msg_dpc);
1785         }
1786         vmbus_free_channels();
1787
1788         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1789                 unregister_die_notifier(&hyperv_die_block);
1790                 atomic_notifier_chain_unregister(&panic_notifier_list,
1791                                                  &hyperv_panic_block);
1792         }
1793         bus_unregister(&hv_bus);
1794
1795         cpuhp_remove_state(hyperv_cpuhp_online);
1796         hv_synic_free();
1797         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1798 }
1799
1800
1801 MODULE_LICENSE("GPL");
1802
1803 subsys_initcall(hv_acpi_init);
1804 module_exit(vmbus_exit);