Merge tag 'compat-ioctl-fix' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd...
[linux-2.6-microblaze.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24
25 #include <linux/hyperv.h>
26 #include <asm/hyperv-tlfs.h>
27
28 #include <asm/mshyperv.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "hv_trace_balloon.h"
32
33 /*
34  * We begin with definitions supporting the Dynamic Memory protocol
35  * with the host.
36  *
37  * Begin protocol definitions.
38  */
39
40
41
42 /*
43  * Protocol versions. The low word is the minor version, the high word the major
44  * version.
45  *
46  * History:
47  * Initial version 1.0
48  * Changed to 0.1 on 2009/03/25
49  * Changes to 0.2 on 2009/05/14
50  * Changes to 0.3 on 2009/12/03
51  * Changed to 1.0 on 2011/04/05
52  */
53
54 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
55 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
56 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
57
58 enum {
59         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
60         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
61         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
62
63         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
64         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
65         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
66
67         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
68 };
69
70
71
72 /*
73  * Message Types
74  */
75
76 enum dm_message_type {
77         /*
78          * Version 0.3
79          */
80         DM_ERROR                        = 0,
81         DM_VERSION_REQUEST              = 1,
82         DM_VERSION_RESPONSE             = 2,
83         DM_CAPABILITIES_REPORT          = 3,
84         DM_CAPABILITIES_RESPONSE        = 4,
85         DM_STATUS_REPORT                = 5,
86         DM_BALLOON_REQUEST              = 6,
87         DM_BALLOON_RESPONSE             = 7,
88         DM_UNBALLOON_REQUEST            = 8,
89         DM_UNBALLOON_RESPONSE           = 9,
90         DM_MEM_HOT_ADD_REQUEST          = 10,
91         DM_MEM_HOT_ADD_RESPONSE         = 11,
92         DM_VERSION_03_MAX               = 11,
93         /*
94          * Version 1.0.
95          */
96         DM_INFO_MESSAGE                 = 12,
97         DM_VERSION_1_MAX                = 12
98 };
99
100
101 /*
102  * Structures defining the dynamic memory management
103  * protocol.
104  */
105
106 union dm_version {
107         struct {
108                 __u16 minor_version;
109                 __u16 major_version;
110         };
111         __u32 version;
112 } __packed;
113
114
115 union dm_caps {
116         struct {
117                 __u64 balloon:1;
118                 __u64 hot_add:1;
119                 /*
120                  * To support guests that may have alignment
121                  * limitations on hot-add, the guest can specify
122                  * its alignment requirements; a value of n
123                  * represents an alignment of 2^n in mega bytes.
124                  */
125                 __u64 hot_add_alignment:4;
126                 __u64 reservedz:58;
127         } cap_bits;
128         __u64 caps;
129 } __packed;
130
131 union dm_mem_page_range {
132         struct  {
133                 /*
134                  * The PFN number of the first page in the range.
135                  * 40 bits is the architectural limit of a PFN
136                  * number for AMD64.
137                  */
138                 __u64 start_page:40;
139                 /*
140                  * The number of pages in the range.
141                  */
142                 __u64 page_cnt:24;
143         } finfo;
144         __u64  page_range;
145 } __packed;
146
147
148
149 /*
150  * The header for all dynamic memory messages:
151  *
152  * type: Type of the message.
153  * size: Size of the message in bytes; including the header.
154  * trans_id: The guest is responsible for manufacturing this ID.
155  */
156
157 struct dm_header {
158         __u16 type;
159         __u16 size;
160         __u32 trans_id;
161 } __packed;
162
163 /*
164  * A generic message format for dynamic memory.
165  * Specific message formats are defined later in the file.
166  */
167
168 struct dm_message {
169         struct dm_header hdr;
170         __u8 data[]; /* enclosed message */
171 } __packed;
172
173
174 /*
175  * Specific message types supporting the dynamic memory protocol.
176  */
177
178 /*
179  * Version negotiation message. Sent from the guest to the host.
180  * The guest is free to try different versions until the host
181  * accepts the version.
182  *
183  * dm_version: The protocol version requested.
184  * is_last_attempt: If TRUE, this is the last version guest will request.
185  * reservedz: Reserved field, set to zero.
186  */
187
188 struct dm_version_request {
189         struct dm_header hdr;
190         union dm_version version;
191         __u32 is_last_attempt:1;
192         __u32 reservedz:31;
193 } __packed;
194
195 /*
196  * Version response message; Host to Guest and indicates
197  * if the host has accepted the version sent by the guest.
198  *
199  * is_accepted: If TRUE, host has accepted the version and the guest
200  * should proceed to the next stage of the protocol. FALSE indicates that
201  * guest should re-try with a different version.
202  *
203  * reservedz: Reserved field, set to zero.
204  */
205
206 struct dm_version_response {
207         struct dm_header hdr;
208         __u64 is_accepted:1;
209         __u64 reservedz:63;
210 } __packed;
211
212 /*
213  * Message reporting capabilities. This is sent from the guest to the
214  * host.
215  */
216
217 struct dm_capabilities {
218         struct dm_header hdr;
219         union dm_caps caps;
220         __u64 min_page_cnt;
221         __u64 max_page_number;
222 } __packed;
223
224 /*
225  * Response to the capabilities message. This is sent from the host to the
226  * guest. This message notifies if the host has accepted the guest's
227  * capabilities. If the host has not accepted, the guest must shutdown
228  * the service.
229  *
230  * is_accepted: Indicates if the host has accepted guest's capabilities.
231  * reservedz: Must be 0.
232  */
233
234 struct dm_capabilities_resp_msg {
235         struct dm_header hdr;
236         __u64 is_accepted:1;
237         __u64 reservedz:63;
238 } __packed;
239
240 /*
241  * This message is used to report memory pressure from the guest.
242  * This message is not part of any transaction and there is no
243  * response to this message.
244  *
245  * num_avail: Available memory in pages.
246  * num_committed: Committed memory in pages.
247  * page_file_size: The accumulated size of all page files
248  *                 in the system in pages.
249  * zero_free: The nunber of zero and free pages.
250  * page_file_writes: The writes to the page file in pages.
251  * io_diff: An indicator of file cache efficiency or page file activity,
252  *          calculated as File Cache Page Fault Count - Page Read Count.
253  *          This value is in pages.
254  *
255  * Some of these metrics are Windows specific and fortunately
256  * the algorithm on the host side that computes the guest memory
257  * pressure only uses num_committed value.
258  */
259
260 struct dm_status {
261         struct dm_header hdr;
262         __u64 num_avail;
263         __u64 num_committed;
264         __u64 page_file_size;
265         __u64 zero_free;
266         __u32 page_file_writes;
267         __u32 io_diff;
268 } __packed;
269
270
271 /*
272  * Message to ask the guest to allocate memory - balloon up message.
273  * This message is sent from the host to the guest. The guest may not be
274  * able to allocate as much memory as requested.
275  *
276  * num_pages: number of pages to allocate.
277  */
278
279 struct dm_balloon {
280         struct dm_header hdr;
281         __u32 num_pages;
282         __u32 reservedz;
283 } __packed;
284
285
286 /*
287  * Balloon response message; this message is sent from the guest
288  * to the host in response to the balloon message.
289  *
290  * reservedz: Reserved; must be set to zero.
291  * more_pages: If FALSE, this is the last message of the transaction.
292  * if TRUE there will atleast one more message from the guest.
293  *
294  * range_count: The number of ranges in the range array.
295  *
296  * range_array: An array of page ranges returned to the host.
297  *
298  */
299
300 struct dm_balloon_response {
301         struct dm_header hdr;
302         __u32 reservedz;
303         __u32 more_pages:1;
304         __u32 range_count:31;
305         union dm_mem_page_range range_array[];
306 } __packed;
307
308 /*
309  * Un-balloon message; this message is sent from the host
310  * to the guest to give guest more memory.
311  *
312  * more_pages: If FALSE, this is the last message of the transaction.
313  * if TRUE there will atleast one more message from the guest.
314  *
315  * reservedz: Reserved; must be set to zero.
316  *
317  * range_count: The number of ranges in the range array.
318  *
319  * range_array: An array of page ranges returned to the host.
320  *
321  */
322
323 struct dm_unballoon_request {
324         struct dm_header hdr;
325         __u32 more_pages:1;
326         __u32 reservedz:31;
327         __u32 range_count;
328         union dm_mem_page_range range_array[];
329 } __packed;
330
331 /*
332  * Un-balloon response message; this message is sent from the guest
333  * to the host in response to an unballoon request.
334  *
335  */
336
337 struct dm_unballoon_response {
338         struct dm_header hdr;
339 } __packed;
340
341
342 /*
343  * Hot add request message. Message sent from the host to the guest.
344  *
345  * mem_range: Memory range to hot add.
346  *
347  */
348
349 struct dm_hot_add {
350         struct dm_header hdr;
351         union dm_mem_page_range range;
352 } __packed;
353
354 /*
355  * Hot add response message.
356  * This message is sent by the guest to report the status of a hot add request.
357  * If page_count is less than the requested page count, then the host should
358  * assume all further hot add requests will fail, since this indicates that
359  * the guest has hit an upper physical memory barrier.
360  *
361  * Hot adds may also fail due to low resources; in this case, the guest must
362  * not complete this message until the hot add can succeed, and the host must
363  * not send a new hot add request until the response is sent.
364  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
365  * times it fails the request.
366  *
367  *
368  * page_count: number of pages that were successfully hot added.
369  *
370  * result: result of the operation 1: success, 0: failure.
371  *
372  */
373
374 struct dm_hot_add_response {
375         struct dm_header hdr;
376         __u32 page_count;
377         __u32 result;
378 } __packed;
379
380 /*
381  * Types of information sent from host to the guest.
382  */
383
384 enum dm_info_type {
385         INFO_TYPE_MAX_PAGE_CNT = 0,
386         MAX_INFO_TYPE
387 };
388
389
390 /*
391  * Header for the information message.
392  */
393
394 struct dm_info_header {
395         enum dm_info_type type;
396         __u32 data_size;
397 } __packed;
398
399 /*
400  * This message is sent from the host to the guest to pass
401  * some relevant information (win8 addition).
402  *
403  * reserved: no used.
404  * info_size: size of the information blob.
405  * info: information blob.
406  */
407
408 struct dm_info_msg {
409         struct dm_header hdr;
410         __u32 reserved;
411         __u32 info_size;
412         __u8  info[];
413 };
414
415 /*
416  * End protocol definitions.
417  */
418
419 /*
420  * State to manage hot adding memory into the guest.
421  * The range start_pfn : end_pfn specifies the range
422  * that the host has asked us to hot add. The range
423  * start_pfn : ha_end_pfn specifies the range that we have
424  * currently hot added. We hot add in multiples of 128M
425  * chunks; it is possible that we may not be able to bring
426  * online all the pages in the region. The range
427  * covered_start_pfn:covered_end_pfn defines the pages that can
428  * be brough online.
429  */
430
431 struct hv_hotadd_state {
432         struct list_head list;
433         unsigned long start_pfn;
434         unsigned long covered_start_pfn;
435         unsigned long covered_end_pfn;
436         unsigned long ha_end_pfn;
437         unsigned long end_pfn;
438         /*
439          * A list of gaps.
440          */
441         struct list_head gap_list;
442 };
443
444 struct hv_hotadd_gap {
445         struct list_head list;
446         unsigned long start_pfn;
447         unsigned long end_pfn;
448 };
449
450 struct balloon_state {
451         __u32 num_pages;
452         struct work_struct wrk;
453 };
454
455 struct hot_add_wrk {
456         union dm_mem_page_range ha_page_range;
457         union dm_mem_page_range ha_region_range;
458         struct work_struct wrk;
459 };
460
461 static bool allow_hibernation;
462 static bool hot_add = true;
463 static bool do_hot_add;
464 /*
465  * Delay reporting memory pressure by
466  * the specified number of seconds.
467  */
468 static uint pressure_report_delay = 45;
469
470 /*
471  * The last time we posted a pressure report to host.
472  */
473 static unsigned long last_post_time;
474
475 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
476 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
477
478 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
480 static atomic_t trans_id = ATOMIC_INIT(0);
481
482 static int dm_ring_size = 20 * 1024;
483
484 /*
485  * Driver specific state.
486  */
487
488 enum hv_dm_state {
489         DM_INITIALIZING = 0,
490         DM_INITIALIZED,
491         DM_BALLOON_UP,
492         DM_BALLOON_DOWN,
493         DM_HOT_ADD,
494         DM_INIT_ERROR
495 };
496
497
498 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
499 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
500 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
501 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
502
503 struct hv_dynmem_device {
504         struct hv_device *dev;
505         enum hv_dm_state state;
506         struct completion host_event;
507         struct completion config_event;
508
509         /*
510          * Number of pages we have currently ballooned out.
511          */
512         unsigned int num_pages_ballooned;
513         unsigned int num_pages_onlined;
514         unsigned int num_pages_added;
515
516         /*
517          * State to manage the ballooning (up) operation.
518          */
519         struct balloon_state balloon_wrk;
520
521         /*
522          * State to execute the "hot-add" operation.
523          */
524         struct hot_add_wrk ha_wrk;
525
526         /*
527          * This state tracks if the host has specified a hot-add
528          * region.
529          */
530         bool host_specified_ha_region;
531
532         /*
533          * State to synchronize hot-add.
534          */
535         struct completion  ol_waitevent;
536         bool ha_waiting;
537         /*
538          * This thread handles hot-add
539          * requests from the host as well as notifying
540          * the host with regards to memory pressure in
541          * the guest.
542          */
543         struct task_struct *thread;
544
545         /*
546          * Protects ha_region_list, num_pages_onlined counter and individual
547          * regions from ha_region_list.
548          */
549         spinlock_t ha_lock;
550
551         /*
552          * A list of hot-add regions.
553          */
554         struct list_head ha_region_list;
555
556         /*
557          * We start with the highest version we can support
558          * and downgrade based on the host; we save here the
559          * next version to try.
560          */
561         __u32 next_version;
562
563         /*
564          * The negotiated version agreed by host.
565          */
566         __u32 version;
567 };
568
569 static struct hv_dynmem_device dm_device;
570
571 static void post_status(struct hv_dynmem_device *dm);
572
573 #ifdef CONFIG_MEMORY_HOTPLUG
574 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
575                                      unsigned long pfn)
576 {
577         struct hv_hotadd_gap *gap;
578
579         /* The page is not backed. */
580         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
581                 return false;
582
583         /* Check for gaps. */
584         list_for_each_entry(gap, &has->gap_list, list) {
585                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
586                         return false;
587         }
588
589         return true;
590 }
591
592 static unsigned long hv_page_offline_check(unsigned long start_pfn,
593                                            unsigned long nr_pages)
594 {
595         unsigned long pfn = start_pfn, count = 0;
596         struct hv_hotadd_state *has;
597         bool found;
598
599         while (pfn < start_pfn + nr_pages) {
600                 /*
601                  * Search for HAS which covers the pfn and when we find one
602                  * count how many consequitive PFNs are covered.
603                  */
604                 found = false;
605                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
606                         while ((pfn >= has->start_pfn) &&
607                                (pfn < has->end_pfn) &&
608                                (pfn < start_pfn + nr_pages)) {
609                                 found = true;
610                                 if (has_pfn_is_backed(has, pfn))
611                                         count++;
612                                 pfn++;
613                         }
614                 }
615
616                 /*
617                  * This PFN is not in any HAS (e.g. we're offlining a region
618                  * which was present at boot), no need to account for it. Go
619                  * to the next one.
620                  */
621                 if (!found)
622                         pfn++;
623         }
624
625         return count;
626 }
627
628 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
629                               void *v)
630 {
631         struct memory_notify *mem = (struct memory_notify *)v;
632         unsigned long flags, pfn_count;
633
634         switch (val) {
635         case MEM_ONLINE:
636         case MEM_CANCEL_ONLINE:
637                 if (dm_device.ha_waiting) {
638                         dm_device.ha_waiting = false;
639                         complete(&dm_device.ol_waitevent);
640                 }
641                 break;
642
643         case MEM_OFFLINE:
644                 spin_lock_irqsave(&dm_device.ha_lock, flags);
645                 pfn_count = hv_page_offline_check(mem->start_pfn,
646                                                   mem->nr_pages);
647                 if (pfn_count <= dm_device.num_pages_onlined) {
648                         dm_device.num_pages_onlined -= pfn_count;
649                 } else {
650                         /*
651                          * We're offlining more pages than we managed to online.
652                          * This is unexpected. In any case don't let
653                          * num_pages_onlined wrap around zero.
654                          */
655                         WARN_ON_ONCE(1);
656                         dm_device.num_pages_onlined = 0;
657                 }
658                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
659                 break;
660         case MEM_GOING_ONLINE:
661         case MEM_GOING_OFFLINE:
662         case MEM_CANCEL_OFFLINE:
663                 break;
664         }
665         return NOTIFY_OK;
666 }
667
668 static struct notifier_block hv_memory_nb = {
669         .notifier_call = hv_memory_notifier,
670         .priority = 0
671 };
672
673 /* Check if the particular page is backed and can be onlined and online it. */
674 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
675 {
676         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
677                 if (!PageOffline(pg))
678                         __SetPageOffline(pg);
679                 return;
680         }
681         if (PageOffline(pg))
682                 __ClearPageOffline(pg);
683
684         /* This frame is currently backed; online the page. */
685         generic_online_page(pg, 0);
686
687         lockdep_assert_held(&dm_device.ha_lock);
688         dm_device.num_pages_onlined++;
689 }
690
691 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
692                                 unsigned long start_pfn, unsigned long size)
693 {
694         int i;
695
696         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
697         for (i = 0; i < size; i++)
698                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
699 }
700
701 static void hv_mem_hot_add(unsigned long start, unsigned long size,
702                                 unsigned long pfn_count,
703                                 struct hv_hotadd_state *has)
704 {
705         int ret = 0;
706         int i, nid;
707         unsigned long start_pfn;
708         unsigned long processed_pfn;
709         unsigned long total_pfn = pfn_count;
710         unsigned long flags;
711
712         for (i = 0; i < (size/HA_CHUNK); i++) {
713                 start_pfn = start + (i * HA_CHUNK);
714
715                 spin_lock_irqsave(&dm_device.ha_lock, flags);
716                 has->ha_end_pfn +=  HA_CHUNK;
717
718                 if (total_pfn > HA_CHUNK) {
719                         processed_pfn = HA_CHUNK;
720                         total_pfn -= HA_CHUNK;
721                 } else {
722                         processed_pfn = total_pfn;
723                         total_pfn = 0;
724                 }
725
726                 has->covered_end_pfn +=  processed_pfn;
727                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
728
729                 init_completion(&dm_device.ol_waitevent);
730                 dm_device.ha_waiting = !memhp_auto_online;
731
732                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
733                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
734                                 (HA_CHUNK << PAGE_SHIFT));
735
736                 if (ret) {
737                         pr_err("hot_add memory failed error is %d\n", ret);
738                         if (ret == -EEXIST) {
739                                 /*
740                                  * This error indicates that the error
741                                  * is not a transient failure. This is the
742                                  * case where the guest's physical address map
743                                  * precludes hot adding memory. Stop all further
744                                  * memory hot-add.
745                                  */
746                                 do_hot_add = false;
747                         }
748                         spin_lock_irqsave(&dm_device.ha_lock, flags);
749                         has->ha_end_pfn -= HA_CHUNK;
750                         has->covered_end_pfn -=  processed_pfn;
751                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
752                         break;
753                 }
754
755                 /*
756                  * Wait for the memory block to be onlined when memory onlining
757                  * is done outside of kernel (memhp_auto_online). Since the hot
758                  * add has succeeded, it is ok to proceed even if the pages in
759                  * the hot added region have not been "onlined" within the
760                  * allowed time.
761                  */
762                 if (dm_device.ha_waiting)
763                         wait_for_completion_timeout(&dm_device.ol_waitevent,
764                                                     5*HZ);
765                 post_status(&dm_device);
766         }
767 }
768
769 static void hv_online_page(struct page *pg, unsigned int order)
770 {
771         struct hv_hotadd_state *has;
772         unsigned long flags;
773         unsigned long pfn = page_to_pfn(pg);
774
775         spin_lock_irqsave(&dm_device.ha_lock, flags);
776         list_for_each_entry(has, &dm_device.ha_region_list, list) {
777                 /* The page belongs to a different HAS. */
778                 if ((pfn < has->start_pfn) ||
779                                 (pfn + (1UL << order) > has->end_pfn))
780                         continue;
781
782                 hv_bring_pgs_online(has, pfn, 1UL << order);
783                 break;
784         }
785         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
786 }
787
788 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
789 {
790         struct hv_hotadd_state *has;
791         struct hv_hotadd_gap *gap;
792         unsigned long residual, new_inc;
793         int ret = 0;
794         unsigned long flags;
795
796         spin_lock_irqsave(&dm_device.ha_lock, flags);
797         list_for_each_entry(has, &dm_device.ha_region_list, list) {
798                 /*
799                  * If the pfn range we are dealing with is not in the current
800                  * "hot add block", move on.
801                  */
802                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
803                         continue;
804
805                 /*
806                  * If the current start pfn is not where the covered_end
807                  * is, create a gap and update covered_end_pfn.
808                  */
809                 if (has->covered_end_pfn != start_pfn) {
810                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
811                         if (!gap) {
812                                 ret = -ENOMEM;
813                                 break;
814                         }
815
816                         INIT_LIST_HEAD(&gap->list);
817                         gap->start_pfn = has->covered_end_pfn;
818                         gap->end_pfn = start_pfn;
819                         list_add_tail(&gap->list, &has->gap_list);
820
821                         has->covered_end_pfn = start_pfn;
822                 }
823
824                 /*
825                  * If the current hot add-request extends beyond
826                  * our current limit; extend it.
827                  */
828                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
829                         residual = (start_pfn + pfn_cnt - has->end_pfn);
830                         /*
831                          * Extend the region by multiples of HA_CHUNK.
832                          */
833                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
834                         if (residual % HA_CHUNK)
835                                 new_inc += HA_CHUNK;
836
837                         has->end_pfn += new_inc;
838                 }
839
840                 ret = 1;
841                 break;
842         }
843         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
844
845         return ret;
846 }
847
848 static unsigned long handle_pg_range(unsigned long pg_start,
849                                         unsigned long pg_count)
850 {
851         unsigned long start_pfn = pg_start;
852         unsigned long pfn_cnt = pg_count;
853         unsigned long size;
854         struct hv_hotadd_state *has;
855         unsigned long pgs_ol = 0;
856         unsigned long old_covered_state;
857         unsigned long res = 0, flags;
858
859         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
860                 pg_start);
861
862         spin_lock_irqsave(&dm_device.ha_lock, flags);
863         list_for_each_entry(has, &dm_device.ha_region_list, list) {
864                 /*
865                  * If the pfn range we are dealing with is not in the current
866                  * "hot add block", move on.
867                  */
868                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
869                         continue;
870
871                 old_covered_state = has->covered_end_pfn;
872
873                 if (start_pfn < has->ha_end_pfn) {
874                         /*
875                          * This is the case where we are backing pages
876                          * in an already hot added region. Bring
877                          * these pages online first.
878                          */
879                         pgs_ol = has->ha_end_pfn - start_pfn;
880                         if (pgs_ol > pfn_cnt)
881                                 pgs_ol = pfn_cnt;
882
883                         has->covered_end_pfn +=  pgs_ol;
884                         pfn_cnt -= pgs_ol;
885                         /*
886                          * Check if the corresponding memory block is already
887                          * online. It is possible to observe struct pages still
888                          * being uninitialized here so check section instead.
889                          * In case the section is online we need to bring the
890                          * rest of pfns (which were not backed previously)
891                          * online too.
892                          */
893                         if (start_pfn > has->start_pfn &&
894                             online_section_nr(pfn_to_section_nr(start_pfn)))
895                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
896
897                 }
898
899                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
900                         /*
901                          * We have some residual hot add range
902                          * that needs to be hot added; hot add
903                          * it now. Hot add a multiple of
904                          * of HA_CHUNK that fully covers the pages
905                          * we have.
906                          */
907                         size = (has->end_pfn - has->ha_end_pfn);
908                         if (pfn_cnt <= size) {
909                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
910                                 if (pfn_cnt % HA_CHUNK)
911                                         size += HA_CHUNK;
912                         } else {
913                                 pfn_cnt = size;
914                         }
915                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
916                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
917                         spin_lock_irqsave(&dm_device.ha_lock, flags);
918                 }
919                 /*
920                  * If we managed to online any pages that were given to us,
921                  * we declare success.
922                  */
923                 res = has->covered_end_pfn - old_covered_state;
924                 break;
925         }
926         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
927
928         return res;
929 }
930
931 static unsigned long process_hot_add(unsigned long pg_start,
932                                         unsigned long pfn_cnt,
933                                         unsigned long rg_start,
934                                         unsigned long rg_size)
935 {
936         struct hv_hotadd_state *ha_region = NULL;
937         int covered;
938         unsigned long flags;
939
940         if (pfn_cnt == 0)
941                 return 0;
942
943         if (!dm_device.host_specified_ha_region) {
944                 covered = pfn_covered(pg_start, pfn_cnt);
945                 if (covered < 0)
946                         return 0;
947
948                 if (covered)
949                         goto do_pg_range;
950         }
951
952         /*
953          * If the host has specified a hot-add range; deal with it first.
954          */
955
956         if (rg_size != 0) {
957                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
958                 if (!ha_region)
959                         return 0;
960
961                 INIT_LIST_HEAD(&ha_region->list);
962                 INIT_LIST_HEAD(&ha_region->gap_list);
963
964                 ha_region->start_pfn = rg_start;
965                 ha_region->ha_end_pfn = rg_start;
966                 ha_region->covered_start_pfn = pg_start;
967                 ha_region->covered_end_pfn = pg_start;
968                 ha_region->end_pfn = rg_start + rg_size;
969
970                 spin_lock_irqsave(&dm_device.ha_lock, flags);
971                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
972                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
973         }
974
975 do_pg_range:
976         /*
977          * Process the page range specified; bringing them
978          * online if possible.
979          */
980         return handle_pg_range(pg_start, pfn_cnt);
981 }
982
983 #endif
984
985 static void hot_add_req(struct work_struct *dummy)
986 {
987         struct dm_hot_add_response resp;
988 #ifdef CONFIG_MEMORY_HOTPLUG
989         unsigned long pg_start, pfn_cnt;
990         unsigned long rg_start, rg_sz;
991 #endif
992         struct hv_dynmem_device *dm = &dm_device;
993
994         memset(&resp, 0, sizeof(struct dm_hot_add_response));
995         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
996         resp.hdr.size = sizeof(struct dm_hot_add_response);
997
998 #ifdef CONFIG_MEMORY_HOTPLUG
999         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1000         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1001
1002         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1003         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1004
1005         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1006                 unsigned long region_size;
1007                 unsigned long region_start;
1008
1009                 /*
1010                  * The host has not specified the hot-add region.
1011                  * Based on the hot-add page range being specified,
1012                  * compute a hot-add region that can cover the pages
1013                  * that need to be hot-added while ensuring the alignment
1014                  * and size requirements of Linux as it relates to hot-add.
1015                  */
1016                 region_start = pg_start;
1017                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1018                 if (pfn_cnt % HA_CHUNK)
1019                         region_size += HA_CHUNK;
1020
1021                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1022
1023                 rg_start = region_start;
1024                 rg_sz = region_size;
1025         }
1026
1027         if (do_hot_add)
1028                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1029                                                 rg_start, rg_sz);
1030
1031         dm->num_pages_added += resp.page_count;
1032 #endif
1033         /*
1034          * The result field of the response structure has the
1035          * following semantics:
1036          *
1037          * 1. If all or some pages hot-added: Guest should return success.
1038          *
1039          * 2. If no pages could be hot-added:
1040          *
1041          * If the guest returns success, then the host
1042          * will not attempt any further hot-add operations. This
1043          * signifies a permanent failure.
1044          *
1045          * If the guest returns failure, then this failure will be
1046          * treated as a transient failure and the host may retry the
1047          * hot-add operation after some delay.
1048          */
1049         if (resp.page_count > 0)
1050                 resp.result = 1;
1051         else if (!do_hot_add)
1052                 resp.result = 1;
1053         else
1054                 resp.result = 0;
1055
1056         if (!do_hot_add || resp.page_count == 0) {
1057                 if (!allow_hibernation)
1058                         pr_err("Memory hot add failed\n");
1059                 else
1060                         pr_info("Ignore hot-add request!\n");
1061         }
1062
1063         dm->state = DM_INITIALIZED;
1064         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1065         vmbus_sendpacket(dm->dev->channel, &resp,
1066                         sizeof(struct dm_hot_add_response),
1067                         (unsigned long)NULL,
1068                         VM_PKT_DATA_INBAND, 0);
1069 }
1070
1071 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1072 {
1073         struct dm_info_header *info_hdr;
1074
1075         info_hdr = (struct dm_info_header *)msg->info;
1076
1077         switch (info_hdr->type) {
1078         case INFO_TYPE_MAX_PAGE_CNT:
1079                 if (info_hdr->data_size == sizeof(__u64)) {
1080                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1081
1082                         pr_info("Max. dynamic memory size: %llu MB\n",
1083                                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1084                 }
1085
1086                 break;
1087         default:
1088                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1089         }
1090 }
1091
1092 static unsigned long compute_balloon_floor(void)
1093 {
1094         unsigned long min_pages;
1095         unsigned long nr_pages = totalram_pages();
1096 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1097         /* Simple continuous piecewiese linear function:
1098          *  max MiB -> min MiB  gradient
1099          *       0         0
1100          *      16        16
1101          *      32        24
1102          *     128        72    (1/2)
1103          *     512       168    (1/4)
1104          *    2048       360    (1/8)
1105          *    8192       744    (1/16)
1106          *   32768      1512    (1/32)
1107          */
1108         if (nr_pages < MB2PAGES(128))
1109                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1110         else if (nr_pages < MB2PAGES(512))
1111                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1112         else if (nr_pages < MB2PAGES(2048))
1113                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1114         else if (nr_pages < MB2PAGES(8192))
1115                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1116         else
1117                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1118 #undef MB2PAGES
1119         return min_pages;
1120 }
1121
1122 /*
1123  * Post our status as it relates memory pressure to the
1124  * host. Host expects the guests to post this status
1125  * periodically at 1 second intervals.
1126  *
1127  * The metrics specified in this protocol are very Windows
1128  * specific and so we cook up numbers here to convey our memory
1129  * pressure.
1130  */
1131
1132 static void post_status(struct hv_dynmem_device *dm)
1133 {
1134         struct dm_status status;
1135         unsigned long now = jiffies;
1136         unsigned long last_post = last_post_time;
1137
1138         if (pressure_report_delay > 0) {
1139                 --pressure_report_delay;
1140                 return;
1141         }
1142
1143         if (!time_after(now, (last_post_time + HZ)))
1144                 return;
1145
1146         memset(&status, 0, sizeof(struct dm_status));
1147         status.hdr.type = DM_STATUS_REPORT;
1148         status.hdr.size = sizeof(struct dm_status);
1149         status.hdr.trans_id = atomic_inc_return(&trans_id);
1150
1151         /*
1152          * The host expects the guest to report free and committed memory.
1153          * Furthermore, the host expects the pressure information to include
1154          * the ballooned out pages. For a given amount of memory that we are
1155          * managing we need to compute a floor below which we should not
1156          * balloon. Compute this and add it to the pressure report.
1157          * We also need to report all offline pages (num_pages_added -
1158          * num_pages_onlined) as committed to the host, otherwise it can try
1159          * asking us to balloon them out.
1160          */
1161         status.num_avail = si_mem_available();
1162         status.num_committed = vm_memory_committed() +
1163                 dm->num_pages_ballooned +
1164                 (dm->num_pages_added > dm->num_pages_onlined ?
1165                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1166                 compute_balloon_floor();
1167
1168         trace_balloon_status(status.num_avail, status.num_committed,
1169                              vm_memory_committed(), dm->num_pages_ballooned,
1170                              dm->num_pages_added, dm->num_pages_onlined);
1171         /*
1172          * If our transaction ID is no longer current, just don't
1173          * send the status. This can happen if we were interrupted
1174          * after we picked our transaction ID.
1175          */
1176         if (status.hdr.trans_id != atomic_read(&trans_id))
1177                 return;
1178
1179         /*
1180          * If the last post time that we sampled has changed,
1181          * we have raced, don't post the status.
1182          */
1183         if (last_post != last_post_time)
1184                 return;
1185
1186         last_post_time = jiffies;
1187         vmbus_sendpacket(dm->dev->channel, &status,
1188                                 sizeof(struct dm_status),
1189                                 (unsigned long)NULL,
1190                                 VM_PKT_DATA_INBAND, 0);
1191
1192 }
1193
1194 static void free_balloon_pages(struct hv_dynmem_device *dm,
1195                          union dm_mem_page_range *range_array)
1196 {
1197         int num_pages = range_array->finfo.page_cnt;
1198         __u64 start_frame = range_array->finfo.start_page;
1199         struct page *pg;
1200         int i;
1201
1202         for (i = 0; i < num_pages; i++) {
1203                 pg = pfn_to_page(i + start_frame);
1204                 __ClearPageOffline(pg);
1205                 __free_page(pg);
1206                 dm->num_pages_ballooned--;
1207         }
1208 }
1209
1210
1211
1212 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1213                                         unsigned int num_pages,
1214                                         struct dm_balloon_response *bl_resp,
1215                                         int alloc_unit)
1216 {
1217         unsigned int i, j;
1218         struct page *pg;
1219
1220         for (i = 0; i < num_pages / alloc_unit; i++) {
1221                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1222                         HV_HYP_PAGE_SIZE)
1223                         return i * alloc_unit;
1224
1225                 /*
1226                  * We execute this code in a thread context. Furthermore,
1227                  * we don't want the kernel to try too hard.
1228                  */
1229                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1230                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1231                                 get_order(alloc_unit << PAGE_SHIFT));
1232
1233                 if (!pg)
1234                         return i * alloc_unit;
1235
1236                 dm->num_pages_ballooned += alloc_unit;
1237
1238                 /*
1239                  * If we allocatted 2M pages; split them so we
1240                  * can free them in any order we get.
1241                  */
1242
1243                 if (alloc_unit != 1)
1244                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1245
1246                 /* mark all pages offline */
1247                 for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1248                         __SetPageOffline(pg + j);
1249
1250                 bl_resp->range_count++;
1251                 bl_resp->range_array[i].finfo.start_page =
1252                         page_to_pfn(pg);
1253                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1254                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1255
1256         }
1257
1258         return i * alloc_unit;
1259 }
1260
1261 static void balloon_up(struct work_struct *dummy)
1262 {
1263         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1264         unsigned int num_ballooned = 0;
1265         struct dm_balloon_response *bl_resp;
1266         int alloc_unit;
1267         int ret;
1268         bool done = false;
1269         int i;
1270         long avail_pages;
1271         unsigned long floor;
1272
1273         /*
1274          * We will attempt 2M allocations. However, if we fail to
1275          * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1276          */
1277         alloc_unit = PAGES_IN_2M;
1278
1279         avail_pages = si_mem_available();
1280         floor = compute_balloon_floor();
1281
1282         /* Refuse to balloon below the floor. */
1283         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1284                 pr_warn("Balloon request will be partially fulfilled. %s\n",
1285                         avail_pages < num_pages ? "Not enough memory." :
1286                         "Balloon floor reached.");
1287
1288                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1289         }
1290
1291         while (!done) {
1292                 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1293                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1294                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1295                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1296                 bl_resp->more_pages = 1;
1297
1298                 num_pages -= num_ballooned;
1299                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1300                                                     bl_resp, alloc_unit);
1301
1302                 if (alloc_unit != 1 && num_ballooned == 0) {
1303                         alloc_unit = 1;
1304                         continue;
1305                 }
1306
1307                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1308                         pr_debug("Ballooned %u out of %u requested pages.\n",
1309                                 num_pages, dm_device.balloon_wrk.num_pages);
1310
1311                         bl_resp->more_pages = 0;
1312                         done = true;
1313                         dm_device.state = DM_INITIALIZED;
1314                 }
1315
1316                 /*
1317                  * We are pushing a lot of data through the channel;
1318                  * deal with transient failures caused because of the
1319                  * lack of space in the ring buffer.
1320                  */
1321
1322                 do {
1323                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1324                         ret = vmbus_sendpacket(dm_device.dev->channel,
1325                                                 bl_resp,
1326                                                 bl_resp->hdr.size,
1327                                                 (unsigned long)NULL,
1328                                                 VM_PKT_DATA_INBAND, 0);
1329
1330                         if (ret == -EAGAIN)
1331                                 msleep(20);
1332                         post_status(&dm_device);
1333                 } while (ret == -EAGAIN);
1334
1335                 if (ret) {
1336                         /*
1337                          * Free up the memory we allocatted.
1338                          */
1339                         pr_err("Balloon response failed\n");
1340
1341                         for (i = 0; i < bl_resp->range_count; i++)
1342                                 free_balloon_pages(&dm_device,
1343                                                  &bl_resp->range_array[i]);
1344
1345                         done = true;
1346                 }
1347         }
1348
1349 }
1350
1351 static void balloon_down(struct hv_dynmem_device *dm,
1352                         struct dm_unballoon_request *req)
1353 {
1354         union dm_mem_page_range *range_array = req->range_array;
1355         int range_count = req->range_count;
1356         struct dm_unballoon_response resp;
1357         int i;
1358         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1359
1360         for (i = 0; i < range_count; i++) {
1361                 free_balloon_pages(dm, &range_array[i]);
1362                 complete(&dm_device.config_event);
1363         }
1364
1365         pr_debug("Freed %u ballooned pages.\n",
1366                 prev_pages_ballooned - dm->num_pages_ballooned);
1367
1368         if (req->more_pages == 1)
1369                 return;
1370
1371         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1372         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1373         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1374         resp.hdr.size = sizeof(struct dm_unballoon_response);
1375
1376         vmbus_sendpacket(dm_device.dev->channel, &resp,
1377                                 sizeof(struct dm_unballoon_response),
1378                                 (unsigned long)NULL,
1379                                 VM_PKT_DATA_INBAND, 0);
1380
1381         dm->state = DM_INITIALIZED;
1382 }
1383
1384 static void balloon_onchannelcallback(void *context);
1385
1386 static int dm_thread_func(void *dm_dev)
1387 {
1388         struct hv_dynmem_device *dm = dm_dev;
1389
1390         while (!kthread_should_stop()) {
1391                 wait_for_completion_interruptible_timeout(
1392                                                 &dm_device.config_event, 1*HZ);
1393                 /*
1394                  * The host expects us to post information on the memory
1395                  * pressure every second.
1396                  */
1397                 reinit_completion(&dm_device.config_event);
1398                 post_status(dm);
1399         }
1400
1401         return 0;
1402 }
1403
1404
1405 static void version_resp(struct hv_dynmem_device *dm,
1406                         struct dm_version_response *vresp)
1407 {
1408         struct dm_version_request version_req;
1409         int ret;
1410
1411         if (vresp->is_accepted) {
1412                 /*
1413                  * We are done; wakeup the
1414                  * context waiting for version
1415                  * negotiation.
1416                  */
1417                 complete(&dm->host_event);
1418                 return;
1419         }
1420         /*
1421          * If there are more versions to try, continue
1422          * with negotiations; if not
1423          * shutdown the service since we are not able
1424          * to negotiate a suitable version number
1425          * with the host.
1426          */
1427         if (dm->next_version == 0)
1428                 goto version_error;
1429
1430         memset(&version_req, 0, sizeof(struct dm_version_request));
1431         version_req.hdr.type = DM_VERSION_REQUEST;
1432         version_req.hdr.size = sizeof(struct dm_version_request);
1433         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1434         version_req.version.version = dm->next_version;
1435         dm->version = version_req.version.version;
1436
1437         /*
1438          * Set the next version to try in case current version fails.
1439          * Win7 protocol ought to be the last one to try.
1440          */
1441         switch (version_req.version.version) {
1442         case DYNMEM_PROTOCOL_VERSION_WIN8:
1443                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1444                 version_req.is_last_attempt = 0;
1445                 break;
1446         default:
1447                 dm->next_version = 0;
1448                 version_req.is_last_attempt = 1;
1449         }
1450
1451         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1452                                 sizeof(struct dm_version_request),
1453                                 (unsigned long)NULL,
1454                                 VM_PKT_DATA_INBAND, 0);
1455
1456         if (ret)
1457                 goto version_error;
1458
1459         return;
1460
1461 version_error:
1462         dm->state = DM_INIT_ERROR;
1463         complete(&dm->host_event);
1464 }
1465
1466 static void cap_resp(struct hv_dynmem_device *dm,
1467                         struct dm_capabilities_resp_msg *cap_resp)
1468 {
1469         if (!cap_resp->is_accepted) {
1470                 pr_err("Capabilities not accepted by host\n");
1471                 dm->state = DM_INIT_ERROR;
1472         }
1473         complete(&dm->host_event);
1474 }
1475
1476 static void balloon_onchannelcallback(void *context)
1477 {
1478         struct hv_device *dev = context;
1479         u32 recvlen;
1480         u64 requestid;
1481         struct dm_message *dm_msg;
1482         struct dm_header *dm_hdr;
1483         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1484         struct dm_balloon *bal_msg;
1485         struct dm_hot_add *ha_msg;
1486         union dm_mem_page_range *ha_pg_range;
1487         union dm_mem_page_range *ha_region;
1488
1489         memset(recv_buffer, 0, sizeof(recv_buffer));
1490         vmbus_recvpacket(dev->channel, recv_buffer,
1491                          HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1492
1493         if (recvlen > 0) {
1494                 dm_msg = (struct dm_message *)recv_buffer;
1495                 dm_hdr = &dm_msg->hdr;
1496
1497                 switch (dm_hdr->type) {
1498                 case DM_VERSION_RESPONSE:
1499                         version_resp(dm,
1500                                  (struct dm_version_response *)dm_msg);
1501                         break;
1502
1503                 case DM_CAPABILITIES_RESPONSE:
1504                         cap_resp(dm,
1505                                  (struct dm_capabilities_resp_msg *)dm_msg);
1506                         break;
1507
1508                 case DM_BALLOON_REQUEST:
1509                         if (allow_hibernation) {
1510                                 pr_info("Ignore balloon-up request!\n");
1511                                 break;
1512                         }
1513
1514                         if (dm->state == DM_BALLOON_UP)
1515                                 pr_warn("Currently ballooning\n");
1516                         bal_msg = (struct dm_balloon *)recv_buffer;
1517                         dm->state = DM_BALLOON_UP;
1518                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1519                         schedule_work(&dm_device.balloon_wrk.wrk);
1520                         break;
1521
1522                 case DM_UNBALLOON_REQUEST:
1523                         if (allow_hibernation) {
1524                                 pr_info("Ignore balloon-down request!\n");
1525                                 break;
1526                         }
1527
1528                         dm->state = DM_BALLOON_DOWN;
1529                         balloon_down(dm,
1530                                  (struct dm_unballoon_request *)recv_buffer);
1531                         break;
1532
1533                 case DM_MEM_HOT_ADD_REQUEST:
1534                         if (dm->state == DM_HOT_ADD)
1535                                 pr_warn("Currently hot-adding\n");
1536                         dm->state = DM_HOT_ADD;
1537                         ha_msg = (struct dm_hot_add *)recv_buffer;
1538                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1539                                 /*
1540                                  * This is a normal hot-add request specifying
1541                                  * hot-add memory.
1542                                  */
1543                                 dm->host_specified_ha_region = false;
1544                                 ha_pg_range = &ha_msg->range;
1545                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1546                                 dm->ha_wrk.ha_region_range.page_range = 0;
1547                         } else {
1548                                 /*
1549                                  * Host is specifying that we first hot-add
1550                                  * a region and then partially populate this
1551                                  * region.
1552                                  */
1553                                 dm->host_specified_ha_region = true;
1554                                 ha_pg_range = &ha_msg->range;
1555                                 ha_region = &ha_pg_range[1];
1556                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1557                                 dm->ha_wrk.ha_region_range = *ha_region;
1558                         }
1559                         schedule_work(&dm_device.ha_wrk.wrk);
1560                         break;
1561
1562                 case DM_INFO_MESSAGE:
1563                         process_info(dm, (struct dm_info_msg *)dm_msg);
1564                         break;
1565
1566                 default:
1567                         pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1568
1569                 }
1570         }
1571
1572 }
1573
1574 static int balloon_connect_vsp(struct hv_device *dev)
1575 {
1576         struct dm_version_request version_req;
1577         struct dm_capabilities cap_msg;
1578         unsigned long t;
1579         int ret;
1580
1581         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1582                          balloon_onchannelcallback, dev);
1583         if (ret)
1584                 return ret;
1585
1586         /*
1587          * Initiate the hand shake with the host and negotiate
1588          * a version that the host can support. We start with the
1589          * highest version number and go down if the host cannot
1590          * support it.
1591          */
1592         memset(&version_req, 0, sizeof(struct dm_version_request));
1593         version_req.hdr.type = DM_VERSION_REQUEST;
1594         version_req.hdr.size = sizeof(struct dm_version_request);
1595         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1596         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1597         version_req.is_last_attempt = 0;
1598         dm_device.version = version_req.version.version;
1599
1600         ret = vmbus_sendpacket(dev->channel, &version_req,
1601                                sizeof(struct dm_version_request),
1602                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1603         if (ret)
1604                 goto out;
1605
1606         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1607         if (t == 0) {
1608                 ret = -ETIMEDOUT;
1609                 goto out;
1610         }
1611
1612         /*
1613          * If we could not negotiate a compatible version with the host
1614          * fail the probe function.
1615          */
1616         if (dm_device.state == DM_INIT_ERROR) {
1617                 ret = -EPROTO;
1618                 goto out;
1619         }
1620
1621         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1622                 DYNMEM_MAJOR_VERSION(dm_device.version),
1623                 DYNMEM_MINOR_VERSION(dm_device.version));
1624
1625         /*
1626          * Now submit our capabilities to the host.
1627          */
1628         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1629         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1630         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1631         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1632
1633         /*
1634          * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1635          * currently still requires the bits to be set, so we have to add code
1636          * to fail the host's hot-add and balloon up/down requests, if any.
1637          */
1638         cap_msg.caps.cap_bits.balloon = 1;
1639         cap_msg.caps.cap_bits.hot_add = 1;
1640
1641         /*
1642          * Specify our alignment requirements as it relates
1643          * memory hot-add. Specify 128MB alignment.
1644          */
1645         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1646
1647         /*
1648          * Currently the host does not use these
1649          * values and we set them to what is done in the
1650          * Windows driver.
1651          */
1652         cap_msg.min_page_cnt = 0;
1653         cap_msg.max_page_number = -1;
1654
1655         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1656                                sizeof(struct dm_capabilities),
1657                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1658         if (ret)
1659                 goto out;
1660
1661         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1662         if (t == 0) {
1663                 ret = -ETIMEDOUT;
1664                 goto out;
1665         }
1666
1667         /*
1668          * If the host does not like our capabilities,
1669          * fail the probe function.
1670          */
1671         if (dm_device.state == DM_INIT_ERROR) {
1672                 ret = -EPROTO;
1673                 goto out;
1674         }
1675
1676         return 0;
1677 out:
1678         vmbus_close(dev->channel);
1679         return ret;
1680 }
1681
1682 static int balloon_probe(struct hv_device *dev,
1683                          const struct hv_vmbus_device_id *dev_id)
1684 {
1685         int ret;
1686
1687         allow_hibernation = hv_is_hibernation_supported();
1688         if (allow_hibernation)
1689                 hot_add = false;
1690
1691 #ifdef CONFIG_MEMORY_HOTPLUG
1692         do_hot_add = hot_add;
1693 #else
1694         do_hot_add = false;
1695 #endif
1696         dm_device.dev = dev;
1697         dm_device.state = DM_INITIALIZING;
1698         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1699         init_completion(&dm_device.host_event);
1700         init_completion(&dm_device.config_event);
1701         INIT_LIST_HEAD(&dm_device.ha_region_list);
1702         spin_lock_init(&dm_device.ha_lock);
1703         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1704         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1705         dm_device.host_specified_ha_region = false;
1706
1707 #ifdef CONFIG_MEMORY_HOTPLUG
1708         set_online_page_callback(&hv_online_page);
1709         register_memory_notifier(&hv_memory_nb);
1710 #endif
1711
1712         hv_set_drvdata(dev, &dm_device);
1713
1714         ret = balloon_connect_vsp(dev);
1715         if (ret != 0)
1716                 return ret;
1717
1718         dm_device.state = DM_INITIALIZED;
1719
1720         dm_device.thread =
1721                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1722         if (IS_ERR(dm_device.thread)) {
1723                 ret = PTR_ERR(dm_device.thread);
1724                 goto probe_error;
1725         }
1726
1727         return 0;
1728
1729 probe_error:
1730         dm_device.state = DM_INIT_ERROR;
1731         dm_device.thread  = NULL;
1732         vmbus_close(dev->channel);
1733 #ifdef CONFIG_MEMORY_HOTPLUG
1734         unregister_memory_notifier(&hv_memory_nb);
1735         restore_online_page_callback(&hv_online_page);
1736 #endif
1737         return ret;
1738 }
1739
1740 static int balloon_remove(struct hv_device *dev)
1741 {
1742         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1743         struct hv_hotadd_state *has, *tmp;
1744         struct hv_hotadd_gap *gap, *tmp_gap;
1745         unsigned long flags;
1746
1747         if (dm->num_pages_ballooned != 0)
1748                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1749
1750         cancel_work_sync(&dm->balloon_wrk.wrk);
1751         cancel_work_sync(&dm->ha_wrk.wrk);
1752
1753         kthread_stop(dm->thread);
1754         vmbus_close(dev->channel);
1755 #ifdef CONFIG_MEMORY_HOTPLUG
1756         unregister_memory_notifier(&hv_memory_nb);
1757         restore_online_page_callback(&hv_online_page);
1758 #endif
1759         spin_lock_irqsave(&dm_device.ha_lock, flags);
1760         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1761                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1762                         list_del(&gap->list);
1763                         kfree(gap);
1764                 }
1765                 list_del(&has->list);
1766                 kfree(has);
1767         }
1768         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1769
1770         return 0;
1771 }
1772
1773 static int balloon_suspend(struct hv_device *hv_dev)
1774 {
1775         struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1776
1777         tasklet_disable(&hv_dev->channel->callback_event);
1778
1779         cancel_work_sync(&dm->balloon_wrk.wrk);
1780         cancel_work_sync(&dm->ha_wrk.wrk);
1781
1782         if (dm->thread) {
1783                 kthread_stop(dm->thread);
1784                 dm->thread = NULL;
1785                 vmbus_close(hv_dev->channel);
1786         }
1787
1788         tasklet_enable(&hv_dev->channel->callback_event);
1789
1790         return 0;
1791
1792 }
1793
1794 static int balloon_resume(struct hv_device *dev)
1795 {
1796         int ret;
1797
1798         dm_device.state = DM_INITIALIZING;
1799
1800         ret = balloon_connect_vsp(dev);
1801
1802         if (ret != 0)
1803                 goto out;
1804
1805         dm_device.thread =
1806                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1807         if (IS_ERR(dm_device.thread)) {
1808                 ret = PTR_ERR(dm_device.thread);
1809                 dm_device.thread = NULL;
1810                 goto close_channel;
1811         }
1812
1813         dm_device.state = DM_INITIALIZED;
1814         return 0;
1815 close_channel:
1816         vmbus_close(dev->channel);
1817 out:
1818         dm_device.state = DM_INIT_ERROR;
1819 #ifdef CONFIG_MEMORY_HOTPLUG
1820         unregister_memory_notifier(&hv_memory_nb);
1821         restore_online_page_callback(&hv_online_page);
1822 #endif
1823         return ret;
1824 }
1825
1826 static const struct hv_vmbus_device_id id_table[] = {
1827         /* Dynamic Memory Class ID */
1828         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1829         { HV_DM_GUID, },
1830         { },
1831 };
1832
1833 MODULE_DEVICE_TABLE(vmbus, id_table);
1834
1835 static  struct hv_driver balloon_drv = {
1836         .name = "hv_balloon",
1837         .id_table = id_table,
1838         .probe =  balloon_probe,
1839         .remove =  balloon_remove,
1840         .suspend = balloon_suspend,
1841         .resume = balloon_resume,
1842         .driver = {
1843                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1844         },
1845 };
1846
1847 static int __init init_balloon_drv(void)
1848 {
1849
1850         return vmbus_driver_register(&balloon_drv);
1851 }
1852
1853 module_init(init_balloon_drv);
1854
1855 MODULE_DESCRIPTION("Hyper-V Balloon");
1856 MODULE_LICENSE("GPL");