Merge tag 'modules-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
95
96 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
97
98 /*
99  * There are two hidpp protocols in use, the first version hidpp10 is known
100  * as register access protocol or RAP, the second version hidpp20 is known as
101  * feature access protocol or FAP
102  *
103  * Most older devices (including the Unifying usb receiver) use the RAP protocol
104  * where as most newer devices use the FAP protocol. Both protocols are
105  * compatible with the underlying transport, which could be usb, Unifiying, or
106  * bluetooth. The message lengths are defined by the hid vendor specific report
107  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
108  * the HIDPP_LONG report type (total message length 20 bytes)
109  *
110  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
111  * messages. The Unifying receiver itself responds to RAP messages (device index
112  * is 0xFF for the receiver), and all messages (short or long) with a device
113  * index between 1 and 6 are passed untouched to the corresponding paired
114  * Unifying device.
115  *
116  * The paired device can be RAP or FAP, it will receive the message untouched
117  * from the Unifiying receiver.
118  */
119
120 struct fap {
121         u8 feature_index;
122         u8 funcindex_clientid;
123         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
124 };
125
126 struct rap {
127         u8 sub_id;
128         u8 reg_address;
129         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
130 };
131
132 struct hidpp_report {
133         u8 report_id;
134         u8 device_index;
135         union {
136                 struct fap fap;
137                 struct rap rap;
138                 u8 rawbytes[sizeof(struct fap)];
139         };
140 } __packed;
141
142 struct hidpp_battery {
143         u8 feature_index;
144         u8 solar_feature_index;
145         u8 voltage_feature_index;
146         struct power_supply_desc desc;
147         struct power_supply *ps;
148         char name[64];
149         int status;
150         int capacity;
151         int level;
152         int voltage;
153         int charge_type;
154         bool online;
155 };
156
157 /**
158  * struct hidpp_scroll_counter - Utility class for processing high-resolution
159  *                             scroll events.
160  * @dev: the input device for which events should be reported.
161  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
162  * @remainder: counts the number of high-resolution units moved since the last
163  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
164  *             only be used by class methods.
165  * @direction: direction of last movement (1 or -1)
166  * @last_time: last event time, used to reset remainder after inactivity
167  */
168 struct hidpp_scroll_counter {
169         int wheel_multiplier;
170         int remainder;
171         int direction;
172         unsigned long long last_time;
173 };
174
175 struct hidpp_device {
176         struct hid_device *hid_dev;
177         struct input_dev *input;
178         struct mutex send_mutex;
179         void *send_receive_buf;
180         char *name;             /* will never be NULL and should not be freed */
181         wait_queue_head_t wait;
182         int very_long_report_length;
183         bool answer_available;
184         u8 protocol_major;
185         u8 protocol_minor;
186
187         void *private_data;
188
189         struct work_struct work;
190         struct kfifo delayed_work_fifo;
191         atomic_t connected;
192         struct input_dev *delayed_input;
193
194         unsigned long quirks;
195         unsigned long capabilities;
196         u8 supported_reports;
197
198         struct hidpp_battery battery;
199         struct hidpp_scroll_counter vertical_wheel_counter;
200
201         u8 wireless_feature_index;
202 };
203
204 /* HID++ 1.0 error codes */
205 #define HIDPP_ERROR                             0x8f
206 #define HIDPP_ERROR_SUCCESS                     0x00
207 #define HIDPP_ERROR_INVALID_SUBID               0x01
208 #define HIDPP_ERROR_INVALID_ADRESS              0x02
209 #define HIDPP_ERROR_INVALID_VALUE               0x03
210 #define HIDPP_ERROR_CONNECT_FAIL                0x04
211 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
212 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
213 #define HIDPP_ERROR_BUSY                        0x07
214 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
215 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
216 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
217 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
218 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
219 /* HID++ 2.0 error codes */
220 #define HIDPP20_ERROR                           0xff
221
222 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
223
224 static int __hidpp_send_report(struct hid_device *hdev,
225                                 struct hidpp_report *hidpp_report)
226 {
227         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
228         int fields_count, ret;
229
230         switch (hidpp_report->report_id) {
231         case REPORT_ID_HIDPP_SHORT:
232                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
233                 break;
234         case REPORT_ID_HIDPP_LONG:
235                 fields_count = HIDPP_REPORT_LONG_LENGTH;
236                 break;
237         case REPORT_ID_HIDPP_VERY_LONG:
238                 fields_count = hidpp->very_long_report_length;
239                 break;
240         default:
241                 return -ENODEV;
242         }
243
244         /*
245          * set the device_index as the receiver, it will be overwritten by
246          * hid_hw_request if needed
247          */
248         hidpp_report->device_index = 0xff;
249
250         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
251                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
252         } else {
253                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
254                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
255                         HID_REQ_SET_REPORT);
256         }
257
258         return ret == fields_count ? 0 : -1;
259 }
260
261 /**
262  * hidpp_send_message_sync() returns 0 in case of success, and something else
263  * in case of a failure.
264  * - If ' something else' is positive, that means that an error has been raised
265  *   by the protocol itself.
266  * - If ' something else' is negative, that means that we had a classic error
267  *   (-ENOMEM, -EPIPE, etc...)
268  */
269 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
270         struct hidpp_report *message,
271         struct hidpp_report *response)
272 {
273         int ret;
274
275         mutex_lock(&hidpp->send_mutex);
276
277         hidpp->send_receive_buf = response;
278         hidpp->answer_available = false;
279
280         /*
281          * So that we can later validate the answer when it arrives
282          * in hidpp_raw_event
283          */
284         *response = *message;
285
286         ret = __hidpp_send_report(hidpp->hid_dev, message);
287
288         if (ret) {
289                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
290                 memset(response, 0, sizeof(struct hidpp_report));
291                 goto exit;
292         }
293
294         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
295                                 5*HZ)) {
296                 dbg_hid("%s:timeout waiting for response\n", __func__);
297                 memset(response, 0, sizeof(struct hidpp_report));
298                 ret = -ETIMEDOUT;
299         }
300
301         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
302             response->rap.sub_id == HIDPP_ERROR) {
303                 ret = response->rap.params[1];
304                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
305                 goto exit;
306         }
307
308         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
309                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
310                         response->fap.feature_index == HIDPP20_ERROR) {
311                 ret = response->fap.params[1];
312                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
313                 goto exit;
314         }
315
316 exit:
317         mutex_unlock(&hidpp->send_mutex);
318         return ret;
319
320 }
321
322 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
323         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
324         struct hidpp_report *response)
325 {
326         struct hidpp_report *message;
327         int ret;
328
329         if (param_count > sizeof(message->fap.params))
330                 return -EINVAL;
331
332         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
333         if (!message)
334                 return -ENOMEM;
335
336         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
337                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
338         else
339                 message->report_id = REPORT_ID_HIDPP_LONG;
340         message->fap.feature_index = feat_index;
341         message->fap.funcindex_clientid = funcindex_clientid;
342         memcpy(&message->fap.params, params, param_count);
343
344         ret = hidpp_send_message_sync(hidpp, message, response);
345         kfree(message);
346         return ret;
347 }
348
349 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
350         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
351         struct hidpp_report *response)
352 {
353         struct hidpp_report *message;
354         int ret, max_count;
355
356         /* Send as long report if short reports are not supported. */
357         if (report_id == REPORT_ID_HIDPP_SHORT &&
358             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
359                 report_id = REPORT_ID_HIDPP_LONG;
360
361         switch (report_id) {
362         case REPORT_ID_HIDPP_SHORT:
363                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
364                 break;
365         case REPORT_ID_HIDPP_LONG:
366                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
367                 break;
368         case REPORT_ID_HIDPP_VERY_LONG:
369                 max_count = hidpp_dev->very_long_report_length - 4;
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         if (param_count > max_count)
376                 return -EINVAL;
377
378         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
379         if (!message)
380                 return -ENOMEM;
381         message->report_id = report_id;
382         message->rap.sub_id = sub_id;
383         message->rap.reg_address = reg_address;
384         memcpy(&message->rap.params, params, param_count);
385
386         ret = hidpp_send_message_sync(hidpp_dev, message, response);
387         kfree(message);
388         return ret;
389 }
390
391 static void delayed_work_cb(struct work_struct *work)
392 {
393         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
394                                                         work);
395         hidpp_connect_event(hidpp);
396 }
397
398 static inline bool hidpp_match_answer(struct hidpp_report *question,
399                 struct hidpp_report *answer)
400 {
401         return (answer->fap.feature_index == question->fap.feature_index) &&
402            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
403 }
404
405 static inline bool hidpp_match_error(struct hidpp_report *question,
406                 struct hidpp_report *answer)
407 {
408         return ((answer->rap.sub_id == HIDPP_ERROR) ||
409             (answer->fap.feature_index == HIDPP20_ERROR)) &&
410             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
411             (answer->fap.params[0] == question->fap.funcindex_clientid);
412 }
413
414 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
415                 struct hidpp_report *report)
416 {
417         return (hidpp->wireless_feature_index &&
418                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
419                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
420                 (report->rap.sub_id == 0x41));
421 }
422
423 /**
424  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
425  */
426 static void hidpp_prefix_name(char **name, int name_length)
427 {
428 #define PREFIX_LENGTH 9 /* "Logitech " */
429
430         int new_length;
431         char *new_name;
432
433         if (name_length > PREFIX_LENGTH &&
434             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
435                 /* The prefix has is already in the name */
436                 return;
437
438         new_length = PREFIX_LENGTH + name_length;
439         new_name = kzalloc(new_length, GFP_KERNEL);
440         if (!new_name)
441                 return;
442
443         snprintf(new_name, new_length, "Logitech %s", *name);
444
445         kfree(*name);
446
447         *name = new_name;
448 }
449
450 /**
451  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
452  *                                        events given a high-resolution wheel
453  *                                        movement.
454  * @counter: a hid_scroll_counter struct describing the wheel.
455  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
456  *                units.
457  *
458  * Given a high-resolution movement, this function converts the movement into
459  * fractions of 120 and emits high-resolution scroll events for the input
460  * device. It also uses the multiplier from &struct hid_scroll_counter to
461  * emit low-resolution scroll events when appropriate for
462  * backwards-compatibility with userspace input libraries.
463  */
464 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
465                                                struct hidpp_scroll_counter *counter,
466                                                int hi_res_value)
467 {
468         int low_res_value, remainder, direction;
469         unsigned long long now, previous;
470
471         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
472         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
473
474         remainder = counter->remainder;
475         direction = hi_res_value > 0 ? 1 : -1;
476
477         now = sched_clock();
478         previous = counter->last_time;
479         counter->last_time = now;
480         /*
481          * Reset the remainder after a period of inactivity or when the
482          * direction changes. This prevents the REL_WHEEL emulation point
483          * from sliding for devices that don't always provide the same
484          * number of movements per detent.
485          */
486         if (now - previous > 1000000000 || direction != counter->direction)
487                 remainder = 0;
488
489         counter->direction = direction;
490         remainder += hi_res_value;
491
492         /* Some wheels will rest 7/8ths of a detent from the previous detent
493          * after slow movement, so we want the threshold for low-res events to
494          * be in the middle between two detents (e.g. after 4/8ths) as
495          * opposed to on the detents themselves (8/8ths).
496          */
497         if (abs(remainder) >= 60) {
498                 /* Add (or subtract) 1 because we want to trigger when the wheel
499                  * is half-way to the next detent (i.e. scroll 1 detent after a
500                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
501                  * etc.).
502                  */
503                 low_res_value = remainder / 120;
504                 if (low_res_value == 0)
505                         low_res_value = (hi_res_value > 0 ? 1 : -1);
506                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
507                 remainder -= low_res_value * 120;
508         }
509         counter->remainder = remainder;
510 }
511
512 /* -------------------------------------------------------------------------- */
513 /* HIDP++ 1.0 commands                                                        */
514 /* -------------------------------------------------------------------------- */
515
516 #define HIDPP_SET_REGISTER                              0x80
517 #define HIDPP_GET_REGISTER                              0x81
518 #define HIDPP_SET_LONG_REGISTER                         0x82
519 #define HIDPP_GET_LONG_REGISTER                         0x83
520
521 /**
522  * hidpp10_set_register - Modify a HID++ 1.0 register.
523  * @hidpp_dev: the device to set the register on.
524  * @register_address: the address of the register to modify.
525  * @byte: the byte of the register to modify. Should be less than 3.
526  * @mask: mask of the bits to modify
527  * @value: new values for the bits in mask
528  * Return: 0 if successful, otherwise a negative error code.
529  */
530 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
531         u8 register_address, u8 byte, u8 mask, u8 value)
532 {
533         struct hidpp_report response;
534         int ret;
535         u8 params[3] = { 0 };
536
537         ret = hidpp_send_rap_command_sync(hidpp_dev,
538                                           REPORT_ID_HIDPP_SHORT,
539                                           HIDPP_GET_REGISTER,
540                                           register_address,
541                                           NULL, 0, &response);
542         if (ret)
543                 return ret;
544
545         memcpy(params, response.rap.params, 3);
546
547         params[byte] &= ~mask;
548         params[byte] |= value & mask;
549
550         return hidpp_send_rap_command_sync(hidpp_dev,
551                                            REPORT_ID_HIDPP_SHORT,
552                                            HIDPP_SET_REGISTER,
553                                            register_address,
554                                            params, 3, &response);
555 }
556
557 #define HIDPP_REG_ENABLE_REPORTS                        0x00
558 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
559 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
560 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
561 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
562 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
563
564 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
565 {
566         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
567                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
568 }
569
570 #define HIDPP_REG_FEATURES                              0x01
571 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
572 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
573
574 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
575 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
576 {
577         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
578                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
579 }
580
581 #define HIDPP_REG_BATTERY_STATUS                        0x07
582
583 static int hidpp10_battery_status_map_level(u8 param)
584 {
585         int level;
586
587         switch (param) {
588         case 1 ... 2:
589                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
590                 break;
591         case 3 ... 4:
592                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
593                 break;
594         case 5 ... 6:
595                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
596                 break;
597         case 7:
598                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
599                 break;
600         default:
601                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
602         }
603
604         return level;
605 }
606
607 static int hidpp10_battery_status_map_status(u8 param)
608 {
609         int status;
610
611         switch (param) {
612         case 0x00:
613                 /* discharging (in use) */
614                 status = POWER_SUPPLY_STATUS_DISCHARGING;
615                 break;
616         case 0x21: /* (standard) charging */
617         case 0x24: /* fast charging */
618         case 0x25: /* slow charging */
619                 status = POWER_SUPPLY_STATUS_CHARGING;
620                 break;
621         case 0x26: /* topping charge */
622         case 0x22: /* charge complete */
623                 status = POWER_SUPPLY_STATUS_FULL;
624                 break;
625         case 0x20: /* unknown */
626                 status = POWER_SUPPLY_STATUS_UNKNOWN;
627                 break;
628         /*
629          * 0x01...0x1F = reserved (not charging)
630          * 0x23 = charging error
631          * 0x27..0xff = reserved
632          */
633         default:
634                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
635                 break;
636         }
637
638         return status;
639 }
640
641 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
642 {
643         struct hidpp_report response;
644         int ret, status;
645
646         ret = hidpp_send_rap_command_sync(hidpp,
647                                         REPORT_ID_HIDPP_SHORT,
648                                         HIDPP_GET_REGISTER,
649                                         HIDPP_REG_BATTERY_STATUS,
650                                         NULL, 0, &response);
651         if (ret)
652                 return ret;
653
654         hidpp->battery.level =
655                 hidpp10_battery_status_map_level(response.rap.params[0]);
656         status = hidpp10_battery_status_map_status(response.rap.params[1]);
657         hidpp->battery.status = status;
658         /* the capacity is only available when discharging or full */
659         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
660                                 status == POWER_SUPPLY_STATUS_FULL;
661
662         return 0;
663 }
664
665 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
666
667 static int hidpp10_battery_mileage_map_status(u8 param)
668 {
669         int status;
670
671         switch (param >> 6) {
672         case 0x00:
673                 /* discharging (in use) */
674                 status = POWER_SUPPLY_STATUS_DISCHARGING;
675                 break;
676         case 0x01: /* charging */
677                 status = POWER_SUPPLY_STATUS_CHARGING;
678                 break;
679         case 0x02: /* charge complete */
680                 status = POWER_SUPPLY_STATUS_FULL;
681                 break;
682         /*
683          * 0x03 = charging error
684          */
685         default:
686                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
687                 break;
688         }
689
690         return status;
691 }
692
693 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
694 {
695         struct hidpp_report response;
696         int ret, status;
697
698         ret = hidpp_send_rap_command_sync(hidpp,
699                                         REPORT_ID_HIDPP_SHORT,
700                                         HIDPP_GET_REGISTER,
701                                         HIDPP_REG_BATTERY_MILEAGE,
702                                         NULL, 0, &response);
703         if (ret)
704                 return ret;
705
706         hidpp->battery.capacity = response.rap.params[0];
707         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
708         hidpp->battery.status = status;
709         /* the capacity is only available when discharging or full */
710         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
711                                 status == POWER_SUPPLY_STATUS_FULL;
712
713         return 0;
714 }
715
716 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
717 {
718         struct hidpp_report *report = (struct hidpp_report *)data;
719         int status, capacity, level;
720         bool changed;
721
722         if (report->report_id != REPORT_ID_HIDPP_SHORT)
723                 return 0;
724
725         switch (report->rap.sub_id) {
726         case HIDPP_REG_BATTERY_STATUS:
727                 capacity = hidpp->battery.capacity;
728                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
729                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
730                 break;
731         case HIDPP_REG_BATTERY_MILEAGE:
732                 capacity = report->rap.params[0];
733                 level = hidpp->battery.level;
734                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
735                 break;
736         default:
737                 return 0;
738         }
739
740         changed = capacity != hidpp->battery.capacity ||
741                   level != hidpp->battery.level ||
742                   status != hidpp->battery.status;
743
744         /* the capacity is only available when discharging or full */
745         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
746                                 status == POWER_SUPPLY_STATUS_FULL;
747
748         if (changed) {
749                 hidpp->battery.level = level;
750                 hidpp->battery.status = status;
751                 if (hidpp->battery.ps)
752                         power_supply_changed(hidpp->battery.ps);
753         }
754
755         return 0;
756 }
757
758 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
759 #define HIDPP_EXTENDED_PAIRING                          0x30
760 #define HIDPP_DEVICE_NAME                               0x40
761
762 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
763 {
764         struct hidpp_report response;
765         int ret;
766         u8 params[1] = { HIDPP_DEVICE_NAME };
767         char *name;
768         int len;
769
770         ret = hidpp_send_rap_command_sync(hidpp_dev,
771                                         REPORT_ID_HIDPP_SHORT,
772                                         HIDPP_GET_LONG_REGISTER,
773                                         HIDPP_REG_PAIRING_INFORMATION,
774                                         params, 1, &response);
775         if (ret)
776                 return NULL;
777
778         len = response.rap.params[1];
779
780         if (2 + len > sizeof(response.rap.params))
781                 return NULL;
782
783         if (len < 4) /* logitech devices are usually at least Xddd */
784                 return NULL;
785
786         name = kzalloc(len + 1, GFP_KERNEL);
787         if (!name)
788                 return NULL;
789
790         memcpy(name, &response.rap.params[2], len);
791
792         /* include the terminating '\0' */
793         hidpp_prefix_name(&name, len + 1);
794
795         return name;
796 }
797
798 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
799 {
800         struct hidpp_report response;
801         int ret;
802         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
803
804         ret = hidpp_send_rap_command_sync(hidpp,
805                                         REPORT_ID_HIDPP_SHORT,
806                                         HIDPP_GET_LONG_REGISTER,
807                                         HIDPP_REG_PAIRING_INFORMATION,
808                                         params, 1, &response);
809         if (ret)
810                 return ret;
811
812         /*
813          * We don't care about LE or BE, we will output it as a string
814          * with %4phD, so we need to keep the order.
815          */
816         *serial = *((u32 *)&response.rap.params[1]);
817         return 0;
818 }
819
820 static int hidpp_unifying_init(struct hidpp_device *hidpp)
821 {
822         struct hid_device *hdev = hidpp->hid_dev;
823         const char *name;
824         u32 serial;
825         int ret;
826
827         ret = hidpp_unifying_get_serial(hidpp, &serial);
828         if (ret)
829                 return ret;
830
831         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
832                  hdev->product, &serial);
833         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
834
835         name = hidpp_unifying_get_name(hidpp);
836         if (!name)
837                 return -EIO;
838
839         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
840         dbg_hid("HID++ Unifying: Got name: %s\n", name);
841
842         kfree(name);
843         return 0;
844 }
845
846 /* -------------------------------------------------------------------------- */
847 /* 0x0000: Root                                                               */
848 /* -------------------------------------------------------------------------- */
849
850 #define HIDPP_PAGE_ROOT                                 0x0000
851 #define HIDPP_PAGE_ROOT_IDX                             0x00
852
853 #define CMD_ROOT_GET_FEATURE                            0x01
854 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
855
856 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
857         u8 *feature_index, u8 *feature_type)
858 {
859         struct hidpp_report response;
860         int ret;
861         u8 params[2] = { feature >> 8, feature & 0x00FF };
862
863         ret = hidpp_send_fap_command_sync(hidpp,
864                         HIDPP_PAGE_ROOT_IDX,
865                         CMD_ROOT_GET_FEATURE,
866                         params, 2, &response);
867         if (ret)
868                 return ret;
869
870         if (response.fap.params[0] == 0)
871                 return -ENOENT;
872
873         *feature_index = response.fap.params[0];
874         *feature_type = response.fap.params[1];
875
876         return ret;
877 }
878
879 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
880 {
881         const u8 ping_byte = 0x5a;
882         u8 ping_data[3] = { 0, 0, ping_byte };
883         struct hidpp_report response;
884         int ret;
885
886         ret = hidpp_send_rap_command_sync(hidpp,
887                         REPORT_ID_HIDPP_SHORT,
888                         HIDPP_PAGE_ROOT_IDX,
889                         CMD_ROOT_GET_PROTOCOL_VERSION,
890                         ping_data, sizeof(ping_data), &response);
891
892         if (ret == HIDPP_ERROR_INVALID_SUBID) {
893                 hidpp->protocol_major = 1;
894                 hidpp->protocol_minor = 0;
895                 goto print_version;
896         }
897
898         /* the device might not be connected */
899         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
900                 return -EIO;
901
902         if (ret > 0) {
903                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
904                         __func__, ret);
905                 return -EPROTO;
906         }
907         if (ret)
908                 return ret;
909
910         if (response.rap.params[2] != ping_byte) {
911                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
912                         __func__, response.rap.params[2], ping_byte);
913                 return -EPROTO;
914         }
915
916         hidpp->protocol_major = response.rap.params[0];
917         hidpp->protocol_minor = response.rap.params[1];
918
919 print_version:
920         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
921                  hidpp->protocol_major, hidpp->protocol_minor);
922         return 0;
923 }
924
925 /* -------------------------------------------------------------------------- */
926 /* 0x0005: GetDeviceNameType                                                  */
927 /* -------------------------------------------------------------------------- */
928
929 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
930
931 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
932 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
933 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
934
935 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
936         u8 feature_index, u8 *nameLength)
937 {
938         struct hidpp_report response;
939         int ret;
940
941         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
942                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
943
944         if (ret > 0) {
945                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
946                         __func__, ret);
947                 return -EPROTO;
948         }
949         if (ret)
950                 return ret;
951
952         *nameLength = response.fap.params[0];
953
954         return ret;
955 }
956
957 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
958         u8 feature_index, u8 char_index, char *device_name, int len_buf)
959 {
960         struct hidpp_report response;
961         int ret, i;
962         int count;
963
964         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
965                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
966                 &response);
967
968         if (ret > 0) {
969                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
970                         __func__, ret);
971                 return -EPROTO;
972         }
973         if (ret)
974                 return ret;
975
976         switch (response.report_id) {
977         case REPORT_ID_HIDPP_VERY_LONG:
978                 count = hidpp->very_long_report_length - 4;
979                 break;
980         case REPORT_ID_HIDPP_LONG:
981                 count = HIDPP_REPORT_LONG_LENGTH - 4;
982                 break;
983         case REPORT_ID_HIDPP_SHORT:
984                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
985                 break;
986         default:
987                 return -EPROTO;
988         }
989
990         if (len_buf < count)
991                 count = len_buf;
992
993         for (i = 0; i < count; i++)
994                 device_name[i] = response.fap.params[i];
995
996         return count;
997 }
998
999 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1000 {
1001         u8 feature_type;
1002         u8 feature_index;
1003         u8 __name_length;
1004         char *name;
1005         unsigned index = 0;
1006         int ret;
1007
1008         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1009                 &feature_index, &feature_type);
1010         if (ret)
1011                 return NULL;
1012
1013         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1014                 &__name_length);
1015         if (ret)
1016                 return NULL;
1017
1018         name = kzalloc(__name_length + 1, GFP_KERNEL);
1019         if (!name)
1020                 return NULL;
1021
1022         while (index < __name_length) {
1023                 ret = hidpp_devicenametype_get_device_name(hidpp,
1024                         feature_index, index, name + index,
1025                         __name_length - index);
1026                 if (ret <= 0) {
1027                         kfree(name);
1028                         return NULL;
1029                 }
1030                 index += ret;
1031         }
1032
1033         /* include the terminating '\0' */
1034         hidpp_prefix_name(&name, __name_length + 1);
1035
1036         return name;
1037 }
1038
1039 /* -------------------------------------------------------------------------- */
1040 /* 0x1000: Battery level status                                               */
1041 /* -------------------------------------------------------------------------- */
1042
1043 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1044
1045 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1046 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1047
1048 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1049
1050 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1051 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1052 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1053
1054 static int hidpp_map_battery_level(int capacity)
1055 {
1056         if (capacity < 11)
1057                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1058         /*
1059          * The spec says this should be < 31 but some devices report 30
1060          * with brand new batteries and Windows reports 30 as "Good".
1061          */
1062         else if (capacity < 30)
1063                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1064         else if (capacity < 81)
1065                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1066         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1067 }
1068
1069 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1070                                                     int *next_capacity,
1071                                                     int *level)
1072 {
1073         int status;
1074
1075         *capacity = data[0];
1076         *next_capacity = data[1];
1077         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1078
1079         /* When discharging, we can rely on the device reported capacity.
1080          * For all other states the device reports 0 (unknown).
1081          */
1082         switch (data[2]) {
1083                 case 0: /* discharging (in use) */
1084                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1085                         *level = hidpp_map_battery_level(*capacity);
1086                         break;
1087                 case 1: /* recharging */
1088                         status = POWER_SUPPLY_STATUS_CHARGING;
1089                         break;
1090                 case 2: /* charge in final stage */
1091                         status = POWER_SUPPLY_STATUS_CHARGING;
1092                         break;
1093                 case 3: /* charge complete */
1094                         status = POWER_SUPPLY_STATUS_FULL;
1095                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1096                         *capacity = 100;
1097                         break;
1098                 case 4: /* recharging below optimal speed */
1099                         status = POWER_SUPPLY_STATUS_CHARGING;
1100                         break;
1101                 /* 5 = invalid battery type
1102                    6 = thermal error
1103                    7 = other charging error */
1104                 default:
1105                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1106                         break;
1107         }
1108
1109         return status;
1110 }
1111
1112 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1113                                                      u8 feature_index,
1114                                                      int *status,
1115                                                      int *capacity,
1116                                                      int *next_capacity,
1117                                                      int *level)
1118 {
1119         struct hidpp_report response;
1120         int ret;
1121         u8 *params = (u8 *)response.fap.params;
1122
1123         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1124                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1125                                           NULL, 0, &response);
1126         /* Ignore these intermittent errors */
1127         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1128                 return -EIO;
1129         if (ret > 0) {
1130                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1131                         __func__, ret);
1132                 return -EPROTO;
1133         }
1134         if (ret)
1135                 return ret;
1136
1137         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1138                                                            next_capacity,
1139                                                            level);
1140
1141         return 0;
1142 }
1143
1144 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1145                                                   u8 feature_index)
1146 {
1147         struct hidpp_report response;
1148         int ret;
1149         u8 *params = (u8 *)response.fap.params;
1150         unsigned int level_count, flags;
1151
1152         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1153                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1154                                           NULL, 0, &response);
1155         if (ret > 0) {
1156                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1157                         __func__, ret);
1158                 return -EPROTO;
1159         }
1160         if (ret)
1161                 return ret;
1162
1163         level_count = params[0];
1164         flags = params[1];
1165
1166         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1167                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1168         else
1169                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1170
1171         return 0;
1172 }
1173
1174 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1175 {
1176         u8 feature_type;
1177         int ret;
1178         int status, capacity, next_capacity, level;
1179
1180         if (hidpp->battery.feature_index == 0xff) {
1181                 ret = hidpp_root_get_feature(hidpp,
1182                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1183                                              &hidpp->battery.feature_index,
1184                                              &feature_type);
1185                 if (ret)
1186                         return ret;
1187         }
1188
1189         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1190                                                 hidpp->battery.feature_index,
1191                                                 &status, &capacity,
1192                                                 &next_capacity, &level);
1193         if (ret)
1194                 return ret;
1195
1196         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1197                                                 hidpp->battery.feature_index);
1198         if (ret)
1199                 return ret;
1200
1201         hidpp->battery.status = status;
1202         hidpp->battery.capacity = capacity;
1203         hidpp->battery.level = level;
1204         /* the capacity is only available when discharging or full */
1205         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1206                                 status == POWER_SUPPLY_STATUS_FULL;
1207
1208         return 0;
1209 }
1210
1211 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1212                                  u8 *data, int size)
1213 {
1214         struct hidpp_report *report = (struct hidpp_report *)data;
1215         int status, capacity, next_capacity, level;
1216         bool changed;
1217
1218         if (report->fap.feature_index != hidpp->battery.feature_index ||
1219             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1220                 return 0;
1221
1222         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1223                                                           &capacity,
1224                                                           &next_capacity,
1225                                                           &level);
1226
1227         /* the capacity is only available when discharging or full */
1228         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1229                                 status == POWER_SUPPLY_STATUS_FULL;
1230
1231         changed = capacity != hidpp->battery.capacity ||
1232                   level != hidpp->battery.level ||
1233                   status != hidpp->battery.status;
1234
1235         if (changed) {
1236                 hidpp->battery.level = level;
1237                 hidpp->battery.capacity = capacity;
1238                 hidpp->battery.status = status;
1239                 if (hidpp->battery.ps)
1240                         power_supply_changed(hidpp->battery.ps);
1241         }
1242
1243         return 0;
1244 }
1245
1246 /* -------------------------------------------------------------------------- */
1247 /* 0x1001: Battery voltage                                                    */
1248 /* -------------------------------------------------------------------------- */
1249
1250 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1251
1252 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1253
1254 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1255
1256 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1257                                                 int *level, int *charge_type)
1258 {
1259         int status;
1260
1261         long flags = (long) data[2];
1262
1263         if (flags & 0x80)
1264                 switch (flags & 0x07) {
1265                 case 0:
1266                         status = POWER_SUPPLY_STATUS_CHARGING;
1267                         break;
1268                 case 1:
1269                         status = POWER_SUPPLY_STATUS_FULL;
1270                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1271                         break;
1272                 case 2:
1273                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1274                         break;
1275                 default:
1276                         status = POWER_SUPPLY_STATUS_UNKNOWN;
1277                         break;
1278                 }
1279         else
1280                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1281
1282         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1283         if (test_bit(3, &flags)) {
1284                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1285         }
1286         if (test_bit(4, &flags)) {
1287                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1288         }
1289         if (test_bit(5, &flags)) {
1290                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1291         }
1292
1293         *voltage = get_unaligned_be16(data);
1294
1295         return status;
1296 }
1297
1298 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1299                                                  u8 feature_index,
1300                                                  int *status, int *voltage,
1301                                                  int *level, int *charge_type)
1302 {
1303         struct hidpp_report response;
1304         int ret;
1305         u8 *params = (u8 *)response.fap.params;
1306
1307         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1308                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1309                                           NULL, 0, &response);
1310
1311         if (ret > 0) {
1312                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1313                         __func__, ret);
1314                 return -EPROTO;
1315         }
1316         if (ret)
1317                 return ret;
1318
1319         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1320
1321         *status = hidpp20_battery_map_status_voltage(params, voltage,
1322                                                      level, charge_type);
1323
1324         return 0;
1325 }
1326
1327 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1328 {
1329         u8 feature_type;
1330         int ret;
1331         int status, voltage, level, charge_type;
1332
1333         if (hidpp->battery.voltage_feature_index == 0xff) {
1334                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1335                                              &hidpp->battery.voltage_feature_index,
1336                                              &feature_type);
1337                 if (ret)
1338                         return ret;
1339         }
1340
1341         ret = hidpp20_battery_get_battery_voltage(hidpp,
1342                                                   hidpp->battery.voltage_feature_index,
1343                                                   &status, &voltage, &level, &charge_type);
1344
1345         if (ret)
1346                 return ret;
1347
1348         hidpp->battery.status = status;
1349         hidpp->battery.voltage = voltage;
1350         hidpp->battery.level = level;
1351         hidpp->battery.charge_type = charge_type;
1352         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1353
1354         return 0;
1355 }
1356
1357 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1358                                             u8 *data, int size)
1359 {
1360         struct hidpp_report *report = (struct hidpp_report *)data;
1361         int status, voltage, level, charge_type;
1362
1363         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1364                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1365                 return 0;
1366
1367         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1368                                                     &level, &charge_type);
1369
1370         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1371
1372         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1373                 hidpp->battery.voltage = voltage;
1374                 hidpp->battery.status = status;
1375                 hidpp->battery.level = level;
1376                 hidpp->battery.charge_type = charge_type;
1377                 if (hidpp->battery.ps)
1378                         power_supply_changed(hidpp->battery.ps);
1379         }
1380         return 0;
1381 }
1382
1383 static enum power_supply_property hidpp_battery_props[] = {
1384         POWER_SUPPLY_PROP_ONLINE,
1385         POWER_SUPPLY_PROP_STATUS,
1386         POWER_SUPPLY_PROP_SCOPE,
1387         POWER_SUPPLY_PROP_MODEL_NAME,
1388         POWER_SUPPLY_PROP_MANUFACTURER,
1389         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1390         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1391         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1392         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1393 };
1394
1395 static int hidpp_battery_get_property(struct power_supply *psy,
1396                                       enum power_supply_property psp,
1397                                       union power_supply_propval *val)
1398 {
1399         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1400         int ret = 0;
1401
1402         switch(psp) {
1403                 case POWER_SUPPLY_PROP_STATUS:
1404                         val->intval = hidpp->battery.status;
1405                         break;
1406                 case POWER_SUPPLY_PROP_CAPACITY:
1407                         val->intval = hidpp->battery.capacity;
1408                         break;
1409                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1410                         val->intval = hidpp->battery.level;
1411                         break;
1412                 case POWER_SUPPLY_PROP_SCOPE:
1413                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1414                         break;
1415                 case POWER_SUPPLY_PROP_ONLINE:
1416                         val->intval = hidpp->battery.online;
1417                         break;
1418                 case POWER_SUPPLY_PROP_MODEL_NAME:
1419                         if (!strncmp(hidpp->name, "Logitech ", 9))
1420                                 val->strval = hidpp->name + 9;
1421                         else
1422                                 val->strval = hidpp->name;
1423                         break;
1424                 case POWER_SUPPLY_PROP_MANUFACTURER:
1425                         val->strval = "Logitech";
1426                         break;
1427                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1428                         val->strval = hidpp->hid_dev->uniq;
1429                         break;
1430                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1431                         /* hardware reports voltage in in mV. sysfs expects uV */
1432                         val->intval = hidpp->battery.voltage * 1000;
1433                         break;
1434                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1435                         val->intval = hidpp->battery.charge_type;
1436                         break;
1437                 default:
1438                         ret = -EINVAL;
1439                         break;
1440         }
1441
1442         return ret;
1443 }
1444
1445 /* -------------------------------------------------------------------------- */
1446 /* 0x1d4b: Wireless device status                                             */
1447 /* -------------------------------------------------------------------------- */
1448 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1449
1450 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1451 {
1452         u8 feature_type;
1453         int ret;
1454
1455         ret = hidpp_root_get_feature(hidpp,
1456                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1457                                      &hidpp->wireless_feature_index,
1458                                      &feature_type);
1459
1460         return ret;
1461 }
1462
1463 /* -------------------------------------------------------------------------- */
1464 /* 0x2120: Hi-resolution scrolling                                            */
1465 /* -------------------------------------------------------------------------- */
1466
1467 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1468
1469 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1470
1471 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1472         bool enabled, u8 *multiplier)
1473 {
1474         u8 feature_index;
1475         u8 feature_type;
1476         int ret;
1477         u8 params[1];
1478         struct hidpp_report response;
1479
1480         ret = hidpp_root_get_feature(hidpp,
1481                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1482                                      &feature_index,
1483                                      &feature_type);
1484         if (ret)
1485                 return ret;
1486
1487         params[0] = enabled ? BIT(0) : 0;
1488         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1489                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1490                                           params, sizeof(params), &response);
1491         if (ret)
1492                 return ret;
1493         *multiplier = response.fap.params[1];
1494         return 0;
1495 }
1496
1497 /* -------------------------------------------------------------------------- */
1498 /* 0x2121: HiRes Wheel                                                        */
1499 /* -------------------------------------------------------------------------- */
1500
1501 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1502
1503 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1504 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1505
1506 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1507         u8 *multiplier)
1508 {
1509         u8 feature_index;
1510         u8 feature_type;
1511         int ret;
1512         struct hidpp_report response;
1513
1514         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1515                                      &feature_index, &feature_type);
1516         if (ret)
1517                 goto return_default;
1518
1519         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1520                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1521                                           NULL, 0, &response);
1522         if (ret)
1523                 goto return_default;
1524
1525         *multiplier = response.fap.params[0];
1526         return 0;
1527 return_default:
1528         hid_warn(hidpp->hid_dev,
1529                  "Couldn't get wheel multiplier (error %d)\n", ret);
1530         return ret;
1531 }
1532
1533 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1534         bool high_resolution, bool use_hidpp)
1535 {
1536         u8 feature_index;
1537         u8 feature_type;
1538         int ret;
1539         u8 params[1];
1540         struct hidpp_report response;
1541
1542         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1543                                      &feature_index, &feature_type);
1544         if (ret)
1545                 return ret;
1546
1547         params[0] = (invert          ? BIT(2) : 0) |
1548                     (high_resolution ? BIT(1) : 0) |
1549                     (use_hidpp       ? BIT(0) : 0);
1550
1551         return hidpp_send_fap_command_sync(hidpp, feature_index,
1552                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1553                                            params, sizeof(params), &response);
1554 }
1555
1556 /* -------------------------------------------------------------------------- */
1557 /* 0x4301: Solar Keyboard                                                     */
1558 /* -------------------------------------------------------------------------- */
1559
1560 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1561
1562 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1563
1564 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1565 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1566 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1567
1568 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1569 {
1570         struct hidpp_report response;
1571         u8 params[2] = { 1, 1 };
1572         u8 feature_type;
1573         int ret;
1574
1575         if (hidpp->battery.feature_index == 0xff) {
1576                 ret = hidpp_root_get_feature(hidpp,
1577                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1578                                              &hidpp->battery.solar_feature_index,
1579                                              &feature_type);
1580                 if (ret)
1581                         return ret;
1582         }
1583
1584         ret = hidpp_send_fap_command_sync(hidpp,
1585                                           hidpp->battery.solar_feature_index,
1586                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1587                                           params, 2, &response);
1588         if (ret > 0) {
1589                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1590                         __func__, ret);
1591                 return -EPROTO;
1592         }
1593         if (ret)
1594                 return ret;
1595
1596         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1597
1598         return 0;
1599 }
1600
1601 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1602                                      u8 *data, int size)
1603 {
1604         struct hidpp_report *report = (struct hidpp_report *)data;
1605         int capacity, lux, status;
1606         u8 function;
1607
1608         function = report->fap.funcindex_clientid;
1609
1610
1611         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1612             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1613               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1614               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1615                 return 0;
1616
1617         capacity = report->fap.params[0];
1618
1619         switch (function) {
1620         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1621                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1622                 if (lux > 200)
1623                         status = POWER_SUPPLY_STATUS_CHARGING;
1624                 else
1625                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1626                 break;
1627         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1628         default:
1629                 if (capacity < hidpp->battery.capacity)
1630                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1631                 else
1632                         status = POWER_SUPPLY_STATUS_CHARGING;
1633
1634         }
1635
1636         if (capacity == 100)
1637                 status = POWER_SUPPLY_STATUS_FULL;
1638
1639         hidpp->battery.online = true;
1640         if (capacity != hidpp->battery.capacity ||
1641             status != hidpp->battery.status) {
1642                 hidpp->battery.capacity = capacity;
1643                 hidpp->battery.status = status;
1644                 if (hidpp->battery.ps)
1645                         power_supply_changed(hidpp->battery.ps);
1646         }
1647
1648         return 0;
1649 }
1650
1651 /* -------------------------------------------------------------------------- */
1652 /* 0x6010: Touchpad FW items                                                  */
1653 /* -------------------------------------------------------------------------- */
1654
1655 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1656
1657 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1658
1659 struct hidpp_touchpad_fw_items {
1660         uint8_t presence;
1661         uint8_t desired_state;
1662         uint8_t state;
1663         uint8_t persistent;
1664 };
1665
1666 /**
1667  * send a set state command to the device by reading the current items->state
1668  * field. items is then filled with the current state.
1669  */
1670 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1671                                        u8 feature_index,
1672                                        struct hidpp_touchpad_fw_items *items)
1673 {
1674         struct hidpp_report response;
1675         int ret;
1676         u8 *params = (u8 *)response.fap.params;
1677
1678         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1679                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1680
1681         if (ret > 0) {
1682                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1683                         __func__, ret);
1684                 return -EPROTO;
1685         }
1686         if (ret)
1687                 return ret;
1688
1689         items->presence = params[0];
1690         items->desired_state = params[1];
1691         items->state = params[2];
1692         items->persistent = params[3];
1693
1694         return 0;
1695 }
1696
1697 /* -------------------------------------------------------------------------- */
1698 /* 0x6100: TouchPadRawXY                                                      */
1699 /* -------------------------------------------------------------------------- */
1700
1701 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1702
1703 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1704 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1705
1706 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1707
1708 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1709 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1710
1711 struct hidpp_touchpad_raw_info {
1712         u16 x_size;
1713         u16 y_size;
1714         u8 z_range;
1715         u8 area_range;
1716         u8 timestamp_unit;
1717         u8 maxcontacts;
1718         u8 origin;
1719         u16 res;
1720 };
1721
1722 struct hidpp_touchpad_raw_xy_finger {
1723         u8 contact_type;
1724         u8 contact_status;
1725         u16 x;
1726         u16 y;
1727         u8 z;
1728         u8 area;
1729         u8 finger_id;
1730 };
1731
1732 struct hidpp_touchpad_raw_xy {
1733         u16 timestamp;
1734         struct hidpp_touchpad_raw_xy_finger fingers[2];
1735         u8 spurious_flag;
1736         u8 end_of_frame;
1737         u8 finger_count;
1738         u8 button;
1739 };
1740
1741 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1742         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1743 {
1744         struct hidpp_report response;
1745         int ret;
1746         u8 *params = (u8 *)response.fap.params;
1747
1748         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1749                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1750
1751         if (ret > 0) {
1752                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1753                         __func__, ret);
1754                 return -EPROTO;
1755         }
1756         if (ret)
1757                 return ret;
1758
1759         raw_info->x_size = get_unaligned_be16(&params[0]);
1760         raw_info->y_size = get_unaligned_be16(&params[2]);
1761         raw_info->z_range = params[4];
1762         raw_info->area_range = params[5];
1763         raw_info->maxcontacts = params[7];
1764         raw_info->origin = params[8];
1765         /* res is given in unit per inch */
1766         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1767
1768         return ret;
1769 }
1770
1771 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1772                 u8 feature_index, bool send_raw_reports,
1773                 bool sensor_enhanced_settings)
1774 {
1775         struct hidpp_report response;
1776
1777         /*
1778          * Params:
1779          *   bit 0 - enable raw
1780          *   bit 1 - 16bit Z, no area
1781          *   bit 2 - enhanced sensitivity
1782          *   bit 3 - width, height (4 bits each) instead of area
1783          *   bit 4 - send raw + gestures (degrades smoothness)
1784          *   remaining bits - reserved
1785          */
1786         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1787
1788         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1789                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1790 }
1791
1792 static void hidpp_touchpad_touch_event(u8 *data,
1793         struct hidpp_touchpad_raw_xy_finger *finger)
1794 {
1795         u8 x_m = data[0] << 2;
1796         u8 y_m = data[2] << 2;
1797
1798         finger->x = x_m << 6 | data[1];
1799         finger->y = y_m << 6 | data[3];
1800
1801         finger->contact_type = data[0] >> 6;
1802         finger->contact_status = data[2] >> 6;
1803
1804         finger->z = data[4];
1805         finger->area = data[5];
1806         finger->finger_id = data[6] >> 4;
1807 }
1808
1809 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1810                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1811 {
1812         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1813         raw_xy->end_of_frame = data[8] & 0x01;
1814         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1815         raw_xy->finger_count = data[15] & 0x0f;
1816         raw_xy->button = (data[8] >> 2) & 0x01;
1817
1818         if (raw_xy->finger_count) {
1819                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1820                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1821         }
1822 }
1823
1824 /* -------------------------------------------------------------------------- */
1825 /* 0x8123: Force feedback support                                             */
1826 /* -------------------------------------------------------------------------- */
1827
1828 #define HIDPP_FF_GET_INFO               0x01
1829 #define HIDPP_FF_RESET_ALL              0x11
1830 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1831 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1832 #define HIDPP_FF_DESTROY_EFFECT         0x41
1833 #define HIDPP_FF_GET_APERTURE           0x51
1834 #define HIDPP_FF_SET_APERTURE           0x61
1835 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1836 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1837
1838 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1839 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1840 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1841 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1842
1843 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1844 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1845 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1846 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1847 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1848 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1849 #define HIDPP_FF_EFFECT_SPRING          0x06
1850 #define HIDPP_FF_EFFECT_DAMPER          0x07
1851 #define HIDPP_FF_EFFECT_FRICTION        0x08
1852 #define HIDPP_FF_EFFECT_INERTIA         0x09
1853 #define HIDPP_FF_EFFECT_RAMP            0x0A
1854
1855 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1856
1857 #define HIDPP_FF_EFFECTID_NONE          -1
1858 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1859 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
1860
1861 #define HIDPP_FF_MAX_PARAMS     20
1862 #define HIDPP_FF_RESERVED_SLOTS 1
1863
1864 struct hidpp_ff_private_data {
1865         struct hidpp_device *hidpp;
1866         u8 feature_index;
1867         u8 version;
1868         u16 gain;
1869         s16 range;
1870         u8 slot_autocenter;
1871         u8 num_effects;
1872         int *effect_ids;
1873         struct workqueue_struct *wq;
1874         atomic_t workqueue_size;
1875 };
1876
1877 struct hidpp_ff_work_data {
1878         struct work_struct work;
1879         struct hidpp_ff_private_data *data;
1880         int effect_id;
1881         u8 command;
1882         u8 params[HIDPP_FF_MAX_PARAMS];
1883         u8 size;
1884 };
1885
1886 static const signed short hidpp_ff_effects[] = {
1887         FF_CONSTANT,
1888         FF_PERIODIC,
1889         FF_SINE,
1890         FF_SQUARE,
1891         FF_SAW_UP,
1892         FF_SAW_DOWN,
1893         FF_TRIANGLE,
1894         FF_SPRING,
1895         FF_DAMPER,
1896         FF_AUTOCENTER,
1897         FF_GAIN,
1898         -1
1899 };
1900
1901 static const signed short hidpp_ff_effects_v2[] = {
1902         FF_RAMP,
1903         FF_FRICTION,
1904         FF_INERTIA,
1905         -1
1906 };
1907
1908 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1909         HIDPP_FF_EFFECT_SPRING,
1910         HIDPP_FF_EFFECT_FRICTION,
1911         HIDPP_FF_EFFECT_DAMPER,
1912         HIDPP_FF_EFFECT_INERTIA
1913 };
1914
1915 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1916         "spring",
1917         "friction",
1918         "damper",
1919         "inertia"
1920 };
1921
1922
1923 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1924 {
1925         int i;
1926
1927         for (i = 0; i < data->num_effects; i++)
1928                 if (data->effect_ids[i] == effect_id)
1929                         return i+1;
1930
1931         return 0;
1932 }
1933
1934 static void hidpp_ff_work_handler(struct work_struct *w)
1935 {
1936         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1937         struct hidpp_ff_private_data *data = wd->data;
1938         struct hidpp_report response;
1939         u8 slot;
1940         int ret;
1941
1942         /* add slot number if needed */
1943         switch (wd->effect_id) {
1944         case HIDPP_FF_EFFECTID_AUTOCENTER:
1945                 wd->params[0] = data->slot_autocenter;
1946                 break;
1947         case HIDPP_FF_EFFECTID_NONE:
1948                 /* leave slot as zero */
1949                 break;
1950         default:
1951                 /* find current slot for effect */
1952                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1953                 break;
1954         }
1955
1956         /* send command and wait for reply */
1957         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1958                 wd->command, wd->params, wd->size, &response);
1959
1960         if (ret) {
1961                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1962                 goto out;
1963         }
1964
1965         /* parse return data */
1966         switch (wd->command) {
1967         case HIDPP_FF_DOWNLOAD_EFFECT:
1968                 slot = response.fap.params[0];
1969                 if (slot > 0 && slot <= data->num_effects) {
1970                         if (wd->effect_id >= 0)
1971                                 /* regular effect uploaded */
1972                                 data->effect_ids[slot-1] = wd->effect_id;
1973                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1974                                 /* autocenter spring uploaded */
1975                                 data->slot_autocenter = slot;
1976                 }
1977                 break;
1978         case HIDPP_FF_DESTROY_EFFECT:
1979                 if (wd->effect_id >= 0)
1980                         /* regular effect destroyed */
1981                         data->effect_ids[wd->params[0]-1] = -1;
1982                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1983                         /* autocenter spring destoyed */
1984                         data->slot_autocenter = 0;
1985                 break;
1986         case HIDPP_FF_SET_GLOBAL_GAINS:
1987                 data->gain = (wd->params[0] << 8) + wd->params[1];
1988                 break;
1989         case HIDPP_FF_SET_APERTURE:
1990                 data->range = (wd->params[0] << 8) + wd->params[1];
1991                 break;
1992         default:
1993                 /* no action needed */
1994                 break;
1995         }
1996
1997 out:
1998         atomic_dec(&data->workqueue_size);
1999         kfree(wd);
2000 }
2001
2002 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2003 {
2004         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2005         int s;
2006
2007         if (!wd)
2008                 return -ENOMEM;
2009
2010         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2011
2012         wd->data = data;
2013         wd->effect_id = effect_id;
2014         wd->command = command;
2015         wd->size = size;
2016         memcpy(wd->params, params, size);
2017
2018         atomic_inc(&data->workqueue_size);
2019         queue_work(data->wq, &wd->work);
2020
2021         /* warn about excessive queue size */
2022         s = atomic_read(&data->workqueue_size);
2023         if (s >= 20 && s % 20 == 0)
2024                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2025
2026         return 0;
2027 }
2028
2029 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2030 {
2031         struct hidpp_ff_private_data *data = dev->ff->private;
2032         u8 params[20];
2033         u8 size;
2034         int force;
2035
2036         /* set common parameters */
2037         params[2] = effect->replay.length >> 8;
2038         params[3] = effect->replay.length & 255;
2039         params[4] = effect->replay.delay >> 8;
2040         params[5] = effect->replay.delay & 255;
2041
2042         switch (effect->type) {
2043         case FF_CONSTANT:
2044                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2045                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2046                 params[6] = force >> 8;
2047                 params[7] = force & 255;
2048                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2049                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2050                 params[10] = effect->u.constant.envelope.attack_length & 255;
2051                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2052                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2053                 params[13] = effect->u.constant.envelope.fade_length & 255;
2054                 size = 14;
2055                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2056                                 effect->u.constant.level,
2057                                 effect->direction, force);
2058                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2059                                 effect->u.constant.envelope.attack_level,
2060                                 effect->u.constant.envelope.attack_length,
2061                                 effect->u.constant.envelope.fade_level,
2062                                 effect->u.constant.envelope.fade_length);
2063                 break;
2064         case FF_PERIODIC:
2065         {
2066                 switch (effect->u.periodic.waveform) {
2067                 case FF_SINE:
2068                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2069                         break;
2070                 case FF_SQUARE:
2071                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2072                         break;
2073                 case FF_SAW_UP:
2074                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2075                         break;
2076                 case FF_SAW_DOWN:
2077                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2078                         break;
2079                 case FF_TRIANGLE:
2080                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2081                         break;
2082                 default:
2083                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2084                         return -EINVAL;
2085                 }
2086                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2087                 params[6] = effect->u.periodic.magnitude >> 8;
2088                 params[7] = effect->u.periodic.magnitude & 255;
2089                 params[8] = effect->u.periodic.offset >> 8;
2090                 params[9] = effect->u.periodic.offset & 255;
2091                 params[10] = effect->u.periodic.period >> 8;
2092                 params[11] = effect->u.periodic.period & 255;
2093                 params[12] = effect->u.periodic.phase >> 8;
2094                 params[13] = effect->u.periodic.phase & 255;
2095                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2096                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2097                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2098                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2099                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2100                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2101                 size = 20;
2102                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2103                                 effect->u.periodic.magnitude, effect->direction,
2104                                 effect->u.periodic.offset,
2105                                 effect->u.periodic.period,
2106                                 effect->u.periodic.phase);
2107                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2108                                 effect->u.periodic.envelope.attack_level,
2109                                 effect->u.periodic.envelope.attack_length,
2110                                 effect->u.periodic.envelope.fade_level,
2111                                 effect->u.periodic.envelope.fade_length);
2112                 break;
2113         }
2114         case FF_RAMP:
2115                 params[1] = HIDPP_FF_EFFECT_RAMP;
2116                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2117                 params[6] = force >> 8;
2118                 params[7] = force & 255;
2119                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2120                 params[8] = force >> 8;
2121                 params[9] = force & 255;
2122                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2123                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2124                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2125                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2126                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2127                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2128                 size = 16;
2129                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2130                                 effect->u.ramp.start_level,
2131                                 effect->u.ramp.end_level,
2132                                 effect->direction, force);
2133                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2134                                 effect->u.ramp.envelope.attack_level,
2135                                 effect->u.ramp.envelope.attack_length,
2136                                 effect->u.ramp.envelope.fade_level,
2137                                 effect->u.ramp.envelope.fade_length);
2138                 break;
2139         case FF_FRICTION:
2140         case FF_INERTIA:
2141         case FF_SPRING:
2142         case FF_DAMPER:
2143                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2144                 params[6] = effect->u.condition[0].left_saturation >> 9;
2145                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2146                 params[8] = effect->u.condition[0].left_coeff >> 8;
2147                 params[9] = effect->u.condition[0].left_coeff & 255;
2148                 params[10] = effect->u.condition[0].deadband >> 9;
2149                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2150                 params[12] = effect->u.condition[0].center >> 8;
2151                 params[13] = effect->u.condition[0].center & 255;
2152                 params[14] = effect->u.condition[0].right_coeff >> 8;
2153                 params[15] = effect->u.condition[0].right_coeff & 255;
2154                 params[16] = effect->u.condition[0].right_saturation >> 9;
2155                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2156                 size = 18;
2157                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2158                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2159                                 effect->u.condition[0].left_coeff,
2160                                 effect->u.condition[0].left_saturation,
2161                                 effect->u.condition[0].right_coeff,
2162                                 effect->u.condition[0].right_saturation);
2163                 dbg_hid("          deadband=%d, center=%d\n",
2164                                 effect->u.condition[0].deadband,
2165                                 effect->u.condition[0].center);
2166                 break;
2167         default:
2168                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2169                 return -EINVAL;
2170         }
2171
2172         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2173 }
2174
2175 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2176 {
2177         struct hidpp_ff_private_data *data = dev->ff->private;
2178         u8 params[2];
2179
2180         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2181
2182         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2183
2184         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2185 }
2186
2187 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2188 {
2189         struct hidpp_ff_private_data *data = dev->ff->private;
2190         u8 slot = 0;
2191
2192         dbg_hid("Erasing effect %d.\n", effect_id);
2193
2194         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2195 }
2196
2197 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2198 {
2199         struct hidpp_ff_private_data *data = dev->ff->private;
2200         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2201
2202         dbg_hid("Setting autocenter to %d.\n", magnitude);
2203
2204         /* start a standard spring effect */
2205         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2206         /* zero delay and duration */
2207         params[2] = params[3] = params[4] = params[5] = 0;
2208         /* set coeff to 25% of saturation */
2209         params[8] = params[14] = magnitude >> 11;
2210         params[9] = params[15] = (magnitude >> 3) & 255;
2211         params[6] = params[16] = magnitude >> 9;
2212         params[7] = params[17] = (magnitude >> 1) & 255;
2213         /* zero deadband and center */
2214         params[10] = params[11] = params[12] = params[13] = 0;
2215
2216         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2217 }
2218
2219 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2220 {
2221         struct hidpp_ff_private_data *data = dev->ff->private;
2222         u8 params[4];
2223
2224         dbg_hid("Setting gain to %d.\n", gain);
2225
2226         params[0] = gain >> 8;
2227         params[1] = gain & 255;
2228         params[2] = 0; /* no boost */
2229         params[3] = 0;
2230
2231         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2232 }
2233
2234 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2235 {
2236         struct hid_device *hid = to_hid_device(dev);
2237         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2238         struct input_dev *idev = hidinput->input;
2239         struct hidpp_ff_private_data *data = idev->ff->private;
2240
2241         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2242 }
2243
2244 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2245 {
2246         struct hid_device *hid = to_hid_device(dev);
2247         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2248         struct input_dev *idev = hidinput->input;
2249         struct hidpp_ff_private_data *data = idev->ff->private;
2250         u8 params[2];
2251         int range = simple_strtoul(buf, NULL, 10);
2252
2253         range = clamp(range, 180, 900);
2254
2255         params[0] = range >> 8;
2256         params[1] = range & 0x00FF;
2257
2258         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2259
2260         return count;
2261 }
2262
2263 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2264
2265 static void hidpp_ff_destroy(struct ff_device *ff)
2266 {
2267         struct hidpp_ff_private_data *data = ff->private;
2268         struct hid_device *hid = data->hidpp->hid_dev;
2269
2270         hid_info(hid, "Unloading HID++ force feedback.\n");
2271
2272         device_remove_file(&hid->dev, &dev_attr_range);
2273         destroy_workqueue(data->wq);
2274         kfree(data->effect_ids);
2275 }
2276
2277 static int hidpp_ff_init(struct hidpp_device *hidpp,
2278                          struct hidpp_ff_private_data *data)
2279 {
2280         struct hid_device *hid = hidpp->hid_dev;
2281         struct hid_input *hidinput;
2282         struct input_dev *dev;
2283         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2284         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2285         struct ff_device *ff;
2286         int error, j, num_slots = data->num_effects;
2287         u8 version;
2288
2289         if (list_empty(&hid->inputs)) {
2290                 hid_err(hid, "no inputs found\n");
2291                 return -ENODEV;
2292         }
2293         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2294         dev = hidinput->input;
2295
2296         if (!dev) {
2297                 hid_err(hid, "Struct input_dev not set!\n");
2298                 return -EINVAL;
2299         }
2300
2301         /* Get firmware release */
2302         version = bcdDevice & 255;
2303
2304         /* Set supported force feedback capabilities */
2305         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2306                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2307         if (version > 1)
2308                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2309                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2310
2311         error = input_ff_create(dev, num_slots);
2312
2313         if (error) {
2314                 hid_err(dev, "Failed to create FF device!\n");
2315                 return error;
2316         }
2317         /*
2318          * Create a copy of passed data, so we can transfer memory
2319          * ownership to FF core
2320          */
2321         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2322         if (!data)
2323                 return -ENOMEM;
2324         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2325         if (!data->effect_ids) {
2326                 kfree(data);
2327                 return -ENOMEM;
2328         }
2329         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2330         if (!data->wq) {
2331                 kfree(data->effect_ids);
2332                 kfree(data);
2333                 return -ENOMEM;
2334         }
2335
2336         data->hidpp = hidpp;
2337         data->version = version;
2338         for (j = 0; j < num_slots; j++)
2339                 data->effect_ids[j] = -1;
2340
2341         ff = dev->ff;
2342         ff->private = data;
2343
2344         ff->upload = hidpp_ff_upload_effect;
2345         ff->erase = hidpp_ff_erase_effect;
2346         ff->playback = hidpp_ff_playback;
2347         ff->set_gain = hidpp_ff_set_gain;
2348         ff->set_autocenter = hidpp_ff_set_autocenter;
2349         ff->destroy = hidpp_ff_destroy;
2350
2351         /* Create sysfs interface */
2352         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2353         if (error)
2354                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2355
2356         /* init the hardware command queue */
2357         atomic_set(&data->workqueue_size, 0);
2358
2359         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2360                  version);
2361
2362         return 0;
2363 }
2364
2365 /* ************************************************************************** */
2366 /*                                                                            */
2367 /* Device Support                                                             */
2368 /*                                                                            */
2369 /* ************************************************************************** */
2370
2371 /* -------------------------------------------------------------------------- */
2372 /* Touchpad HID++ devices                                                     */
2373 /* -------------------------------------------------------------------------- */
2374
2375 #define WTP_MANUAL_RESOLUTION                           39
2376
2377 struct wtp_data {
2378         u16 x_size, y_size;
2379         u8 finger_count;
2380         u8 mt_feature_index;
2381         u8 button_feature_index;
2382         u8 maxcontacts;
2383         bool flip_y;
2384         unsigned int resolution;
2385 };
2386
2387 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2388                 struct hid_field *field, struct hid_usage *usage,
2389                 unsigned long **bit, int *max)
2390 {
2391         return -1;
2392 }
2393
2394 static void wtp_populate_input(struct hidpp_device *hidpp,
2395                                struct input_dev *input_dev)
2396 {
2397         struct wtp_data *wd = hidpp->private_data;
2398
2399         __set_bit(EV_ABS, input_dev->evbit);
2400         __set_bit(EV_KEY, input_dev->evbit);
2401         __clear_bit(EV_REL, input_dev->evbit);
2402         __clear_bit(EV_LED, input_dev->evbit);
2403
2404         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2405         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2406         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2407         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2408
2409         /* Max pressure is not given by the devices, pick one */
2410         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2411
2412         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2413
2414         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2415                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2416         else
2417                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2418
2419         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2420                 INPUT_MT_DROP_UNUSED);
2421 }
2422
2423 static void wtp_touch_event(struct hidpp_device *hidpp,
2424         struct hidpp_touchpad_raw_xy_finger *touch_report)
2425 {
2426         struct wtp_data *wd = hidpp->private_data;
2427         int slot;
2428
2429         if (!touch_report->finger_id || touch_report->contact_type)
2430                 /* no actual data */
2431                 return;
2432
2433         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2434
2435         input_mt_slot(hidpp->input, slot);
2436         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2437                                         touch_report->contact_status);
2438         if (touch_report->contact_status) {
2439                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2440                                 touch_report->x);
2441                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2442                                 wd->flip_y ? wd->y_size - touch_report->y :
2443                                              touch_report->y);
2444                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2445                                 touch_report->area);
2446         }
2447 }
2448
2449 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2450                 struct hidpp_touchpad_raw_xy *raw)
2451 {
2452         int i;
2453
2454         for (i = 0; i < 2; i++)
2455                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2456
2457         if (raw->end_of_frame &&
2458             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2459                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2460
2461         if (raw->end_of_frame || raw->finger_count <= 2) {
2462                 input_mt_sync_frame(hidpp->input);
2463                 input_sync(hidpp->input);
2464         }
2465 }
2466
2467 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2468 {
2469         struct wtp_data *wd = hidpp->private_data;
2470         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2471                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2472         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2473                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2474         struct hidpp_touchpad_raw_xy raw = {
2475                 .timestamp = data[1],
2476                 .fingers = {
2477                         {
2478                                 .contact_type = 0,
2479                                 .contact_status = !!data[7],
2480                                 .x = get_unaligned_le16(&data[3]),
2481                                 .y = get_unaligned_le16(&data[5]),
2482                                 .z = c1_area,
2483                                 .area = c1_area,
2484                                 .finger_id = data[2],
2485                         }, {
2486                                 .contact_type = 0,
2487                                 .contact_status = !!data[13],
2488                                 .x = get_unaligned_le16(&data[9]),
2489                                 .y = get_unaligned_le16(&data[11]),
2490                                 .z = c2_area,
2491                                 .area = c2_area,
2492                                 .finger_id = data[8],
2493                         }
2494                 },
2495                 .finger_count = wd->maxcontacts,
2496                 .spurious_flag = 0,
2497                 .end_of_frame = (data[0] >> 7) == 0,
2498                 .button = data[0] & 0x01,
2499         };
2500
2501         wtp_send_raw_xy_event(hidpp, &raw);
2502
2503         return 1;
2504 }
2505
2506 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2507 {
2508         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2509         struct wtp_data *wd = hidpp->private_data;
2510         struct hidpp_report *report = (struct hidpp_report *)data;
2511         struct hidpp_touchpad_raw_xy raw;
2512
2513         if (!wd || !hidpp->input)
2514                 return 1;
2515
2516         switch (data[0]) {
2517         case 0x02:
2518                 if (size < 2) {
2519                         hid_err(hdev, "Received HID report of bad size (%d)",
2520                                 size);
2521                         return 1;
2522                 }
2523                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2524                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2525                                         !!(data[1] & 0x01));
2526                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2527                                         !!(data[1] & 0x02));
2528                         input_sync(hidpp->input);
2529                         return 0;
2530                 } else {
2531                         if (size < 21)
2532                                 return 1;
2533                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2534                 }
2535         case REPORT_ID_HIDPP_LONG:
2536                 /* size is already checked in hidpp_raw_event. */
2537                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2538                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2539                         return 1;
2540                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2541
2542                 wtp_send_raw_xy_event(hidpp, &raw);
2543                 return 0;
2544         }
2545
2546         return 0;
2547 }
2548
2549 static int wtp_get_config(struct hidpp_device *hidpp)
2550 {
2551         struct wtp_data *wd = hidpp->private_data;
2552         struct hidpp_touchpad_raw_info raw_info = {0};
2553         u8 feature_type;
2554         int ret;
2555
2556         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2557                 &wd->mt_feature_index, &feature_type);
2558         if (ret)
2559                 /* means that the device is not powered up */
2560                 return ret;
2561
2562         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2563                 &raw_info);
2564         if (ret)
2565                 return ret;
2566
2567         wd->x_size = raw_info.x_size;
2568         wd->y_size = raw_info.y_size;
2569         wd->maxcontacts = raw_info.maxcontacts;
2570         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2571         wd->resolution = raw_info.res;
2572         if (!wd->resolution)
2573                 wd->resolution = WTP_MANUAL_RESOLUTION;
2574
2575         return 0;
2576 }
2577
2578 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2579 {
2580         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2581         struct wtp_data *wd;
2582
2583         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2584                         GFP_KERNEL);
2585         if (!wd)
2586                 return -ENOMEM;
2587
2588         hidpp->private_data = wd;
2589
2590         return 0;
2591 };
2592
2593 static int wtp_connect(struct hid_device *hdev, bool connected)
2594 {
2595         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2596         struct wtp_data *wd = hidpp->private_data;
2597         int ret;
2598
2599         if (!wd->x_size) {
2600                 ret = wtp_get_config(hidpp);
2601                 if (ret) {
2602                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2603                         return ret;
2604                 }
2605         }
2606
2607         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2608                         true, true);
2609 }
2610
2611 /* ------------------------------------------------------------------------- */
2612 /* Logitech M560 devices                                                     */
2613 /* ------------------------------------------------------------------------- */
2614
2615 /*
2616  * Logitech M560 protocol overview
2617  *
2618  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2619  * the sides buttons are pressed, it sends some keyboard keys events
2620  * instead of buttons ones.
2621  * To complicate things further, the middle button keys sequence
2622  * is different from the odd press and the even press.
2623  *
2624  * forward button -> Super_R
2625  * backward button -> Super_L+'d' (press only)
2626  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2627  *                  2nd time: left-click (press only)
2628  * NB: press-only means that when the button is pressed, the
2629  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2630  * together sequentially; instead when the button is released, no event is
2631  * generated !
2632  *
2633  * With the command
2634  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2635  * the mouse reacts differently:
2636  * - it never sends a keyboard key event
2637  * - for the three mouse button it sends:
2638  *      middle button               press   11<xx>0a 3500af00...
2639  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2640  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2641  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2642  */
2643
2644 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2645
2646 /* how buttons are mapped in the report */
2647 #define M560_MOUSE_BTN_LEFT             0x01
2648 #define M560_MOUSE_BTN_RIGHT            0x02
2649 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2650 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2651
2652 #define M560_SUB_ID                     0x0a
2653 #define M560_BUTTON_MODE_REGISTER       0x35
2654
2655 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2656 {
2657         struct hidpp_report response;
2658         struct hidpp_device *hidpp_dev;
2659
2660         hidpp_dev = hid_get_drvdata(hdev);
2661
2662         return hidpp_send_rap_command_sync(
2663                 hidpp_dev,
2664                 REPORT_ID_HIDPP_SHORT,
2665                 M560_SUB_ID,
2666                 M560_BUTTON_MODE_REGISTER,
2667                 (u8 *)m560_config_parameter,
2668                 sizeof(m560_config_parameter),
2669                 &response
2670         );
2671 }
2672
2673 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2674 {
2675         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2676
2677         /* sanity check */
2678         if (!hidpp->input) {
2679                 hid_err(hdev, "error in parameter\n");
2680                 return -EINVAL;
2681         }
2682
2683         if (size < 7) {
2684                 hid_err(hdev, "error in report\n");
2685                 return 0;
2686         }
2687
2688         if (data[0] == REPORT_ID_HIDPP_LONG &&
2689             data[2] == M560_SUB_ID && data[6] == 0x00) {
2690                 /*
2691                  * m560 mouse report for middle, forward and backward button
2692                  *
2693                  * data[0] = 0x11
2694                  * data[1] = device-id
2695                  * data[2] = 0x0a
2696                  * data[5] = 0xaf -> middle
2697                  *           0xb0 -> forward
2698                  *           0xae -> backward
2699                  *           0x00 -> release all
2700                  * data[6] = 0x00
2701                  */
2702
2703                 switch (data[5]) {
2704                 case 0xaf:
2705                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2706                         break;
2707                 case 0xb0:
2708                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2709                         break;
2710                 case 0xae:
2711                         input_report_key(hidpp->input, BTN_BACK, 1);
2712                         break;
2713                 case 0x00:
2714                         input_report_key(hidpp->input, BTN_BACK, 0);
2715                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2716                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2717                         break;
2718                 default:
2719                         hid_err(hdev, "error in report\n");
2720                         return 0;
2721                 }
2722                 input_sync(hidpp->input);
2723
2724         } else if (data[0] == 0x02) {
2725                 /*
2726                  * Logitech M560 mouse report
2727                  *
2728                  * data[0] = type (0x02)
2729                  * data[1..2] = buttons
2730                  * data[3..5] = xy
2731                  * data[6] = wheel
2732                  */
2733
2734                 int v;
2735
2736                 input_report_key(hidpp->input, BTN_LEFT,
2737                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2738                 input_report_key(hidpp->input, BTN_RIGHT,
2739                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2740
2741                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2742                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2743                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2744                                          -120);
2745                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2746                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2747                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2748                                          120);
2749                 }
2750
2751                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2752                 input_report_rel(hidpp->input, REL_X, v);
2753
2754                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2755                 input_report_rel(hidpp->input, REL_Y, v);
2756
2757                 v = hid_snto32(data[6], 8);
2758                 if (v != 0)
2759                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2760                                         &hidpp->vertical_wheel_counter, v);
2761
2762                 input_sync(hidpp->input);
2763         }
2764
2765         return 1;
2766 }
2767
2768 static void m560_populate_input(struct hidpp_device *hidpp,
2769                                 struct input_dev *input_dev)
2770 {
2771         __set_bit(EV_KEY, input_dev->evbit);
2772         __set_bit(BTN_MIDDLE, input_dev->keybit);
2773         __set_bit(BTN_RIGHT, input_dev->keybit);
2774         __set_bit(BTN_LEFT, input_dev->keybit);
2775         __set_bit(BTN_BACK, input_dev->keybit);
2776         __set_bit(BTN_FORWARD, input_dev->keybit);
2777
2778         __set_bit(EV_REL, input_dev->evbit);
2779         __set_bit(REL_X, input_dev->relbit);
2780         __set_bit(REL_Y, input_dev->relbit);
2781         __set_bit(REL_WHEEL, input_dev->relbit);
2782         __set_bit(REL_HWHEEL, input_dev->relbit);
2783         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2784         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2785 }
2786
2787 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2788                 struct hid_field *field, struct hid_usage *usage,
2789                 unsigned long **bit, int *max)
2790 {
2791         return -1;
2792 }
2793
2794 /* ------------------------------------------------------------------------- */
2795 /* Logitech K400 devices                                                     */
2796 /* ------------------------------------------------------------------------- */
2797
2798 /*
2799  * The Logitech K400 keyboard has an embedded touchpad which is seen
2800  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2801  * tap-to-click but the setting is not remembered accross reset, annoying some
2802  * users.
2803  *
2804  * We can toggle this feature from the host by using the feature 0x6010:
2805  * Touchpad FW items
2806  */
2807
2808 struct k400_private_data {
2809         u8 feature_index;
2810 };
2811
2812 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2813 {
2814         struct k400_private_data *k400 = hidpp->private_data;
2815         struct hidpp_touchpad_fw_items items = {};
2816         int ret;
2817         u8 feature_type;
2818
2819         if (!k400->feature_index) {
2820                 ret = hidpp_root_get_feature(hidpp,
2821                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2822                         &k400->feature_index, &feature_type);
2823                 if (ret)
2824                         /* means that the device is not powered up */
2825                         return ret;
2826         }
2827
2828         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2829         if (ret)
2830                 return ret;
2831
2832         return 0;
2833 }
2834
2835 static int k400_allocate(struct hid_device *hdev)
2836 {
2837         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2838         struct k400_private_data *k400;
2839
2840         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2841                             GFP_KERNEL);
2842         if (!k400)
2843                 return -ENOMEM;
2844
2845         hidpp->private_data = k400;
2846
2847         return 0;
2848 };
2849
2850 static int k400_connect(struct hid_device *hdev, bool connected)
2851 {
2852         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2853
2854         if (!disable_tap_to_click)
2855                 return 0;
2856
2857         return k400_disable_tap_to_click(hidpp);
2858 }
2859
2860 /* ------------------------------------------------------------------------- */
2861 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2862 /* ------------------------------------------------------------------------- */
2863
2864 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2865
2866 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
2867                                   struct hidpp_ff_private_data *data)
2868 {
2869         struct hidpp_report response;
2870         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
2871                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
2872         };
2873         int ret;
2874
2875         /* initialize with zero autocenter to get wheel in usable state */
2876
2877         dbg_hid("Setting autocenter to 0.\n");
2878         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2879                                           HIDPP_FF_DOWNLOAD_EFFECT,
2880                                           params, ARRAY_SIZE(params),
2881                                           &response);
2882         if (ret)
2883                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
2884         else
2885                 data->slot_autocenter = response.fap.params[0];
2886
2887         return ret;
2888 }
2889
2890 static int g920_get_config(struct hidpp_device *hidpp,
2891                            struct hidpp_ff_private_data *data)
2892 {
2893         struct hidpp_report response;
2894         u8 feature_type;
2895         int ret;
2896
2897         memset(data, 0, sizeof(*data));
2898
2899         /* Find feature and store for later use */
2900         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2901                                      &data->feature_index, &feature_type);
2902         if (ret)
2903                 return ret;
2904
2905         /* Read number of slots available in device */
2906         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2907                                           HIDPP_FF_GET_INFO,
2908                                           NULL, 0,
2909                                           &response);
2910         if (ret) {
2911                 if (ret < 0)
2912                         return ret;
2913                 hid_err(hidpp->hid_dev,
2914                         "%s: received protocol error 0x%02x\n", __func__, ret);
2915                 return -EPROTO;
2916         }
2917
2918         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2919
2920         /* reset all forces */
2921         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2922                                           HIDPP_FF_RESET_ALL,
2923                                           NULL, 0,
2924                                           &response);
2925         if (ret)
2926                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
2927
2928         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2929                                           HIDPP_FF_GET_APERTURE,
2930                                           NULL, 0,
2931                                           &response);
2932         if (ret) {
2933                 hid_warn(hidpp->hid_dev,
2934                          "Failed to read range from device!\n");
2935         }
2936         data->range = ret ?
2937                 900 : get_unaligned_be16(&response.fap.params[0]);
2938
2939         /* Read the current gain values */
2940         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2941                                           HIDPP_FF_GET_GLOBAL_GAINS,
2942                                           NULL, 0,
2943                                           &response);
2944         if (ret)
2945                 hid_warn(hidpp->hid_dev,
2946                          "Failed to read gain values from device!\n");
2947         data->gain = ret ?
2948                 0xffff : get_unaligned_be16(&response.fap.params[0]);
2949
2950         /* ignore boost value at response.fap.params[2] */
2951
2952         return g920_ff_set_autocenter(hidpp, data);
2953 }
2954
2955 /* -------------------------------------------------------------------------- */
2956 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
2957 /* -------------------------------------------------------------------------- */
2958 #define DINOVO_MINI_PRODUCT_ID          0xb30c
2959
2960 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2961                 struct hid_field *field, struct hid_usage *usage,
2962                 unsigned long **bit, int *max)
2963 {
2964         if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
2965                 return 0;
2966
2967         switch (usage->hid & HID_USAGE) {
2968         case 0x00d: lg_map_key_clear(KEY_MEDIA);        break;
2969         default:
2970                 return 0;
2971         }
2972         return 1;
2973 }
2974
2975 /* -------------------------------------------------------------------------- */
2976 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2977 /* -------------------------------------------------------------------------- */
2978 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2979 {
2980         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2981                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2982                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2983 }
2984
2985 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2986                                    u8 *data, int size)
2987 {
2988         s8 value, hvalue;
2989
2990         if (!hidpp->input)
2991                 return -EINVAL;
2992
2993         if (size < 7)
2994                 return 0;
2995
2996         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2997                 return 0;
2998
2999         value = data[3];
3000         hvalue = data[4];
3001
3002         input_report_rel(hidpp->input, REL_WHEEL, value);
3003         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3004         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3005         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3006         input_sync(hidpp->input);
3007
3008         return 1;
3009 }
3010
3011 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3012                                          struct input_dev *input_dev)
3013 {
3014         __set_bit(EV_REL, input_dev->evbit);
3015         __set_bit(REL_WHEEL, input_dev->relbit);
3016         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3017         __set_bit(REL_HWHEEL, input_dev->relbit);
3018         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3019 }
3020
3021 /* -------------------------------------------------------------------------- */
3022 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3023 /* -------------------------------------------------------------------------- */
3024 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3025 {
3026         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3027                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3028                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3029 }
3030
3031 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3032                                     u8 *data, int size)
3033 {
3034         int i;
3035
3036         if (!hidpp->input)
3037                 return -EINVAL;
3038
3039         if (size < 7)
3040                 return 0;
3041
3042         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3043             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3044                 return 0;
3045
3046         /*
3047          * Buttons are either delivered through the regular mouse report *or*
3048          * through the extra buttons report. At least for button 6 how it is
3049          * delivered differs per receiver firmware version. Even receivers with
3050          * the same usb-id show different behavior, so we handle both cases.
3051          */
3052         for (i = 0; i < 8; i++)
3053                 input_report_key(hidpp->input, BTN_MOUSE + i,
3054                                  (data[3] & (1 << i)));
3055
3056         /* Some mice report events on button 9+, use BTN_MISC */
3057         for (i = 0; i < 8; i++)
3058                 input_report_key(hidpp->input, BTN_MISC + i,
3059                                  (data[4] & (1 << i)));
3060
3061         input_sync(hidpp->input);
3062         return 1;
3063 }
3064
3065 static void hidpp10_extra_mouse_buttons_populate_input(
3066                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3067 {
3068         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3069         __set_bit(BTN_0, input_dev->keybit);
3070         __set_bit(BTN_1, input_dev->keybit);
3071         __set_bit(BTN_2, input_dev->keybit);
3072         __set_bit(BTN_3, input_dev->keybit);
3073         __set_bit(BTN_4, input_dev->keybit);
3074         __set_bit(BTN_5, input_dev->keybit);
3075         __set_bit(BTN_6, input_dev->keybit);
3076         __set_bit(BTN_7, input_dev->keybit);
3077 }
3078
3079 /* -------------------------------------------------------------------------- */
3080 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3081 /* -------------------------------------------------------------------------- */
3082
3083 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3084 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3085                                               u8 *_rdesc, unsigned int *rsize)
3086 {
3087         /* Note 0 terminated so we can use strnstr to search for this. */
3088         static const char consumer_rdesc_start[] = {
3089                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3090                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3091                 0xA1, 0x01,     /* COLLECTION (Application)            */
3092                 0x85, 0x03,     /* REPORT_ID = 3                       */
3093                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3094                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3095                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3096                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3097         };
3098         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3099         unsigned int size;
3100
3101         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3102         size = *rsize - (consumer_rdesc - rdesc);
3103         if (consumer_rdesc && size >= 25) {
3104                 consumer_rdesc[15] = 0x7f;
3105                 consumer_rdesc[16] = 0x10;
3106                 consumer_rdesc[20] = 0x7f;
3107                 consumer_rdesc[21] = 0x10;
3108         }
3109         return _rdesc;
3110 }
3111
3112 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3113 {
3114         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3115                                     HIDPP_ENABLE_CONSUMER_REPORT,
3116                                     HIDPP_ENABLE_CONSUMER_REPORT);
3117 }
3118
3119 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3120                                            u8 *data, int size)
3121 {
3122         u8 consumer_report[5];
3123
3124         if (size < 7)
3125                 return 0;
3126
3127         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3128             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3129                 return 0;
3130
3131         /*
3132          * Build a normal consumer report (3) out of the data, this detour
3133          * is necessary to get some keyboards to report their 0x10xx usages.
3134          */
3135         consumer_report[0] = 0x03;
3136         memcpy(&consumer_report[1], &data[3], 4);
3137         /* We are called from atomic context */
3138         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3139                              consumer_report, 5, 1);
3140
3141         return 1;
3142 }
3143
3144 /* -------------------------------------------------------------------------- */
3145 /* High-resolution scroll wheels                                              */
3146 /* -------------------------------------------------------------------------- */
3147
3148 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3149 {
3150         int ret;
3151         u8 multiplier = 1;
3152
3153         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3154                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3155                 if (ret == 0)
3156                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3157         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3158                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3159                                                            &multiplier);
3160         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3161                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3162                 multiplier = 8;
3163         }
3164         if (ret)
3165                 return ret;
3166
3167         if (multiplier == 0)
3168                 multiplier = 1;
3169
3170         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3171         hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3172         return 0;
3173 }
3174
3175 /* -------------------------------------------------------------------------- */
3176 /* Generic HID++ devices                                                      */
3177 /* -------------------------------------------------------------------------- */
3178
3179 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3180                               unsigned int *rsize)
3181 {
3182         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3183
3184         if (!hidpp)
3185                 return rdesc;
3186
3187         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3188         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3189             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3190                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3191
3192         return rdesc;
3193 }
3194
3195 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3196                 struct hid_field *field, struct hid_usage *usage,
3197                 unsigned long **bit, int *max)
3198 {
3199         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3200
3201         if (!hidpp)
3202                 return 0;
3203
3204         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3205                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3206         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3207                         field->application != HID_GD_MOUSE)
3208                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3209
3210         if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3211                 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3212
3213         return 0;
3214 }
3215
3216 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3217                 struct hid_field *field, struct hid_usage *usage,
3218                 unsigned long **bit, int *max)
3219 {
3220         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3221
3222         if (!hidpp)
3223                 return 0;
3224
3225         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3226         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3227                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3228                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3229                                 usage->code == ABS_RZ)) {
3230                         field->application = HID_GD_MULTIAXIS;
3231                 }
3232         }
3233
3234         return 0;
3235 }
3236
3237
3238 static void hidpp_populate_input(struct hidpp_device *hidpp,
3239                                  struct input_dev *input)
3240 {
3241         hidpp->input = input;
3242
3243         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3244                 wtp_populate_input(hidpp, input);
3245         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3246                 m560_populate_input(hidpp, input);
3247
3248         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3249                 hidpp10_wheel_populate_input(hidpp, input);
3250
3251         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3252                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3253 }
3254
3255 static int hidpp_input_configured(struct hid_device *hdev,
3256                                 struct hid_input *hidinput)
3257 {
3258         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3259         struct input_dev *input = hidinput->input;
3260
3261         if (!hidpp)
3262                 return 0;
3263
3264         hidpp_populate_input(hidpp, input);
3265
3266         return 0;
3267 }
3268
3269 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3270                 int size)
3271 {
3272         struct hidpp_report *question = hidpp->send_receive_buf;
3273         struct hidpp_report *answer = hidpp->send_receive_buf;
3274         struct hidpp_report *report = (struct hidpp_report *)data;
3275         int ret;
3276
3277         /*
3278          * If the mutex is locked then we have a pending answer from a
3279          * previously sent command.
3280          */
3281         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3282                 /*
3283                  * Check for a correct hidpp20 answer or the corresponding
3284                  * error
3285                  */
3286                 if (hidpp_match_answer(question, report) ||
3287                                 hidpp_match_error(question, report)) {
3288                         *answer = *report;
3289                         hidpp->answer_available = true;
3290                         wake_up(&hidpp->wait);
3291                         /*
3292                          * This was an answer to a command that this driver sent
3293                          * We return 1 to hid-core to avoid forwarding the
3294                          * command upstream as it has been treated by the driver
3295                          */
3296
3297                         return 1;
3298                 }
3299         }
3300
3301         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3302                 atomic_set(&hidpp->connected,
3303                                 !(report->rap.params[0] & (1 << 6)));
3304                 if (schedule_work(&hidpp->work) == 0)
3305                         dbg_hid("%s: connect event already queued\n", __func__);
3306                 return 1;
3307         }
3308
3309         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3310                 ret = hidpp20_battery_event(hidpp, data, size);
3311                 if (ret != 0)
3312                         return ret;
3313                 ret = hidpp_solar_battery_event(hidpp, data, size);
3314                 if (ret != 0)
3315                         return ret;
3316                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3317                 if (ret != 0)
3318                         return ret;
3319         }
3320
3321         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3322                 ret = hidpp10_battery_event(hidpp, data, size);
3323                 if (ret != 0)
3324                         return ret;
3325         }
3326
3327         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3328                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3329                 if (ret != 0)
3330                         return ret;
3331         }
3332
3333         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3334                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3335                 if (ret != 0)
3336                         return ret;
3337         }
3338
3339         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3340                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3341                 if (ret != 0)
3342                         return ret;
3343         }
3344
3345         return 0;
3346 }
3347
3348 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3349                 u8 *data, int size)
3350 {
3351         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3352         int ret = 0;
3353
3354         if (!hidpp)
3355                 return 0;
3356
3357         /* Generic HID++ processing. */
3358         switch (data[0]) {
3359         case REPORT_ID_HIDPP_VERY_LONG:
3360                 if (size != hidpp->very_long_report_length) {
3361                         hid_err(hdev, "received hid++ report of bad size (%d)",
3362                                 size);
3363                         return 1;
3364                 }
3365                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3366                 break;
3367         case REPORT_ID_HIDPP_LONG:
3368                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3369                         hid_err(hdev, "received hid++ report of bad size (%d)",
3370                                 size);
3371                         return 1;
3372                 }
3373                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3374                 break;
3375         case REPORT_ID_HIDPP_SHORT:
3376                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3377                         hid_err(hdev, "received hid++ report of bad size (%d)",
3378                                 size);
3379                         return 1;
3380                 }
3381                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3382                 break;
3383         }
3384
3385         /* If no report is available for further processing, skip calling
3386          * raw_event of subclasses. */
3387         if (ret != 0)
3388                 return ret;
3389
3390         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3391                 return wtp_raw_event(hdev, data, size);
3392         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3393                 return m560_raw_event(hdev, data, size);
3394
3395         return 0;
3396 }
3397
3398 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3399         struct hid_usage *usage, __s32 value)
3400 {
3401         /* This function will only be called for scroll events, due to the
3402          * restriction imposed in hidpp_usages.
3403          */
3404         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3405         struct hidpp_scroll_counter *counter;
3406
3407         if (!hidpp)
3408                 return 0;
3409
3410         counter = &hidpp->vertical_wheel_counter;
3411         /* A scroll event may occur before the multiplier has been retrieved or
3412          * the input device set, or high-res scroll enabling may fail. In such
3413          * cases we must return early (falling back to default behaviour) to
3414          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3415          */
3416         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3417             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3418                 return 0;
3419
3420         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3421         return 1;
3422 }
3423
3424 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3425 {
3426         static atomic_t battery_no = ATOMIC_INIT(0);
3427         struct power_supply_config cfg = { .drv_data = hidpp };
3428         struct power_supply_desc *desc = &hidpp->battery.desc;
3429         enum power_supply_property *battery_props;
3430         struct hidpp_battery *battery;
3431         unsigned int num_battery_props;
3432         unsigned long n;
3433         int ret;
3434
3435         if (hidpp->battery.ps)
3436                 return 0;
3437
3438         hidpp->battery.feature_index = 0xff;
3439         hidpp->battery.solar_feature_index = 0xff;
3440         hidpp->battery.voltage_feature_index = 0xff;
3441
3442         if (hidpp->protocol_major >= 2) {
3443                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3444                         ret = hidpp_solar_request_battery_event(hidpp);
3445                 else {
3446                         ret = hidpp20_query_battery_voltage_info(hidpp);
3447                         if (ret)
3448                                 ret = hidpp20_query_battery_info(hidpp);
3449                 }
3450
3451                 if (ret)
3452                         return ret;
3453                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3454         } else {
3455                 ret = hidpp10_query_battery_status(hidpp);
3456                 if (ret) {
3457                         ret = hidpp10_query_battery_mileage(hidpp);
3458                         if (ret)
3459                                 return -ENOENT;
3460                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3461                 } else {
3462                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3463                 }
3464                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3465         }
3466
3467         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3468                                      hidpp_battery_props,
3469                                      sizeof(hidpp_battery_props),
3470                                      GFP_KERNEL);
3471         if (!battery_props)
3472                 return -ENOMEM;
3473
3474         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3475
3476         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3477                 battery_props[num_battery_props++] =
3478                                 POWER_SUPPLY_PROP_CAPACITY;
3479
3480         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3481                 battery_props[num_battery_props++] =
3482                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3483
3484         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3485                 battery_props[num_battery_props++] =
3486                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3487
3488         battery = &hidpp->battery;
3489
3490         n = atomic_inc_return(&battery_no) - 1;
3491         desc->properties = battery_props;
3492         desc->num_properties = num_battery_props;
3493         desc->get_property = hidpp_battery_get_property;
3494         sprintf(battery->name, "hidpp_battery_%ld", n);
3495         desc->name = battery->name;
3496         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3497         desc->use_for_apm = 0;
3498
3499         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3500                                                  &battery->desc,
3501                                                  &cfg);
3502         if (IS_ERR(battery->ps))
3503                 return PTR_ERR(battery->ps);
3504
3505         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3506
3507         return ret;
3508 }
3509
3510 static void hidpp_overwrite_name(struct hid_device *hdev)
3511 {
3512         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3513         char *name;
3514
3515         if (hidpp->protocol_major < 2)
3516                 return;
3517
3518         name = hidpp_get_device_name(hidpp);
3519
3520         if (!name) {
3521                 hid_err(hdev, "unable to retrieve the name of the device");
3522         } else {
3523                 dbg_hid("HID++: Got name: %s\n", name);
3524                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3525         }
3526
3527         kfree(name);
3528 }
3529
3530 static int hidpp_input_open(struct input_dev *dev)
3531 {
3532         struct hid_device *hid = input_get_drvdata(dev);
3533
3534         return hid_hw_open(hid);
3535 }
3536
3537 static void hidpp_input_close(struct input_dev *dev)
3538 {
3539         struct hid_device *hid = input_get_drvdata(dev);
3540
3541         hid_hw_close(hid);
3542 }
3543
3544 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3545 {
3546         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3547         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3548
3549         if (!input_dev)
3550                 return NULL;
3551
3552         input_set_drvdata(input_dev, hdev);
3553         input_dev->open = hidpp_input_open;
3554         input_dev->close = hidpp_input_close;
3555
3556         input_dev->name = hidpp->name;
3557         input_dev->phys = hdev->phys;
3558         input_dev->uniq = hdev->uniq;
3559         input_dev->id.bustype = hdev->bus;
3560         input_dev->id.vendor  = hdev->vendor;
3561         input_dev->id.product = hdev->product;
3562         input_dev->id.version = hdev->version;
3563         input_dev->dev.parent = &hdev->dev;
3564
3565         return input_dev;
3566 }
3567
3568 static void hidpp_connect_event(struct hidpp_device *hidpp)
3569 {
3570         struct hid_device *hdev = hidpp->hid_dev;
3571         int ret = 0;
3572         bool connected = atomic_read(&hidpp->connected);
3573         struct input_dev *input;
3574         char *name, *devm_name;
3575
3576         if (!connected) {
3577                 if (hidpp->battery.ps) {
3578                         hidpp->battery.online = false;
3579                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3580                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3581                         power_supply_changed(hidpp->battery.ps);
3582                 }
3583                 return;
3584         }
3585
3586         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3587                 ret = wtp_connect(hdev, connected);
3588                 if (ret)
3589                         return;
3590         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3591                 ret = m560_send_config_command(hdev, connected);
3592                 if (ret)
3593                         return;
3594         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3595                 ret = k400_connect(hdev, connected);
3596                 if (ret)
3597                         return;
3598         }
3599
3600         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3601                 ret = hidpp10_wheel_connect(hidpp);
3602                 if (ret)
3603                         return;
3604         }
3605
3606         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3607                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3608                 if (ret)
3609                         return;
3610         }
3611
3612         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3613                 ret = hidpp10_consumer_keys_connect(hidpp);
3614                 if (ret)
3615                         return;
3616         }
3617
3618         /* the device is already connected, we can ask for its name and
3619          * protocol */
3620         if (!hidpp->protocol_major) {
3621                 ret = hidpp_root_get_protocol_version(hidpp);
3622                 if (ret) {
3623                         hid_err(hdev, "Can not get the protocol version.\n");
3624                         return;
3625                 }
3626         }
3627
3628         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3629                 name = hidpp_get_device_name(hidpp);
3630                 if (name) {
3631                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3632                                                    "%s", name);
3633                         kfree(name);
3634                         if (!devm_name)
3635                                 return;
3636
3637                         hidpp->name = devm_name;
3638                 }
3639         }
3640
3641         hidpp_initialize_battery(hidpp);
3642
3643         /* forward current battery state */
3644         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3645                 hidpp10_enable_battery_reporting(hidpp);
3646                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3647                         hidpp10_query_battery_mileage(hidpp);
3648                 else
3649                         hidpp10_query_battery_status(hidpp);
3650         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3651                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3652                         hidpp20_query_battery_voltage_info(hidpp);
3653                 else
3654                         hidpp20_query_battery_info(hidpp);
3655         }
3656         if (hidpp->battery.ps)
3657                 power_supply_changed(hidpp->battery.ps);
3658
3659         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3660                 hi_res_scroll_enable(hidpp);
3661
3662         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3663                 /* if the input nodes are already created, we can stop now */
3664                 return;
3665
3666         input = hidpp_allocate_input(hdev);
3667         if (!input) {
3668                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3669                 return;
3670         }
3671
3672         hidpp_populate_input(hidpp, input);
3673
3674         ret = input_register_device(input);
3675         if (ret)
3676                 input_free_device(input);
3677
3678         hidpp->delayed_input = input;
3679 }
3680
3681 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3682
3683 static struct attribute *sysfs_attrs[] = {
3684         &dev_attr_builtin_power_supply.attr,
3685         NULL
3686 };
3687
3688 static const struct attribute_group ps_attribute_group = {
3689         .attrs = sysfs_attrs
3690 };
3691
3692 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3693 {
3694         struct hid_report_enum *re;
3695         struct hid_report *report;
3696
3697         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3698         report = re->report_id_hash[id];
3699         if (!report)
3700                 return 0;
3701
3702         return report->field[0]->report_count + 1;
3703 }
3704
3705 static u8 hidpp_validate_device(struct hid_device *hdev)
3706 {
3707         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3708         int id, report_length;
3709         u8 supported_reports = 0;
3710
3711         id = REPORT_ID_HIDPP_SHORT;
3712         report_length = hidpp_get_report_length(hdev, id);
3713         if (report_length) {
3714                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3715                         goto bad_device;
3716
3717                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3718         }
3719
3720         id = REPORT_ID_HIDPP_LONG;
3721         report_length = hidpp_get_report_length(hdev, id);
3722         if (report_length) {
3723                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3724                         goto bad_device;
3725
3726                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3727         }
3728
3729         id = REPORT_ID_HIDPP_VERY_LONG;
3730         report_length = hidpp_get_report_length(hdev, id);
3731         if (report_length) {
3732                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3733                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3734                         goto bad_device;
3735
3736                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3737                 hidpp->very_long_report_length = report_length;
3738         }
3739
3740         return supported_reports;
3741
3742 bad_device:
3743         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3744         return false;
3745 }
3746
3747 static bool hidpp_application_equals(struct hid_device *hdev,
3748                                      unsigned int application)
3749 {
3750         struct list_head *report_list;
3751         struct hid_report *report;
3752
3753         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3754         report = list_first_entry_or_null(report_list, struct hid_report, list);
3755         return report && report->application == application;
3756 }
3757
3758 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3759 {
3760         struct hidpp_device *hidpp;
3761         int ret;
3762         bool connected;
3763         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3764         struct hidpp_ff_private_data data;
3765
3766         /* report_fixup needs drvdata to be set before we call hid_parse */
3767         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3768         if (!hidpp)
3769                 return -ENOMEM;
3770
3771         hidpp->hid_dev = hdev;
3772         hidpp->name = hdev->name;
3773         hidpp->quirks = id->driver_data;
3774         hid_set_drvdata(hdev, hidpp);
3775
3776         ret = hid_parse(hdev);
3777         if (ret) {
3778                 hid_err(hdev, "%s:parse failed\n", __func__);
3779                 return ret;
3780         }
3781
3782         /*
3783          * Make sure the device is HID++ capable, otherwise treat as generic HID
3784          */
3785         hidpp->supported_reports = hidpp_validate_device(hdev);
3786
3787         if (!hidpp->supported_reports) {
3788                 hid_set_drvdata(hdev, NULL);
3789                 devm_kfree(&hdev->dev, hidpp);
3790                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3791         }
3792
3793         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3794                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3795
3796         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3797             hidpp_application_equals(hdev, HID_GD_MOUSE))
3798                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3799                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3800
3801         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3802             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3803                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3804
3805         if (disable_raw_mode) {
3806                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3807                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3808         }
3809
3810         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3811                 ret = wtp_allocate(hdev, id);
3812                 if (ret)
3813                         return ret;
3814         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3815                 ret = k400_allocate(hdev);
3816                 if (ret)
3817                         return ret;
3818         }
3819
3820         INIT_WORK(&hidpp->work, delayed_work_cb);
3821         mutex_init(&hidpp->send_mutex);
3822         init_waitqueue_head(&hidpp->wait);
3823
3824         /* indicates we are handling the battery properties in the kernel */
3825         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3826         if (ret)
3827                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3828                          hdev->name);
3829
3830         /*
3831          * Plain USB connections need to actually call start and open
3832          * on the transport driver to allow incoming data.
3833          */
3834         ret = hid_hw_start(hdev, 0);
3835         if (ret) {
3836                 hid_err(hdev, "hw start failed\n");
3837                 goto hid_hw_start_fail;
3838         }
3839
3840         ret = hid_hw_open(hdev);
3841         if (ret < 0) {
3842                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3843                         __func__, ret);
3844                 goto hid_hw_open_fail;
3845         }
3846
3847         /* Allow incoming packets */
3848         hid_device_io_start(hdev);
3849
3850         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3851                 hidpp_unifying_init(hidpp);
3852
3853         connected = hidpp_root_get_protocol_version(hidpp) == 0;
3854         atomic_set(&hidpp->connected, connected);
3855         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3856                 if (!connected) {
3857                         ret = -ENODEV;
3858                         hid_err(hdev, "Device not connected");
3859                         goto hid_hw_init_fail;
3860                 }
3861
3862                 hidpp_overwrite_name(hdev);
3863         }
3864
3865         if (connected && hidpp->protocol_major >= 2) {
3866                 ret = hidpp_set_wireless_feature_index(hidpp);
3867                 if (ret == -ENOENT)
3868                         hidpp->wireless_feature_index = 0;
3869                 else if (ret)
3870                         goto hid_hw_init_fail;
3871         }
3872
3873         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3874                 ret = wtp_get_config(hidpp);
3875                 if (ret)
3876                         goto hid_hw_init_fail;
3877         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3878                 ret = g920_get_config(hidpp, &data);
3879                 if (ret)
3880                         goto hid_hw_init_fail;
3881         }
3882
3883         hidpp_connect_event(hidpp);
3884
3885         /* Reset the HID node state */
3886         hid_device_io_stop(hdev);
3887         hid_hw_close(hdev);
3888         hid_hw_stop(hdev);
3889
3890         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3891                 connect_mask &= ~HID_CONNECT_HIDINPUT;
3892
3893         /* Now export the actual inputs and hidraw nodes to the world */
3894         ret = hid_hw_start(hdev, connect_mask);
3895         if (ret) {
3896                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3897                 goto hid_hw_start_fail;
3898         }
3899
3900         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3901                 ret = hidpp_ff_init(hidpp, &data);
3902                 if (ret)
3903                         hid_warn(hidpp->hid_dev,
3904                      "Unable to initialize force feedback support, errno %d\n",
3905                                  ret);
3906         }
3907
3908         return ret;
3909
3910 hid_hw_init_fail:
3911         hid_hw_close(hdev);
3912 hid_hw_open_fail:
3913         hid_hw_stop(hdev);
3914 hid_hw_start_fail:
3915         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3916         cancel_work_sync(&hidpp->work);
3917         mutex_destroy(&hidpp->send_mutex);
3918         return ret;
3919 }
3920
3921 static void hidpp_remove(struct hid_device *hdev)
3922 {
3923         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3924
3925         if (!hidpp)
3926                 return hid_hw_stop(hdev);
3927
3928         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3929
3930         hid_hw_stop(hdev);
3931         cancel_work_sync(&hidpp->work);
3932         mutex_destroy(&hidpp->send_mutex);
3933 }
3934
3935 #define LDJ_DEVICE(product) \
3936         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3937                    USB_VENDOR_ID_LOGITECH, (product))
3938
3939 #define L27MHZ_DEVICE(product) \
3940         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3941                    USB_VENDOR_ID_LOGITECH, (product))
3942
3943 static const struct hid_device_id hidpp_devices[] = {
3944         { /* wireless touchpad */
3945           LDJ_DEVICE(0x4011),
3946           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3947                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3948         { /* wireless touchpad T650 */
3949           LDJ_DEVICE(0x4101),
3950           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3951         { /* wireless touchpad T651 */
3952           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3953                 USB_DEVICE_ID_LOGITECH_T651),
3954           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3955         { /* Mouse Logitech Anywhere MX */
3956           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3957         { /* Mouse Logitech Cube */
3958           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3959         { /* Mouse Logitech M335 */
3960           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3961         { /* Mouse Logitech M515 */
3962           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3963         { /* Mouse logitech M560 */
3964           LDJ_DEVICE(0x402d),
3965           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3966                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3967         { /* Mouse Logitech M705 (firmware RQM17) */
3968           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3969         { /* Mouse Logitech M705 (firmware RQM67) */
3970           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3971         { /* Mouse Logitech M720 */
3972           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3973         { /* Mouse Logitech MX Anywhere 2 */
3974           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3975         { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3976         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3977         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3978         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3979         { /* Mouse Logitech MX Anywhere 2S */
3980           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3981         { /* Mouse Logitech MX Master */
3982           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3983         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3984         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3985         { /* Mouse Logitech MX Master 2S */
3986           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3987         { /* Mouse Logitech MX Master 3 */
3988           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3989         { /* Mouse Logitech Performance MX */
3990           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3991         { /* Keyboard logitech K400 */
3992           LDJ_DEVICE(0x4024),
3993           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3994         { /* Solar Keyboard Logitech K750 */
3995           LDJ_DEVICE(0x4002),
3996           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3997         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3998           LDJ_DEVICE(0xb305),
3999           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4000         { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4001           LDJ_DEVICE(0xb309),
4002           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4003         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4004           LDJ_DEVICE(0xb30b),
4005           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4006
4007         { LDJ_DEVICE(HID_ANY_ID) },
4008
4009         { /* Keyboard LX501 (Y-RR53) */
4010           L27MHZ_DEVICE(0x0049),
4011           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4012         { /* Keyboard MX3000 (Y-RAM74) */
4013           L27MHZ_DEVICE(0x0057),
4014           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4015         { /* Keyboard MX3200 (Y-RAV80) */
4016           L27MHZ_DEVICE(0x005c),
4017           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4018         { /* S510 Media Remote */
4019           L27MHZ_DEVICE(0x00fe),
4020           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4021
4022         { L27MHZ_DEVICE(HID_ANY_ID) },
4023
4024         { /* Logitech G403 Wireless Gaming Mouse over USB */
4025           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4026         { /* Logitech G703 Gaming Mouse over USB */
4027           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4028         { /* Logitech G703 Hero Gaming Mouse over USB */
4029           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4030         { /* Logitech G900 Gaming Mouse over USB */
4031           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4032         { /* Logitech G903 Gaming Mouse over USB */
4033           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4034         { /* Logitech G903 Hero Gaming Mouse over USB */
4035           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4036         { /* Logitech G920 Wheel over USB */
4037           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4038                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4039         { /* Logitech G Pro Gaming Mouse over USB */
4040           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4041
4042         { /* MX5000 keyboard over Bluetooth */
4043           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4044           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4045         { /* Dinovo Edge keyboard over Bluetooth */
4046           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4047           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4048         { /* MX5500 keyboard over Bluetooth */
4049           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4050           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4051         { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4052           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4053         { /* MX Master mouse over Bluetooth */
4054           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4055           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4056         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4057           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4058         { /* MX Master 3 mouse over Bluetooth */
4059           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4060           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4061         {}
4062 };
4063
4064 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4065
4066 static const struct hid_usage_id hidpp_usages[] = {
4067         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4068         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4069 };
4070
4071 static struct hid_driver hidpp_driver = {
4072         .name = "logitech-hidpp-device",
4073         .id_table = hidpp_devices,
4074         .report_fixup = hidpp_report_fixup,
4075         .probe = hidpp_probe,
4076         .remove = hidpp_remove,
4077         .raw_event = hidpp_raw_event,
4078         .usage_table = hidpp_usages,
4079         .event = hidpp_event,
4080         .input_configured = hidpp_input_configured,
4081         .input_mapping = hidpp_input_mapping,
4082         .input_mapped = hidpp_input_mapped,
4083 };
4084
4085 module_hid_driver(hidpp_driver);