KVM: PPC: Book3S HV: Don't use compound_order to determine host mapping size
[linux-2.6-microblaze.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47
48 struct vmbus_dynid {
49         struct list_head node;
50         struct hv_vmbus_device_id id;
51 };
52
53 static struct acpi_device  *hv_acpi_dev;
54
55 static struct completion probe_event;
56
57 static int hyperv_cpuhp_online;
58
59 static void *hv_panic_page;
60
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62                               void *args)
63 {
64         struct pt_regs *regs;
65
66         regs = current_pt_regs();
67
68         hyperv_report_panic(regs, val);
69         return NOTIFY_DONE;
70 }
71
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73                             void *args)
74 {
75         struct die_args *die = (struct die_args *)args;
76         struct pt_regs *regs = die->regs;
77
78         hyperv_report_panic(regs, val);
79         return NOTIFY_DONE;
80 }
81
82 static struct notifier_block hyperv_die_block = {
83         .notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86         .notifier_call = hyperv_panic_event,
87 };
88
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94 static int vmbus_exists(void)
95 {
96         if (hv_acpi_dev == NULL)
97                 return -ENODEV;
98
99         return 0;
100 }
101
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105         int i;
106         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112         return (u8)channel->offermsg.monitorid / 32;
113 }
114
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117         return (u8)channel->offermsg.monitorid % 32;
118 }
119
120 static u32 channel_pending(const struct vmbus_channel *channel,
121                            const struct hv_monitor_page *monitor_page)
122 {
123         u8 monitor_group = channel_monitor_group(channel);
124
125         return monitor_page->trigger_group[monitor_group].pending;
126 }
127
128 static u32 channel_latency(const struct vmbus_channel *channel,
129                            const struct hv_monitor_page *monitor_page)
130 {
131         u8 monitor_group = channel_monitor_group(channel);
132         u8 monitor_offset = channel_monitor_offset(channel);
133
134         return monitor_page->latency[monitor_group][monitor_offset];
135 }
136
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138                            struct hv_monitor_page *monitor_page)
139 {
140         u8 monitor_group = channel_monitor_group(channel);
141         u8 monitor_offset = channel_monitor_offset(channel);
142         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146                        char *buf)
147 {
148         struct hv_device *hv_dev = device_to_hv_device(dev);
149
150         if (!hv_dev->channel)
151                 return -ENODEV;
152         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157                           char *buf)
158 {
159         struct hv_device *hv_dev = device_to_hv_device(dev);
160
161         if (!hv_dev->channel)
162                 return -ENODEV;
163         return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166
167 static ssize_t monitor_id_show(struct device *dev,
168                                struct device_attribute *dev_attr, char *buf)
169 {
170         struct hv_device *hv_dev = device_to_hv_device(dev);
171
172         if (!hv_dev->channel)
173                 return -ENODEV;
174         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177
178 static ssize_t class_id_show(struct device *dev,
179                                struct device_attribute *dev_attr, char *buf)
180 {
181         struct hv_device *hv_dev = device_to_hv_device(dev);
182
183         if (!hv_dev->channel)
184                 return -ENODEV;
185         return sprintf(buf, "{%pUl}\n",
186                        hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189
190 static ssize_t device_id_show(struct device *dev,
191                               struct device_attribute *dev_attr, char *buf)
192 {
193         struct hv_device *hv_dev = device_to_hv_device(dev);
194
195         if (!hv_dev->channel)
196                 return -ENODEV;
197         return sprintf(buf, "{%pUl}\n",
198                        hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201
202 static ssize_t modalias_show(struct device *dev,
203                              struct device_attribute *dev_attr, char *buf)
204 {
205         struct hv_device *hv_dev = device_to_hv_device(dev);
206         char alias_name[VMBUS_ALIAS_LEN + 1];
207
208         print_alias_name(hv_dev, alias_name);
209         return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215                               struct device_attribute *attr, char *buf)
216 {
217         struct hv_device *hv_dev = device_to_hv_device(dev);
218
219         if (!hv_dev->channel)
220                 return -ENODEV;
221
222         return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226
227 static ssize_t server_monitor_pending_show(struct device *dev,
228                                            struct device_attribute *dev_attr,
229                                            char *buf)
230 {
231         struct hv_device *hv_dev = device_to_hv_device(dev);
232
233         if (!hv_dev->channel)
234                 return -ENODEV;
235         return sprintf(buf, "%d\n",
236                        channel_pending(hv_dev->channel,
237                                        vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
241 static ssize_t client_monitor_pending_show(struct device *dev,
242                                            struct device_attribute *dev_attr,
243                                            char *buf)
244 {
245         struct hv_device *hv_dev = device_to_hv_device(dev);
246
247         if (!hv_dev->channel)
248                 return -ENODEV;
249         return sprintf(buf, "%d\n",
250                        channel_pending(hv_dev->channel,
251                                        vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
255 static ssize_t server_monitor_latency_show(struct device *dev,
256                                            struct device_attribute *dev_attr,
257                                            char *buf)
258 {
259         struct hv_device *hv_dev = device_to_hv_device(dev);
260
261         if (!hv_dev->channel)
262                 return -ENODEV;
263         return sprintf(buf, "%d\n",
264                        channel_latency(hv_dev->channel,
265                                        vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
269 static ssize_t client_monitor_latency_show(struct device *dev,
270                                            struct device_attribute *dev_attr,
271                                            char *buf)
272 {
273         struct hv_device *hv_dev = device_to_hv_device(dev);
274
275         if (!hv_dev->channel)
276                 return -ENODEV;
277         return sprintf(buf, "%d\n",
278                        channel_latency(hv_dev->channel,
279                                        vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284                                            struct device_attribute *dev_attr,
285                                            char *buf)
286 {
287         struct hv_device *hv_dev = device_to_hv_device(dev);
288
289         if (!hv_dev->channel)
290                 return -ENODEV;
291         return sprintf(buf, "%d\n",
292                        channel_conn_id(hv_dev->channel,
293                                        vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298                                            struct device_attribute *dev_attr,
299                                            char *buf)
300 {
301         struct hv_device *hv_dev = device_to_hv_device(dev);
302
303         if (!hv_dev->channel)
304                 return -ENODEV;
305         return sprintf(buf, "%d\n",
306                        channel_conn_id(hv_dev->channel,
307                                        vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
311 static ssize_t out_intr_mask_show(struct device *dev,
312                                   struct device_attribute *dev_attr, char *buf)
313 {
314         struct hv_device *hv_dev = device_to_hv_device(dev);
315         struct hv_ring_buffer_debug_info outbound;
316
317         if (!hv_dev->channel)
318                 return -ENODEV;
319         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323
324 static ssize_t out_read_index_show(struct device *dev,
325                                    struct device_attribute *dev_attr, char *buf)
326 {
327         struct hv_device *hv_dev = device_to_hv_device(dev);
328         struct hv_ring_buffer_debug_info outbound;
329
330         if (!hv_dev->channel)
331                 return -ENODEV;
332         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333         return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336
337 static ssize_t out_write_index_show(struct device *dev,
338                                     struct device_attribute *dev_attr,
339                                     char *buf)
340 {
341         struct hv_device *hv_dev = device_to_hv_device(dev);
342         struct hv_ring_buffer_debug_info outbound;
343
344         if (!hv_dev->channel)
345                 return -ENODEV;
346         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347         return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352                                          struct device_attribute *dev_attr,
353                                          char *buf)
354 {
355         struct hv_device *hv_dev = device_to_hv_device(dev);
356         struct hv_ring_buffer_debug_info outbound;
357
358         if (!hv_dev->channel)
359                 return -ENODEV;
360         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366                                           struct device_attribute *dev_attr,
367                                           char *buf)
368 {
369         struct hv_device *hv_dev = device_to_hv_device(dev);
370         struct hv_ring_buffer_debug_info outbound;
371
372         if (!hv_dev->channel)
373                 return -ENODEV;
374         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378
379 static ssize_t in_intr_mask_show(struct device *dev,
380                                  struct device_attribute *dev_attr, char *buf)
381 {
382         struct hv_device *hv_dev = device_to_hv_device(dev);
383         struct hv_ring_buffer_debug_info inbound;
384
385         if (!hv_dev->channel)
386                 return -ENODEV;
387         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391
392 static ssize_t in_read_index_show(struct device *dev,
393                                   struct device_attribute *dev_attr, char *buf)
394 {
395         struct hv_device *hv_dev = device_to_hv_device(dev);
396         struct hv_ring_buffer_debug_info inbound;
397
398         if (!hv_dev->channel)
399                 return -ENODEV;
400         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401         return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404
405 static ssize_t in_write_index_show(struct device *dev,
406                                    struct device_attribute *dev_attr, char *buf)
407 {
408         struct hv_device *hv_dev = device_to_hv_device(dev);
409         struct hv_ring_buffer_debug_info inbound;
410
411         if (!hv_dev->channel)
412                 return -ENODEV;
413         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414         return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419                                         struct device_attribute *dev_attr,
420                                         char *buf)
421 {
422         struct hv_device *hv_dev = device_to_hv_device(dev);
423         struct hv_ring_buffer_debug_info inbound;
424
425         if (!hv_dev->channel)
426                 return -ENODEV;
427         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433                                          struct device_attribute *dev_attr,
434                                          char *buf)
435 {
436         struct hv_device *hv_dev = device_to_hv_device(dev);
437         struct hv_ring_buffer_debug_info inbound;
438
439         if (!hv_dev->channel)
440                 return -ENODEV;
441         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447                                        struct device_attribute *dev_attr,
448                                        char *buf)
449 {
450         struct hv_device *hv_dev = device_to_hv_device(dev);
451         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452         unsigned long flags;
453         int buf_size = PAGE_SIZE, n_written, tot_written;
454         struct list_head *cur;
455
456         if (!channel)
457                 return -ENODEV;
458
459         tot_written = snprintf(buf, buf_size, "%u:%u\n",
460                 channel->offermsg.child_relid, channel->target_cpu);
461
462         spin_lock_irqsave(&channel->lock, flags);
463
464         list_for_each(cur, &channel->sc_list) {
465                 if (tot_written >= buf_size - 1)
466                         break;
467
468                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469                 n_written = scnprintf(buf + tot_written,
470                                      buf_size - tot_written,
471                                      "%u:%u\n",
472                                      cur_sc->offermsg.child_relid,
473                                      cur_sc->target_cpu);
474                 tot_written += n_written;
475         }
476
477         spin_unlock_irqrestore(&channel->lock, flags);
478
479         return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482
483 static ssize_t vendor_show(struct device *dev,
484                            struct device_attribute *dev_attr,
485                            char *buf)
486 {
487         struct hv_device *hv_dev = device_to_hv_device(dev);
488         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491
492 static ssize_t device_show(struct device *dev,
493                            struct device_attribute *dev_attr,
494                            char *buf)
495 {
496         struct hv_device *hv_dev = device_to_hv_device(dev);
497         return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_dev_attrs[] = {
503         &dev_attr_id.attr,
504         &dev_attr_state.attr,
505         &dev_attr_monitor_id.attr,
506         &dev_attr_class_id.attr,
507         &dev_attr_device_id.attr,
508         &dev_attr_modalias.attr,
509 #ifdef CONFIG_NUMA
510         &dev_attr_numa_node.attr,
511 #endif
512         &dev_attr_server_monitor_pending.attr,
513         &dev_attr_client_monitor_pending.attr,
514         &dev_attr_server_monitor_latency.attr,
515         &dev_attr_client_monitor_latency.attr,
516         &dev_attr_server_monitor_conn_id.attr,
517         &dev_attr_client_monitor_conn_id.attr,
518         &dev_attr_out_intr_mask.attr,
519         &dev_attr_out_read_index.attr,
520         &dev_attr_out_write_index.attr,
521         &dev_attr_out_read_bytes_avail.attr,
522         &dev_attr_out_write_bytes_avail.attr,
523         &dev_attr_in_intr_mask.attr,
524         &dev_attr_in_read_index.attr,
525         &dev_attr_in_write_index.attr,
526         &dev_attr_in_read_bytes_avail.attr,
527         &dev_attr_in_write_bytes_avail.attr,
528         &dev_attr_channel_vp_mapping.attr,
529         &dev_attr_vendor.attr,
530         &dev_attr_device.attr,
531         NULL,
532 };
533 ATTRIBUTE_GROUPS(vmbus_dev);
534
535 /*
536  * vmbus_uevent - add uevent for our device
537  *
538  * This routine is invoked when a device is added or removed on the vmbus to
539  * generate a uevent to udev in the userspace. The udev will then look at its
540  * rule and the uevent generated here to load the appropriate driver
541  *
542  * The alias string will be of the form vmbus:guid where guid is the string
543  * representation of the device guid (each byte of the guid will be
544  * represented with two hex characters.
545  */
546 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
547 {
548         struct hv_device *dev = device_to_hv_device(device);
549         int ret;
550         char alias_name[VMBUS_ALIAS_LEN + 1];
551
552         print_alias_name(dev, alias_name);
553         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
554         return ret;
555 }
556
557 static const uuid_le null_guid;
558
559 static inline bool is_null_guid(const uuid_le *guid)
560 {
561         if (uuid_le_cmp(*guid, null_guid))
562                 return false;
563         return true;
564 }
565
566 /*
567  * Return a matching hv_vmbus_device_id pointer.
568  * If there is no match, return NULL.
569  */
570 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
571                                         const uuid_le *guid)
572 {
573         const struct hv_vmbus_device_id *id = NULL;
574         struct vmbus_dynid *dynid;
575
576         /* Look at the dynamic ids first, before the static ones */
577         spin_lock(&drv->dynids.lock);
578         list_for_each_entry(dynid, &drv->dynids.list, node) {
579                 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
580                         id = &dynid->id;
581                         break;
582                 }
583         }
584         spin_unlock(&drv->dynids.lock);
585
586         if (id)
587                 return id;
588
589         id = drv->id_table;
590         if (id == NULL)
591                 return NULL; /* empty device table */
592
593         for (; !is_null_guid(&id->guid); id++)
594                 if (!uuid_le_cmp(id->guid, *guid))
595                         return id;
596
597         return NULL;
598 }
599
600 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
601 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
602 {
603         struct vmbus_dynid *dynid;
604
605         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
606         if (!dynid)
607                 return -ENOMEM;
608
609         dynid->id.guid = *guid;
610
611         spin_lock(&drv->dynids.lock);
612         list_add_tail(&dynid->node, &drv->dynids.list);
613         spin_unlock(&drv->dynids.lock);
614
615         return driver_attach(&drv->driver);
616 }
617
618 static void vmbus_free_dynids(struct hv_driver *drv)
619 {
620         struct vmbus_dynid *dynid, *n;
621
622         spin_lock(&drv->dynids.lock);
623         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
624                 list_del(&dynid->node);
625                 kfree(dynid);
626         }
627         spin_unlock(&drv->dynids.lock);
628 }
629
630 /*
631  * store_new_id - sysfs frontend to vmbus_add_dynid()
632  *
633  * Allow GUIDs to be added to an existing driver via sysfs.
634  */
635 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
636                             size_t count)
637 {
638         struct hv_driver *drv = drv_to_hv_drv(driver);
639         uuid_le guid;
640         ssize_t retval;
641
642         retval = uuid_le_to_bin(buf, &guid);
643         if (retval)
644                 return retval;
645
646         if (hv_vmbus_get_id(drv, &guid))
647                 return -EEXIST;
648
649         retval = vmbus_add_dynid(drv, &guid);
650         if (retval)
651                 return retval;
652         return count;
653 }
654 static DRIVER_ATTR_WO(new_id);
655
656 /*
657  * store_remove_id - remove a PCI device ID from this driver
658  *
659  * Removes a dynamic pci device ID to this driver.
660  */
661 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
662                                size_t count)
663 {
664         struct hv_driver *drv = drv_to_hv_drv(driver);
665         struct vmbus_dynid *dynid, *n;
666         uuid_le guid;
667         ssize_t retval;
668
669         retval = uuid_le_to_bin(buf, &guid);
670         if (retval)
671                 return retval;
672
673         retval = -ENODEV;
674         spin_lock(&drv->dynids.lock);
675         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
676                 struct hv_vmbus_device_id *id = &dynid->id;
677
678                 if (!uuid_le_cmp(id->guid, guid)) {
679                         list_del(&dynid->node);
680                         kfree(dynid);
681                         retval = count;
682                         break;
683                 }
684         }
685         spin_unlock(&drv->dynids.lock);
686
687         return retval;
688 }
689 static DRIVER_ATTR_WO(remove_id);
690
691 static struct attribute *vmbus_drv_attrs[] = {
692         &driver_attr_new_id.attr,
693         &driver_attr_remove_id.attr,
694         NULL,
695 };
696 ATTRIBUTE_GROUPS(vmbus_drv);
697
698
699 /*
700  * vmbus_match - Attempt to match the specified device to the specified driver
701  */
702 static int vmbus_match(struct device *device, struct device_driver *driver)
703 {
704         struct hv_driver *drv = drv_to_hv_drv(driver);
705         struct hv_device *hv_dev = device_to_hv_device(device);
706
707         /* The hv_sock driver handles all hv_sock offers. */
708         if (is_hvsock_channel(hv_dev->channel))
709                 return drv->hvsock;
710
711         if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
712                 return 1;
713
714         return 0;
715 }
716
717 /*
718  * vmbus_probe - Add the new vmbus's child device
719  */
720 static int vmbus_probe(struct device *child_device)
721 {
722         int ret = 0;
723         struct hv_driver *drv =
724                         drv_to_hv_drv(child_device->driver);
725         struct hv_device *dev = device_to_hv_device(child_device);
726         const struct hv_vmbus_device_id *dev_id;
727
728         dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
729         if (drv->probe) {
730                 ret = drv->probe(dev, dev_id);
731                 if (ret != 0)
732                         pr_err("probe failed for device %s (%d)\n",
733                                dev_name(child_device), ret);
734
735         } else {
736                 pr_err("probe not set for driver %s\n",
737                        dev_name(child_device));
738                 ret = -ENODEV;
739         }
740         return ret;
741 }
742
743 /*
744  * vmbus_remove - Remove a vmbus device
745  */
746 static int vmbus_remove(struct device *child_device)
747 {
748         struct hv_driver *drv;
749         struct hv_device *dev = device_to_hv_device(child_device);
750
751         if (child_device->driver) {
752                 drv = drv_to_hv_drv(child_device->driver);
753                 if (drv->remove)
754                         drv->remove(dev);
755         }
756
757         return 0;
758 }
759
760
761 /*
762  * vmbus_shutdown - Shutdown a vmbus device
763  */
764 static void vmbus_shutdown(struct device *child_device)
765 {
766         struct hv_driver *drv;
767         struct hv_device *dev = device_to_hv_device(child_device);
768
769
770         /* The device may not be attached yet */
771         if (!child_device->driver)
772                 return;
773
774         drv = drv_to_hv_drv(child_device->driver);
775
776         if (drv->shutdown)
777                 drv->shutdown(dev);
778 }
779
780
781 /*
782  * vmbus_device_release - Final callback release of the vmbus child device
783  */
784 static void vmbus_device_release(struct device *device)
785 {
786         struct hv_device *hv_dev = device_to_hv_device(device);
787         struct vmbus_channel *channel = hv_dev->channel;
788
789         mutex_lock(&vmbus_connection.channel_mutex);
790         hv_process_channel_removal(channel->offermsg.child_relid);
791         mutex_unlock(&vmbus_connection.channel_mutex);
792         kfree(hv_dev);
793
794 }
795
796 /* The one and only one */
797 static struct bus_type  hv_bus = {
798         .name =         "vmbus",
799         .match =                vmbus_match,
800         .shutdown =             vmbus_shutdown,
801         .remove =               vmbus_remove,
802         .probe =                vmbus_probe,
803         .uevent =               vmbus_uevent,
804         .dev_groups =           vmbus_dev_groups,
805         .drv_groups =           vmbus_drv_groups,
806 };
807
808 struct onmessage_work_context {
809         struct work_struct work;
810         struct hv_message msg;
811 };
812
813 static void vmbus_onmessage_work(struct work_struct *work)
814 {
815         struct onmessage_work_context *ctx;
816
817         /* Do not process messages if we're in DISCONNECTED state */
818         if (vmbus_connection.conn_state == DISCONNECTED)
819                 return;
820
821         ctx = container_of(work, struct onmessage_work_context,
822                            work);
823         vmbus_onmessage(&ctx->msg);
824         kfree(ctx);
825 }
826
827 static void hv_process_timer_expiration(struct hv_message *msg,
828                                         struct hv_per_cpu_context *hv_cpu)
829 {
830         struct clock_event_device *dev = hv_cpu->clk_evt;
831
832         if (dev->event_handler)
833                 dev->event_handler(dev);
834
835         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
836 }
837
838 void vmbus_on_msg_dpc(unsigned long data)
839 {
840         struct hv_per_cpu_context *hv_cpu = (void *)data;
841         void *page_addr = hv_cpu->synic_message_page;
842         struct hv_message *msg = (struct hv_message *)page_addr +
843                                   VMBUS_MESSAGE_SINT;
844         struct vmbus_channel_message_header *hdr;
845         const struct vmbus_channel_message_table_entry *entry;
846         struct onmessage_work_context *ctx;
847         u32 message_type = msg->header.message_type;
848
849         if (message_type == HVMSG_NONE)
850                 /* no msg */
851                 return;
852
853         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
854
855         trace_vmbus_on_msg_dpc(hdr);
856
857         if (hdr->msgtype >= CHANNELMSG_COUNT) {
858                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
859                 goto msg_handled;
860         }
861
862         entry = &channel_message_table[hdr->msgtype];
863         if (entry->handler_type == VMHT_BLOCKING) {
864                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
865                 if (ctx == NULL)
866                         return;
867
868                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
869                 memcpy(&ctx->msg, msg, sizeof(*msg));
870
871                 /*
872                  * The host can generate a rescind message while we
873                  * may still be handling the original offer. We deal with
874                  * this condition by ensuring the processing is done on the
875                  * same CPU.
876                  */
877                 switch (hdr->msgtype) {
878                 case CHANNELMSG_RESCIND_CHANNELOFFER:
879                         /*
880                          * If we are handling the rescind message;
881                          * schedule the work on the global work queue.
882                          */
883                         schedule_work_on(vmbus_connection.connect_cpu,
884                                          &ctx->work);
885                         break;
886
887                 case CHANNELMSG_OFFERCHANNEL:
888                         atomic_inc(&vmbus_connection.offer_in_progress);
889                         queue_work_on(vmbus_connection.connect_cpu,
890                                       vmbus_connection.work_queue,
891                                       &ctx->work);
892                         break;
893
894                 default:
895                         queue_work(vmbus_connection.work_queue, &ctx->work);
896                 }
897         } else
898                 entry->message_handler(hdr);
899
900 msg_handled:
901         vmbus_signal_eom(msg, message_type);
902 }
903
904
905 /*
906  * Direct callback for channels using other deferred processing
907  */
908 static void vmbus_channel_isr(struct vmbus_channel *channel)
909 {
910         void (*callback_fn)(void *);
911
912         callback_fn = READ_ONCE(channel->onchannel_callback);
913         if (likely(callback_fn != NULL))
914                 (*callback_fn)(channel->channel_callback_context);
915 }
916
917 /*
918  * Schedule all channels with events pending
919  */
920 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
921 {
922         unsigned long *recv_int_page;
923         u32 maxbits, relid;
924
925         if (vmbus_proto_version < VERSION_WIN8) {
926                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
927                 recv_int_page = vmbus_connection.recv_int_page;
928         } else {
929                 /*
930                  * When the host is win8 and beyond, the event page
931                  * can be directly checked to get the id of the channel
932                  * that has the interrupt pending.
933                  */
934                 void *page_addr = hv_cpu->synic_event_page;
935                 union hv_synic_event_flags *event
936                         = (union hv_synic_event_flags *)page_addr +
937                                                  VMBUS_MESSAGE_SINT;
938
939                 maxbits = HV_EVENT_FLAGS_COUNT;
940                 recv_int_page = event->flags;
941         }
942
943         if (unlikely(!recv_int_page))
944                 return;
945
946         for_each_set_bit(relid, recv_int_page, maxbits) {
947                 struct vmbus_channel *channel;
948
949                 if (!sync_test_and_clear_bit(relid, recv_int_page))
950                         continue;
951
952                 /* Special case - vmbus channel protocol msg */
953                 if (relid == 0)
954                         continue;
955
956                 rcu_read_lock();
957
958                 /* Find channel based on relid */
959                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
960                         if (channel->offermsg.child_relid != relid)
961                                 continue;
962
963                         if (channel->rescind)
964                                 continue;
965
966                         trace_vmbus_chan_sched(channel);
967
968                         ++channel->interrupts;
969
970                         switch (channel->callback_mode) {
971                         case HV_CALL_ISR:
972                                 vmbus_channel_isr(channel);
973                                 break;
974
975                         case HV_CALL_BATCHED:
976                                 hv_begin_read(&channel->inbound);
977                                 /* fallthrough */
978                         case HV_CALL_DIRECT:
979                                 tasklet_schedule(&channel->callback_event);
980                         }
981                 }
982
983                 rcu_read_unlock();
984         }
985 }
986
987 static void vmbus_isr(void)
988 {
989         struct hv_per_cpu_context *hv_cpu
990                 = this_cpu_ptr(hv_context.cpu_context);
991         void *page_addr = hv_cpu->synic_event_page;
992         struct hv_message *msg;
993         union hv_synic_event_flags *event;
994         bool handled = false;
995
996         if (unlikely(page_addr == NULL))
997                 return;
998
999         event = (union hv_synic_event_flags *)page_addr +
1000                                          VMBUS_MESSAGE_SINT;
1001         /*
1002          * Check for events before checking for messages. This is the order
1003          * in which events and messages are checked in Windows guests on
1004          * Hyper-V, and the Windows team suggested we do the same.
1005          */
1006
1007         if ((vmbus_proto_version == VERSION_WS2008) ||
1008                 (vmbus_proto_version == VERSION_WIN7)) {
1009
1010                 /* Since we are a child, we only need to check bit 0 */
1011                 if (sync_test_and_clear_bit(0, event->flags))
1012                         handled = true;
1013         } else {
1014                 /*
1015                  * Our host is win8 or above. The signaling mechanism
1016                  * has changed and we can directly look at the event page.
1017                  * If bit n is set then we have an interrup on the channel
1018                  * whose id is n.
1019                  */
1020                 handled = true;
1021         }
1022
1023         if (handled)
1024                 vmbus_chan_sched(hv_cpu);
1025
1026         page_addr = hv_cpu->synic_message_page;
1027         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1028
1029         /* Check if there are actual msgs to be processed */
1030         if (msg->header.message_type != HVMSG_NONE) {
1031                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1032                         hv_process_timer_expiration(msg, hv_cpu);
1033                 else
1034                         tasklet_schedule(&hv_cpu->msg_dpc);
1035         }
1036
1037         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1038 }
1039
1040 /*
1041  * Boolean to control whether to report panic messages over Hyper-V.
1042  *
1043  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1044  */
1045 static int sysctl_record_panic_msg = 1;
1046
1047 /*
1048  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1049  * buffer and call into Hyper-V to transfer the data.
1050  */
1051 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1052                          enum kmsg_dump_reason reason)
1053 {
1054         size_t bytes_written;
1055         phys_addr_t panic_pa;
1056
1057         /* We are only interested in panics. */
1058         if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1059                 return;
1060
1061         panic_pa = virt_to_phys(hv_panic_page);
1062
1063         /*
1064          * Write dump contents to the page. No need to synchronize; panic should
1065          * be single-threaded.
1066          */
1067         kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1068                              &bytes_written);
1069         if (bytes_written)
1070                 hyperv_report_panic_msg(panic_pa, bytes_written);
1071 }
1072
1073 static struct kmsg_dumper hv_kmsg_dumper = {
1074         .dump = hv_kmsg_dump,
1075 };
1076
1077 static struct ctl_table_header *hv_ctl_table_hdr;
1078 static int zero;
1079 static int one = 1;
1080
1081 /*
1082  * sysctl option to allow the user to control whether kmsg data should be
1083  * reported to Hyper-V on panic.
1084  */
1085 static struct ctl_table hv_ctl_table[] = {
1086         {
1087                 .procname       = "hyperv_record_panic_msg",
1088                 .data           = &sysctl_record_panic_msg,
1089                 .maxlen         = sizeof(int),
1090                 .mode           = 0644,
1091                 .proc_handler   = proc_dointvec_minmax,
1092                 .extra1         = &zero,
1093                 .extra2         = &one
1094         },
1095         {}
1096 };
1097
1098 static struct ctl_table hv_root_table[] = {
1099         {
1100                 .procname       = "kernel",
1101                 .mode           = 0555,
1102                 .child          = hv_ctl_table
1103         },
1104         {}
1105 };
1106
1107 /*
1108  * vmbus_bus_init -Main vmbus driver initialization routine.
1109  *
1110  * Here, we
1111  *      - initialize the vmbus driver context
1112  *      - invoke the vmbus hv main init routine
1113  *      - retrieve the channel offers
1114  */
1115 static int vmbus_bus_init(void)
1116 {
1117         int ret;
1118
1119         /* Hypervisor initialization...setup hypercall page..etc */
1120         ret = hv_init();
1121         if (ret != 0) {
1122                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1123                 return ret;
1124         }
1125
1126         ret = bus_register(&hv_bus);
1127         if (ret)
1128                 return ret;
1129
1130         hv_setup_vmbus_irq(vmbus_isr);
1131
1132         ret = hv_synic_alloc();
1133         if (ret)
1134                 goto err_alloc;
1135         /*
1136          * Initialize the per-cpu interrupt state and
1137          * connect to the host.
1138          */
1139         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1140                                 hv_synic_init, hv_synic_cleanup);
1141         if (ret < 0)
1142                 goto err_alloc;
1143         hyperv_cpuhp_online = ret;
1144
1145         ret = vmbus_connect();
1146         if (ret)
1147                 goto err_connect;
1148
1149         /*
1150          * Only register if the crash MSRs are available
1151          */
1152         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1153                 u64 hyperv_crash_ctl;
1154                 /*
1155                  * Sysctl registration is not fatal, since by default
1156                  * reporting is enabled.
1157                  */
1158                 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1159                 if (!hv_ctl_table_hdr)
1160                         pr_err("Hyper-V: sysctl table register error");
1161
1162                 /*
1163                  * Register for panic kmsg callback only if the right
1164                  * capability is supported by the hypervisor.
1165                  */
1166                 hv_get_crash_ctl(hyperv_crash_ctl);
1167                 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1168                         hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1169                         if (hv_panic_page) {
1170                                 ret = kmsg_dump_register(&hv_kmsg_dumper);
1171                                 if (ret)
1172                                         pr_err("Hyper-V: kmsg dump register "
1173                                                 "error 0x%x\n", ret);
1174                         } else
1175                                 pr_err("Hyper-V: panic message page memory "
1176                                         "allocation failed");
1177                 }
1178
1179                 register_die_notifier(&hyperv_die_block);
1180                 atomic_notifier_chain_register(&panic_notifier_list,
1181                                                &hyperv_panic_block);
1182         }
1183
1184         vmbus_request_offers();
1185
1186         return 0;
1187
1188 err_connect:
1189         cpuhp_remove_state(hyperv_cpuhp_online);
1190 err_alloc:
1191         hv_synic_free();
1192         hv_remove_vmbus_irq();
1193
1194         bus_unregister(&hv_bus);
1195         free_page((unsigned long)hv_panic_page);
1196         unregister_sysctl_table(hv_ctl_table_hdr);
1197         hv_ctl_table_hdr = NULL;
1198         return ret;
1199 }
1200
1201 /**
1202  * __vmbus_child_driver_register() - Register a vmbus's driver
1203  * @hv_driver: Pointer to driver structure you want to register
1204  * @owner: owner module of the drv
1205  * @mod_name: module name string
1206  *
1207  * Registers the given driver with Linux through the 'driver_register()' call
1208  * and sets up the hyper-v vmbus handling for this driver.
1209  * It will return the state of the 'driver_register()' call.
1210  *
1211  */
1212 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1213 {
1214         int ret;
1215
1216         pr_info("registering driver %s\n", hv_driver->name);
1217
1218         ret = vmbus_exists();
1219         if (ret < 0)
1220                 return ret;
1221
1222         hv_driver->driver.name = hv_driver->name;
1223         hv_driver->driver.owner = owner;
1224         hv_driver->driver.mod_name = mod_name;
1225         hv_driver->driver.bus = &hv_bus;
1226
1227         spin_lock_init(&hv_driver->dynids.lock);
1228         INIT_LIST_HEAD(&hv_driver->dynids.list);
1229
1230         ret = driver_register(&hv_driver->driver);
1231
1232         return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1235
1236 /**
1237  * vmbus_driver_unregister() - Unregister a vmbus's driver
1238  * @hv_driver: Pointer to driver structure you want to
1239  *             un-register
1240  *
1241  * Un-register the given driver that was previous registered with a call to
1242  * vmbus_driver_register()
1243  */
1244 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1245 {
1246         pr_info("unregistering driver %s\n", hv_driver->name);
1247
1248         if (!vmbus_exists()) {
1249                 driver_unregister(&hv_driver->driver);
1250                 vmbus_free_dynids(hv_driver);
1251         }
1252 }
1253 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1254
1255
1256 /*
1257  * Called when last reference to channel is gone.
1258  */
1259 static void vmbus_chan_release(struct kobject *kobj)
1260 {
1261         struct vmbus_channel *channel
1262                 = container_of(kobj, struct vmbus_channel, kobj);
1263
1264         kfree_rcu(channel, rcu);
1265 }
1266
1267 struct vmbus_chan_attribute {
1268         struct attribute attr;
1269         ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1270         ssize_t (*store)(struct vmbus_channel *chan,
1271                          const char *buf, size_t count);
1272 };
1273 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1274         struct vmbus_chan_attribute chan_attr_##_name \
1275                 = __ATTR(_name, _mode, _show, _store)
1276 #define VMBUS_CHAN_ATTR_RW(_name) \
1277         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1278 #define VMBUS_CHAN_ATTR_RO(_name) \
1279         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1280 #define VMBUS_CHAN_ATTR_WO(_name) \
1281         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1282
1283 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1284                                     struct attribute *attr, char *buf)
1285 {
1286         const struct vmbus_chan_attribute *attribute
1287                 = container_of(attr, struct vmbus_chan_attribute, attr);
1288         const struct vmbus_channel *chan
1289                 = container_of(kobj, struct vmbus_channel, kobj);
1290
1291         if (!attribute->show)
1292                 return -EIO;
1293
1294         return attribute->show(chan, buf);
1295 }
1296
1297 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1298         .show = vmbus_chan_attr_show,
1299 };
1300
1301 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1302 {
1303         const struct hv_ring_buffer_info *rbi = &channel->outbound;
1304
1305         return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1306 }
1307 static VMBUS_CHAN_ATTR_RO(out_mask);
1308
1309 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1310 {
1311         const struct hv_ring_buffer_info *rbi = &channel->inbound;
1312
1313         return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1314 }
1315 static VMBUS_CHAN_ATTR_RO(in_mask);
1316
1317 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1318 {
1319         const struct hv_ring_buffer_info *rbi = &channel->inbound;
1320
1321         return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1322 }
1323 static VMBUS_CHAN_ATTR_RO(read_avail);
1324
1325 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1326 {
1327         const struct hv_ring_buffer_info *rbi = &channel->outbound;
1328
1329         return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1330 }
1331 static VMBUS_CHAN_ATTR_RO(write_avail);
1332
1333 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1334 {
1335         return sprintf(buf, "%u\n", channel->target_cpu);
1336 }
1337 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1338
1339 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1340                                     char *buf)
1341 {
1342         return sprintf(buf, "%d\n",
1343                        channel_pending(channel,
1344                                        vmbus_connection.monitor_pages[1]));
1345 }
1346 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1347
1348 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1349                                     char *buf)
1350 {
1351         return sprintf(buf, "%d\n",
1352                        channel_latency(channel,
1353                                        vmbus_connection.monitor_pages[1]));
1354 }
1355 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1356
1357 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1358 {
1359         return sprintf(buf, "%llu\n", channel->interrupts);
1360 }
1361 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1362
1363 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1364 {
1365         return sprintf(buf, "%llu\n", channel->sig_events);
1366 }
1367 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1368
1369 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1370                                           char *buf)
1371 {
1372         return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1373 }
1374 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1375
1376 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1377                                   char *buf)
1378 {
1379         return sprintf(buf, "%u\n",
1380                        channel->offermsg.offer.sub_channel_index);
1381 }
1382 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1383
1384 static struct attribute *vmbus_chan_attrs[] = {
1385         &chan_attr_out_mask.attr,
1386         &chan_attr_in_mask.attr,
1387         &chan_attr_read_avail.attr,
1388         &chan_attr_write_avail.attr,
1389         &chan_attr_cpu.attr,
1390         &chan_attr_pending.attr,
1391         &chan_attr_latency.attr,
1392         &chan_attr_interrupts.attr,
1393         &chan_attr_events.attr,
1394         &chan_attr_monitor_id.attr,
1395         &chan_attr_subchannel_id.attr,
1396         NULL
1397 };
1398
1399 static struct kobj_type vmbus_chan_ktype = {
1400         .sysfs_ops = &vmbus_chan_sysfs_ops,
1401         .release = vmbus_chan_release,
1402         .default_attrs = vmbus_chan_attrs,
1403 };
1404
1405 /*
1406  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1407  */
1408 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1409 {
1410         struct kobject *kobj = &channel->kobj;
1411         u32 relid = channel->offermsg.child_relid;
1412         int ret;
1413
1414         kobj->kset = dev->channels_kset;
1415         ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1416                                    "%u", relid);
1417         if (ret)
1418                 return ret;
1419
1420         kobject_uevent(kobj, KOBJ_ADD);
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * vmbus_device_create - Creates and registers a new child device
1427  * on the vmbus.
1428  */
1429 struct hv_device *vmbus_device_create(const uuid_le *type,
1430                                       const uuid_le *instance,
1431                                       struct vmbus_channel *channel)
1432 {
1433         struct hv_device *child_device_obj;
1434
1435         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1436         if (!child_device_obj) {
1437                 pr_err("Unable to allocate device object for child device\n");
1438                 return NULL;
1439         }
1440
1441         child_device_obj->channel = channel;
1442         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1443         memcpy(&child_device_obj->dev_instance, instance,
1444                sizeof(uuid_le));
1445         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1446
1447
1448         return child_device_obj;
1449 }
1450
1451 /*
1452  * vmbus_device_register - Register the child device
1453  */
1454 int vmbus_device_register(struct hv_device *child_device_obj)
1455 {
1456         struct kobject *kobj = &child_device_obj->device.kobj;
1457         int ret;
1458
1459         dev_set_name(&child_device_obj->device, "%pUl",
1460                      child_device_obj->channel->offermsg.offer.if_instance.b);
1461
1462         child_device_obj->device.bus = &hv_bus;
1463         child_device_obj->device.parent = &hv_acpi_dev->dev;
1464         child_device_obj->device.release = vmbus_device_release;
1465
1466         /*
1467          * Register with the LDM. This will kick off the driver/device
1468          * binding...which will eventually call vmbus_match() and vmbus_probe()
1469          */
1470         ret = device_register(&child_device_obj->device);
1471         if (ret) {
1472                 pr_err("Unable to register child device\n");
1473                 return ret;
1474         }
1475
1476         child_device_obj->channels_kset = kset_create_and_add("channels",
1477                                                               NULL, kobj);
1478         if (!child_device_obj->channels_kset) {
1479                 ret = -ENOMEM;
1480                 goto err_dev_unregister;
1481         }
1482
1483         ret = vmbus_add_channel_kobj(child_device_obj,
1484                                      child_device_obj->channel);
1485         if (ret) {
1486                 pr_err("Unable to register primary channeln");
1487                 goto err_kset_unregister;
1488         }
1489
1490         return 0;
1491
1492 err_kset_unregister:
1493         kset_unregister(child_device_obj->channels_kset);
1494
1495 err_dev_unregister:
1496         device_unregister(&child_device_obj->device);
1497         return ret;
1498 }
1499
1500 /*
1501  * vmbus_device_unregister - Remove the specified child device
1502  * from the vmbus.
1503  */
1504 void vmbus_device_unregister(struct hv_device *device_obj)
1505 {
1506         pr_debug("child device %s unregistered\n",
1507                 dev_name(&device_obj->device));
1508
1509         kset_unregister(device_obj->channels_kset);
1510
1511         /*
1512          * Kick off the process of unregistering the device.
1513          * This will call vmbus_remove() and eventually vmbus_device_release()
1514          */
1515         device_unregister(&device_obj->device);
1516 }
1517
1518
1519 /*
1520  * VMBUS is an acpi enumerated device. Get the information we
1521  * need from DSDT.
1522  */
1523 #define VTPM_BASE_ADDRESS 0xfed40000
1524 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1525 {
1526         resource_size_t start = 0;
1527         resource_size_t end = 0;
1528         struct resource *new_res;
1529         struct resource **old_res = &hyperv_mmio;
1530         struct resource **prev_res = NULL;
1531
1532         switch (res->type) {
1533
1534         /*
1535          * "Address" descriptors are for bus windows. Ignore
1536          * "memory" descriptors, which are for registers on
1537          * devices.
1538          */
1539         case ACPI_RESOURCE_TYPE_ADDRESS32:
1540                 start = res->data.address32.address.minimum;
1541                 end = res->data.address32.address.maximum;
1542                 break;
1543
1544         case ACPI_RESOURCE_TYPE_ADDRESS64:
1545                 start = res->data.address64.address.minimum;
1546                 end = res->data.address64.address.maximum;
1547                 break;
1548
1549         default:
1550                 /* Unused resource type */
1551                 return AE_OK;
1552
1553         }
1554         /*
1555          * Ignore ranges that are below 1MB, as they're not
1556          * necessary or useful here.
1557          */
1558         if (end < 0x100000)
1559                 return AE_OK;
1560
1561         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1562         if (!new_res)
1563                 return AE_NO_MEMORY;
1564
1565         /* If this range overlaps the virtual TPM, truncate it. */
1566         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1567                 end = VTPM_BASE_ADDRESS;
1568
1569         new_res->name = "hyperv mmio";
1570         new_res->flags = IORESOURCE_MEM;
1571         new_res->start = start;
1572         new_res->end = end;
1573
1574         /*
1575          * If two ranges are adjacent, merge them.
1576          */
1577         do {
1578                 if (!*old_res) {
1579                         *old_res = new_res;
1580                         break;
1581                 }
1582
1583                 if (((*old_res)->end + 1) == new_res->start) {
1584                         (*old_res)->end = new_res->end;
1585                         kfree(new_res);
1586                         break;
1587                 }
1588
1589                 if ((*old_res)->start == new_res->end + 1) {
1590                         (*old_res)->start = new_res->start;
1591                         kfree(new_res);
1592                         break;
1593                 }
1594
1595                 if ((*old_res)->start > new_res->end) {
1596                         new_res->sibling = *old_res;
1597                         if (prev_res)
1598                                 (*prev_res)->sibling = new_res;
1599                         *old_res = new_res;
1600                         break;
1601                 }
1602
1603                 prev_res = old_res;
1604                 old_res = &(*old_res)->sibling;
1605
1606         } while (1);
1607
1608         return AE_OK;
1609 }
1610
1611 static int vmbus_acpi_remove(struct acpi_device *device)
1612 {
1613         struct resource *cur_res;
1614         struct resource *next_res;
1615
1616         if (hyperv_mmio) {
1617                 if (fb_mmio) {
1618                         __release_region(hyperv_mmio, fb_mmio->start,
1619                                          resource_size(fb_mmio));
1620                         fb_mmio = NULL;
1621                 }
1622
1623                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1624                         next_res = cur_res->sibling;
1625                         kfree(cur_res);
1626                 }
1627         }
1628
1629         return 0;
1630 }
1631
1632 static void vmbus_reserve_fb(void)
1633 {
1634         int size;
1635         /*
1636          * Make a claim for the frame buffer in the resource tree under the
1637          * first node, which will be the one below 4GB.  The length seems to
1638          * be underreported, particularly in a Generation 1 VM.  So start out
1639          * reserving a larger area and make it smaller until it succeeds.
1640          */
1641
1642         if (screen_info.lfb_base) {
1643                 if (efi_enabled(EFI_BOOT))
1644                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1645                 else
1646                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1647
1648                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1649                         fb_mmio = __request_region(hyperv_mmio,
1650                                                    screen_info.lfb_base, size,
1651                                                    fb_mmio_name, 0);
1652                 }
1653         }
1654 }
1655
1656 /**
1657  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1658  * @new:                If successful, supplied a pointer to the
1659  *                      allocated MMIO space.
1660  * @device_obj:         Identifies the caller
1661  * @min:                Minimum guest physical address of the
1662  *                      allocation
1663  * @max:                Maximum guest physical address
1664  * @size:               Size of the range to be allocated
1665  * @align:              Alignment of the range to be allocated
1666  * @fb_overlap_ok:      Whether this allocation can be allowed
1667  *                      to overlap the video frame buffer.
1668  *
1669  * This function walks the resources granted to VMBus by the
1670  * _CRS object in the ACPI namespace underneath the parent
1671  * "bridge" whether that's a root PCI bus in the Generation 1
1672  * case or a Module Device in the Generation 2 case.  It then
1673  * attempts to allocate from the global MMIO pool in a way that
1674  * matches the constraints supplied in these parameters and by
1675  * that _CRS.
1676  *
1677  * Return: 0 on success, -errno on failure
1678  */
1679 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1680                         resource_size_t min, resource_size_t max,
1681                         resource_size_t size, resource_size_t align,
1682                         bool fb_overlap_ok)
1683 {
1684         struct resource *iter, *shadow;
1685         resource_size_t range_min, range_max, start;
1686         const char *dev_n = dev_name(&device_obj->device);
1687         int retval;
1688
1689         retval = -ENXIO;
1690         down(&hyperv_mmio_lock);
1691
1692         /*
1693          * If overlaps with frame buffers are allowed, then first attempt to
1694          * make the allocation from within the reserved region.  Because it
1695          * is already reserved, no shadow allocation is necessary.
1696          */
1697         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1698             !(max < fb_mmio->start)) {
1699
1700                 range_min = fb_mmio->start;
1701                 range_max = fb_mmio->end;
1702                 start = (range_min + align - 1) & ~(align - 1);
1703                 for (; start + size - 1 <= range_max; start += align) {
1704                         *new = request_mem_region_exclusive(start, size, dev_n);
1705                         if (*new) {
1706                                 retval = 0;
1707                                 goto exit;
1708                         }
1709                 }
1710         }
1711
1712         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1713                 if ((iter->start >= max) || (iter->end <= min))
1714                         continue;
1715
1716                 range_min = iter->start;
1717                 range_max = iter->end;
1718                 start = (range_min + align - 1) & ~(align - 1);
1719                 for (; start + size - 1 <= range_max; start += align) {
1720                         shadow = __request_region(iter, start, size, NULL,
1721                                                   IORESOURCE_BUSY);
1722                         if (!shadow)
1723                                 continue;
1724
1725                         *new = request_mem_region_exclusive(start, size, dev_n);
1726                         if (*new) {
1727                                 shadow->name = (char *)*new;
1728                                 retval = 0;
1729                                 goto exit;
1730                         }
1731
1732                         __release_region(iter, start, size);
1733                 }
1734         }
1735
1736 exit:
1737         up(&hyperv_mmio_lock);
1738         return retval;
1739 }
1740 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1741
1742 /**
1743  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1744  * @start:              Base address of region to release.
1745  * @size:               Size of the range to be allocated
1746  *
1747  * This function releases anything requested by
1748  * vmbus_mmio_allocate().
1749  */
1750 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1751 {
1752         struct resource *iter;
1753
1754         down(&hyperv_mmio_lock);
1755         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1756                 if ((iter->start >= start + size) || (iter->end <= start))
1757                         continue;
1758
1759                 __release_region(iter, start, size);
1760         }
1761         release_mem_region(start, size);
1762         up(&hyperv_mmio_lock);
1763
1764 }
1765 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1766
1767 static int vmbus_acpi_add(struct acpi_device *device)
1768 {
1769         acpi_status result;
1770         int ret_val = -ENODEV;
1771         struct acpi_device *ancestor;
1772
1773         hv_acpi_dev = device;
1774
1775         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1776                                         vmbus_walk_resources, NULL);
1777
1778         if (ACPI_FAILURE(result))
1779                 goto acpi_walk_err;
1780         /*
1781          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1782          * firmware) is the VMOD that has the mmio ranges. Get that.
1783          */
1784         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1785                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1786                                              vmbus_walk_resources, NULL);
1787
1788                 if (ACPI_FAILURE(result))
1789                         continue;
1790                 if (hyperv_mmio) {
1791                         vmbus_reserve_fb();
1792                         break;
1793                 }
1794         }
1795         ret_val = 0;
1796
1797 acpi_walk_err:
1798         complete(&probe_event);
1799         if (ret_val)
1800                 vmbus_acpi_remove(device);
1801         return ret_val;
1802 }
1803
1804 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1805         {"VMBUS", 0},
1806         {"VMBus", 0},
1807         {"", 0},
1808 };
1809 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1810
1811 static struct acpi_driver vmbus_acpi_driver = {
1812         .name = "vmbus",
1813         .ids = vmbus_acpi_device_ids,
1814         .ops = {
1815                 .add = vmbus_acpi_add,
1816                 .remove = vmbus_acpi_remove,
1817         },
1818 };
1819
1820 static void hv_kexec_handler(void)
1821 {
1822         hv_synic_clockevents_cleanup();
1823         vmbus_initiate_unload(false);
1824         vmbus_connection.conn_state = DISCONNECTED;
1825         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1826         mb();
1827         cpuhp_remove_state(hyperv_cpuhp_online);
1828         hyperv_cleanup();
1829 };
1830
1831 static void hv_crash_handler(struct pt_regs *regs)
1832 {
1833         vmbus_initiate_unload(true);
1834         /*
1835          * In crash handler we can't schedule synic cleanup for all CPUs,
1836          * doing the cleanup for current CPU only. This should be sufficient
1837          * for kdump.
1838          */
1839         vmbus_connection.conn_state = DISCONNECTED;
1840         hv_synic_cleanup(smp_processor_id());
1841         hyperv_cleanup();
1842 };
1843
1844 static int __init hv_acpi_init(void)
1845 {
1846         int ret, t;
1847
1848         if (!hv_is_hyperv_initialized())
1849                 return -ENODEV;
1850
1851         init_completion(&probe_event);
1852
1853         /*
1854          * Get ACPI resources first.
1855          */
1856         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1857
1858         if (ret)
1859                 return ret;
1860
1861         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1862         if (t == 0) {
1863                 ret = -ETIMEDOUT;
1864                 goto cleanup;
1865         }
1866
1867         ret = vmbus_bus_init();
1868         if (ret)
1869                 goto cleanup;
1870
1871         hv_setup_kexec_handler(hv_kexec_handler);
1872         hv_setup_crash_handler(hv_crash_handler);
1873
1874         return 0;
1875
1876 cleanup:
1877         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1878         hv_acpi_dev = NULL;
1879         return ret;
1880 }
1881
1882 static void __exit vmbus_exit(void)
1883 {
1884         int cpu;
1885
1886         hv_remove_kexec_handler();
1887         hv_remove_crash_handler();
1888         vmbus_connection.conn_state = DISCONNECTED;
1889         hv_synic_clockevents_cleanup();
1890         vmbus_disconnect();
1891         hv_remove_vmbus_irq();
1892         for_each_online_cpu(cpu) {
1893                 struct hv_per_cpu_context *hv_cpu
1894                         = per_cpu_ptr(hv_context.cpu_context, cpu);
1895
1896                 tasklet_kill(&hv_cpu->msg_dpc);
1897         }
1898         vmbus_free_channels();
1899
1900         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1901                 kmsg_dump_unregister(&hv_kmsg_dumper);
1902                 unregister_die_notifier(&hyperv_die_block);
1903                 atomic_notifier_chain_unregister(&panic_notifier_list,
1904                                                  &hyperv_panic_block);
1905         }
1906
1907         free_page((unsigned long)hv_panic_page);
1908         unregister_sysctl_table(hv_ctl_table_hdr);
1909         hv_ctl_table_hdr = NULL;
1910         bus_unregister(&hv_bus);
1911
1912         cpuhp_remove_state(hyperv_cpuhp_online);
1913         hv_synic_free();
1914         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1915 }
1916
1917
1918 MODULE_LICENSE("GPL");
1919
1920 subsys_initcall(hv_acpi_init);
1921 module_exit(vmbus_exit);