Merge tag 'for-5.13/drivers-2021-04-27' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / hv / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20
21 #include "hyperv_vmbus.h"
22
23 #define VMBUS_PKT_TRAILER       8
24
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *      1. The host guarantees that while it is draining the
30  *         ring buffer, it will set the interrupt_mask to
31  *         indicate it does not need to be interrupted when
32  *         new data is placed.
33  *
34  *      2. The host guarantees that it will completely drain
35  *         the ring buffer before exiting the read loop. Further,
36  *         once the ring buffer is empty, it will clear the
37  *         interrupt_mask and re-check to see if new data has
38  *         arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52         struct hv_ring_buffer_info *rbi = &channel->outbound;
53
54         virt_mb();
55         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56                 return;
57
58         /* check interrupt_mask before read_index */
59         virt_rmb();
60         /*
61          * This is the only case we need to signal when the
62          * ring transitions from being empty to non-empty.
63          */
64         if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65                 ++channel->intr_out_empty;
66                 vmbus_setevent(channel);
67         }
68 }
69
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74         u32 next = ring_info->ring_buffer->write_index;
75
76         return next;
77 }
78
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82                      u32 next_write_location)
83 {
84         ring_info->ring_buffer->write_index = next_write_location;
85 }
86
87 /* Get the size of the ring buffer. */
88 static inline u32
89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
90 {
91         return ring_info->ring_datasize;
92 }
93
94 /* Get the read and write indices as u64 of the specified ring buffer. */
95 static inline u64
96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
97 {
98         return (u64)ring_info->ring_buffer->write_index << 32;
99 }
100
101 /*
102  * Helper routine to copy from source to ring buffer.
103  * Assume there is enough room. Handles wrap-around in dest case only!!
104  */
105 static u32 hv_copyto_ringbuffer(
106         struct hv_ring_buffer_info      *ring_info,
107         u32                             start_write_offset,
108         const void                      *src,
109         u32                             srclen)
110 {
111         void *ring_buffer = hv_get_ring_buffer(ring_info);
112         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
113
114         memcpy(ring_buffer + start_write_offset, src, srclen);
115
116         start_write_offset += srclen;
117         if (start_write_offset >= ring_buffer_size)
118                 start_write_offset -= ring_buffer_size;
119
120         return start_write_offset;
121 }
122
123 /*
124  *
125  * hv_get_ringbuffer_availbytes()
126  *
127  * Get number of bytes available to read and to write to
128  * for the specified ring buffer
129  */
130 static void
131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132                              u32 *read, u32 *write)
133 {
134         u32 read_loc, write_loc, dsize;
135
136         /* Capture the read/write indices before they changed */
137         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139         dsize = rbi->ring_datasize;
140
141         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142                 read_loc - write_loc;
143         *read = dsize - *write;
144 }
145
146 /* Get various debug metrics for the specified ring buffer. */
147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148                                 struct hv_ring_buffer_debug_info *debug_info)
149 {
150         u32 bytes_avail_towrite;
151         u32 bytes_avail_toread;
152
153         mutex_lock(&ring_info->ring_buffer_mutex);
154
155         if (!ring_info->ring_buffer) {
156                 mutex_unlock(&ring_info->ring_buffer_mutex);
157                 return -EINVAL;
158         }
159
160         hv_get_ringbuffer_availbytes(ring_info,
161                                      &bytes_avail_toread,
162                                      &bytes_avail_towrite);
163         debug_info->bytes_avail_toread = bytes_avail_toread;
164         debug_info->bytes_avail_towrite = bytes_avail_towrite;
165         debug_info->current_read_index = ring_info->ring_buffer->read_index;
166         debug_info->current_write_index = ring_info->ring_buffer->write_index;
167         debug_info->current_interrupt_mask
168                 = ring_info->ring_buffer->interrupt_mask;
169         mutex_unlock(&ring_info->ring_buffer_mutex);
170
171         return 0;
172 }
173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174
175 /* Initialize a channel's ring buffer info mutex locks */
176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177 {
178         mutex_init(&channel->inbound.ring_buffer_mutex);
179         mutex_init(&channel->outbound.ring_buffer_mutex);
180 }
181
182 /* Initialize the ring buffer. */
183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184                        struct page *pages, u32 page_cnt)
185 {
186         int i;
187         struct page **pages_wraparound;
188
189         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190
191         /*
192          * First page holds struct hv_ring_buffer, do wraparound mapping for
193          * the rest.
194          */
195         pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196                                    GFP_KERNEL);
197         if (!pages_wraparound)
198                 return -ENOMEM;
199
200         pages_wraparound[0] = pages;
201         for (i = 0; i < 2 * (page_cnt - 1); i++)
202                 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203
204         ring_info->ring_buffer = (struct hv_ring_buffer *)
205                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206
207         kfree(pages_wraparound);
208
209
210         if (!ring_info->ring_buffer)
211                 return -ENOMEM;
212
213         ring_info->ring_buffer->read_index =
214                 ring_info->ring_buffer->write_index = 0;
215
216         /* Set the feature bit for enabling flow control. */
217         ring_info->ring_buffer->feature_bits.value = 1;
218
219         ring_info->ring_size = page_cnt << PAGE_SHIFT;
220         ring_info->ring_size_div10_reciprocal =
221                 reciprocal_value(ring_info->ring_size / 10);
222         ring_info->ring_datasize = ring_info->ring_size -
223                 sizeof(struct hv_ring_buffer);
224         ring_info->priv_read_index = 0;
225
226         spin_lock_init(&ring_info->ring_lock);
227
228         return 0;
229 }
230
231 /* Cleanup the ring buffer. */
232 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
233 {
234         mutex_lock(&ring_info->ring_buffer_mutex);
235         vunmap(ring_info->ring_buffer);
236         ring_info->ring_buffer = NULL;
237         mutex_unlock(&ring_info->ring_buffer_mutex);
238 }
239
240 /* Write to the ring buffer. */
241 int hv_ringbuffer_write(struct vmbus_channel *channel,
242                         const struct kvec *kv_list, u32 kv_count,
243                         u64 requestid)
244 {
245         int i;
246         u32 bytes_avail_towrite;
247         u32 totalbytes_towrite = sizeof(u64);
248         u32 next_write_location;
249         u32 old_write;
250         u64 prev_indices;
251         unsigned long flags;
252         struct hv_ring_buffer_info *outring_info = &channel->outbound;
253         struct vmpacket_descriptor *desc = kv_list[0].iov_base;
254         u64 rqst_id = VMBUS_NO_RQSTOR;
255
256         if (channel->rescind)
257                 return -ENODEV;
258
259         for (i = 0; i < kv_count; i++)
260                 totalbytes_towrite += kv_list[i].iov_len;
261
262         spin_lock_irqsave(&outring_info->ring_lock, flags);
263
264         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
265
266         /*
267          * If there is only room for the packet, assume it is full.
268          * Otherwise, the next time around, we think the ring buffer
269          * is empty since the read index == write index.
270          */
271         if (bytes_avail_towrite <= totalbytes_towrite) {
272                 ++channel->out_full_total;
273
274                 if (!channel->out_full_flag) {
275                         ++channel->out_full_first;
276                         channel->out_full_flag = true;
277                 }
278
279                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
280                 return -EAGAIN;
281         }
282
283         channel->out_full_flag = false;
284
285         /* Write to the ring buffer */
286         next_write_location = hv_get_next_write_location(outring_info);
287
288         old_write = next_write_location;
289
290         for (i = 0; i < kv_count; i++) {
291                 next_write_location = hv_copyto_ringbuffer(outring_info,
292                                                      next_write_location,
293                                                      kv_list[i].iov_base,
294                                                      kv_list[i].iov_len);
295         }
296
297         /*
298          * Allocate the request ID after the data has been copied into the
299          * ring buffer.  Once this request ID is allocated, the completion
300          * path could find the data and free it.
301          */
302
303         if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
304                 rqst_id = vmbus_next_request_id(&channel->requestor, requestid);
305                 if (rqst_id == VMBUS_RQST_ERROR) {
306                         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
307                         return -EAGAIN;
308                 }
309         }
310         desc = hv_get_ring_buffer(outring_info) + old_write;
311         desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
312
313         /* Set previous packet start */
314         prev_indices = hv_get_ring_bufferindices(outring_info);
315
316         next_write_location = hv_copyto_ringbuffer(outring_info,
317                                              next_write_location,
318                                              &prev_indices,
319                                              sizeof(u64));
320
321         /* Issue a full memory barrier before updating the write index */
322         virt_mb();
323
324         /* Now, update the write location */
325         hv_set_next_write_location(outring_info, next_write_location);
326
327
328         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
329
330         hv_signal_on_write(old_write, channel);
331
332         if (channel->rescind) {
333                 if (rqst_id != VMBUS_NO_RQSTOR) {
334                         /* Reclaim request ID to avoid leak of IDs */
335                         vmbus_request_addr(&channel->requestor, rqst_id);
336                 }
337                 return -ENODEV;
338         }
339
340         return 0;
341 }
342
343 int hv_ringbuffer_read(struct vmbus_channel *channel,
344                        void *buffer, u32 buflen, u32 *buffer_actual_len,
345                        u64 *requestid, bool raw)
346 {
347         struct vmpacket_descriptor *desc;
348         u32 packetlen, offset;
349
350         if (unlikely(buflen == 0))
351                 return -EINVAL;
352
353         *buffer_actual_len = 0;
354         *requestid = 0;
355
356         /* Make sure there is something to read */
357         desc = hv_pkt_iter_first(channel);
358         if (desc == NULL) {
359                 /*
360                  * No error is set when there is even no header, drivers are
361                  * supposed to analyze buffer_actual_len.
362                  */
363                 return 0;
364         }
365
366         offset = raw ? 0 : (desc->offset8 << 3);
367         packetlen = (desc->len8 << 3) - offset;
368         *buffer_actual_len = packetlen;
369         *requestid = desc->trans_id;
370
371         if (unlikely(packetlen > buflen))
372                 return -ENOBUFS;
373
374         /* since ring is double mapped, only one copy is necessary */
375         memcpy(buffer, (const char *)desc + offset, packetlen);
376
377         /* Advance ring index to next packet descriptor */
378         __hv_pkt_iter_next(channel, desc);
379
380         /* Notify host of update */
381         hv_pkt_iter_close(channel);
382
383         return 0;
384 }
385
386 /*
387  * Determine number of bytes available in ring buffer after
388  * the current iterator (priv_read_index) location.
389  *
390  * This is similar to hv_get_bytes_to_read but with private
391  * read index instead.
392  */
393 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
394 {
395         u32 priv_read_loc = rbi->priv_read_index;
396         u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
397
398         if (write_loc >= priv_read_loc)
399                 return write_loc - priv_read_loc;
400         else
401                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
402 }
403
404 /*
405  * Get first vmbus packet from ring buffer after read_index
406  *
407  * If ring buffer is empty, returns NULL and no other action needed.
408  */
409 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
410 {
411         struct hv_ring_buffer_info *rbi = &channel->inbound;
412         struct vmpacket_descriptor *desc;
413
414         hv_debug_delay_test(channel, MESSAGE_DELAY);
415         if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
416                 return NULL;
417
418         desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
419         if (desc)
420                 prefetch((char *)desc + (desc->len8 << 3));
421
422         return desc;
423 }
424 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
425
426 /*
427  * Get next vmbus packet from ring buffer.
428  *
429  * Advances the current location (priv_read_index) and checks for more
430  * data. If the end of the ring buffer is reached, then return NULL.
431  */
432 struct vmpacket_descriptor *
433 __hv_pkt_iter_next(struct vmbus_channel *channel,
434                    const struct vmpacket_descriptor *desc)
435 {
436         struct hv_ring_buffer_info *rbi = &channel->inbound;
437         u32 packetlen = desc->len8 << 3;
438         u32 dsize = rbi->ring_datasize;
439
440         hv_debug_delay_test(channel, MESSAGE_DELAY);
441         /* bump offset to next potential packet */
442         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
443         if (rbi->priv_read_index >= dsize)
444                 rbi->priv_read_index -= dsize;
445
446         /* more data? */
447         return hv_pkt_iter_first(channel);
448 }
449 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
450
451 /* How many bytes were read in this iterator cycle */
452 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
453                                         u32 start_read_index)
454 {
455         if (rbi->priv_read_index >= start_read_index)
456                 return rbi->priv_read_index - start_read_index;
457         else
458                 return rbi->ring_datasize - start_read_index +
459                         rbi->priv_read_index;
460 }
461
462 /*
463  * Update host ring buffer after iterating over packets. If the host has
464  * stopped queuing new entries because it found the ring buffer full, and
465  * sufficient space is being freed up, signal the host. But be careful to
466  * only signal the host when necessary, both for performance reasons and
467  * because Hyper-V protects itself by throttling guests that signal
468  * inappropriately.
469  *
470  * Determining when to signal is tricky. There are three key data inputs
471  * that must be handled in this order to avoid race conditions:
472  *
473  * 1. Update the read_index
474  * 2. Read the pending_send_sz
475  * 3. Read the current write_index
476  *
477  * The interrupt_mask is not used to determine when to signal. The
478  * interrupt_mask is used only on the guest->host ring buffer when
479  * sending requests to the host. The host does not use it on the host->
480  * guest ring buffer to indicate whether it should be signaled.
481  */
482 void hv_pkt_iter_close(struct vmbus_channel *channel)
483 {
484         struct hv_ring_buffer_info *rbi = &channel->inbound;
485         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
486
487         /*
488          * Make sure all reads are done before we update the read index since
489          * the writer may start writing to the read area once the read index
490          * is updated.
491          */
492         virt_rmb();
493         start_read_index = rbi->ring_buffer->read_index;
494         rbi->ring_buffer->read_index = rbi->priv_read_index;
495
496         /*
497          * Older versions of Hyper-V (before WS2102 and Win8) do not
498          * implement pending_send_sz and simply poll if the host->guest
499          * ring buffer is full.  No signaling is needed or expected.
500          */
501         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
502                 return;
503
504         /*
505          * Issue a full memory barrier before making the signaling decision.
506          * If reading pending_send_sz were to be reordered and happen
507          * before we commit the new read_index, a race could occur.  If the
508          * host were to set the pending_send_sz after we have sampled
509          * pending_send_sz, and the ring buffer blocks before we commit the
510          * read index, we could miss sending the interrupt. Issue a full
511          * memory barrier to address this.
512          */
513         virt_mb();
514
515         /*
516          * If the pending_send_sz is zero, then the ring buffer is not
517          * blocked and there is no need to signal.  This is far by the
518          * most common case, so exit quickly for best performance.
519          */
520         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
521         if (!pending_sz)
522                 return;
523
524         /*
525          * Ensure the read of write_index in hv_get_bytes_to_write()
526          * happens after the read of pending_send_sz.
527          */
528         virt_rmb();
529         curr_write_sz = hv_get_bytes_to_write(rbi);
530         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
531
532         /*
533          * We want to signal the host only if we're transitioning
534          * from a "not enough free space" state to a "enough free
535          * space" state.  For example, it's possible that this function
536          * could run and free up enough space to signal the host, and then
537          * run again and free up additional space before the host has a
538          * chance to clear the pending_send_sz.  The 2nd invocation would
539          * be a null transition from "enough free space" to "enough free
540          * space", which doesn't warrant a signal.
541          *
542          * Exactly filling the ring buffer is treated as "not enough
543          * space". The ring buffer always must have at least one byte
544          * empty so the empty and full conditions are distinguishable.
545          * hv_get_bytes_to_write() doesn't fully tell the truth in
546          * this regard.
547          *
548          * So first check if we were in the "enough free space" state
549          * before we began the iteration. If so, the host was not
550          * blocked, and there's no need to signal.
551          */
552         if (curr_write_sz - bytes_read > pending_sz)
553                 return;
554
555         /*
556          * Similarly, if the new state is "not enough space", then
557          * there's no need to signal.
558          */
559         if (curr_write_sz <= pending_sz)
560                 return;
561
562         ++channel->intr_in_full;
563         vmbus_setevent(channel);
564 }
565 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);