Merge tag 'iommu-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / hv / vmbus_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
37
38 struct vmbus_dynid {
39         struct list_head node;
40         struct hv_vmbus_device_id id;
41 };
42
43 static struct acpi_device  *hv_acpi_dev;
44
45 static struct completion probe_event;
46
47 static int hyperv_cpuhp_online;
48
49 static void *hv_panic_page;
50
51 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
52                               void *args)
53 {
54         struct pt_regs *regs;
55
56         regs = current_pt_regs();
57
58         hyperv_report_panic(regs, val);
59         return NOTIFY_DONE;
60 }
61
62 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
63                             void *args)
64 {
65         struct die_args *die = (struct die_args *)args;
66         struct pt_regs *regs = die->regs;
67
68         hyperv_report_panic(regs, val);
69         return NOTIFY_DONE;
70 }
71
72 static struct notifier_block hyperv_die_block = {
73         .notifier_call = hyperv_die_event,
74 };
75 static struct notifier_block hyperv_panic_block = {
76         .notifier_call = hyperv_panic_event,
77 };
78
79 static const char *fb_mmio_name = "fb_range";
80 static struct resource *fb_mmio;
81 static struct resource *hyperv_mmio;
82 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
83
84 static int vmbus_exists(void)
85 {
86         if (hv_acpi_dev == NULL)
87                 return -ENODEV;
88
89         return 0;
90 }
91
92 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
93 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
94 {
95         int i;
96         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
97                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
98 }
99
100 static u8 channel_monitor_group(const struct vmbus_channel *channel)
101 {
102         return (u8)channel->offermsg.monitorid / 32;
103 }
104
105 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
106 {
107         return (u8)channel->offermsg.monitorid % 32;
108 }
109
110 static u32 channel_pending(const struct vmbus_channel *channel,
111                            const struct hv_monitor_page *monitor_page)
112 {
113         u8 monitor_group = channel_monitor_group(channel);
114
115         return monitor_page->trigger_group[monitor_group].pending;
116 }
117
118 static u32 channel_latency(const struct vmbus_channel *channel,
119                            const struct hv_monitor_page *monitor_page)
120 {
121         u8 monitor_group = channel_monitor_group(channel);
122         u8 monitor_offset = channel_monitor_offset(channel);
123
124         return monitor_page->latency[monitor_group][monitor_offset];
125 }
126
127 static u32 channel_conn_id(struct vmbus_channel *channel,
128                            struct hv_monitor_page *monitor_page)
129 {
130         u8 monitor_group = channel_monitor_group(channel);
131         u8 monitor_offset = channel_monitor_offset(channel);
132         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
133 }
134
135 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
136                        char *buf)
137 {
138         struct hv_device *hv_dev = device_to_hv_device(dev);
139
140         if (!hv_dev->channel)
141                 return -ENODEV;
142         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
143 }
144 static DEVICE_ATTR_RO(id);
145
146 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
147                           char *buf)
148 {
149         struct hv_device *hv_dev = device_to_hv_device(dev);
150
151         if (!hv_dev->channel)
152                 return -ENODEV;
153         return sprintf(buf, "%d\n", hv_dev->channel->state);
154 }
155 static DEVICE_ATTR_RO(state);
156
157 static ssize_t monitor_id_show(struct device *dev,
158                                struct device_attribute *dev_attr, char *buf)
159 {
160         struct hv_device *hv_dev = device_to_hv_device(dev);
161
162         if (!hv_dev->channel)
163                 return -ENODEV;
164         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
165 }
166 static DEVICE_ATTR_RO(monitor_id);
167
168 static ssize_t class_id_show(struct device *dev,
169                                struct device_attribute *dev_attr, char *buf)
170 {
171         struct hv_device *hv_dev = device_to_hv_device(dev);
172
173         if (!hv_dev->channel)
174                 return -ENODEV;
175         return sprintf(buf, "{%pUl}\n",
176                        hv_dev->channel->offermsg.offer.if_type.b);
177 }
178 static DEVICE_ATTR_RO(class_id);
179
180 static ssize_t device_id_show(struct device *dev,
181                               struct device_attribute *dev_attr, char *buf)
182 {
183         struct hv_device *hv_dev = device_to_hv_device(dev);
184
185         if (!hv_dev->channel)
186                 return -ENODEV;
187         return sprintf(buf, "{%pUl}\n",
188                        hv_dev->channel->offermsg.offer.if_instance.b);
189 }
190 static DEVICE_ATTR_RO(device_id);
191
192 static ssize_t modalias_show(struct device *dev,
193                              struct device_attribute *dev_attr, char *buf)
194 {
195         struct hv_device *hv_dev = device_to_hv_device(dev);
196         char alias_name[VMBUS_ALIAS_LEN + 1];
197
198         print_alias_name(hv_dev, alias_name);
199         return sprintf(buf, "vmbus:%s\n", alias_name);
200 }
201 static DEVICE_ATTR_RO(modalias);
202
203 #ifdef CONFIG_NUMA
204 static ssize_t numa_node_show(struct device *dev,
205                               struct device_attribute *attr, char *buf)
206 {
207         struct hv_device *hv_dev = device_to_hv_device(dev);
208
209         if (!hv_dev->channel)
210                 return -ENODEV;
211
212         return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
213 }
214 static DEVICE_ATTR_RO(numa_node);
215 #endif
216
217 static ssize_t server_monitor_pending_show(struct device *dev,
218                                            struct device_attribute *dev_attr,
219                                            char *buf)
220 {
221         struct hv_device *hv_dev = device_to_hv_device(dev);
222
223         if (!hv_dev->channel)
224                 return -ENODEV;
225         return sprintf(buf, "%d\n",
226                        channel_pending(hv_dev->channel,
227                                        vmbus_connection.monitor_pages[0]));
228 }
229 static DEVICE_ATTR_RO(server_monitor_pending);
230
231 static ssize_t client_monitor_pending_show(struct device *dev,
232                                            struct device_attribute *dev_attr,
233                                            char *buf)
234 {
235         struct hv_device *hv_dev = device_to_hv_device(dev);
236
237         if (!hv_dev->channel)
238                 return -ENODEV;
239         return sprintf(buf, "%d\n",
240                        channel_pending(hv_dev->channel,
241                                        vmbus_connection.monitor_pages[1]));
242 }
243 static DEVICE_ATTR_RO(client_monitor_pending);
244
245 static ssize_t server_monitor_latency_show(struct device *dev,
246                                            struct device_attribute *dev_attr,
247                                            char *buf)
248 {
249         struct hv_device *hv_dev = device_to_hv_device(dev);
250
251         if (!hv_dev->channel)
252                 return -ENODEV;
253         return sprintf(buf, "%d\n",
254                        channel_latency(hv_dev->channel,
255                                        vmbus_connection.monitor_pages[0]));
256 }
257 static DEVICE_ATTR_RO(server_monitor_latency);
258
259 static ssize_t client_monitor_latency_show(struct device *dev,
260                                            struct device_attribute *dev_attr,
261                                            char *buf)
262 {
263         struct hv_device *hv_dev = device_to_hv_device(dev);
264
265         if (!hv_dev->channel)
266                 return -ENODEV;
267         return sprintf(buf, "%d\n",
268                        channel_latency(hv_dev->channel,
269                                        vmbus_connection.monitor_pages[1]));
270 }
271 static DEVICE_ATTR_RO(client_monitor_latency);
272
273 static ssize_t server_monitor_conn_id_show(struct device *dev,
274                                            struct device_attribute *dev_attr,
275                                            char *buf)
276 {
277         struct hv_device *hv_dev = device_to_hv_device(dev);
278
279         if (!hv_dev->channel)
280                 return -ENODEV;
281         return sprintf(buf, "%d\n",
282                        channel_conn_id(hv_dev->channel,
283                                        vmbus_connection.monitor_pages[0]));
284 }
285 static DEVICE_ATTR_RO(server_monitor_conn_id);
286
287 static ssize_t client_monitor_conn_id_show(struct device *dev,
288                                            struct device_attribute *dev_attr,
289                                            char *buf)
290 {
291         struct hv_device *hv_dev = device_to_hv_device(dev);
292
293         if (!hv_dev->channel)
294                 return -ENODEV;
295         return sprintf(buf, "%d\n",
296                        channel_conn_id(hv_dev->channel,
297                                        vmbus_connection.monitor_pages[1]));
298 }
299 static DEVICE_ATTR_RO(client_monitor_conn_id);
300
301 static ssize_t out_intr_mask_show(struct device *dev,
302                                   struct device_attribute *dev_attr, char *buf)
303 {
304         struct hv_device *hv_dev = device_to_hv_device(dev);
305         struct hv_ring_buffer_debug_info outbound;
306         int ret;
307
308         if (!hv_dev->channel)
309                 return -ENODEV;
310
311         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
312                                           &outbound);
313         if (ret < 0)
314                 return ret;
315
316         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317 }
318 static DEVICE_ATTR_RO(out_intr_mask);
319
320 static ssize_t out_read_index_show(struct device *dev,
321                                    struct device_attribute *dev_attr, char *buf)
322 {
323         struct hv_device *hv_dev = device_to_hv_device(dev);
324         struct hv_ring_buffer_debug_info outbound;
325         int ret;
326
327         if (!hv_dev->channel)
328                 return -ENODEV;
329
330         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
331                                           &outbound);
332         if (ret < 0)
333                 return ret;
334         return sprintf(buf, "%d\n", outbound.current_read_index);
335 }
336 static DEVICE_ATTR_RO(out_read_index);
337
338 static ssize_t out_write_index_show(struct device *dev,
339                                     struct device_attribute *dev_attr,
340                                     char *buf)
341 {
342         struct hv_device *hv_dev = device_to_hv_device(dev);
343         struct hv_ring_buffer_debug_info outbound;
344         int ret;
345
346         if (!hv_dev->channel)
347                 return -ENODEV;
348
349         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
350                                           &outbound);
351         if (ret < 0)
352                 return ret;
353         return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358                                          struct device_attribute *dev_attr,
359                                          char *buf)
360 {
361         struct hv_device *hv_dev = device_to_hv_device(dev);
362         struct hv_ring_buffer_debug_info outbound;
363         int ret;
364
365         if (!hv_dev->channel)
366                 return -ENODEV;
367
368         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
369                                           &outbound);
370         if (ret < 0)
371                 return ret;
372         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
373 }
374 static DEVICE_ATTR_RO(out_read_bytes_avail);
375
376 static ssize_t out_write_bytes_avail_show(struct device *dev,
377                                           struct device_attribute *dev_attr,
378                                           char *buf)
379 {
380         struct hv_device *hv_dev = device_to_hv_device(dev);
381         struct hv_ring_buffer_debug_info outbound;
382         int ret;
383
384         if (!hv_dev->channel)
385                 return -ENODEV;
386
387         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
388                                           &outbound);
389         if (ret < 0)
390                 return ret;
391         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
392 }
393 static DEVICE_ATTR_RO(out_write_bytes_avail);
394
395 static ssize_t in_intr_mask_show(struct device *dev,
396                                  struct device_attribute *dev_attr, char *buf)
397 {
398         struct hv_device *hv_dev = device_to_hv_device(dev);
399         struct hv_ring_buffer_debug_info inbound;
400         int ret;
401
402         if (!hv_dev->channel)
403                 return -ENODEV;
404
405         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
406         if (ret < 0)
407                 return ret;
408
409         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
410 }
411 static DEVICE_ATTR_RO(in_intr_mask);
412
413 static ssize_t in_read_index_show(struct device *dev,
414                                   struct device_attribute *dev_attr, char *buf)
415 {
416         struct hv_device *hv_dev = device_to_hv_device(dev);
417         struct hv_ring_buffer_debug_info inbound;
418         int ret;
419
420         if (!hv_dev->channel)
421                 return -ENODEV;
422
423         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424         if (ret < 0)
425                 return ret;
426
427         return sprintf(buf, "%d\n", inbound.current_read_index);
428 }
429 static DEVICE_ATTR_RO(in_read_index);
430
431 static ssize_t in_write_index_show(struct device *dev,
432                                    struct device_attribute *dev_attr, char *buf)
433 {
434         struct hv_device *hv_dev = device_to_hv_device(dev);
435         struct hv_ring_buffer_debug_info inbound;
436         int ret;
437
438         if (!hv_dev->channel)
439                 return -ENODEV;
440
441         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442         if (ret < 0)
443                 return ret;
444
445         return sprintf(buf, "%d\n", inbound.current_write_index);
446 }
447 static DEVICE_ATTR_RO(in_write_index);
448
449 static ssize_t in_read_bytes_avail_show(struct device *dev,
450                                         struct device_attribute *dev_attr,
451                                         char *buf)
452 {
453         struct hv_device *hv_dev = device_to_hv_device(dev);
454         struct hv_ring_buffer_debug_info inbound;
455         int ret;
456
457         if (!hv_dev->channel)
458                 return -ENODEV;
459
460         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
461         if (ret < 0)
462                 return ret;
463
464         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
465 }
466 static DEVICE_ATTR_RO(in_read_bytes_avail);
467
468 static ssize_t in_write_bytes_avail_show(struct device *dev,
469                                          struct device_attribute *dev_attr,
470                                          char *buf)
471 {
472         struct hv_device *hv_dev = device_to_hv_device(dev);
473         struct hv_ring_buffer_debug_info inbound;
474         int ret;
475
476         if (!hv_dev->channel)
477                 return -ENODEV;
478
479         ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
480         if (ret < 0)
481                 return ret;
482
483         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
484 }
485 static DEVICE_ATTR_RO(in_write_bytes_avail);
486
487 static ssize_t channel_vp_mapping_show(struct device *dev,
488                                        struct device_attribute *dev_attr,
489                                        char *buf)
490 {
491         struct hv_device *hv_dev = device_to_hv_device(dev);
492         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
493         unsigned long flags;
494         int buf_size = PAGE_SIZE, n_written, tot_written;
495         struct list_head *cur;
496
497         if (!channel)
498                 return -ENODEV;
499
500         tot_written = snprintf(buf, buf_size, "%u:%u\n",
501                 channel->offermsg.child_relid, channel->target_cpu);
502
503         spin_lock_irqsave(&channel->lock, flags);
504
505         list_for_each(cur, &channel->sc_list) {
506                 if (tot_written >= buf_size - 1)
507                         break;
508
509                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
510                 n_written = scnprintf(buf + tot_written,
511                                      buf_size - tot_written,
512                                      "%u:%u\n",
513                                      cur_sc->offermsg.child_relid,
514                                      cur_sc->target_cpu);
515                 tot_written += n_written;
516         }
517
518         spin_unlock_irqrestore(&channel->lock, flags);
519
520         return tot_written;
521 }
522 static DEVICE_ATTR_RO(channel_vp_mapping);
523
524 static ssize_t vendor_show(struct device *dev,
525                            struct device_attribute *dev_attr,
526                            char *buf)
527 {
528         struct hv_device *hv_dev = device_to_hv_device(dev);
529         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
530 }
531 static DEVICE_ATTR_RO(vendor);
532
533 static ssize_t device_show(struct device *dev,
534                            struct device_attribute *dev_attr,
535                            char *buf)
536 {
537         struct hv_device *hv_dev = device_to_hv_device(dev);
538         return sprintf(buf, "0x%x\n", hv_dev->device_id);
539 }
540 static DEVICE_ATTR_RO(device);
541
542 static ssize_t driver_override_store(struct device *dev,
543                                      struct device_attribute *attr,
544                                      const char *buf, size_t count)
545 {
546         struct hv_device *hv_dev = device_to_hv_device(dev);
547         char *driver_override, *old, *cp;
548
549         /* We need to keep extra room for a newline */
550         if (count >= (PAGE_SIZE - 1))
551                 return -EINVAL;
552
553         driver_override = kstrndup(buf, count, GFP_KERNEL);
554         if (!driver_override)
555                 return -ENOMEM;
556
557         cp = strchr(driver_override, '\n');
558         if (cp)
559                 *cp = '\0';
560
561         device_lock(dev);
562         old = hv_dev->driver_override;
563         if (strlen(driver_override)) {
564                 hv_dev->driver_override = driver_override;
565         } else {
566                 kfree(driver_override);
567                 hv_dev->driver_override = NULL;
568         }
569         device_unlock(dev);
570
571         kfree(old);
572
573         return count;
574 }
575
576 static ssize_t driver_override_show(struct device *dev,
577                                     struct device_attribute *attr, char *buf)
578 {
579         struct hv_device *hv_dev = device_to_hv_device(dev);
580         ssize_t len;
581
582         device_lock(dev);
583         len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
584         device_unlock(dev);
585
586         return len;
587 }
588 static DEVICE_ATTR_RW(driver_override);
589
590 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
591 static struct attribute *vmbus_dev_attrs[] = {
592         &dev_attr_id.attr,
593         &dev_attr_state.attr,
594         &dev_attr_monitor_id.attr,
595         &dev_attr_class_id.attr,
596         &dev_attr_device_id.attr,
597         &dev_attr_modalias.attr,
598 #ifdef CONFIG_NUMA
599         &dev_attr_numa_node.attr,
600 #endif
601         &dev_attr_server_monitor_pending.attr,
602         &dev_attr_client_monitor_pending.attr,
603         &dev_attr_server_monitor_latency.attr,
604         &dev_attr_client_monitor_latency.attr,
605         &dev_attr_server_monitor_conn_id.attr,
606         &dev_attr_client_monitor_conn_id.attr,
607         &dev_attr_out_intr_mask.attr,
608         &dev_attr_out_read_index.attr,
609         &dev_attr_out_write_index.attr,
610         &dev_attr_out_read_bytes_avail.attr,
611         &dev_attr_out_write_bytes_avail.attr,
612         &dev_attr_in_intr_mask.attr,
613         &dev_attr_in_read_index.attr,
614         &dev_attr_in_write_index.attr,
615         &dev_attr_in_read_bytes_avail.attr,
616         &dev_attr_in_write_bytes_avail.attr,
617         &dev_attr_channel_vp_mapping.attr,
618         &dev_attr_vendor.attr,
619         &dev_attr_device.attr,
620         &dev_attr_driver_override.attr,
621         NULL,
622 };
623
624 /*
625  * Device-level attribute_group callback function. Returns the permission for
626  * each attribute, and returns 0 if an attribute is not visible.
627  */
628 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
629                                          struct attribute *attr, int idx)
630 {
631         struct device *dev = kobj_to_dev(kobj);
632         const struct hv_device *hv_dev = device_to_hv_device(dev);
633
634         /* Hide the monitor attributes if the monitor mechanism is not used. */
635         if (!hv_dev->channel->offermsg.monitor_allocated &&
636             (attr == &dev_attr_monitor_id.attr ||
637              attr == &dev_attr_server_monitor_pending.attr ||
638              attr == &dev_attr_client_monitor_pending.attr ||
639              attr == &dev_attr_server_monitor_latency.attr ||
640              attr == &dev_attr_client_monitor_latency.attr ||
641              attr == &dev_attr_server_monitor_conn_id.attr ||
642              attr == &dev_attr_client_monitor_conn_id.attr))
643                 return 0;
644
645         return attr->mode;
646 }
647
648 static const struct attribute_group vmbus_dev_group = {
649         .attrs = vmbus_dev_attrs,
650         .is_visible = vmbus_dev_attr_is_visible
651 };
652 __ATTRIBUTE_GROUPS(vmbus_dev);
653
654 /*
655  * vmbus_uevent - add uevent for our device
656  *
657  * This routine is invoked when a device is added or removed on the vmbus to
658  * generate a uevent to udev in the userspace. The udev will then look at its
659  * rule and the uevent generated here to load the appropriate driver
660  *
661  * The alias string will be of the form vmbus:guid where guid is the string
662  * representation of the device guid (each byte of the guid will be
663  * represented with two hex characters.
664  */
665 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
666 {
667         struct hv_device *dev = device_to_hv_device(device);
668         int ret;
669         char alias_name[VMBUS_ALIAS_LEN + 1];
670
671         print_alias_name(dev, alias_name);
672         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
673         return ret;
674 }
675
676 static const struct hv_vmbus_device_id *
677 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
678 {
679         if (id == NULL)
680                 return NULL; /* empty device table */
681
682         for (; !guid_is_null(&id->guid); id++)
683                 if (guid_equal(&id->guid, guid))
684                         return id;
685
686         return NULL;
687 }
688
689 static const struct hv_vmbus_device_id *
690 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
691 {
692         const struct hv_vmbus_device_id *id = NULL;
693         struct vmbus_dynid *dynid;
694
695         spin_lock(&drv->dynids.lock);
696         list_for_each_entry(dynid, &drv->dynids.list, node) {
697                 if (guid_equal(&dynid->id.guid, guid)) {
698                         id = &dynid->id;
699                         break;
700                 }
701         }
702         spin_unlock(&drv->dynids.lock);
703
704         return id;
705 }
706
707 static const struct hv_vmbus_device_id vmbus_device_null;
708
709 /*
710  * Return a matching hv_vmbus_device_id pointer.
711  * If there is no match, return NULL.
712  */
713 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
714                                                         struct hv_device *dev)
715 {
716         const guid_t *guid = &dev->dev_type;
717         const struct hv_vmbus_device_id *id;
718
719         /* When driver_override is set, only bind to the matching driver */
720         if (dev->driver_override && strcmp(dev->driver_override, drv->name))
721                 return NULL;
722
723         /* Look at the dynamic ids first, before the static ones */
724         id = hv_vmbus_dynid_match(drv, guid);
725         if (!id)
726                 id = hv_vmbus_dev_match(drv->id_table, guid);
727
728         /* driver_override will always match, send a dummy id */
729         if (!id && dev->driver_override)
730                 id = &vmbus_device_null;
731
732         return id;
733 }
734
735 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
736 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
737 {
738         struct vmbus_dynid *dynid;
739
740         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
741         if (!dynid)
742                 return -ENOMEM;
743
744         dynid->id.guid = *guid;
745
746         spin_lock(&drv->dynids.lock);
747         list_add_tail(&dynid->node, &drv->dynids.list);
748         spin_unlock(&drv->dynids.lock);
749
750         return driver_attach(&drv->driver);
751 }
752
753 static void vmbus_free_dynids(struct hv_driver *drv)
754 {
755         struct vmbus_dynid *dynid, *n;
756
757         spin_lock(&drv->dynids.lock);
758         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
759                 list_del(&dynid->node);
760                 kfree(dynid);
761         }
762         spin_unlock(&drv->dynids.lock);
763 }
764
765 /*
766  * store_new_id - sysfs frontend to vmbus_add_dynid()
767  *
768  * Allow GUIDs to be added to an existing driver via sysfs.
769  */
770 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
771                             size_t count)
772 {
773         struct hv_driver *drv = drv_to_hv_drv(driver);
774         guid_t guid;
775         ssize_t retval;
776
777         retval = guid_parse(buf, &guid);
778         if (retval)
779                 return retval;
780
781         if (hv_vmbus_dynid_match(drv, &guid))
782                 return -EEXIST;
783
784         retval = vmbus_add_dynid(drv, &guid);
785         if (retval)
786                 return retval;
787         return count;
788 }
789 static DRIVER_ATTR_WO(new_id);
790
791 /*
792  * store_remove_id - remove a PCI device ID from this driver
793  *
794  * Removes a dynamic pci device ID to this driver.
795  */
796 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
797                                size_t count)
798 {
799         struct hv_driver *drv = drv_to_hv_drv(driver);
800         struct vmbus_dynid *dynid, *n;
801         guid_t guid;
802         ssize_t retval;
803
804         retval = guid_parse(buf, &guid);
805         if (retval)
806                 return retval;
807
808         retval = -ENODEV;
809         spin_lock(&drv->dynids.lock);
810         list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
811                 struct hv_vmbus_device_id *id = &dynid->id;
812
813                 if (guid_equal(&id->guid, &guid)) {
814                         list_del(&dynid->node);
815                         kfree(dynid);
816                         retval = count;
817                         break;
818                 }
819         }
820         spin_unlock(&drv->dynids.lock);
821
822         return retval;
823 }
824 static DRIVER_ATTR_WO(remove_id);
825
826 static struct attribute *vmbus_drv_attrs[] = {
827         &driver_attr_new_id.attr,
828         &driver_attr_remove_id.attr,
829         NULL,
830 };
831 ATTRIBUTE_GROUPS(vmbus_drv);
832
833
834 /*
835  * vmbus_match - Attempt to match the specified device to the specified driver
836  */
837 static int vmbus_match(struct device *device, struct device_driver *driver)
838 {
839         struct hv_driver *drv = drv_to_hv_drv(driver);
840         struct hv_device *hv_dev = device_to_hv_device(device);
841
842         /* The hv_sock driver handles all hv_sock offers. */
843         if (is_hvsock_channel(hv_dev->channel))
844                 return drv->hvsock;
845
846         if (hv_vmbus_get_id(drv, hv_dev))
847                 return 1;
848
849         return 0;
850 }
851
852 /*
853  * vmbus_probe - Add the new vmbus's child device
854  */
855 static int vmbus_probe(struct device *child_device)
856 {
857         int ret = 0;
858         struct hv_driver *drv =
859                         drv_to_hv_drv(child_device->driver);
860         struct hv_device *dev = device_to_hv_device(child_device);
861         const struct hv_vmbus_device_id *dev_id;
862
863         dev_id = hv_vmbus_get_id(drv, dev);
864         if (drv->probe) {
865                 ret = drv->probe(dev, dev_id);
866                 if (ret != 0)
867                         pr_err("probe failed for device %s (%d)\n",
868                                dev_name(child_device), ret);
869
870         } else {
871                 pr_err("probe not set for driver %s\n",
872                        dev_name(child_device));
873                 ret = -ENODEV;
874         }
875         return ret;
876 }
877
878 /*
879  * vmbus_remove - Remove a vmbus device
880  */
881 static int vmbus_remove(struct device *child_device)
882 {
883         struct hv_driver *drv;
884         struct hv_device *dev = device_to_hv_device(child_device);
885
886         if (child_device->driver) {
887                 drv = drv_to_hv_drv(child_device->driver);
888                 if (drv->remove)
889                         drv->remove(dev);
890         }
891
892         return 0;
893 }
894
895
896 /*
897  * vmbus_shutdown - Shutdown a vmbus device
898  */
899 static void vmbus_shutdown(struct device *child_device)
900 {
901         struct hv_driver *drv;
902         struct hv_device *dev = device_to_hv_device(child_device);
903
904
905         /* The device may not be attached yet */
906         if (!child_device->driver)
907                 return;
908
909         drv = drv_to_hv_drv(child_device->driver);
910
911         if (drv->shutdown)
912                 drv->shutdown(dev);
913 }
914
915 /*
916  * vmbus_suspend - Suspend a vmbus device
917  */
918 static int vmbus_suspend(struct device *child_device)
919 {
920         struct hv_driver *drv;
921         struct hv_device *dev = device_to_hv_device(child_device);
922
923         /* The device may not be attached yet */
924         if (!child_device->driver)
925                 return 0;
926
927         drv = drv_to_hv_drv(child_device->driver);
928         if (!drv->suspend)
929                 return -EOPNOTSUPP;
930
931         return drv->suspend(dev);
932 }
933
934 /*
935  * vmbus_resume - Resume a vmbus device
936  */
937 static int vmbus_resume(struct device *child_device)
938 {
939         struct hv_driver *drv;
940         struct hv_device *dev = device_to_hv_device(child_device);
941
942         /* The device may not be attached yet */
943         if (!child_device->driver)
944                 return 0;
945
946         drv = drv_to_hv_drv(child_device->driver);
947         if (!drv->resume)
948                 return -EOPNOTSUPP;
949
950         return drv->resume(dev);
951 }
952
953 /*
954  * vmbus_device_release - Final callback release of the vmbus child device
955  */
956 static void vmbus_device_release(struct device *device)
957 {
958         struct hv_device *hv_dev = device_to_hv_device(device);
959         struct vmbus_channel *channel = hv_dev->channel;
960
961         mutex_lock(&vmbus_connection.channel_mutex);
962         hv_process_channel_removal(channel);
963         mutex_unlock(&vmbus_connection.channel_mutex);
964         kfree(hv_dev);
965 }
966
967 /*
968  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
969  * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
970  */
971 static const struct dev_pm_ops vmbus_pm = {
972         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
973 };
974
975 /* The one and only one */
976 static struct bus_type  hv_bus = {
977         .name =         "vmbus",
978         .match =                vmbus_match,
979         .shutdown =             vmbus_shutdown,
980         .remove =               vmbus_remove,
981         .probe =                vmbus_probe,
982         .uevent =               vmbus_uevent,
983         .dev_groups =           vmbus_dev_groups,
984         .drv_groups =           vmbus_drv_groups,
985         .pm =                   &vmbus_pm,
986 };
987
988 struct onmessage_work_context {
989         struct work_struct work;
990         struct hv_message msg;
991 };
992
993 static void vmbus_onmessage_work(struct work_struct *work)
994 {
995         struct onmessage_work_context *ctx;
996
997         /* Do not process messages if we're in DISCONNECTED state */
998         if (vmbus_connection.conn_state == DISCONNECTED)
999                 return;
1000
1001         ctx = container_of(work, struct onmessage_work_context,
1002                            work);
1003         vmbus_onmessage(&ctx->msg);
1004         kfree(ctx);
1005 }
1006
1007 void vmbus_on_msg_dpc(unsigned long data)
1008 {
1009         struct hv_per_cpu_context *hv_cpu = (void *)data;
1010         void *page_addr = hv_cpu->synic_message_page;
1011         struct hv_message *msg = (struct hv_message *)page_addr +
1012                                   VMBUS_MESSAGE_SINT;
1013         struct vmbus_channel_message_header *hdr;
1014         const struct vmbus_channel_message_table_entry *entry;
1015         struct onmessage_work_context *ctx;
1016         u32 message_type = msg->header.message_type;
1017
1018         if (message_type == HVMSG_NONE)
1019                 /* no msg */
1020                 return;
1021
1022         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1023
1024         trace_vmbus_on_msg_dpc(hdr);
1025
1026         if (hdr->msgtype >= CHANNELMSG_COUNT) {
1027                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1028                 goto msg_handled;
1029         }
1030
1031         entry = &channel_message_table[hdr->msgtype];
1032         if (entry->handler_type == VMHT_BLOCKING) {
1033                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1034                 if (ctx == NULL)
1035                         return;
1036
1037                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1038                 memcpy(&ctx->msg, msg, sizeof(*msg));
1039
1040                 /*
1041                  * The host can generate a rescind message while we
1042                  * may still be handling the original offer. We deal with
1043                  * this condition by ensuring the processing is done on the
1044                  * same CPU.
1045                  */
1046                 switch (hdr->msgtype) {
1047                 case CHANNELMSG_RESCIND_CHANNELOFFER:
1048                         /*
1049                          * If we are handling the rescind message;
1050                          * schedule the work on the global work queue.
1051                          */
1052                         schedule_work_on(vmbus_connection.connect_cpu,
1053                                          &ctx->work);
1054                         break;
1055
1056                 case CHANNELMSG_OFFERCHANNEL:
1057                         atomic_inc(&vmbus_connection.offer_in_progress);
1058                         queue_work_on(vmbus_connection.connect_cpu,
1059                                       vmbus_connection.work_queue,
1060                                       &ctx->work);
1061                         break;
1062
1063                 default:
1064                         queue_work(vmbus_connection.work_queue, &ctx->work);
1065                 }
1066         } else
1067                 entry->message_handler(hdr);
1068
1069 msg_handled:
1070         vmbus_signal_eom(msg, message_type);
1071 }
1072
1073 /*
1074  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1075  * hibernation, because hv_sock connections can not persist across hibernation.
1076  */
1077 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1078 {
1079         struct onmessage_work_context *ctx;
1080         struct vmbus_channel_rescind_offer *rescind;
1081
1082         WARN_ON(!is_hvsock_channel(channel));
1083
1084         /*
1085          * sizeof(*ctx) is small and the allocation should really not fail,
1086          * otherwise the state of the hv_sock connections ends up in limbo.
1087          */
1088         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
1089
1090         /*
1091          * So far, these are not really used by Linux. Just set them to the
1092          * reasonable values conforming to the definitions of the fields.
1093          */
1094         ctx->msg.header.message_type = 1;
1095         ctx->msg.header.payload_size = sizeof(*rescind);
1096
1097         /* These values are actually used by Linux. */
1098         rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
1099         rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1100         rescind->child_relid = channel->offermsg.child_relid;
1101
1102         INIT_WORK(&ctx->work, vmbus_onmessage_work);
1103
1104         queue_work_on(vmbus_connection.connect_cpu,
1105                       vmbus_connection.work_queue,
1106                       &ctx->work);
1107 }
1108
1109 /*
1110  * Direct callback for channels using other deferred processing
1111  */
1112 static void vmbus_channel_isr(struct vmbus_channel *channel)
1113 {
1114         void (*callback_fn)(void *);
1115
1116         callback_fn = READ_ONCE(channel->onchannel_callback);
1117         if (likely(callback_fn != NULL))
1118                 (*callback_fn)(channel->channel_callback_context);
1119 }
1120
1121 /*
1122  * Schedule all channels with events pending
1123  */
1124 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1125 {
1126         unsigned long *recv_int_page;
1127         u32 maxbits, relid;
1128
1129         if (vmbus_proto_version < VERSION_WIN8) {
1130                 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1131                 recv_int_page = vmbus_connection.recv_int_page;
1132         } else {
1133                 /*
1134                  * When the host is win8 and beyond, the event page
1135                  * can be directly checked to get the id of the channel
1136                  * that has the interrupt pending.
1137                  */
1138                 void *page_addr = hv_cpu->synic_event_page;
1139                 union hv_synic_event_flags *event
1140                         = (union hv_synic_event_flags *)page_addr +
1141                                                  VMBUS_MESSAGE_SINT;
1142
1143                 maxbits = HV_EVENT_FLAGS_COUNT;
1144                 recv_int_page = event->flags;
1145         }
1146
1147         if (unlikely(!recv_int_page))
1148                 return;
1149
1150         for_each_set_bit(relid, recv_int_page, maxbits) {
1151                 struct vmbus_channel *channel;
1152
1153                 if (!sync_test_and_clear_bit(relid, recv_int_page))
1154                         continue;
1155
1156                 /* Special case - vmbus channel protocol msg */
1157                 if (relid == 0)
1158                         continue;
1159
1160                 rcu_read_lock();
1161
1162                 /* Find channel based on relid */
1163                 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1164                         if (channel->offermsg.child_relid != relid)
1165                                 continue;
1166
1167                         if (channel->rescind)
1168                                 continue;
1169
1170                         trace_vmbus_chan_sched(channel);
1171
1172                         ++channel->interrupts;
1173
1174                         switch (channel->callback_mode) {
1175                         case HV_CALL_ISR:
1176                                 vmbus_channel_isr(channel);
1177                                 break;
1178
1179                         case HV_CALL_BATCHED:
1180                                 hv_begin_read(&channel->inbound);
1181                                 /* fallthrough */
1182                         case HV_CALL_DIRECT:
1183                                 tasklet_schedule(&channel->callback_event);
1184                         }
1185                 }
1186
1187                 rcu_read_unlock();
1188         }
1189 }
1190
1191 static void vmbus_isr(void)
1192 {
1193         struct hv_per_cpu_context *hv_cpu
1194                 = this_cpu_ptr(hv_context.cpu_context);
1195         void *page_addr = hv_cpu->synic_event_page;
1196         struct hv_message *msg;
1197         union hv_synic_event_flags *event;
1198         bool handled = false;
1199
1200         if (unlikely(page_addr == NULL))
1201                 return;
1202
1203         event = (union hv_synic_event_flags *)page_addr +
1204                                          VMBUS_MESSAGE_SINT;
1205         /*
1206          * Check for events before checking for messages. This is the order
1207          * in which events and messages are checked in Windows guests on
1208          * Hyper-V, and the Windows team suggested we do the same.
1209          */
1210
1211         if ((vmbus_proto_version == VERSION_WS2008) ||
1212                 (vmbus_proto_version == VERSION_WIN7)) {
1213
1214                 /* Since we are a child, we only need to check bit 0 */
1215                 if (sync_test_and_clear_bit(0, event->flags))
1216                         handled = true;
1217         } else {
1218                 /*
1219                  * Our host is win8 or above. The signaling mechanism
1220                  * has changed and we can directly look at the event page.
1221                  * If bit n is set then we have an interrup on the channel
1222                  * whose id is n.
1223                  */
1224                 handled = true;
1225         }
1226
1227         if (handled)
1228                 vmbus_chan_sched(hv_cpu);
1229
1230         page_addr = hv_cpu->synic_message_page;
1231         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1232
1233         /* Check if there are actual msgs to be processed */
1234         if (msg->header.message_type != HVMSG_NONE) {
1235                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1236                         hv_stimer0_isr();
1237                         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1238                 } else
1239                         tasklet_schedule(&hv_cpu->msg_dpc);
1240         }
1241
1242         add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1243 }
1244
1245 /*
1246  * Boolean to control whether to report panic messages over Hyper-V.
1247  *
1248  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1249  */
1250 static int sysctl_record_panic_msg = 1;
1251
1252 /*
1253  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1254  * buffer and call into Hyper-V to transfer the data.
1255  */
1256 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1257                          enum kmsg_dump_reason reason)
1258 {
1259         size_t bytes_written;
1260         phys_addr_t panic_pa;
1261
1262         /* We are only interested in panics. */
1263         if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1264                 return;
1265
1266         panic_pa = virt_to_phys(hv_panic_page);
1267
1268         /*
1269          * Write dump contents to the page. No need to synchronize; panic should
1270          * be single-threaded.
1271          */
1272         kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1273                              &bytes_written);
1274         if (bytes_written)
1275                 hyperv_report_panic_msg(panic_pa, bytes_written);
1276 }
1277
1278 static struct kmsg_dumper hv_kmsg_dumper = {
1279         .dump = hv_kmsg_dump,
1280 };
1281
1282 static struct ctl_table_header *hv_ctl_table_hdr;
1283
1284 /*
1285  * sysctl option to allow the user to control whether kmsg data should be
1286  * reported to Hyper-V on panic.
1287  */
1288 static struct ctl_table hv_ctl_table[] = {
1289         {
1290                 .procname       = "hyperv_record_panic_msg",
1291                 .data           = &sysctl_record_panic_msg,
1292                 .maxlen         = sizeof(int),
1293                 .mode           = 0644,
1294                 .proc_handler   = proc_dointvec_minmax,
1295                 .extra1         = SYSCTL_ZERO,
1296                 .extra2         = SYSCTL_ONE
1297         },
1298         {}
1299 };
1300
1301 static struct ctl_table hv_root_table[] = {
1302         {
1303                 .procname       = "kernel",
1304                 .mode           = 0555,
1305                 .child          = hv_ctl_table
1306         },
1307         {}
1308 };
1309
1310 /*
1311  * vmbus_bus_init -Main vmbus driver initialization routine.
1312  *
1313  * Here, we
1314  *      - initialize the vmbus driver context
1315  *      - invoke the vmbus hv main init routine
1316  *      - retrieve the channel offers
1317  */
1318 static int vmbus_bus_init(void)
1319 {
1320         int ret;
1321
1322         /* Hypervisor initialization...setup hypercall page..etc */
1323         ret = hv_init();
1324         if (ret != 0) {
1325                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1326                 return ret;
1327         }
1328
1329         ret = bus_register(&hv_bus);
1330         if (ret)
1331                 return ret;
1332
1333         hv_setup_vmbus_irq(vmbus_isr);
1334
1335         ret = hv_synic_alloc();
1336         if (ret)
1337                 goto err_alloc;
1338
1339         ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
1340         if (ret < 0)
1341                 goto err_alloc;
1342
1343         /*
1344          * Initialize the per-cpu interrupt state and stimer state.
1345          * Then connect to the host.
1346          */
1347         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1348                                 hv_synic_init, hv_synic_cleanup);
1349         if (ret < 0)
1350                 goto err_cpuhp;
1351         hyperv_cpuhp_online = ret;
1352
1353         ret = vmbus_connect();
1354         if (ret)
1355                 goto err_connect;
1356
1357         /*
1358          * Only register if the crash MSRs are available
1359          */
1360         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1361                 u64 hyperv_crash_ctl;
1362                 /*
1363                  * Sysctl registration is not fatal, since by default
1364                  * reporting is enabled.
1365                  */
1366                 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1367                 if (!hv_ctl_table_hdr)
1368                         pr_err("Hyper-V: sysctl table register error");
1369
1370                 /*
1371                  * Register for panic kmsg callback only if the right
1372                  * capability is supported by the hypervisor.
1373                  */
1374                 hv_get_crash_ctl(hyperv_crash_ctl);
1375                 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1376                         hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1377                         if (hv_panic_page) {
1378                                 ret = kmsg_dump_register(&hv_kmsg_dumper);
1379                                 if (ret)
1380                                         pr_err("Hyper-V: kmsg dump register "
1381                                                 "error 0x%x\n", ret);
1382                         } else
1383                                 pr_err("Hyper-V: panic message page memory "
1384                                         "allocation failed");
1385                 }
1386
1387                 register_die_notifier(&hyperv_die_block);
1388                 atomic_notifier_chain_register(&panic_notifier_list,
1389                                                &hyperv_panic_block);
1390         }
1391
1392         vmbus_request_offers();
1393
1394         return 0;
1395
1396 err_connect:
1397         cpuhp_remove_state(hyperv_cpuhp_online);
1398 err_cpuhp:
1399         hv_stimer_free();
1400 err_alloc:
1401         hv_synic_free();
1402         hv_remove_vmbus_irq();
1403
1404         bus_unregister(&hv_bus);
1405         free_page((unsigned long)hv_panic_page);
1406         unregister_sysctl_table(hv_ctl_table_hdr);
1407         hv_ctl_table_hdr = NULL;
1408         return ret;
1409 }
1410
1411 /**
1412  * __vmbus_child_driver_register() - Register a vmbus's driver
1413  * @hv_driver: Pointer to driver structure you want to register
1414  * @owner: owner module of the drv
1415  * @mod_name: module name string
1416  *
1417  * Registers the given driver with Linux through the 'driver_register()' call
1418  * and sets up the hyper-v vmbus handling for this driver.
1419  * It will return the state of the 'driver_register()' call.
1420  *
1421  */
1422 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1423 {
1424         int ret;
1425
1426         pr_info("registering driver %s\n", hv_driver->name);
1427
1428         ret = vmbus_exists();
1429         if (ret < 0)
1430                 return ret;
1431
1432         hv_driver->driver.name = hv_driver->name;
1433         hv_driver->driver.owner = owner;
1434         hv_driver->driver.mod_name = mod_name;
1435         hv_driver->driver.bus = &hv_bus;
1436
1437         spin_lock_init(&hv_driver->dynids.lock);
1438         INIT_LIST_HEAD(&hv_driver->dynids.list);
1439
1440         ret = driver_register(&hv_driver->driver);
1441
1442         return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1445
1446 /**
1447  * vmbus_driver_unregister() - Unregister a vmbus's driver
1448  * @hv_driver: Pointer to driver structure you want to
1449  *             un-register
1450  *
1451  * Un-register the given driver that was previous registered with a call to
1452  * vmbus_driver_register()
1453  */
1454 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1455 {
1456         pr_info("unregistering driver %s\n", hv_driver->name);
1457
1458         if (!vmbus_exists()) {
1459                 driver_unregister(&hv_driver->driver);
1460                 vmbus_free_dynids(hv_driver);
1461         }
1462 }
1463 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1464
1465
1466 /*
1467  * Called when last reference to channel is gone.
1468  */
1469 static void vmbus_chan_release(struct kobject *kobj)
1470 {
1471         struct vmbus_channel *channel
1472                 = container_of(kobj, struct vmbus_channel, kobj);
1473
1474         kfree_rcu(channel, rcu);
1475 }
1476
1477 struct vmbus_chan_attribute {
1478         struct attribute attr;
1479         ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1480         ssize_t (*store)(struct vmbus_channel *chan,
1481                          const char *buf, size_t count);
1482 };
1483 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1484         struct vmbus_chan_attribute chan_attr_##_name \
1485                 = __ATTR(_name, _mode, _show, _store)
1486 #define VMBUS_CHAN_ATTR_RW(_name) \
1487         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1488 #define VMBUS_CHAN_ATTR_RO(_name) \
1489         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1490 #define VMBUS_CHAN_ATTR_WO(_name) \
1491         struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1492
1493 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1494                                     struct attribute *attr, char *buf)
1495 {
1496         const struct vmbus_chan_attribute *attribute
1497                 = container_of(attr, struct vmbus_chan_attribute, attr);
1498         struct vmbus_channel *chan
1499                 = container_of(kobj, struct vmbus_channel, kobj);
1500
1501         if (!attribute->show)
1502                 return -EIO;
1503
1504         return attribute->show(chan, buf);
1505 }
1506
1507 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1508         .show = vmbus_chan_attr_show,
1509 };
1510
1511 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1512 {
1513         struct hv_ring_buffer_info *rbi = &channel->outbound;
1514         ssize_t ret;
1515
1516         mutex_lock(&rbi->ring_buffer_mutex);
1517         if (!rbi->ring_buffer) {
1518                 mutex_unlock(&rbi->ring_buffer_mutex);
1519                 return -EINVAL;
1520         }
1521
1522         ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1523         mutex_unlock(&rbi->ring_buffer_mutex);
1524         return ret;
1525 }
1526 static VMBUS_CHAN_ATTR_RO(out_mask);
1527
1528 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1529 {
1530         struct hv_ring_buffer_info *rbi = &channel->inbound;
1531         ssize_t ret;
1532
1533         mutex_lock(&rbi->ring_buffer_mutex);
1534         if (!rbi->ring_buffer) {
1535                 mutex_unlock(&rbi->ring_buffer_mutex);
1536                 return -EINVAL;
1537         }
1538
1539         ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1540         mutex_unlock(&rbi->ring_buffer_mutex);
1541         return ret;
1542 }
1543 static VMBUS_CHAN_ATTR_RO(in_mask);
1544
1545 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1546 {
1547         struct hv_ring_buffer_info *rbi = &channel->inbound;
1548         ssize_t ret;
1549
1550         mutex_lock(&rbi->ring_buffer_mutex);
1551         if (!rbi->ring_buffer) {
1552                 mutex_unlock(&rbi->ring_buffer_mutex);
1553                 return -EINVAL;
1554         }
1555
1556         ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1557         mutex_unlock(&rbi->ring_buffer_mutex);
1558         return ret;
1559 }
1560 static VMBUS_CHAN_ATTR_RO(read_avail);
1561
1562 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1563 {
1564         struct hv_ring_buffer_info *rbi = &channel->outbound;
1565         ssize_t ret;
1566
1567         mutex_lock(&rbi->ring_buffer_mutex);
1568         if (!rbi->ring_buffer) {
1569                 mutex_unlock(&rbi->ring_buffer_mutex);
1570                 return -EINVAL;
1571         }
1572
1573         ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1574         mutex_unlock(&rbi->ring_buffer_mutex);
1575         return ret;
1576 }
1577 static VMBUS_CHAN_ATTR_RO(write_avail);
1578
1579 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1580 {
1581         return sprintf(buf, "%u\n", channel->target_cpu);
1582 }
1583 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1584
1585 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1586                                     char *buf)
1587 {
1588         return sprintf(buf, "%d\n",
1589                        channel_pending(channel,
1590                                        vmbus_connection.monitor_pages[1]));
1591 }
1592 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1593
1594 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1595                                     char *buf)
1596 {
1597         return sprintf(buf, "%d\n",
1598                        channel_latency(channel,
1599                                        vmbus_connection.monitor_pages[1]));
1600 }
1601 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1602
1603 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1604 {
1605         return sprintf(buf, "%llu\n", channel->interrupts);
1606 }
1607 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1608
1609 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1610 {
1611         return sprintf(buf, "%llu\n", channel->sig_events);
1612 }
1613 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1614
1615 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1616                                          char *buf)
1617 {
1618         return sprintf(buf, "%llu\n",
1619                        (unsigned long long)channel->intr_in_full);
1620 }
1621 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1622
1623 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1624                                            char *buf)
1625 {
1626         return sprintf(buf, "%llu\n",
1627                        (unsigned long long)channel->intr_out_empty);
1628 }
1629 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1630
1631 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1632                                            char *buf)
1633 {
1634         return sprintf(buf, "%llu\n",
1635                        (unsigned long long)channel->out_full_first);
1636 }
1637 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1638
1639 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1640                                            char *buf)
1641 {
1642         return sprintf(buf, "%llu\n",
1643                        (unsigned long long)channel->out_full_total);
1644 }
1645 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1646
1647 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1648                                           char *buf)
1649 {
1650         return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1651 }
1652 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1653
1654 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1655                                   char *buf)
1656 {
1657         return sprintf(buf, "%u\n",
1658                        channel->offermsg.offer.sub_channel_index);
1659 }
1660 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1661
1662 static struct attribute *vmbus_chan_attrs[] = {
1663         &chan_attr_out_mask.attr,
1664         &chan_attr_in_mask.attr,
1665         &chan_attr_read_avail.attr,
1666         &chan_attr_write_avail.attr,
1667         &chan_attr_cpu.attr,
1668         &chan_attr_pending.attr,
1669         &chan_attr_latency.attr,
1670         &chan_attr_interrupts.attr,
1671         &chan_attr_events.attr,
1672         &chan_attr_intr_in_full.attr,
1673         &chan_attr_intr_out_empty.attr,
1674         &chan_attr_out_full_first.attr,
1675         &chan_attr_out_full_total.attr,
1676         &chan_attr_monitor_id.attr,
1677         &chan_attr_subchannel_id.attr,
1678         NULL
1679 };
1680
1681 /*
1682  * Channel-level attribute_group callback function. Returns the permission for
1683  * each attribute, and returns 0 if an attribute is not visible.
1684  */
1685 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1686                                           struct attribute *attr, int idx)
1687 {
1688         const struct vmbus_channel *channel =
1689                 container_of(kobj, struct vmbus_channel, kobj);
1690
1691         /* Hide the monitor attributes if the monitor mechanism is not used. */
1692         if (!channel->offermsg.monitor_allocated &&
1693             (attr == &chan_attr_pending.attr ||
1694              attr == &chan_attr_latency.attr ||
1695              attr == &chan_attr_monitor_id.attr))
1696                 return 0;
1697
1698         return attr->mode;
1699 }
1700
1701 static struct attribute_group vmbus_chan_group = {
1702         .attrs = vmbus_chan_attrs,
1703         .is_visible = vmbus_chan_attr_is_visible
1704 };
1705
1706 static struct kobj_type vmbus_chan_ktype = {
1707         .sysfs_ops = &vmbus_chan_sysfs_ops,
1708         .release = vmbus_chan_release,
1709 };
1710
1711 /*
1712  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1713  */
1714 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1715 {
1716         const struct device *device = &dev->device;
1717         struct kobject *kobj = &channel->kobj;
1718         u32 relid = channel->offermsg.child_relid;
1719         int ret;
1720
1721         kobj->kset = dev->channels_kset;
1722         ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1723                                    "%u", relid);
1724         if (ret)
1725                 return ret;
1726
1727         ret = sysfs_create_group(kobj, &vmbus_chan_group);
1728
1729         if (ret) {
1730                 /*
1731                  * The calling functions' error handling paths will cleanup the
1732                  * empty channel directory.
1733                  */
1734                 dev_err(device, "Unable to set up channel sysfs files\n");
1735                 return ret;
1736         }
1737
1738         kobject_uevent(kobj, KOBJ_ADD);
1739
1740         return 0;
1741 }
1742
1743 /*
1744  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1745  */
1746 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1747 {
1748         sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1749 }
1750
1751 /*
1752  * vmbus_device_create - Creates and registers a new child device
1753  * on the vmbus.
1754  */
1755 struct hv_device *vmbus_device_create(const guid_t *type,
1756                                       const guid_t *instance,
1757                                       struct vmbus_channel *channel)
1758 {
1759         struct hv_device *child_device_obj;
1760
1761         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1762         if (!child_device_obj) {
1763                 pr_err("Unable to allocate device object for child device\n");
1764                 return NULL;
1765         }
1766
1767         child_device_obj->channel = channel;
1768         guid_copy(&child_device_obj->dev_type, type);
1769         guid_copy(&child_device_obj->dev_instance, instance);
1770         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1771
1772         return child_device_obj;
1773 }
1774
1775 /*
1776  * vmbus_device_register - Register the child device
1777  */
1778 int vmbus_device_register(struct hv_device *child_device_obj)
1779 {
1780         struct kobject *kobj = &child_device_obj->device.kobj;
1781         int ret;
1782
1783         dev_set_name(&child_device_obj->device, "%pUl",
1784                      child_device_obj->channel->offermsg.offer.if_instance.b);
1785
1786         child_device_obj->device.bus = &hv_bus;
1787         child_device_obj->device.parent = &hv_acpi_dev->dev;
1788         child_device_obj->device.release = vmbus_device_release;
1789
1790         /*
1791          * Register with the LDM. This will kick off the driver/device
1792          * binding...which will eventually call vmbus_match() and vmbus_probe()
1793          */
1794         ret = device_register(&child_device_obj->device);
1795         if (ret) {
1796                 pr_err("Unable to register child device\n");
1797                 return ret;
1798         }
1799
1800         child_device_obj->channels_kset = kset_create_and_add("channels",
1801                                                               NULL, kobj);
1802         if (!child_device_obj->channels_kset) {
1803                 ret = -ENOMEM;
1804                 goto err_dev_unregister;
1805         }
1806
1807         ret = vmbus_add_channel_kobj(child_device_obj,
1808                                      child_device_obj->channel);
1809         if (ret) {
1810                 pr_err("Unable to register primary channeln");
1811                 goto err_kset_unregister;
1812         }
1813
1814         return 0;
1815
1816 err_kset_unregister:
1817         kset_unregister(child_device_obj->channels_kset);
1818
1819 err_dev_unregister:
1820         device_unregister(&child_device_obj->device);
1821         return ret;
1822 }
1823
1824 /*
1825  * vmbus_device_unregister - Remove the specified child device
1826  * from the vmbus.
1827  */
1828 void vmbus_device_unregister(struct hv_device *device_obj)
1829 {
1830         pr_debug("child device %s unregistered\n",
1831                 dev_name(&device_obj->device));
1832
1833         kset_unregister(device_obj->channels_kset);
1834
1835         /*
1836          * Kick off the process of unregistering the device.
1837          * This will call vmbus_remove() and eventually vmbus_device_release()
1838          */
1839         device_unregister(&device_obj->device);
1840 }
1841
1842
1843 /*
1844  * VMBUS is an acpi enumerated device. Get the information we
1845  * need from DSDT.
1846  */
1847 #define VTPM_BASE_ADDRESS 0xfed40000
1848 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1849 {
1850         resource_size_t start = 0;
1851         resource_size_t end = 0;
1852         struct resource *new_res;
1853         struct resource **old_res = &hyperv_mmio;
1854         struct resource **prev_res = NULL;
1855
1856         switch (res->type) {
1857
1858         /*
1859          * "Address" descriptors are for bus windows. Ignore
1860          * "memory" descriptors, which are for registers on
1861          * devices.
1862          */
1863         case ACPI_RESOURCE_TYPE_ADDRESS32:
1864                 start = res->data.address32.address.minimum;
1865                 end = res->data.address32.address.maximum;
1866                 break;
1867
1868         case ACPI_RESOURCE_TYPE_ADDRESS64:
1869                 start = res->data.address64.address.minimum;
1870                 end = res->data.address64.address.maximum;
1871                 break;
1872
1873         default:
1874                 /* Unused resource type */
1875                 return AE_OK;
1876
1877         }
1878         /*
1879          * Ignore ranges that are below 1MB, as they're not
1880          * necessary or useful here.
1881          */
1882         if (end < 0x100000)
1883                 return AE_OK;
1884
1885         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1886         if (!new_res)
1887                 return AE_NO_MEMORY;
1888
1889         /* If this range overlaps the virtual TPM, truncate it. */
1890         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1891                 end = VTPM_BASE_ADDRESS;
1892
1893         new_res->name = "hyperv mmio";
1894         new_res->flags = IORESOURCE_MEM;
1895         new_res->start = start;
1896         new_res->end = end;
1897
1898         /*
1899          * If two ranges are adjacent, merge them.
1900          */
1901         do {
1902                 if (!*old_res) {
1903                         *old_res = new_res;
1904                         break;
1905                 }
1906
1907                 if (((*old_res)->end + 1) == new_res->start) {
1908                         (*old_res)->end = new_res->end;
1909                         kfree(new_res);
1910                         break;
1911                 }
1912
1913                 if ((*old_res)->start == new_res->end + 1) {
1914                         (*old_res)->start = new_res->start;
1915                         kfree(new_res);
1916                         break;
1917                 }
1918
1919                 if ((*old_res)->start > new_res->end) {
1920                         new_res->sibling = *old_res;
1921                         if (prev_res)
1922                                 (*prev_res)->sibling = new_res;
1923                         *old_res = new_res;
1924                         break;
1925                 }
1926
1927                 prev_res = old_res;
1928                 old_res = &(*old_res)->sibling;
1929
1930         } while (1);
1931
1932         return AE_OK;
1933 }
1934
1935 static int vmbus_acpi_remove(struct acpi_device *device)
1936 {
1937         struct resource *cur_res;
1938         struct resource *next_res;
1939
1940         if (hyperv_mmio) {
1941                 if (fb_mmio) {
1942                         __release_region(hyperv_mmio, fb_mmio->start,
1943                                          resource_size(fb_mmio));
1944                         fb_mmio = NULL;
1945                 }
1946
1947                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1948                         next_res = cur_res->sibling;
1949                         kfree(cur_res);
1950                 }
1951         }
1952
1953         return 0;
1954 }
1955
1956 static void vmbus_reserve_fb(void)
1957 {
1958         int size;
1959         /*
1960          * Make a claim for the frame buffer in the resource tree under the
1961          * first node, which will be the one below 4GB.  The length seems to
1962          * be underreported, particularly in a Generation 1 VM.  So start out
1963          * reserving a larger area and make it smaller until it succeeds.
1964          */
1965
1966         if (screen_info.lfb_base) {
1967                 if (efi_enabled(EFI_BOOT))
1968                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1969                 else
1970                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1971
1972                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1973                         fb_mmio = __request_region(hyperv_mmio,
1974                                                    screen_info.lfb_base, size,
1975                                                    fb_mmio_name, 0);
1976                 }
1977         }
1978 }
1979
1980 /**
1981  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1982  * @new:                If successful, supplied a pointer to the
1983  *                      allocated MMIO space.
1984  * @device_obj:         Identifies the caller
1985  * @min:                Minimum guest physical address of the
1986  *                      allocation
1987  * @max:                Maximum guest physical address
1988  * @size:               Size of the range to be allocated
1989  * @align:              Alignment of the range to be allocated
1990  * @fb_overlap_ok:      Whether this allocation can be allowed
1991  *                      to overlap the video frame buffer.
1992  *
1993  * This function walks the resources granted to VMBus by the
1994  * _CRS object in the ACPI namespace underneath the parent
1995  * "bridge" whether that's a root PCI bus in the Generation 1
1996  * case or a Module Device in the Generation 2 case.  It then
1997  * attempts to allocate from the global MMIO pool in a way that
1998  * matches the constraints supplied in these parameters and by
1999  * that _CRS.
2000  *
2001  * Return: 0 on success, -errno on failure
2002  */
2003 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2004                         resource_size_t min, resource_size_t max,
2005                         resource_size_t size, resource_size_t align,
2006                         bool fb_overlap_ok)
2007 {
2008         struct resource *iter, *shadow;
2009         resource_size_t range_min, range_max, start;
2010         const char *dev_n = dev_name(&device_obj->device);
2011         int retval;
2012
2013         retval = -ENXIO;
2014         down(&hyperv_mmio_lock);
2015
2016         /*
2017          * If overlaps with frame buffers are allowed, then first attempt to
2018          * make the allocation from within the reserved region.  Because it
2019          * is already reserved, no shadow allocation is necessary.
2020          */
2021         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2022             !(max < fb_mmio->start)) {
2023
2024                 range_min = fb_mmio->start;
2025                 range_max = fb_mmio->end;
2026                 start = (range_min + align - 1) & ~(align - 1);
2027                 for (; start + size - 1 <= range_max; start += align) {
2028                         *new = request_mem_region_exclusive(start, size, dev_n);
2029                         if (*new) {
2030                                 retval = 0;
2031                                 goto exit;
2032                         }
2033                 }
2034         }
2035
2036         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2037                 if ((iter->start >= max) || (iter->end <= min))
2038                         continue;
2039
2040                 range_min = iter->start;
2041                 range_max = iter->end;
2042                 start = (range_min + align - 1) & ~(align - 1);
2043                 for (; start + size - 1 <= range_max; start += align) {
2044                         shadow = __request_region(iter, start, size, NULL,
2045                                                   IORESOURCE_BUSY);
2046                         if (!shadow)
2047                                 continue;
2048
2049                         *new = request_mem_region_exclusive(start, size, dev_n);
2050                         if (*new) {
2051                                 shadow->name = (char *)*new;
2052                                 retval = 0;
2053                                 goto exit;
2054                         }
2055
2056                         __release_region(iter, start, size);
2057                 }
2058         }
2059
2060 exit:
2061         up(&hyperv_mmio_lock);
2062         return retval;
2063 }
2064 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2065
2066 /**
2067  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2068  * @start:              Base address of region to release.
2069  * @size:               Size of the range to be allocated
2070  *
2071  * This function releases anything requested by
2072  * vmbus_mmio_allocate().
2073  */
2074 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2075 {
2076         struct resource *iter;
2077
2078         down(&hyperv_mmio_lock);
2079         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2080                 if ((iter->start >= start + size) || (iter->end <= start))
2081                         continue;
2082
2083                 __release_region(iter, start, size);
2084         }
2085         release_mem_region(start, size);
2086         up(&hyperv_mmio_lock);
2087
2088 }
2089 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2090
2091 static int vmbus_acpi_add(struct acpi_device *device)
2092 {
2093         acpi_status result;
2094         int ret_val = -ENODEV;
2095         struct acpi_device *ancestor;
2096
2097         hv_acpi_dev = device;
2098
2099         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2100                                         vmbus_walk_resources, NULL);
2101
2102         if (ACPI_FAILURE(result))
2103                 goto acpi_walk_err;
2104         /*
2105          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2106          * firmware) is the VMOD that has the mmio ranges. Get that.
2107          */
2108         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2109                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2110                                              vmbus_walk_resources, NULL);
2111
2112                 if (ACPI_FAILURE(result))
2113                         continue;
2114                 if (hyperv_mmio) {
2115                         vmbus_reserve_fb();
2116                         break;
2117                 }
2118         }
2119         ret_val = 0;
2120
2121 acpi_walk_err:
2122         complete(&probe_event);
2123         if (ret_val)
2124                 vmbus_acpi_remove(device);
2125         return ret_val;
2126 }
2127
2128 static int vmbus_bus_suspend(struct device *dev)
2129 {
2130         struct vmbus_channel *channel, *sc;
2131         unsigned long flags;
2132
2133         while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2134                 /*
2135                  * We wait here until the completion of any channel
2136                  * offers that are currently in progress.
2137                  */
2138                 msleep(1);
2139         }
2140
2141         mutex_lock(&vmbus_connection.channel_mutex);
2142         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2143                 if (!is_hvsock_channel(channel))
2144                         continue;
2145
2146                 vmbus_force_channel_rescinded(channel);
2147         }
2148         mutex_unlock(&vmbus_connection.channel_mutex);
2149
2150         /*
2151          * Wait until all the sub-channels and hv_sock channels have been
2152          * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2153          * they would conflict with the new sub-channels that will be created
2154          * in the resume path. hv_sock channels should also be destroyed, but
2155          * a hv_sock channel of an established hv_sock connection can not be
2156          * really destroyed since it may still be referenced by the userspace
2157          * application, so we just force the hv_sock channel to be rescinded
2158          * by vmbus_force_channel_rescinded(), and the userspace application
2159          * will thoroughly destroy the channel after hibernation.
2160          *
2161          * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2162          * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2163          */
2164         if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2165                 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2166
2167         WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2168
2169         mutex_lock(&vmbus_connection.channel_mutex);
2170
2171         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2172                 /*
2173                  * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2174                  * up the field, and the other fields (if necessary).
2175                  */
2176                 channel->offermsg.child_relid = INVALID_RELID;
2177
2178                 if (is_hvsock_channel(channel)) {
2179                         if (!channel->rescind) {
2180                                 pr_err("hv_sock channel not rescinded!\n");
2181                                 WARN_ON_ONCE(1);
2182                         }
2183                         continue;
2184                 }
2185
2186                 spin_lock_irqsave(&channel->lock, flags);
2187                 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2188                         pr_err("Sub-channel not deleted!\n");
2189                         WARN_ON_ONCE(1);
2190                 }
2191                 spin_unlock_irqrestore(&channel->lock, flags);
2192
2193                 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2194         }
2195
2196         mutex_unlock(&vmbus_connection.channel_mutex);
2197
2198         vmbus_initiate_unload(false);
2199
2200         vmbus_connection.conn_state = DISCONNECTED;
2201
2202         /* Reset the event for the next resume. */
2203         reinit_completion(&vmbus_connection.ready_for_resume_event);
2204
2205         return 0;
2206 }
2207
2208 static int vmbus_bus_resume(struct device *dev)
2209 {
2210         struct vmbus_channel_msginfo *msginfo;
2211         size_t msgsize;
2212         int ret;
2213
2214         /*
2215          * We only use the 'vmbus_proto_version', which was in use before
2216          * hibernation, to re-negotiate with the host.
2217          */
2218         if (vmbus_proto_version == VERSION_INVAL ||
2219             vmbus_proto_version == 0) {
2220                 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2221                 return -EINVAL;
2222         }
2223
2224         msgsize = sizeof(*msginfo) +
2225                   sizeof(struct vmbus_channel_initiate_contact);
2226
2227         msginfo = kzalloc(msgsize, GFP_KERNEL);
2228
2229         if (msginfo == NULL)
2230                 return -ENOMEM;
2231
2232         ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2233
2234         kfree(msginfo);
2235
2236         if (ret != 0)
2237                 return ret;
2238
2239         WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2240
2241         vmbus_request_offers();
2242
2243         wait_for_completion(&vmbus_connection.ready_for_resume_event);
2244
2245         /* Reset the event for the next suspend. */
2246         reinit_completion(&vmbus_connection.ready_for_suspend_event);
2247
2248         return 0;
2249 }
2250
2251 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2252         {"VMBUS", 0},
2253         {"VMBus", 0},
2254         {"", 0},
2255 };
2256 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2257
2258 /*
2259  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
2260  * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
2261  * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
2262  * pci "noirq" restore callback runs before "non-noirq" callbacks (see
2263  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2264  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2265  * resume callback must also run via the "noirq" callbacks.
2266  */
2267 static const struct dev_pm_ops vmbus_bus_pm = {
2268         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
2269 };
2270
2271 static struct acpi_driver vmbus_acpi_driver = {
2272         .name = "vmbus",
2273         .ids = vmbus_acpi_device_ids,
2274         .ops = {
2275                 .add = vmbus_acpi_add,
2276                 .remove = vmbus_acpi_remove,
2277         },
2278         .drv.pm = &vmbus_bus_pm,
2279 };
2280
2281 static void hv_kexec_handler(void)
2282 {
2283         hv_stimer_global_cleanup();
2284         vmbus_initiate_unload(false);
2285         vmbus_connection.conn_state = DISCONNECTED;
2286         /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2287         mb();
2288         cpuhp_remove_state(hyperv_cpuhp_online);
2289         hyperv_cleanup();
2290 };
2291
2292 static void hv_crash_handler(struct pt_regs *regs)
2293 {
2294         int cpu;
2295
2296         vmbus_initiate_unload(true);
2297         /*
2298          * In crash handler we can't schedule synic cleanup for all CPUs,
2299          * doing the cleanup for current CPU only. This should be sufficient
2300          * for kdump.
2301          */
2302         vmbus_connection.conn_state = DISCONNECTED;
2303         cpu = smp_processor_id();
2304         hv_stimer_cleanup(cpu);
2305         hv_synic_cleanup(cpu);
2306         hyperv_cleanup();
2307 };
2308
2309 static int hv_synic_suspend(void)
2310 {
2311         /*
2312          * When we reach here, all the non-boot CPUs have been offlined, and
2313          * the stimers on them have been unbound in hv_synic_cleanup() ->
2314          * hv_stimer_cleanup() -> clockevents_unbind_device().
2315          *
2316          * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
2317          * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
2318          * because the interrupts remain disabled between syscore_suspend()
2319          * and syscore_resume(): see create_image() and resume_target_kernel();
2320          * 2) the stimer on CPU0 is automatically disabled later by
2321          * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2322          * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
2323          * would be triggered if we call clockevents_unbind_device(), which
2324          * may sleep, in an interrupts-disabled context. So, we intentionally
2325          * don't call hv_stimer_cleanup(0) here.
2326          */
2327
2328         hv_synic_disable_regs(0);
2329
2330         return 0;
2331 }
2332
2333 static void hv_synic_resume(void)
2334 {
2335         hv_synic_enable_regs(0);
2336
2337         /*
2338          * Note: we don't need to call hv_stimer_init(0), because the timer
2339          * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2340          * automatically re-enabled in timekeeping_resume().
2341          */
2342 }
2343
2344 /* The callbacks run only on CPU0, with irqs_disabled. */
2345 static struct syscore_ops hv_synic_syscore_ops = {
2346         .suspend = hv_synic_suspend,
2347         .resume = hv_synic_resume,
2348 };
2349
2350 static int __init hv_acpi_init(void)
2351 {
2352         int ret, t;
2353
2354         if (!hv_is_hyperv_initialized())
2355                 return -ENODEV;
2356
2357         init_completion(&probe_event);
2358
2359         /*
2360          * Get ACPI resources first.
2361          */
2362         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2363
2364         if (ret)
2365                 return ret;
2366
2367         t = wait_for_completion_timeout(&probe_event, 5*HZ);
2368         if (t == 0) {
2369                 ret = -ETIMEDOUT;
2370                 goto cleanup;
2371         }
2372
2373         ret = vmbus_bus_init();
2374         if (ret)
2375                 goto cleanup;
2376
2377         hv_setup_kexec_handler(hv_kexec_handler);
2378         hv_setup_crash_handler(hv_crash_handler);
2379
2380         register_syscore_ops(&hv_synic_syscore_ops);
2381
2382         return 0;
2383
2384 cleanup:
2385         acpi_bus_unregister_driver(&vmbus_acpi_driver);
2386         hv_acpi_dev = NULL;
2387         return ret;
2388 }
2389
2390 static void __exit vmbus_exit(void)
2391 {
2392         int cpu;
2393
2394         unregister_syscore_ops(&hv_synic_syscore_ops);
2395
2396         hv_remove_kexec_handler();
2397         hv_remove_crash_handler();
2398         vmbus_connection.conn_state = DISCONNECTED;
2399         hv_stimer_global_cleanup();
2400         vmbus_disconnect();
2401         hv_remove_vmbus_irq();
2402         for_each_online_cpu(cpu) {
2403                 struct hv_per_cpu_context *hv_cpu
2404                         = per_cpu_ptr(hv_context.cpu_context, cpu);
2405
2406                 tasklet_kill(&hv_cpu->msg_dpc);
2407         }
2408         vmbus_free_channels();
2409
2410         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2411                 kmsg_dump_unregister(&hv_kmsg_dumper);
2412                 unregister_die_notifier(&hyperv_die_block);
2413                 atomic_notifier_chain_unregister(&panic_notifier_list,
2414                                                  &hyperv_panic_block);
2415         }
2416
2417         free_page((unsigned long)hv_panic_page);
2418         unregister_sysctl_table(hv_ctl_table_hdr);
2419         hv_ctl_table_hdr = NULL;
2420         bus_unregister(&hv_bus);
2421
2422         cpuhp_remove_state(hyperv_cpuhp_online);
2423         hv_synic_free();
2424         acpi_bus_unregister_driver(&vmbus_acpi_driver);
2425 }
2426
2427
2428 MODULE_LICENSE("GPL");
2429 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2430
2431 subsys_initcall(hv_acpi_init);
2432 module_exit(vmbus_exit);