btrfs: zoned: sanity check zone type
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE     BIT(5)
96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY        BIT(6)
97
98 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
99
100 /*
101  * There are two hidpp protocols in use, the first version hidpp10 is known
102  * as register access protocol or RAP, the second version hidpp20 is known as
103  * feature access protocol or FAP
104  *
105  * Most older devices (including the Unifying usb receiver) use the RAP protocol
106  * where as most newer devices use the FAP protocol. Both protocols are
107  * compatible with the underlying transport, which could be usb, Unifiying, or
108  * bluetooth. The message lengths are defined by the hid vendor specific report
109  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
110  * the HIDPP_LONG report type (total message length 20 bytes)
111  *
112  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
113  * messages. The Unifying receiver itself responds to RAP messages (device index
114  * is 0xFF for the receiver), and all messages (short or long) with a device
115  * index between 1 and 6 are passed untouched to the corresponding paired
116  * Unifying device.
117  *
118  * The paired device can be RAP or FAP, it will receive the message untouched
119  * from the Unifiying receiver.
120  */
121
122 struct fap {
123         u8 feature_index;
124         u8 funcindex_clientid;
125         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
126 };
127
128 struct rap {
129         u8 sub_id;
130         u8 reg_address;
131         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
132 };
133
134 struct hidpp_report {
135         u8 report_id;
136         u8 device_index;
137         union {
138                 struct fap fap;
139                 struct rap rap;
140                 u8 rawbytes[sizeof(struct fap)];
141         };
142 } __packed;
143
144 struct hidpp_battery {
145         u8 feature_index;
146         u8 solar_feature_index;
147         u8 voltage_feature_index;
148         struct power_supply_desc desc;
149         struct power_supply *ps;
150         char name[64];
151         int status;
152         int capacity;
153         int level;
154         int voltage;
155         int charge_type;
156         bool online;
157         u8 supported_levels_1004;
158 };
159
160 /**
161  * struct hidpp_scroll_counter - Utility class for processing high-resolution
162  *                             scroll events.
163  * @dev: the input device for which events should be reported.
164  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
165  * @remainder: counts the number of high-resolution units moved since the last
166  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
167  *             only be used by class methods.
168  * @direction: direction of last movement (1 or -1)
169  * @last_time: last event time, used to reset remainder after inactivity
170  */
171 struct hidpp_scroll_counter {
172         int wheel_multiplier;
173         int remainder;
174         int direction;
175         unsigned long long last_time;
176 };
177
178 struct hidpp_device {
179         struct hid_device *hid_dev;
180         struct input_dev *input;
181         struct mutex send_mutex;
182         void *send_receive_buf;
183         char *name;             /* will never be NULL and should not be freed */
184         wait_queue_head_t wait;
185         int very_long_report_length;
186         bool answer_available;
187         u8 protocol_major;
188         u8 protocol_minor;
189
190         void *private_data;
191
192         struct work_struct work;
193         struct kfifo delayed_work_fifo;
194         atomic_t connected;
195         struct input_dev *delayed_input;
196
197         unsigned long quirks;
198         unsigned long capabilities;
199         u8 supported_reports;
200
201         struct hidpp_battery battery;
202         struct hidpp_scroll_counter vertical_wheel_counter;
203
204         u8 wireless_feature_index;
205 };
206
207 /* HID++ 1.0 error codes */
208 #define HIDPP_ERROR                             0x8f
209 #define HIDPP_ERROR_SUCCESS                     0x00
210 #define HIDPP_ERROR_INVALID_SUBID               0x01
211 #define HIDPP_ERROR_INVALID_ADRESS              0x02
212 #define HIDPP_ERROR_INVALID_VALUE               0x03
213 #define HIDPP_ERROR_CONNECT_FAIL                0x04
214 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
215 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
216 #define HIDPP_ERROR_BUSY                        0x07
217 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
218 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
220 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
221 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
222 /* HID++ 2.0 error codes */
223 #define HIDPP20_ERROR                           0xff
224
225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
226
227 static int __hidpp_send_report(struct hid_device *hdev,
228                                 struct hidpp_report *hidpp_report)
229 {
230         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
231         int fields_count, ret;
232
233         switch (hidpp_report->report_id) {
234         case REPORT_ID_HIDPP_SHORT:
235                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
236                 break;
237         case REPORT_ID_HIDPP_LONG:
238                 fields_count = HIDPP_REPORT_LONG_LENGTH;
239                 break;
240         case REPORT_ID_HIDPP_VERY_LONG:
241                 fields_count = hidpp->very_long_report_length;
242                 break;
243         default:
244                 return -ENODEV;
245         }
246
247         /*
248          * set the device_index as the receiver, it will be overwritten by
249          * hid_hw_request if needed
250          */
251         hidpp_report->device_index = 0xff;
252
253         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
254                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
255         } else {
256                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
257                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
258                         HID_REQ_SET_REPORT);
259         }
260
261         return ret == fields_count ? 0 : -1;
262 }
263
264 /**
265  * hidpp_send_message_sync() returns 0 in case of success, and something else
266  * in case of a failure.
267  * - If ' something else' is positive, that means that an error has been raised
268  *   by the protocol itself.
269  * - If ' something else' is negative, that means that we had a classic error
270  *   (-ENOMEM, -EPIPE, etc...)
271  */
272 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
273         struct hidpp_report *message,
274         struct hidpp_report *response)
275 {
276         int ret;
277
278         mutex_lock(&hidpp->send_mutex);
279
280         hidpp->send_receive_buf = response;
281         hidpp->answer_available = false;
282
283         /*
284          * So that we can later validate the answer when it arrives
285          * in hidpp_raw_event
286          */
287         *response = *message;
288
289         ret = __hidpp_send_report(hidpp->hid_dev, message);
290
291         if (ret) {
292                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
293                 memset(response, 0, sizeof(struct hidpp_report));
294                 goto exit;
295         }
296
297         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
298                                 5*HZ)) {
299                 dbg_hid("%s:timeout waiting for response\n", __func__);
300                 memset(response, 0, sizeof(struct hidpp_report));
301                 ret = -ETIMEDOUT;
302         }
303
304         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
305             response->rap.sub_id == HIDPP_ERROR) {
306                 ret = response->rap.params[1];
307                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
308                 goto exit;
309         }
310
311         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
312                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
313                         response->fap.feature_index == HIDPP20_ERROR) {
314                 ret = response->fap.params[1];
315                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
316                 goto exit;
317         }
318
319 exit:
320         mutex_unlock(&hidpp->send_mutex);
321         return ret;
322
323 }
324
325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
326         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
327         struct hidpp_report *response)
328 {
329         struct hidpp_report *message;
330         int ret;
331
332         if (param_count > sizeof(message->fap.params))
333                 return -EINVAL;
334
335         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
336         if (!message)
337                 return -ENOMEM;
338
339         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
340                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
341         else
342                 message->report_id = REPORT_ID_HIDPP_LONG;
343         message->fap.feature_index = feat_index;
344         message->fap.funcindex_clientid = funcindex_clientid;
345         memcpy(&message->fap.params, params, param_count);
346
347         ret = hidpp_send_message_sync(hidpp, message, response);
348         kfree(message);
349         return ret;
350 }
351
352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
353         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
354         struct hidpp_report *response)
355 {
356         struct hidpp_report *message;
357         int ret, max_count;
358
359         /* Send as long report if short reports are not supported. */
360         if (report_id == REPORT_ID_HIDPP_SHORT &&
361             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
362                 report_id = REPORT_ID_HIDPP_LONG;
363
364         switch (report_id) {
365         case REPORT_ID_HIDPP_SHORT:
366                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
367                 break;
368         case REPORT_ID_HIDPP_LONG:
369                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
370                 break;
371         case REPORT_ID_HIDPP_VERY_LONG:
372                 max_count = hidpp_dev->very_long_report_length - 4;
373                 break;
374         default:
375                 return -EINVAL;
376         }
377
378         if (param_count > max_count)
379                 return -EINVAL;
380
381         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
382         if (!message)
383                 return -ENOMEM;
384         message->report_id = report_id;
385         message->rap.sub_id = sub_id;
386         message->rap.reg_address = reg_address;
387         memcpy(&message->rap.params, params, param_count);
388
389         ret = hidpp_send_message_sync(hidpp_dev, message, response);
390         kfree(message);
391         return ret;
392 }
393
394 static void delayed_work_cb(struct work_struct *work)
395 {
396         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
397                                                         work);
398         hidpp_connect_event(hidpp);
399 }
400
401 static inline bool hidpp_match_answer(struct hidpp_report *question,
402                 struct hidpp_report *answer)
403 {
404         return (answer->fap.feature_index == question->fap.feature_index) &&
405            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
406 }
407
408 static inline bool hidpp_match_error(struct hidpp_report *question,
409                 struct hidpp_report *answer)
410 {
411         return ((answer->rap.sub_id == HIDPP_ERROR) ||
412             (answer->fap.feature_index == HIDPP20_ERROR)) &&
413             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
414             (answer->fap.params[0] == question->fap.funcindex_clientid);
415 }
416
417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
418                 struct hidpp_report *report)
419 {
420         return (hidpp->wireless_feature_index &&
421                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
422                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
423                 (report->rap.sub_id == 0x41));
424 }
425
426 /**
427  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
428  */
429 static void hidpp_prefix_name(char **name, int name_length)
430 {
431 #define PREFIX_LENGTH 9 /* "Logitech " */
432
433         int new_length;
434         char *new_name;
435
436         if (name_length > PREFIX_LENGTH &&
437             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
438                 /* The prefix has is already in the name */
439                 return;
440
441         new_length = PREFIX_LENGTH + name_length;
442         new_name = kzalloc(new_length, GFP_KERNEL);
443         if (!new_name)
444                 return;
445
446         snprintf(new_name, new_length, "Logitech %s", *name);
447
448         kfree(*name);
449
450         *name = new_name;
451 }
452
453 /**
454  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
455  *                                        events given a high-resolution wheel
456  *                                        movement.
457  * @counter: a hid_scroll_counter struct describing the wheel.
458  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
459  *                units.
460  *
461  * Given a high-resolution movement, this function converts the movement into
462  * fractions of 120 and emits high-resolution scroll events for the input
463  * device. It also uses the multiplier from &struct hid_scroll_counter to
464  * emit low-resolution scroll events when appropriate for
465  * backwards-compatibility with userspace input libraries.
466  */
467 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
468                                                struct hidpp_scroll_counter *counter,
469                                                int hi_res_value)
470 {
471         int low_res_value, remainder, direction;
472         unsigned long long now, previous;
473
474         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
475         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
476
477         remainder = counter->remainder;
478         direction = hi_res_value > 0 ? 1 : -1;
479
480         now = sched_clock();
481         previous = counter->last_time;
482         counter->last_time = now;
483         /*
484          * Reset the remainder after a period of inactivity or when the
485          * direction changes. This prevents the REL_WHEEL emulation point
486          * from sliding for devices that don't always provide the same
487          * number of movements per detent.
488          */
489         if (now - previous > 1000000000 || direction != counter->direction)
490                 remainder = 0;
491
492         counter->direction = direction;
493         remainder += hi_res_value;
494
495         /* Some wheels will rest 7/8ths of a detent from the previous detent
496          * after slow movement, so we want the threshold for low-res events to
497          * be in the middle between two detents (e.g. after 4/8ths) as
498          * opposed to on the detents themselves (8/8ths).
499          */
500         if (abs(remainder) >= 60) {
501                 /* Add (or subtract) 1 because we want to trigger when the wheel
502                  * is half-way to the next detent (i.e. scroll 1 detent after a
503                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
504                  * etc.).
505                  */
506                 low_res_value = remainder / 120;
507                 if (low_res_value == 0)
508                         low_res_value = (hi_res_value > 0 ? 1 : -1);
509                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
510                 remainder -= low_res_value * 120;
511         }
512         counter->remainder = remainder;
513 }
514
515 /* -------------------------------------------------------------------------- */
516 /* HIDP++ 1.0 commands                                                        */
517 /* -------------------------------------------------------------------------- */
518
519 #define HIDPP_SET_REGISTER                              0x80
520 #define HIDPP_GET_REGISTER                              0x81
521 #define HIDPP_SET_LONG_REGISTER                         0x82
522 #define HIDPP_GET_LONG_REGISTER                         0x83
523
524 /**
525  * hidpp10_set_register - Modify a HID++ 1.0 register.
526  * @hidpp_dev: the device to set the register on.
527  * @register_address: the address of the register to modify.
528  * @byte: the byte of the register to modify. Should be less than 3.
529  * @mask: mask of the bits to modify
530  * @value: new values for the bits in mask
531  * Return: 0 if successful, otherwise a negative error code.
532  */
533 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
534         u8 register_address, u8 byte, u8 mask, u8 value)
535 {
536         struct hidpp_report response;
537         int ret;
538         u8 params[3] = { 0 };
539
540         ret = hidpp_send_rap_command_sync(hidpp_dev,
541                                           REPORT_ID_HIDPP_SHORT,
542                                           HIDPP_GET_REGISTER,
543                                           register_address,
544                                           NULL, 0, &response);
545         if (ret)
546                 return ret;
547
548         memcpy(params, response.rap.params, 3);
549
550         params[byte] &= ~mask;
551         params[byte] |= value & mask;
552
553         return hidpp_send_rap_command_sync(hidpp_dev,
554                                            REPORT_ID_HIDPP_SHORT,
555                                            HIDPP_SET_REGISTER,
556                                            register_address,
557                                            params, 3, &response);
558 }
559
560 #define HIDPP_REG_ENABLE_REPORTS                        0x00
561 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
562 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
563 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
564 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
565 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
566
567 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
568 {
569         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
570                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
571 }
572
573 #define HIDPP_REG_FEATURES                              0x01
574 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
575 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
576
577 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
578 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
579 {
580         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
581                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
582 }
583
584 #define HIDPP_REG_BATTERY_STATUS                        0x07
585
586 static int hidpp10_battery_status_map_level(u8 param)
587 {
588         int level;
589
590         switch (param) {
591         case 1 ... 2:
592                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
593                 break;
594         case 3 ... 4:
595                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
596                 break;
597         case 5 ... 6:
598                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
599                 break;
600         case 7:
601                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
602                 break;
603         default:
604                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
605         }
606
607         return level;
608 }
609
610 static int hidpp10_battery_status_map_status(u8 param)
611 {
612         int status;
613
614         switch (param) {
615         case 0x00:
616                 /* discharging (in use) */
617                 status = POWER_SUPPLY_STATUS_DISCHARGING;
618                 break;
619         case 0x21: /* (standard) charging */
620         case 0x24: /* fast charging */
621         case 0x25: /* slow charging */
622                 status = POWER_SUPPLY_STATUS_CHARGING;
623                 break;
624         case 0x26: /* topping charge */
625         case 0x22: /* charge complete */
626                 status = POWER_SUPPLY_STATUS_FULL;
627                 break;
628         case 0x20: /* unknown */
629                 status = POWER_SUPPLY_STATUS_UNKNOWN;
630                 break;
631         /*
632          * 0x01...0x1F = reserved (not charging)
633          * 0x23 = charging error
634          * 0x27..0xff = reserved
635          */
636         default:
637                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
638                 break;
639         }
640
641         return status;
642 }
643
644 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
645 {
646         struct hidpp_report response;
647         int ret, status;
648
649         ret = hidpp_send_rap_command_sync(hidpp,
650                                         REPORT_ID_HIDPP_SHORT,
651                                         HIDPP_GET_REGISTER,
652                                         HIDPP_REG_BATTERY_STATUS,
653                                         NULL, 0, &response);
654         if (ret)
655                 return ret;
656
657         hidpp->battery.level =
658                 hidpp10_battery_status_map_level(response.rap.params[0]);
659         status = hidpp10_battery_status_map_status(response.rap.params[1]);
660         hidpp->battery.status = status;
661         /* the capacity is only available when discharging or full */
662         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
663                                 status == POWER_SUPPLY_STATUS_FULL;
664
665         return 0;
666 }
667
668 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
669
670 static int hidpp10_battery_mileage_map_status(u8 param)
671 {
672         int status;
673
674         switch (param >> 6) {
675         case 0x00:
676                 /* discharging (in use) */
677                 status = POWER_SUPPLY_STATUS_DISCHARGING;
678                 break;
679         case 0x01: /* charging */
680                 status = POWER_SUPPLY_STATUS_CHARGING;
681                 break;
682         case 0x02: /* charge complete */
683                 status = POWER_SUPPLY_STATUS_FULL;
684                 break;
685         /*
686          * 0x03 = charging error
687          */
688         default:
689                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
690                 break;
691         }
692
693         return status;
694 }
695
696 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
697 {
698         struct hidpp_report response;
699         int ret, status;
700
701         ret = hidpp_send_rap_command_sync(hidpp,
702                                         REPORT_ID_HIDPP_SHORT,
703                                         HIDPP_GET_REGISTER,
704                                         HIDPP_REG_BATTERY_MILEAGE,
705                                         NULL, 0, &response);
706         if (ret)
707                 return ret;
708
709         hidpp->battery.capacity = response.rap.params[0];
710         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
711         hidpp->battery.status = status;
712         /* the capacity is only available when discharging or full */
713         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
714                                 status == POWER_SUPPLY_STATUS_FULL;
715
716         return 0;
717 }
718
719 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
720 {
721         struct hidpp_report *report = (struct hidpp_report *)data;
722         int status, capacity, level;
723         bool changed;
724
725         if (report->report_id != REPORT_ID_HIDPP_SHORT)
726                 return 0;
727
728         switch (report->rap.sub_id) {
729         case HIDPP_REG_BATTERY_STATUS:
730                 capacity = hidpp->battery.capacity;
731                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
732                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
733                 break;
734         case HIDPP_REG_BATTERY_MILEAGE:
735                 capacity = report->rap.params[0];
736                 level = hidpp->battery.level;
737                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
738                 break;
739         default:
740                 return 0;
741         }
742
743         changed = capacity != hidpp->battery.capacity ||
744                   level != hidpp->battery.level ||
745                   status != hidpp->battery.status;
746
747         /* the capacity is only available when discharging or full */
748         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
749                                 status == POWER_SUPPLY_STATUS_FULL;
750
751         if (changed) {
752                 hidpp->battery.level = level;
753                 hidpp->battery.status = status;
754                 if (hidpp->battery.ps)
755                         power_supply_changed(hidpp->battery.ps);
756         }
757
758         return 0;
759 }
760
761 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
762 #define HIDPP_EXTENDED_PAIRING                          0x30
763 #define HIDPP_DEVICE_NAME                               0x40
764
765 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
766 {
767         struct hidpp_report response;
768         int ret;
769         u8 params[1] = { HIDPP_DEVICE_NAME };
770         char *name;
771         int len;
772
773         ret = hidpp_send_rap_command_sync(hidpp_dev,
774                                         REPORT_ID_HIDPP_SHORT,
775                                         HIDPP_GET_LONG_REGISTER,
776                                         HIDPP_REG_PAIRING_INFORMATION,
777                                         params, 1, &response);
778         if (ret)
779                 return NULL;
780
781         len = response.rap.params[1];
782
783         if (2 + len > sizeof(response.rap.params))
784                 return NULL;
785
786         if (len < 4) /* logitech devices are usually at least Xddd */
787                 return NULL;
788
789         name = kzalloc(len + 1, GFP_KERNEL);
790         if (!name)
791                 return NULL;
792
793         memcpy(name, &response.rap.params[2], len);
794
795         /* include the terminating '\0' */
796         hidpp_prefix_name(&name, len + 1);
797
798         return name;
799 }
800
801 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
802 {
803         struct hidpp_report response;
804         int ret;
805         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
806
807         ret = hidpp_send_rap_command_sync(hidpp,
808                                         REPORT_ID_HIDPP_SHORT,
809                                         HIDPP_GET_LONG_REGISTER,
810                                         HIDPP_REG_PAIRING_INFORMATION,
811                                         params, 1, &response);
812         if (ret)
813                 return ret;
814
815         /*
816          * We don't care about LE or BE, we will output it as a string
817          * with %4phD, so we need to keep the order.
818          */
819         *serial = *((u32 *)&response.rap.params[1]);
820         return 0;
821 }
822
823 static int hidpp_unifying_init(struct hidpp_device *hidpp)
824 {
825         struct hid_device *hdev = hidpp->hid_dev;
826         const char *name;
827         u32 serial;
828         int ret;
829
830         ret = hidpp_unifying_get_serial(hidpp, &serial);
831         if (ret)
832                 return ret;
833
834         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
835                  hdev->product, &serial);
836         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
837
838         name = hidpp_unifying_get_name(hidpp);
839         if (!name)
840                 return -EIO;
841
842         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
843         dbg_hid("HID++ Unifying: Got name: %s\n", name);
844
845         kfree(name);
846         return 0;
847 }
848
849 /* -------------------------------------------------------------------------- */
850 /* 0x0000: Root                                                               */
851 /* -------------------------------------------------------------------------- */
852
853 #define HIDPP_PAGE_ROOT                                 0x0000
854 #define HIDPP_PAGE_ROOT_IDX                             0x00
855
856 #define CMD_ROOT_GET_FEATURE                            0x01
857 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
858
859 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
860         u8 *feature_index, u8 *feature_type)
861 {
862         struct hidpp_report response;
863         int ret;
864         u8 params[2] = { feature >> 8, feature & 0x00FF };
865
866         ret = hidpp_send_fap_command_sync(hidpp,
867                         HIDPP_PAGE_ROOT_IDX,
868                         CMD_ROOT_GET_FEATURE,
869                         params, 2, &response);
870         if (ret)
871                 return ret;
872
873         if (response.fap.params[0] == 0)
874                 return -ENOENT;
875
876         *feature_index = response.fap.params[0];
877         *feature_type = response.fap.params[1];
878
879         return ret;
880 }
881
882 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
883 {
884         const u8 ping_byte = 0x5a;
885         u8 ping_data[3] = { 0, 0, ping_byte };
886         struct hidpp_report response;
887         int ret;
888
889         ret = hidpp_send_rap_command_sync(hidpp,
890                         REPORT_ID_HIDPP_SHORT,
891                         HIDPP_PAGE_ROOT_IDX,
892                         CMD_ROOT_GET_PROTOCOL_VERSION,
893                         ping_data, sizeof(ping_data), &response);
894
895         if (ret == HIDPP_ERROR_INVALID_SUBID) {
896                 hidpp->protocol_major = 1;
897                 hidpp->protocol_minor = 0;
898                 goto print_version;
899         }
900
901         /* the device might not be connected */
902         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
903                 return -EIO;
904
905         if (ret > 0) {
906                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
907                         __func__, ret);
908                 return -EPROTO;
909         }
910         if (ret)
911                 return ret;
912
913         if (response.rap.params[2] != ping_byte) {
914                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
915                         __func__, response.rap.params[2], ping_byte);
916                 return -EPROTO;
917         }
918
919         hidpp->protocol_major = response.rap.params[0];
920         hidpp->protocol_minor = response.rap.params[1];
921
922 print_version:
923         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
924                  hidpp->protocol_major, hidpp->protocol_minor);
925         return 0;
926 }
927
928 /* -------------------------------------------------------------------------- */
929 /* 0x0005: GetDeviceNameType                                                  */
930 /* -------------------------------------------------------------------------- */
931
932 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
933
934 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
935 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
936 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
937
938 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
939         u8 feature_index, u8 *nameLength)
940 {
941         struct hidpp_report response;
942         int ret;
943
944         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
945                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
946
947         if (ret > 0) {
948                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
949                         __func__, ret);
950                 return -EPROTO;
951         }
952         if (ret)
953                 return ret;
954
955         *nameLength = response.fap.params[0];
956
957         return ret;
958 }
959
960 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
961         u8 feature_index, u8 char_index, char *device_name, int len_buf)
962 {
963         struct hidpp_report response;
964         int ret, i;
965         int count;
966
967         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
968                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
969                 &response);
970
971         if (ret > 0) {
972                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
973                         __func__, ret);
974                 return -EPROTO;
975         }
976         if (ret)
977                 return ret;
978
979         switch (response.report_id) {
980         case REPORT_ID_HIDPP_VERY_LONG:
981                 count = hidpp->very_long_report_length - 4;
982                 break;
983         case REPORT_ID_HIDPP_LONG:
984                 count = HIDPP_REPORT_LONG_LENGTH - 4;
985                 break;
986         case REPORT_ID_HIDPP_SHORT:
987                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
988                 break;
989         default:
990                 return -EPROTO;
991         }
992
993         if (len_buf < count)
994                 count = len_buf;
995
996         for (i = 0; i < count; i++)
997                 device_name[i] = response.fap.params[i];
998
999         return count;
1000 }
1001
1002 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1003 {
1004         u8 feature_type;
1005         u8 feature_index;
1006         u8 __name_length;
1007         char *name;
1008         unsigned index = 0;
1009         int ret;
1010
1011         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1012                 &feature_index, &feature_type);
1013         if (ret)
1014                 return NULL;
1015
1016         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1017                 &__name_length);
1018         if (ret)
1019                 return NULL;
1020
1021         name = kzalloc(__name_length + 1, GFP_KERNEL);
1022         if (!name)
1023                 return NULL;
1024
1025         while (index < __name_length) {
1026                 ret = hidpp_devicenametype_get_device_name(hidpp,
1027                         feature_index, index, name + index,
1028                         __name_length - index);
1029                 if (ret <= 0) {
1030                         kfree(name);
1031                         return NULL;
1032                 }
1033                 index += ret;
1034         }
1035
1036         /* include the terminating '\0' */
1037         hidpp_prefix_name(&name, __name_length + 1);
1038
1039         return name;
1040 }
1041
1042 /* -------------------------------------------------------------------------- */
1043 /* 0x1000: Battery level status                                               */
1044 /* -------------------------------------------------------------------------- */
1045
1046 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1047
1048 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1050
1051 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1052
1053 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1054 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1055 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1056
1057 static int hidpp_map_battery_level(int capacity)
1058 {
1059         if (capacity < 11)
1060                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1061         /*
1062          * The spec says this should be < 31 but some devices report 30
1063          * with brand new batteries and Windows reports 30 as "Good".
1064          */
1065         else if (capacity < 30)
1066                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1067         else if (capacity < 81)
1068                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1069         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1070 }
1071
1072 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1073                                                     int *next_capacity,
1074                                                     int *level)
1075 {
1076         int status;
1077
1078         *capacity = data[0];
1079         *next_capacity = data[1];
1080         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1081
1082         /* When discharging, we can rely on the device reported capacity.
1083          * For all other states the device reports 0 (unknown).
1084          */
1085         switch (data[2]) {
1086                 case 0: /* discharging (in use) */
1087                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1088                         *level = hidpp_map_battery_level(*capacity);
1089                         break;
1090                 case 1: /* recharging */
1091                         status = POWER_SUPPLY_STATUS_CHARGING;
1092                         break;
1093                 case 2: /* charge in final stage */
1094                         status = POWER_SUPPLY_STATUS_CHARGING;
1095                         break;
1096                 case 3: /* charge complete */
1097                         status = POWER_SUPPLY_STATUS_FULL;
1098                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1099                         *capacity = 100;
1100                         break;
1101                 case 4: /* recharging below optimal speed */
1102                         status = POWER_SUPPLY_STATUS_CHARGING;
1103                         break;
1104                 /* 5 = invalid battery type
1105                    6 = thermal error
1106                    7 = other charging error */
1107                 default:
1108                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1109                         break;
1110         }
1111
1112         return status;
1113 }
1114
1115 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1116                                                      u8 feature_index,
1117                                                      int *status,
1118                                                      int *capacity,
1119                                                      int *next_capacity,
1120                                                      int *level)
1121 {
1122         struct hidpp_report response;
1123         int ret;
1124         u8 *params = (u8 *)response.fap.params;
1125
1126         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1127                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1128                                           NULL, 0, &response);
1129         /* Ignore these intermittent errors */
1130         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1131                 return -EIO;
1132         if (ret > 0) {
1133                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1134                         __func__, ret);
1135                 return -EPROTO;
1136         }
1137         if (ret)
1138                 return ret;
1139
1140         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1141                                                            next_capacity,
1142                                                            level);
1143
1144         return 0;
1145 }
1146
1147 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1148                                                   u8 feature_index)
1149 {
1150         struct hidpp_report response;
1151         int ret;
1152         u8 *params = (u8 *)response.fap.params;
1153         unsigned int level_count, flags;
1154
1155         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1156                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1157                                           NULL, 0, &response);
1158         if (ret > 0) {
1159                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1160                         __func__, ret);
1161                 return -EPROTO;
1162         }
1163         if (ret)
1164                 return ret;
1165
1166         level_count = params[0];
1167         flags = params[1];
1168
1169         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1170                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1171         else
1172                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1173
1174         return 0;
1175 }
1176
1177 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1178 {
1179         u8 feature_type;
1180         int ret;
1181         int status, capacity, next_capacity, level;
1182
1183         if (hidpp->battery.feature_index == 0xff) {
1184                 ret = hidpp_root_get_feature(hidpp,
1185                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1186                                              &hidpp->battery.feature_index,
1187                                              &feature_type);
1188                 if (ret)
1189                         return ret;
1190         }
1191
1192         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1193                                                 hidpp->battery.feature_index,
1194                                                 &status, &capacity,
1195                                                 &next_capacity, &level);
1196         if (ret)
1197                 return ret;
1198
1199         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1200                                                 hidpp->battery.feature_index);
1201         if (ret)
1202                 return ret;
1203
1204         hidpp->battery.status = status;
1205         hidpp->battery.capacity = capacity;
1206         hidpp->battery.level = level;
1207         /* the capacity is only available when discharging or full */
1208         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1209                                 status == POWER_SUPPLY_STATUS_FULL;
1210
1211         return 0;
1212 }
1213
1214 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1215                                  u8 *data, int size)
1216 {
1217         struct hidpp_report *report = (struct hidpp_report *)data;
1218         int status, capacity, next_capacity, level;
1219         bool changed;
1220
1221         if (report->fap.feature_index != hidpp->battery.feature_index ||
1222             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1223                 return 0;
1224
1225         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1226                                                           &capacity,
1227                                                           &next_capacity,
1228                                                           &level);
1229
1230         /* the capacity is only available when discharging or full */
1231         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1232                                 status == POWER_SUPPLY_STATUS_FULL;
1233
1234         changed = capacity != hidpp->battery.capacity ||
1235                   level != hidpp->battery.level ||
1236                   status != hidpp->battery.status;
1237
1238         if (changed) {
1239                 hidpp->battery.level = level;
1240                 hidpp->battery.capacity = capacity;
1241                 hidpp->battery.status = status;
1242                 if (hidpp->battery.ps)
1243                         power_supply_changed(hidpp->battery.ps);
1244         }
1245
1246         return 0;
1247 }
1248
1249 /* -------------------------------------------------------------------------- */
1250 /* 0x1001: Battery voltage                                                    */
1251 /* -------------------------------------------------------------------------- */
1252
1253 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1254
1255 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1256
1257 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1258
1259 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1260                                                 int *level, int *charge_type)
1261 {
1262         int status;
1263
1264         long flags = (long) data[2];
1265
1266         if (flags & 0x80)
1267                 switch (flags & 0x07) {
1268                 case 0:
1269                         status = POWER_SUPPLY_STATUS_CHARGING;
1270                         break;
1271                 case 1:
1272                         status = POWER_SUPPLY_STATUS_FULL;
1273                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1274                         break;
1275                 case 2:
1276                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1277                         break;
1278                 default:
1279                         status = POWER_SUPPLY_STATUS_UNKNOWN;
1280                         break;
1281                 }
1282         else
1283                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1284
1285         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1286         if (test_bit(3, &flags)) {
1287                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1288         }
1289         if (test_bit(4, &flags)) {
1290                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1291         }
1292         if (test_bit(5, &flags)) {
1293                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1294         }
1295
1296         *voltage = get_unaligned_be16(data);
1297
1298         return status;
1299 }
1300
1301 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1302                                                  u8 feature_index,
1303                                                  int *status, int *voltage,
1304                                                  int *level, int *charge_type)
1305 {
1306         struct hidpp_report response;
1307         int ret;
1308         u8 *params = (u8 *)response.fap.params;
1309
1310         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1311                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1312                                           NULL, 0, &response);
1313
1314         if (ret > 0) {
1315                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1316                         __func__, ret);
1317                 return -EPROTO;
1318         }
1319         if (ret)
1320                 return ret;
1321
1322         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1323
1324         *status = hidpp20_battery_map_status_voltage(params, voltage,
1325                                                      level, charge_type);
1326
1327         return 0;
1328 }
1329
1330 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1331 {
1332         u8 feature_type;
1333         int ret;
1334         int status, voltage, level, charge_type;
1335
1336         if (hidpp->battery.voltage_feature_index == 0xff) {
1337                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1338                                              &hidpp->battery.voltage_feature_index,
1339                                              &feature_type);
1340                 if (ret)
1341                         return ret;
1342         }
1343
1344         ret = hidpp20_battery_get_battery_voltage(hidpp,
1345                                                   hidpp->battery.voltage_feature_index,
1346                                                   &status, &voltage, &level, &charge_type);
1347
1348         if (ret)
1349                 return ret;
1350
1351         hidpp->battery.status = status;
1352         hidpp->battery.voltage = voltage;
1353         hidpp->battery.level = level;
1354         hidpp->battery.charge_type = charge_type;
1355         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1356
1357         return 0;
1358 }
1359
1360 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1361                                             u8 *data, int size)
1362 {
1363         struct hidpp_report *report = (struct hidpp_report *)data;
1364         int status, voltage, level, charge_type;
1365
1366         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1367                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1368                 return 0;
1369
1370         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1371                                                     &level, &charge_type);
1372
1373         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1374
1375         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1376                 hidpp->battery.voltage = voltage;
1377                 hidpp->battery.status = status;
1378                 hidpp->battery.level = level;
1379                 hidpp->battery.charge_type = charge_type;
1380                 if (hidpp->battery.ps)
1381                         power_supply_changed(hidpp->battery.ps);
1382         }
1383         return 0;
1384 }
1385
1386 /* -------------------------------------------------------------------------- */
1387 /* 0x1004: Unified battery                                                    */
1388 /* -------------------------------------------------------------------------- */
1389
1390 #define HIDPP_PAGE_UNIFIED_BATTERY                              0x1004
1391
1392 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES                    0x00
1393 #define CMD_UNIFIED_BATTERY_GET_STATUS                          0x10
1394
1395 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT                      0x00
1396
1397 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL                     BIT(0)
1398 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW                          BIT(1)
1399 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD                         BIT(2)
1400 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL                         BIT(3)
1401
1402 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE                 BIT(0)
1403 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE              BIT(1)
1404
1405 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1406                                                    u8 feature_index)
1407 {
1408         struct hidpp_report response;
1409         int ret;
1410         u8 *params = (u8 *)response.fap.params;
1411
1412         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1413             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1414                 /* we have already set the device capabilities, so let's skip */
1415                 return 0;
1416         }
1417
1418         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1419                                           CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1420                                           NULL, 0, &response);
1421         /* Ignore these intermittent errors */
1422         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1423                 return -EIO;
1424         if (ret > 0) {
1425                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1426                         __func__, ret);
1427                 return -EPROTO;
1428         }
1429         if (ret)
1430                 return ret;
1431
1432         /*
1433          * If the device supports state of charge (battery percentage) we won't
1434          * export the battery level information. there are 4 possible battery
1435          * levels and they all are optional, this means that the device might
1436          * not support any of them, we are just better off with the battery
1437          * percentage.
1438          */
1439         if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1440                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1441                 hidpp->battery.supported_levels_1004 = 0;
1442         } else {
1443                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1444                 hidpp->battery.supported_levels_1004 = params[0];
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1451                                              u8 charging_status,
1452                                              u8 external_power_status)
1453 {
1454         int status;
1455
1456         switch (charging_status) {
1457                 case 0: /* discharging */
1458                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1459                         break;
1460                 case 1: /* charging */
1461                 case 2: /* charging slow */
1462                         status = POWER_SUPPLY_STATUS_CHARGING;
1463                         break;
1464                 case 3: /* complete */
1465                         status = POWER_SUPPLY_STATUS_FULL;
1466                         break;
1467                 case 4: /* error */
1468                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1469                         hid_info(hidpp->hid_dev, "%s: charging error",
1470                                  hidpp->name);
1471                         break;
1472                 default:
1473                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1474                         break;
1475         }
1476
1477         return status;
1478 }
1479
1480 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1481                                             u8 battery_level)
1482 {
1483         /* cler unsupported level bits */
1484         battery_level &= hidpp->battery.supported_levels_1004;
1485
1486         if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1487                 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1488         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1489                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1490         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1491                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1492         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1493                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1494
1495         return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1496 }
1497
1498 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1499                                              u8 feature_index,
1500                                              u8 *state_of_charge,
1501                                              int *status,
1502                                              int *level)
1503 {
1504         struct hidpp_report response;
1505         int ret;
1506         u8 *params = (u8 *)response.fap.params;
1507
1508         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1509                                           CMD_UNIFIED_BATTERY_GET_STATUS,
1510                                           NULL, 0, &response);
1511         /* Ignore these intermittent errors */
1512         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1513                 return -EIO;
1514         if (ret > 0) {
1515                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1516                         __func__, ret);
1517                 return -EPROTO;
1518         }
1519         if (ret)
1520                 return ret;
1521
1522         *state_of_charge = params[0];
1523         *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1524         *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1525
1526         return 0;
1527 }
1528
1529 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1530 {
1531         u8 feature_type;
1532         int ret;
1533         u8 state_of_charge;
1534         int status, level;
1535
1536         if (hidpp->battery.feature_index == 0xff) {
1537                 ret = hidpp_root_get_feature(hidpp,
1538                                              HIDPP_PAGE_UNIFIED_BATTERY,
1539                                              &hidpp->battery.feature_index,
1540                                              &feature_type);
1541                 if (ret)
1542                         return ret;
1543         }
1544
1545         ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1546                                         hidpp->battery.feature_index);
1547         if (ret)
1548                 return ret;
1549
1550         ret = hidpp20_unifiedbattery_get_status(hidpp,
1551                                                 hidpp->battery.feature_index,
1552                                                 &state_of_charge,
1553                                                 &status,
1554                                                 &level);
1555         if (ret)
1556                 return ret;
1557
1558         hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1559         hidpp->battery.capacity = state_of_charge;
1560         hidpp->battery.status = status;
1561         hidpp->battery.level = level;
1562         hidpp->battery.online = true;
1563
1564         return 0;
1565 }
1566
1567 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1568                                  u8 *data, int size)
1569 {
1570         struct hidpp_report *report = (struct hidpp_report *)data;
1571         u8 *params = (u8 *)report->fap.params;
1572         int state_of_charge, status, level;
1573         bool changed;
1574
1575         if (report->fap.feature_index != hidpp->battery.feature_index ||
1576             report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1577                 return 0;
1578
1579         state_of_charge = params[0];
1580         status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1581         level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1582
1583         changed = status != hidpp->battery.status ||
1584                   (state_of_charge != hidpp->battery.capacity &&
1585                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1586                   (level != hidpp->battery.level &&
1587                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1588
1589         if (changed) {
1590                 hidpp->battery.capacity = state_of_charge;
1591                 hidpp->battery.status = status;
1592                 hidpp->battery.level = level;
1593                 if (hidpp->battery.ps)
1594                         power_supply_changed(hidpp->battery.ps);
1595         }
1596
1597         return 0;
1598 }
1599
1600 /* -------------------------------------------------------------------------- */
1601 /* Battery feature helpers                                                    */
1602 /* -------------------------------------------------------------------------- */
1603
1604 static enum power_supply_property hidpp_battery_props[] = {
1605         POWER_SUPPLY_PROP_ONLINE,
1606         POWER_SUPPLY_PROP_STATUS,
1607         POWER_SUPPLY_PROP_SCOPE,
1608         POWER_SUPPLY_PROP_MODEL_NAME,
1609         POWER_SUPPLY_PROP_MANUFACTURER,
1610         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1611         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1612         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1613         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1614 };
1615
1616 static int hidpp_battery_get_property(struct power_supply *psy,
1617                                       enum power_supply_property psp,
1618                                       union power_supply_propval *val)
1619 {
1620         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1621         int ret = 0;
1622
1623         switch(psp) {
1624                 case POWER_SUPPLY_PROP_STATUS:
1625                         val->intval = hidpp->battery.status;
1626                         break;
1627                 case POWER_SUPPLY_PROP_CAPACITY:
1628                         val->intval = hidpp->battery.capacity;
1629                         break;
1630                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1631                         val->intval = hidpp->battery.level;
1632                         break;
1633                 case POWER_SUPPLY_PROP_SCOPE:
1634                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1635                         break;
1636                 case POWER_SUPPLY_PROP_ONLINE:
1637                         val->intval = hidpp->battery.online;
1638                         break;
1639                 case POWER_SUPPLY_PROP_MODEL_NAME:
1640                         if (!strncmp(hidpp->name, "Logitech ", 9))
1641                                 val->strval = hidpp->name + 9;
1642                         else
1643                                 val->strval = hidpp->name;
1644                         break;
1645                 case POWER_SUPPLY_PROP_MANUFACTURER:
1646                         val->strval = "Logitech";
1647                         break;
1648                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1649                         val->strval = hidpp->hid_dev->uniq;
1650                         break;
1651                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1652                         /* hardware reports voltage in in mV. sysfs expects uV */
1653                         val->intval = hidpp->battery.voltage * 1000;
1654                         break;
1655                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1656                         val->intval = hidpp->battery.charge_type;
1657                         break;
1658                 default:
1659                         ret = -EINVAL;
1660                         break;
1661         }
1662
1663         return ret;
1664 }
1665
1666 /* -------------------------------------------------------------------------- */
1667 /* 0x1d4b: Wireless device status                                             */
1668 /* -------------------------------------------------------------------------- */
1669 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1670
1671 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1672 {
1673         u8 feature_type;
1674         int ret;
1675
1676         ret = hidpp_root_get_feature(hidpp,
1677                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1678                                      &hidpp->wireless_feature_index,
1679                                      &feature_type);
1680
1681         return ret;
1682 }
1683
1684 /* -------------------------------------------------------------------------- */
1685 /* 0x2120: Hi-resolution scrolling                                            */
1686 /* -------------------------------------------------------------------------- */
1687
1688 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1689
1690 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1691
1692 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1693         bool enabled, u8 *multiplier)
1694 {
1695         u8 feature_index;
1696         u8 feature_type;
1697         int ret;
1698         u8 params[1];
1699         struct hidpp_report response;
1700
1701         ret = hidpp_root_get_feature(hidpp,
1702                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1703                                      &feature_index,
1704                                      &feature_type);
1705         if (ret)
1706                 return ret;
1707
1708         params[0] = enabled ? BIT(0) : 0;
1709         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1710                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1711                                           params, sizeof(params), &response);
1712         if (ret)
1713                 return ret;
1714         *multiplier = response.fap.params[1];
1715         return 0;
1716 }
1717
1718 /* -------------------------------------------------------------------------- */
1719 /* 0x2121: HiRes Wheel                                                        */
1720 /* -------------------------------------------------------------------------- */
1721
1722 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1723
1724 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1725 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1726
1727 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1728         u8 *multiplier)
1729 {
1730         u8 feature_index;
1731         u8 feature_type;
1732         int ret;
1733         struct hidpp_report response;
1734
1735         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1736                                      &feature_index, &feature_type);
1737         if (ret)
1738                 goto return_default;
1739
1740         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1741                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1742                                           NULL, 0, &response);
1743         if (ret)
1744                 goto return_default;
1745
1746         *multiplier = response.fap.params[0];
1747         return 0;
1748 return_default:
1749         hid_warn(hidpp->hid_dev,
1750                  "Couldn't get wheel multiplier (error %d)\n", ret);
1751         return ret;
1752 }
1753
1754 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1755         bool high_resolution, bool use_hidpp)
1756 {
1757         u8 feature_index;
1758         u8 feature_type;
1759         int ret;
1760         u8 params[1];
1761         struct hidpp_report response;
1762
1763         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1764                                      &feature_index, &feature_type);
1765         if (ret)
1766                 return ret;
1767
1768         params[0] = (invert          ? BIT(2) : 0) |
1769                     (high_resolution ? BIT(1) : 0) |
1770                     (use_hidpp       ? BIT(0) : 0);
1771
1772         return hidpp_send_fap_command_sync(hidpp, feature_index,
1773                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1774                                            params, sizeof(params), &response);
1775 }
1776
1777 /* -------------------------------------------------------------------------- */
1778 /* 0x4301: Solar Keyboard                                                     */
1779 /* -------------------------------------------------------------------------- */
1780
1781 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1782
1783 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1784
1785 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1786 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1787 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1788
1789 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1790 {
1791         struct hidpp_report response;
1792         u8 params[2] = { 1, 1 };
1793         u8 feature_type;
1794         int ret;
1795
1796         if (hidpp->battery.feature_index == 0xff) {
1797                 ret = hidpp_root_get_feature(hidpp,
1798                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1799                                              &hidpp->battery.solar_feature_index,
1800                                              &feature_type);
1801                 if (ret)
1802                         return ret;
1803         }
1804
1805         ret = hidpp_send_fap_command_sync(hidpp,
1806                                           hidpp->battery.solar_feature_index,
1807                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1808                                           params, 2, &response);
1809         if (ret > 0) {
1810                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1811                         __func__, ret);
1812                 return -EPROTO;
1813         }
1814         if (ret)
1815                 return ret;
1816
1817         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1818
1819         return 0;
1820 }
1821
1822 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1823                                      u8 *data, int size)
1824 {
1825         struct hidpp_report *report = (struct hidpp_report *)data;
1826         int capacity, lux, status;
1827         u8 function;
1828
1829         function = report->fap.funcindex_clientid;
1830
1831
1832         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1833             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1834               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1835               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1836                 return 0;
1837
1838         capacity = report->fap.params[0];
1839
1840         switch (function) {
1841         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1842                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1843                 if (lux > 200)
1844                         status = POWER_SUPPLY_STATUS_CHARGING;
1845                 else
1846                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1847                 break;
1848         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1849         default:
1850                 if (capacity < hidpp->battery.capacity)
1851                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1852                 else
1853                         status = POWER_SUPPLY_STATUS_CHARGING;
1854
1855         }
1856
1857         if (capacity == 100)
1858                 status = POWER_SUPPLY_STATUS_FULL;
1859
1860         hidpp->battery.online = true;
1861         if (capacity != hidpp->battery.capacity ||
1862             status != hidpp->battery.status) {
1863                 hidpp->battery.capacity = capacity;
1864                 hidpp->battery.status = status;
1865                 if (hidpp->battery.ps)
1866                         power_supply_changed(hidpp->battery.ps);
1867         }
1868
1869         return 0;
1870 }
1871
1872 /* -------------------------------------------------------------------------- */
1873 /* 0x6010: Touchpad FW items                                                  */
1874 /* -------------------------------------------------------------------------- */
1875
1876 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1877
1878 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1879
1880 struct hidpp_touchpad_fw_items {
1881         uint8_t presence;
1882         uint8_t desired_state;
1883         uint8_t state;
1884         uint8_t persistent;
1885 };
1886
1887 /**
1888  * send a set state command to the device by reading the current items->state
1889  * field. items is then filled with the current state.
1890  */
1891 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1892                                        u8 feature_index,
1893                                        struct hidpp_touchpad_fw_items *items)
1894 {
1895         struct hidpp_report response;
1896         int ret;
1897         u8 *params = (u8 *)response.fap.params;
1898
1899         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1900                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1901
1902         if (ret > 0) {
1903                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1904                         __func__, ret);
1905                 return -EPROTO;
1906         }
1907         if (ret)
1908                 return ret;
1909
1910         items->presence = params[0];
1911         items->desired_state = params[1];
1912         items->state = params[2];
1913         items->persistent = params[3];
1914
1915         return 0;
1916 }
1917
1918 /* -------------------------------------------------------------------------- */
1919 /* 0x6100: TouchPadRawXY                                                      */
1920 /* -------------------------------------------------------------------------- */
1921
1922 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1923
1924 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1925 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1926
1927 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1928
1929 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1930 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1931
1932 struct hidpp_touchpad_raw_info {
1933         u16 x_size;
1934         u16 y_size;
1935         u8 z_range;
1936         u8 area_range;
1937         u8 timestamp_unit;
1938         u8 maxcontacts;
1939         u8 origin;
1940         u16 res;
1941 };
1942
1943 struct hidpp_touchpad_raw_xy_finger {
1944         u8 contact_type;
1945         u8 contact_status;
1946         u16 x;
1947         u16 y;
1948         u8 z;
1949         u8 area;
1950         u8 finger_id;
1951 };
1952
1953 struct hidpp_touchpad_raw_xy {
1954         u16 timestamp;
1955         struct hidpp_touchpad_raw_xy_finger fingers[2];
1956         u8 spurious_flag;
1957         u8 end_of_frame;
1958         u8 finger_count;
1959         u8 button;
1960 };
1961
1962 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1963         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1964 {
1965         struct hidpp_report response;
1966         int ret;
1967         u8 *params = (u8 *)response.fap.params;
1968
1969         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1970                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1971
1972         if (ret > 0) {
1973                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1974                         __func__, ret);
1975                 return -EPROTO;
1976         }
1977         if (ret)
1978                 return ret;
1979
1980         raw_info->x_size = get_unaligned_be16(&params[0]);
1981         raw_info->y_size = get_unaligned_be16(&params[2]);
1982         raw_info->z_range = params[4];
1983         raw_info->area_range = params[5];
1984         raw_info->maxcontacts = params[7];
1985         raw_info->origin = params[8];
1986         /* res is given in unit per inch */
1987         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1988
1989         return ret;
1990 }
1991
1992 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1993                 u8 feature_index, bool send_raw_reports,
1994                 bool sensor_enhanced_settings)
1995 {
1996         struct hidpp_report response;
1997
1998         /*
1999          * Params:
2000          *   bit 0 - enable raw
2001          *   bit 1 - 16bit Z, no area
2002          *   bit 2 - enhanced sensitivity
2003          *   bit 3 - width, height (4 bits each) instead of area
2004          *   bit 4 - send raw + gestures (degrades smoothness)
2005          *   remaining bits - reserved
2006          */
2007         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2008
2009         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2010                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2011 }
2012
2013 static void hidpp_touchpad_touch_event(u8 *data,
2014         struct hidpp_touchpad_raw_xy_finger *finger)
2015 {
2016         u8 x_m = data[0] << 2;
2017         u8 y_m = data[2] << 2;
2018
2019         finger->x = x_m << 6 | data[1];
2020         finger->y = y_m << 6 | data[3];
2021
2022         finger->contact_type = data[0] >> 6;
2023         finger->contact_status = data[2] >> 6;
2024
2025         finger->z = data[4];
2026         finger->area = data[5];
2027         finger->finger_id = data[6] >> 4;
2028 }
2029
2030 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2031                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2032 {
2033         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2034         raw_xy->end_of_frame = data[8] & 0x01;
2035         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2036         raw_xy->finger_count = data[15] & 0x0f;
2037         raw_xy->button = (data[8] >> 2) & 0x01;
2038
2039         if (raw_xy->finger_count) {
2040                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2041                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2042         }
2043 }
2044
2045 /* -------------------------------------------------------------------------- */
2046 /* 0x8123: Force feedback support                                             */
2047 /* -------------------------------------------------------------------------- */
2048
2049 #define HIDPP_FF_GET_INFO               0x01
2050 #define HIDPP_FF_RESET_ALL              0x11
2051 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
2052 #define HIDPP_FF_SET_EFFECT_STATE       0x31
2053 #define HIDPP_FF_DESTROY_EFFECT         0x41
2054 #define HIDPP_FF_GET_APERTURE           0x51
2055 #define HIDPP_FF_SET_APERTURE           0x61
2056 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
2057 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
2058
2059 #define HIDPP_FF_EFFECT_STATE_GET       0x00
2060 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
2061 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
2062 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
2063
2064 #define HIDPP_FF_EFFECT_CONSTANT        0x00
2065 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
2066 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
2067 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
2068 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
2069 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
2070 #define HIDPP_FF_EFFECT_SPRING          0x06
2071 #define HIDPP_FF_EFFECT_DAMPER          0x07
2072 #define HIDPP_FF_EFFECT_FRICTION        0x08
2073 #define HIDPP_FF_EFFECT_INERTIA         0x09
2074 #define HIDPP_FF_EFFECT_RAMP            0x0A
2075
2076 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
2077
2078 #define HIDPP_FF_EFFECTID_NONE          -1
2079 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
2080 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
2081
2082 #define HIDPP_FF_MAX_PARAMS     20
2083 #define HIDPP_FF_RESERVED_SLOTS 1
2084
2085 struct hidpp_ff_private_data {
2086         struct hidpp_device *hidpp;
2087         u8 feature_index;
2088         u8 version;
2089         u16 gain;
2090         s16 range;
2091         u8 slot_autocenter;
2092         u8 num_effects;
2093         int *effect_ids;
2094         struct workqueue_struct *wq;
2095         atomic_t workqueue_size;
2096 };
2097
2098 struct hidpp_ff_work_data {
2099         struct work_struct work;
2100         struct hidpp_ff_private_data *data;
2101         int effect_id;
2102         u8 command;
2103         u8 params[HIDPP_FF_MAX_PARAMS];
2104         u8 size;
2105 };
2106
2107 static const signed short hidpp_ff_effects[] = {
2108         FF_CONSTANT,
2109         FF_PERIODIC,
2110         FF_SINE,
2111         FF_SQUARE,
2112         FF_SAW_UP,
2113         FF_SAW_DOWN,
2114         FF_TRIANGLE,
2115         FF_SPRING,
2116         FF_DAMPER,
2117         FF_AUTOCENTER,
2118         FF_GAIN,
2119         -1
2120 };
2121
2122 static const signed short hidpp_ff_effects_v2[] = {
2123         FF_RAMP,
2124         FF_FRICTION,
2125         FF_INERTIA,
2126         -1
2127 };
2128
2129 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2130         HIDPP_FF_EFFECT_SPRING,
2131         HIDPP_FF_EFFECT_FRICTION,
2132         HIDPP_FF_EFFECT_DAMPER,
2133         HIDPP_FF_EFFECT_INERTIA
2134 };
2135
2136 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2137         "spring",
2138         "friction",
2139         "damper",
2140         "inertia"
2141 };
2142
2143
2144 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2145 {
2146         int i;
2147
2148         for (i = 0; i < data->num_effects; i++)
2149                 if (data->effect_ids[i] == effect_id)
2150                         return i+1;
2151
2152         return 0;
2153 }
2154
2155 static void hidpp_ff_work_handler(struct work_struct *w)
2156 {
2157         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2158         struct hidpp_ff_private_data *data = wd->data;
2159         struct hidpp_report response;
2160         u8 slot;
2161         int ret;
2162
2163         /* add slot number if needed */
2164         switch (wd->effect_id) {
2165         case HIDPP_FF_EFFECTID_AUTOCENTER:
2166                 wd->params[0] = data->slot_autocenter;
2167                 break;
2168         case HIDPP_FF_EFFECTID_NONE:
2169                 /* leave slot as zero */
2170                 break;
2171         default:
2172                 /* find current slot for effect */
2173                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2174                 break;
2175         }
2176
2177         /* send command and wait for reply */
2178         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2179                 wd->command, wd->params, wd->size, &response);
2180
2181         if (ret) {
2182                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2183                 goto out;
2184         }
2185
2186         /* parse return data */
2187         switch (wd->command) {
2188         case HIDPP_FF_DOWNLOAD_EFFECT:
2189                 slot = response.fap.params[0];
2190                 if (slot > 0 && slot <= data->num_effects) {
2191                         if (wd->effect_id >= 0)
2192                                 /* regular effect uploaded */
2193                                 data->effect_ids[slot-1] = wd->effect_id;
2194                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2195                                 /* autocenter spring uploaded */
2196                                 data->slot_autocenter = slot;
2197                 }
2198                 break;
2199         case HIDPP_FF_DESTROY_EFFECT:
2200                 if (wd->effect_id >= 0)
2201                         /* regular effect destroyed */
2202                         data->effect_ids[wd->params[0]-1] = -1;
2203                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2204                         /* autocenter spring destoyed */
2205                         data->slot_autocenter = 0;
2206                 break;
2207         case HIDPP_FF_SET_GLOBAL_GAINS:
2208                 data->gain = (wd->params[0] << 8) + wd->params[1];
2209                 break;
2210         case HIDPP_FF_SET_APERTURE:
2211                 data->range = (wd->params[0] << 8) + wd->params[1];
2212                 break;
2213         default:
2214                 /* no action needed */
2215                 break;
2216         }
2217
2218 out:
2219         atomic_dec(&data->workqueue_size);
2220         kfree(wd);
2221 }
2222
2223 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2224 {
2225         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2226         int s;
2227
2228         if (!wd)
2229                 return -ENOMEM;
2230
2231         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2232
2233         wd->data = data;
2234         wd->effect_id = effect_id;
2235         wd->command = command;
2236         wd->size = size;
2237         memcpy(wd->params, params, size);
2238
2239         atomic_inc(&data->workqueue_size);
2240         queue_work(data->wq, &wd->work);
2241
2242         /* warn about excessive queue size */
2243         s = atomic_read(&data->workqueue_size);
2244         if (s >= 20 && s % 20 == 0)
2245                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2246
2247         return 0;
2248 }
2249
2250 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2251 {
2252         struct hidpp_ff_private_data *data = dev->ff->private;
2253         u8 params[20];
2254         u8 size;
2255         int force;
2256
2257         /* set common parameters */
2258         params[2] = effect->replay.length >> 8;
2259         params[3] = effect->replay.length & 255;
2260         params[4] = effect->replay.delay >> 8;
2261         params[5] = effect->replay.delay & 255;
2262
2263         switch (effect->type) {
2264         case FF_CONSTANT:
2265                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2266                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2267                 params[6] = force >> 8;
2268                 params[7] = force & 255;
2269                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2270                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2271                 params[10] = effect->u.constant.envelope.attack_length & 255;
2272                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2273                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2274                 params[13] = effect->u.constant.envelope.fade_length & 255;
2275                 size = 14;
2276                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2277                                 effect->u.constant.level,
2278                                 effect->direction, force);
2279                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2280                                 effect->u.constant.envelope.attack_level,
2281                                 effect->u.constant.envelope.attack_length,
2282                                 effect->u.constant.envelope.fade_level,
2283                                 effect->u.constant.envelope.fade_length);
2284                 break;
2285         case FF_PERIODIC:
2286         {
2287                 switch (effect->u.periodic.waveform) {
2288                 case FF_SINE:
2289                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2290                         break;
2291                 case FF_SQUARE:
2292                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2293                         break;
2294                 case FF_SAW_UP:
2295                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2296                         break;
2297                 case FF_SAW_DOWN:
2298                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2299                         break;
2300                 case FF_TRIANGLE:
2301                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2302                         break;
2303                 default:
2304                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2305                         return -EINVAL;
2306                 }
2307                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2308                 params[6] = effect->u.periodic.magnitude >> 8;
2309                 params[7] = effect->u.periodic.magnitude & 255;
2310                 params[8] = effect->u.periodic.offset >> 8;
2311                 params[9] = effect->u.periodic.offset & 255;
2312                 params[10] = effect->u.periodic.period >> 8;
2313                 params[11] = effect->u.periodic.period & 255;
2314                 params[12] = effect->u.periodic.phase >> 8;
2315                 params[13] = effect->u.periodic.phase & 255;
2316                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2317                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2318                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2319                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2320                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2321                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2322                 size = 20;
2323                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2324                                 effect->u.periodic.magnitude, effect->direction,
2325                                 effect->u.periodic.offset,
2326                                 effect->u.periodic.period,
2327                                 effect->u.periodic.phase);
2328                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2329                                 effect->u.periodic.envelope.attack_level,
2330                                 effect->u.periodic.envelope.attack_length,
2331                                 effect->u.periodic.envelope.fade_level,
2332                                 effect->u.periodic.envelope.fade_length);
2333                 break;
2334         }
2335         case FF_RAMP:
2336                 params[1] = HIDPP_FF_EFFECT_RAMP;
2337                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2338                 params[6] = force >> 8;
2339                 params[7] = force & 255;
2340                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2341                 params[8] = force >> 8;
2342                 params[9] = force & 255;
2343                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2344                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2345                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2346                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2347                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2348                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2349                 size = 16;
2350                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2351                                 effect->u.ramp.start_level,
2352                                 effect->u.ramp.end_level,
2353                                 effect->direction, force);
2354                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2355                                 effect->u.ramp.envelope.attack_level,
2356                                 effect->u.ramp.envelope.attack_length,
2357                                 effect->u.ramp.envelope.fade_level,
2358                                 effect->u.ramp.envelope.fade_length);
2359                 break;
2360         case FF_FRICTION:
2361         case FF_INERTIA:
2362         case FF_SPRING:
2363         case FF_DAMPER:
2364                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2365                 params[6] = effect->u.condition[0].left_saturation >> 9;
2366                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2367                 params[8] = effect->u.condition[0].left_coeff >> 8;
2368                 params[9] = effect->u.condition[0].left_coeff & 255;
2369                 params[10] = effect->u.condition[0].deadband >> 9;
2370                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2371                 params[12] = effect->u.condition[0].center >> 8;
2372                 params[13] = effect->u.condition[0].center & 255;
2373                 params[14] = effect->u.condition[0].right_coeff >> 8;
2374                 params[15] = effect->u.condition[0].right_coeff & 255;
2375                 params[16] = effect->u.condition[0].right_saturation >> 9;
2376                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2377                 size = 18;
2378                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2379                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2380                                 effect->u.condition[0].left_coeff,
2381                                 effect->u.condition[0].left_saturation,
2382                                 effect->u.condition[0].right_coeff,
2383                                 effect->u.condition[0].right_saturation);
2384                 dbg_hid("          deadband=%d, center=%d\n",
2385                                 effect->u.condition[0].deadband,
2386                                 effect->u.condition[0].center);
2387                 break;
2388         default:
2389                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2390                 return -EINVAL;
2391         }
2392
2393         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2394 }
2395
2396 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2397 {
2398         struct hidpp_ff_private_data *data = dev->ff->private;
2399         u8 params[2];
2400
2401         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2402
2403         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2404
2405         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2406 }
2407
2408 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2409 {
2410         struct hidpp_ff_private_data *data = dev->ff->private;
2411         u8 slot = 0;
2412
2413         dbg_hid("Erasing effect %d.\n", effect_id);
2414
2415         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2416 }
2417
2418 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2419 {
2420         struct hidpp_ff_private_data *data = dev->ff->private;
2421         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2422
2423         dbg_hid("Setting autocenter to %d.\n", magnitude);
2424
2425         /* start a standard spring effect */
2426         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2427         /* zero delay and duration */
2428         params[2] = params[3] = params[4] = params[5] = 0;
2429         /* set coeff to 25% of saturation */
2430         params[8] = params[14] = magnitude >> 11;
2431         params[9] = params[15] = (magnitude >> 3) & 255;
2432         params[6] = params[16] = magnitude >> 9;
2433         params[7] = params[17] = (magnitude >> 1) & 255;
2434         /* zero deadband and center */
2435         params[10] = params[11] = params[12] = params[13] = 0;
2436
2437         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2438 }
2439
2440 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2441 {
2442         struct hidpp_ff_private_data *data = dev->ff->private;
2443         u8 params[4];
2444
2445         dbg_hid("Setting gain to %d.\n", gain);
2446
2447         params[0] = gain >> 8;
2448         params[1] = gain & 255;
2449         params[2] = 0; /* no boost */
2450         params[3] = 0;
2451
2452         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2453 }
2454
2455 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2456 {
2457         struct hid_device *hid = to_hid_device(dev);
2458         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2459         struct input_dev *idev = hidinput->input;
2460         struct hidpp_ff_private_data *data = idev->ff->private;
2461
2462         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2463 }
2464
2465 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2466 {
2467         struct hid_device *hid = to_hid_device(dev);
2468         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2469         struct input_dev *idev = hidinput->input;
2470         struct hidpp_ff_private_data *data = idev->ff->private;
2471         u8 params[2];
2472         int range = simple_strtoul(buf, NULL, 10);
2473
2474         range = clamp(range, 180, 900);
2475
2476         params[0] = range >> 8;
2477         params[1] = range & 0x00FF;
2478
2479         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2480
2481         return count;
2482 }
2483
2484 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2485
2486 static void hidpp_ff_destroy(struct ff_device *ff)
2487 {
2488         struct hidpp_ff_private_data *data = ff->private;
2489         struct hid_device *hid = data->hidpp->hid_dev;
2490
2491         hid_info(hid, "Unloading HID++ force feedback.\n");
2492
2493         device_remove_file(&hid->dev, &dev_attr_range);
2494         destroy_workqueue(data->wq);
2495         kfree(data->effect_ids);
2496 }
2497
2498 static int hidpp_ff_init(struct hidpp_device *hidpp,
2499                          struct hidpp_ff_private_data *data)
2500 {
2501         struct hid_device *hid = hidpp->hid_dev;
2502         struct hid_input *hidinput;
2503         struct input_dev *dev;
2504         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2505         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2506         struct ff_device *ff;
2507         int error, j, num_slots = data->num_effects;
2508         u8 version;
2509
2510         if (list_empty(&hid->inputs)) {
2511                 hid_err(hid, "no inputs found\n");
2512                 return -ENODEV;
2513         }
2514         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2515         dev = hidinput->input;
2516
2517         if (!dev) {
2518                 hid_err(hid, "Struct input_dev not set!\n");
2519                 return -EINVAL;
2520         }
2521
2522         /* Get firmware release */
2523         version = bcdDevice & 255;
2524
2525         /* Set supported force feedback capabilities */
2526         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2527                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2528         if (version > 1)
2529                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2530                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2531
2532         error = input_ff_create(dev, num_slots);
2533
2534         if (error) {
2535                 hid_err(dev, "Failed to create FF device!\n");
2536                 return error;
2537         }
2538         /*
2539          * Create a copy of passed data, so we can transfer memory
2540          * ownership to FF core
2541          */
2542         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2543         if (!data)
2544                 return -ENOMEM;
2545         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2546         if (!data->effect_ids) {
2547                 kfree(data);
2548                 return -ENOMEM;
2549         }
2550         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2551         if (!data->wq) {
2552                 kfree(data->effect_ids);
2553                 kfree(data);
2554                 return -ENOMEM;
2555         }
2556
2557         data->hidpp = hidpp;
2558         data->version = version;
2559         for (j = 0; j < num_slots; j++)
2560                 data->effect_ids[j] = -1;
2561
2562         ff = dev->ff;
2563         ff->private = data;
2564
2565         ff->upload = hidpp_ff_upload_effect;
2566         ff->erase = hidpp_ff_erase_effect;
2567         ff->playback = hidpp_ff_playback;
2568         ff->set_gain = hidpp_ff_set_gain;
2569         ff->set_autocenter = hidpp_ff_set_autocenter;
2570         ff->destroy = hidpp_ff_destroy;
2571
2572         /* Create sysfs interface */
2573         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2574         if (error)
2575                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2576
2577         /* init the hardware command queue */
2578         atomic_set(&data->workqueue_size, 0);
2579
2580         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2581                  version);
2582
2583         return 0;
2584 }
2585
2586 /* ************************************************************************** */
2587 /*                                                                            */
2588 /* Device Support                                                             */
2589 /*                                                                            */
2590 /* ************************************************************************** */
2591
2592 /* -------------------------------------------------------------------------- */
2593 /* Touchpad HID++ devices                                                     */
2594 /* -------------------------------------------------------------------------- */
2595
2596 #define WTP_MANUAL_RESOLUTION                           39
2597
2598 struct wtp_data {
2599         u16 x_size, y_size;
2600         u8 finger_count;
2601         u8 mt_feature_index;
2602         u8 button_feature_index;
2603         u8 maxcontacts;
2604         bool flip_y;
2605         unsigned int resolution;
2606 };
2607
2608 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2609                 struct hid_field *field, struct hid_usage *usage,
2610                 unsigned long **bit, int *max)
2611 {
2612         return -1;
2613 }
2614
2615 static void wtp_populate_input(struct hidpp_device *hidpp,
2616                                struct input_dev *input_dev)
2617 {
2618         struct wtp_data *wd = hidpp->private_data;
2619
2620         __set_bit(EV_ABS, input_dev->evbit);
2621         __set_bit(EV_KEY, input_dev->evbit);
2622         __clear_bit(EV_REL, input_dev->evbit);
2623         __clear_bit(EV_LED, input_dev->evbit);
2624
2625         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2626         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2627         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2628         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2629
2630         /* Max pressure is not given by the devices, pick one */
2631         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2632
2633         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2634
2635         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2636                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2637         else
2638                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2639
2640         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2641                 INPUT_MT_DROP_UNUSED);
2642 }
2643
2644 static void wtp_touch_event(struct hidpp_device *hidpp,
2645         struct hidpp_touchpad_raw_xy_finger *touch_report)
2646 {
2647         struct wtp_data *wd = hidpp->private_data;
2648         int slot;
2649
2650         if (!touch_report->finger_id || touch_report->contact_type)
2651                 /* no actual data */
2652                 return;
2653
2654         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2655
2656         input_mt_slot(hidpp->input, slot);
2657         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2658                                         touch_report->contact_status);
2659         if (touch_report->contact_status) {
2660                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2661                                 touch_report->x);
2662                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2663                                 wd->flip_y ? wd->y_size - touch_report->y :
2664                                              touch_report->y);
2665                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2666                                 touch_report->area);
2667         }
2668 }
2669
2670 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2671                 struct hidpp_touchpad_raw_xy *raw)
2672 {
2673         int i;
2674
2675         for (i = 0; i < 2; i++)
2676                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2677
2678         if (raw->end_of_frame &&
2679             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2680                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2681
2682         if (raw->end_of_frame || raw->finger_count <= 2) {
2683                 input_mt_sync_frame(hidpp->input);
2684                 input_sync(hidpp->input);
2685         }
2686 }
2687
2688 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2689 {
2690         struct wtp_data *wd = hidpp->private_data;
2691         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2692                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2693         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2694                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2695         struct hidpp_touchpad_raw_xy raw = {
2696                 .timestamp = data[1],
2697                 .fingers = {
2698                         {
2699                                 .contact_type = 0,
2700                                 .contact_status = !!data[7],
2701                                 .x = get_unaligned_le16(&data[3]),
2702                                 .y = get_unaligned_le16(&data[5]),
2703                                 .z = c1_area,
2704                                 .area = c1_area,
2705                                 .finger_id = data[2],
2706                         }, {
2707                                 .contact_type = 0,
2708                                 .contact_status = !!data[13],
2709                                 .x = get_unaligned_le16(&data[9]),
2710                                 .y = get_unaligned_le16(&data[11]),
2711                                 .z = c2_area,
2712                                 .area = c2_area,
2713                                 .finger_id = data[8],
2714                         }
2715                 },
2716                 .finger_count = wd->maxcontacts,
2717                 .spurious_flag = 0,
2718                 .end_of_frame = (data[0] >> 7) == 0,
2719                 .button = data[0] & 0x01,
2720         };
2721
2722         wtp_send_raw_xy_event(hidpp, &raw);
2723
2724         return 1;
2725 }
2726
2727 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2728 {
2729         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2730         struct wtp_data *wd = hidpp->private_data;
2731         struct hidpp_report *report = (struct hidpp_report *)data;
2732         struct hidpp_touchpad_raw_xy raw;
2733
2734         if (!wd || !hidpp->input)
2735                 return 1;
2736
2737         switch (data[0]) {
2738         case 0x02:
2739                 if (size < 2) {
2740                         hid_err(hdev, "Received HID report of bad size (%d)",
2741                                 size);
2742                         return 1;
2743                 }
2744                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2745                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2746                                         !!(data[1] & 0x01));
2747                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2748                                         !!(data[1] & 0x02));
2749                         input_sync(hidpp->input);
2750                         return 0;
2751                 } else {
2752                         if (size < 21)
2753                                 return 1;
2754                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2755                 }
2756         case REPORT_ID_HIDPP_LONG:
2757                 /* size is already checked in hidpp_raw_event. */
2758                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2759                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2760                         return 1;
2761                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2762
2763                 wtp_send_raw_xy_event(hidpp, &raw);
2764                 return 0;
2765         }
2766
2767         return 0;
2768 }
2769
2770 static int wtp_get_config(struct hidpp_device *hidpp)
2771 {
2772         struct wtp_data *wd = hidpp->private_data;
2773         struct hidpp_touchpad_raw_info raw_info = {0};
2774         u8 feature_type;
2775         int ret;
2776
2777         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2778                 &wd->mt_feature_index, &feature_type);
2779         if (ret)
2780                 /* means that the device is not powered up */
2781                 return ret;
2782
2783         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2784                 &raw_info);
2785         if (ret)
2786                 return ret;
2787
2788         wd->x_size = raw_info.x_size;
2789         wd->y_size = raw_info.y_size;
2790         wd->maxcontacts = raw_info.maxcontacts;
2791         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2792         wd->resolution = raw_info.res;
2793         if (!wd->resolution)
2794                 wd->resolution = WTP_MANUAL_RESOLUTION;
2795
2796         return 0;
2797 }
2798
2799 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2800 {
2801         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2802         struct wtp_data *wd;
2803
2804         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2805                         GFP_KERNEL);
2806         if (!wd)
2807                 return -ENOMEM;
2808
2809         hidpp->private_data = wd;
2810
2811         return 0;
2812 };
2813
2814 static int wtp_connect(struct hid_device *hdev, bool connected)
2815 {
2816         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2817         struct wtp_data *wd = hidpp->private_data;
2818         int ret;
2819
2820         if (!wd->x_size) {
2821                 ret = wtp_get_config(hidpp);
2822                 if (ret) {
2823                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2824                         return ret;
2825                 }
2826         }
2827
2828         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2829                         true, true);
2830 }
2831
2832 /* ------------------------------------------------------------------------- */
2833 /* Logitech M560 devices                                                     */
2834 /* ------------------------------------------------------------------------- */
2835
2836 /*
2837  * Logitech M560 protocol overview
2838  *
2839  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2840  * the sides buttons are pressed, it sends some keyboard keys events
2841  * instead of buttons ones.
2842  * To complicate things further, the middle button keys sequence
2843  * is different from the odd press and the even press.
2844  *
2845  * forward button -> Super_R
2846  * backward button -> Super_L+'d' (press only)
2847  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2848  *                  2nd time: left-click (press only)
2849  * NB: press-only means that when the button is pressed, the
2850  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2851  * together sequentially; instead when the button is released, no event is
2852  * generated !
2853  *
2854  * With the command
2855  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2856  * the mouse reacts differently:
2857  * - it never sends a keyboard key event
2858  * - for the three mouse button it sends:
2859  *      middle button               press   11<xx>0a 3500af00...
2860  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2861  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2862  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2863  */
2864
2865 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2866
2867 /* how buttons are mapped in the report */
2868 #define M560_MOUSE_BTN_LEFT             0x01
2869 #define M560_MOUSE_BTN_RIGHT            0x02
2870 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2871 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2872
2873 #define M560_SUB_ID                     0x0a
2874 #define M560_BUTTON_MODE_REGISTER       0x35
2875
2876 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2877 {
2878         struct hidpp_report response;
2879         struct hidpp_device *hidpp_dev;
2880
2881         hidpp_dev = hid_get_drvdata(hdev);
2882
2883         return hidpp_send_rap_command_sync(
2884                 hidpp_dev,
2885                 REPORT_ID_HIDPP_SHORT,
2886                 M560_SUB_ID,
2887                 M560_BUTTON_MODE_REGISTER,
2888                 (u8 *)m560_config_parameter,
2889                 sizeof(m560_config_parameter),
2890                 &response
2891         );
2892 }
2893
2894 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2895 {
2896         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2897
2898         /* sanity check */
2899         if (!hidpp->input) {
2900                 hid_err(hdev, "error in parameter\n");
2901                 return -EINVAL;
2902         }
2903
2904         if (size < 7) {
2905                 hid_err(hdev, "error in report\n");
2906                 return 0;
2907         }
2908
2909         if (data[0] == REPORT_ID_HIDPP_LONG &&
2910             data[2] == M560_SUB_ID && data[6] == 0x00) {
2911                 /*
2912                  * m560 mouse report for middle, forward and backward button
2913                  *
2914                  * data[0] = 0x11
2915                  * data[1] = device-id
2916                  * data[2] = 0x0a
2917                  * data[5] = 0xaf -> middle
2918                  *           0xb0 -> forward
2919                  *           0xae -> backward
2920                  *           0x00 -> release all
2921                  * data[6] = 0x00
2922                  */
2923
2924                 switch (data[5]) {
2925                 case 0xaf:
2926                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2927                         break;
2928                 case 0xb0:
2929                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2930                         break;
2931                 case 0xae:
2932                         input_report_key(hidpp->input, BTN_BACK, 1);
2933                         break;
2934                 case 0x00:
2935                         input_report_key(hidpp->input, BTN_BACK, 0);
2936                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2937                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2938                         break;
2939                 default:
2940                         hid_err(hdev, "error in report\n");
2941                         return 0;
2942                 }
2943                 input_sync(hidpp->input);
2944
2945         } else if (data[0] == 0x02) {
2946                 /*
2947                  * Logitech M560 mouse report
2948                  *
2949                  * data[0] = type (0x02)
2950                  * data[1..2] = buttons
2951                  * data[3..5] = xy
2952                  * data[6] = wheel
2953                  */
2954
2955                 int v;
2956
2957                 input_report_key(hidpp->input, BTN_LEFT,
2958                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2959                 input_report_key(hidpp->input, BTN_RIGHT,
2960                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2961
2962                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2963                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2964                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2965                                          -120);
2966                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2967                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2968                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2969                                          120);
2970                 }
2971
2972                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2973                 input_report_rel(hidpp->input, REL_X, v);
2974
2975                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2976                 input_report_rel(hidpp->input, REL_Y, v);
2977
2978                 v = hid_snto32(data[6], 8);
2979                 if (v != 0)
2980                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2981                                         &hidpp->vertical_wheel_counter, v);
2982
2983                 input_sync(hidpp->input);
2984         }
2985
2986         return 1;
2987 }
2988
2989 static void m560_populate_input(struct hidpp_device *hidpp,
2990                                 struct input_dev *input_dev)
2991 {
2992         __set_bit(EV_KEY, input_dev->evbit);
2993         __set_bit(BTN_MIDDLE, input_dev->keybit);
2994         __set_bit(BTN_RIGHT, input_dev->keybit);
2995         __set_bit(BTN_LEFT, input_dev->keybit);
2996         __set_bit(BTN_BACK, input_dev->keybit);
2997         __set_bit(BTN_FORWARD, input_dev->keybit);
2998
2999         __set_bit(EV_REL, input_dev->evbit);
3000         __set_bit(REL_X, input_dev->relbit);
3001         __set_bit(REL_Y, input_dev->relbit);
3002         __set_bit(REL_WHEEL, input_dev->relbit);
3003         __set_bit(REL_HWHEEL, input_dev->relbit);
3004         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3005         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3006 }
3007
3008 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3009                 struct hid_field *field, struct hid_usage *usage,
3010                 unsigned long **bit, int *max)
3011 {
3012         return -1;
3013 }
3014
3015 /* ------------------------------------------------------------------------- */
3016 /* Logitech K400 devices                                                     */
3017 /* ------------------------------------------------------------------------- */
3018
3019 /*
3020  * The Logitech K400 keyboard has an embedded touchpad which is seen
3021  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3022  * tap-to-click but the setting is not remembered accross reset, annoying some
3023  * users.
3024  *
3025  * We can toggle this feature from the host by using the feature 0x6010:
3026  * Touchpad FW items
3027  */
3028
3029 struct k400_private_data {
3030         u8 feature_index;
3031 };
3032
3033 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3034 {
3035         struct k400_private_data *k400 = hidpp->private_data;
3036         struct hidpp_touchpad_fw_items items = {};
3037         int ret;
3038         u8 feature_type;
3039
3040         if (!k400->feature_index) {
3041                 ret = hidpp_root_get_feature(hidpp,
3042                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3043                         &k400->feature_index, &feature_type);
3044                 if (ret)
3045                         /* means that the device is not powered up */
3046                         return ret;
3047         }
3048
3049         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3050         if (ret)
3051                 return ret;
3052
3053         return 0;
3054 }
3055
3056 static int k400_allocate(struct hid_device *hdev)
3057 {
3058         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3059         struct k400_private_data *k400;
3060
3061         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3062                             GFP_KERNEL);
3063         if (!k400)
3064                 return -ENOMEM;
3065
3066         hidpp->private_data = k400;
3067
3068         return 0;
3069 };
3070
3071 static int k400_connect(struct hid_device *hdev, bool connected)
3072 {
3073         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3074
3075         if (!disable_tap_to_click)
3076                 return 0;
3077
3078         return k400_disable_tap_to_click(hidpp);
3079 }
3080
3081 /* ------------------------------------------------------------------------- */
3082 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3083 /* ------------------------------------------------------------------------- */
3084
3085 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
3086
3087 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3088                                   struct hidpp_ff_private_data *data)
3089 {
3090         struct hidpp_report response;
3091         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3092                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3093         };
3094         int ret;
3095
3096         /* initialize with zero autocenter to get wheel in usable state */
3097
3098         dbg_hid("Setting autocenter to 0.\n");
3099         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3100                                           HIDPP_FF_DOWNLOAD_EFFECT,
3101                                           params, ARRAY_SIZE(params),
3102                                           &response);
3103         if (ret)
3104                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3105         else
3106                 data->slot_autocenter = response.fap.params[0];
3107
3108         return ret;
3109 }
3110
3111 static int g920_get_config(struct hidpp_device *hidpp,
3112                            struct hidpp_ff_private_data *data)
3113 {
3114         struct hidpp_report response;
3115         u8 feature_type;
3116         int ret;
3117
3118         memset(data, 0, sizeof(*data));
3119
3120         /* Find feature and store for later use */
3121         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3122                                      &data->feature_index, &feature_type);
3123         if (ret)
3124                 return ret;
3125
3126         /* Read number of slots available in device */
3127         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3128                                           HIDPP_FF_GET_INFO,
3129                                           NULL, 0,
3130                                           &response);
3131         if (ret) {
3132                 if (ret < 0)
3133                         return ret;
3134                 hid_err(hidpp->hid_dev,
3135                         "%s: received protocol error 0x%02x\n", __func__, ret);
3136                 return -EPROTO;
3137         }
3138
3139         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3140
3141         /* reset all forces */
3142         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3143                                           HIDPP_FF_RESET_ALL,
3144                                           NULL, 0,
3145                                           &response);
3146         if (ret)
3147                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3148
3149         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3150                                           HIDPP_FF_GET_APERTURE,
3151                                           NULL, 0,
3152                                           &response);
3153         if (ret) {
3154                 hid_warn(hidpp->hid_dev,
3155                          "Failed to read range from device!\n");
3156         }
3157         data->range = ret ?
3158                 900 : get_unaligned_be16(&response.fap.params[0]);
3159
3160         /* Read the current gain values */
3161         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3162                                           HIDPP_FF_GET_GLOBAL_GAINS,
3163                                           NULL, 0,
3164                                           &response);
3165         if (ret)
3166                 hid_warn(hidpp->hid_dev,
3167                          "Failed to read gain values from device!\n");
3168         data->gain = ret ?
3169                 0xffff : get_unaligned_be16(&response.fap.params[0]);
3170
3171         /* ignore boost value at response.fap.params[2] */
3172
3173         return g920_ff_set_autocenter(hidpp, data);
3174 }
3175
3176 /* -------------------------------------------------------------------------- */
3177 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3178 /* -------------------------------------------------------------------------- */
3179 #define DINOVO_MINI_PRODUCT_ID          0xb30c
3180
3181 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3182                 struct hid_field *field, struct hid_usage *usage,
3183                 unsigned long **bit, int *max)
3184 {
3185         if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3186                 return 0;
3187
3188         switch (usage->hid & HID_USAGE) {
3189         case 0x00d: lg_map_key_clear(KEY_MEDIA);        break;
3190         default:
3191                 return 0;
3192         }
3193         return 1;
3194 }
3195
3196 /* -------------------------------------------------------------------------- */
3197 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3198 /* -------------------------------------------------------------------------- */
3199 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3200 {
3201         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3202                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3203                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3204 }
3205
3206 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3207                                    u8 *data, int size)
3208 {
3209         s8 value, hvalue;
3210
3211         if (!hidpp->input)
3212                 return -EINVAL;
3213
3214         if (size < 7)
3215                 return 0;
3216
3217         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3218                 return 0;
3219
3220         value = data[3];
3221         hvalue = data[4];
3222
3223         input_report_rel(hidpp->input, REL_WHEEL, value);
3224         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3225         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3226         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3227         input_sync(hidpp->input);
3228
3229         return 1;
3230 }
3231
3232 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3233                                          struct input_dev *input_dev)
3234 {
3235         __set_bit(EV_REL, input_dev->evbit);
3236         __set_bit(REL_WHEEL, input_dev->relbit);
3237         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3238         __set_bit(REL_HWHEEL, input_dev->relbit);
3239         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3240 }
3241
3242 /* -------------------------------------------------------------------------- */
3243 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3244 /* -------------------------------------------------------------------------- */
3245 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3246 {
3247         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3248                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3249                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3250 }
3251
3252 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3253                                     u8 *data, int size)
3254 {
3255         int i;
3256
3257         if (!hidpp->input)
3258                 return -EINVAL;
3259
3260         if (size < 7)
3261                 return 0;
3262
3263         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3264             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3265                 return 0;
3266
3267         /*
3268          * Buttons are either delivered through the regular mouse report *or*
3269          * through the extra buttons report. At least for button 6 how it is
3270          * delivered differs per receiver firmware version. Even receivers with
3271          * the same usb-id show different behavior, so we handle both cases.
3272          */
3273         for (i = 0; i < 8; i++)
3274                 input_report_key(hidpp->input, BTN_MOUSE + i,
3275                                  (data[3] & (1 << i)));
3276
3277         /* Some mice report events on button 9+, use BTN_MISC */
3278         for (i = 0; i < 8; i++)
3279                 input_report_key(hidpp->input, BTN_MISC + i,
3280                                  (data[4] & (1 << i)));
3281
3282         input_sync(hidpp->input);
3283         return 1;
3284 }
3285
3286 static void hidpp10_extra_mouse_buttons_populate_input(
3287                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3288 {
3289         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3290         __set_bit(BTN_0, input_dev->keybit);
3291         __set_bit(BTN_1, input_dev->keybit);
3292         __set_bit(BTN_2, input_dev->keybit);
3293         __set_bit(BTN_3, input_dev->keybit);
3294         __set_bit(BTN_4, input_dev->keybit);
3295         __set_bit(BTN_5, input_dev->keybit);
3296         __set_bit(BTN_6, input_dev->keybit);
3297         __set_bit(BTN_7, input_dev->keybit);
3298 }
3299
3300 /* -------------------------------------------------------------------------- */
3301 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3302 /* -------------------------------------------------------------------------- */
3303
3304 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3305 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3306                                               u8 *_rdesc, unsigned int *rsize)
3307 {
3308         /* Note 0 terminated so we can use strnstr to search for this. */
3309         static const char consumer_rdesc_start[] = {
3310                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3311                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3312                 0xA1, 0x01,     /* COLLECTION (Application)            */
3313                 0x85, 0x03,     /* REPORT_ID = 3                       */
3314                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3315                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3316                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3317                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3318         };
3319         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3320         unsigned int size;
3321
3322         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3323         size = *rsize - (consumer_rdesc - rdesc);
3324         if (consumer_rdesc && size >= 25) {
3325                 consumer_rdesc[15] = 0x7f;
3326                 consumer_rdesc[16] = 0x10;
3327                 consumer_rdesc[20] = 0x7f;
3328                 consumer_rdesc[21] = 0x10;
3329         }
3330         return _rdesc;
3331 }
3332
3333 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3334 {
3335         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3336                                     HIDPP_ENABLE_CONSUMER_REPORT,
3337                                     HIDPP_ENABLE_CONSUMER_REPORT);
3338 }
3339
3340 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3341                                            u8 *data, int size)
3342 {
3343         u8 consumer_report[5];
3344
3345         if (size < 7)
3346                 return 0;
3347
3348         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3349             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3350                 return 0;
3351
3352         /*
3353          * Build a normal consumer report (3) out of the data, this detour
3354          * is necessary to get some keyboards to report their 0x10xx usages.
3355          */
3356         consumer_report[0] = 0x03;
3357         memcpy(&consumer_report[1], &data[3], 4);
3358         /* We are called from atomic context */
3359         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3360                              consumer_report, 5, 1);
3361
3362         return 1;
3363 }
3364
3365 /* -------------------------------------------------------------------------- */
3366 /* High-resolution scroll wheels                                              */
3367 /* -------------------------------------------------------------------------- */
3368
3369 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3370 {
3371         int ret;
3372         u8 multiplier = 1;
3373
3374         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3375                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3376                 if (ret == 0)
3377                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3378         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3379                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3380                                                            &multiplier);
3381         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3382                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3383                 multiplier = 8;
3384         }
3385         if (ret)
3386                 return ret;
3387
3388         if (multiplier == 0)
3389                 multiplier = 1;
3390
3391         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3392         hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3393         return 0;
3394 }
3395
3396 /* -------------------------------------------------------------------------- */
3397 /* Generic HID++ devices                                                      */
3398 /* -------------------------------------------------------------------------- */
3399
3400 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3401                               unsigned int *rsize)
3402 {
3403         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3404
3405         if (!hidpp)
3406                 return rdesc;
3407
3408         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3409         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3410             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3411                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3412
3413         return rdesc;
3414 }
3415
3416 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3417                 struct hid_field *field, struct hid_usage *usage,
3418                 unsigned long **bit, int *max)
3419 {
3420         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3421
3422         if (!hidpp)
3423                 return 0;
3424
3425         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3426                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3427         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3428                         field->application != HID_GD_MOUSE)
3429                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3430
3431         if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3432                 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3433
3434         return 0;
3435 }
3436
3437 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3438                 struct hid_field *field, struct hid_usage *usage,
3439                 unsigned long **bit, int *max)
3440 {
3441         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3442
3443         if (!hidpp)
3444                 return 0;
3445
3446         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3447         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3448                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3449                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3450                                 usage->code == ABS_RZ)) {
3451                         field->application = HID_GD_MULTIAXIS;
3452                 }
3453         }
3454
3455         return 0;
3456 }
3457
3458
3459 static void hidpp_populate_input(struct hidpp_device *hidpp,
3460                                  struct input_dev *input)
3461 {
3462         hidpp->input = input;
3463
3464         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3465                 wtp_populate_input(hidpp, input);
3466         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3467                 m560_populate_input(hidpp, input);
3468
3469         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3470                 hidpp10_wheel_populate_input(hidpp, input);
3471
3472         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3473                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3474 }
3475
3476 static int hidpp_input_configured(struct hid_device *hdev,
3477                                 struct hid_input *hidinput)
3478 {
3479         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3480         struct input_dev *input = hidinput->input;
3481
3482         if (!hidpp)
3483                 return 0;
3484
3485         hidpp_populate_input(hidpp, input);
3486
3487         return 0;
3488 }
3489
3490 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3491                 int size)
3492 {
3493         struct hidpp_report *question = hidpp->send_receive_buf;
3494         struct hidpp_report *answer = hidpp->send_receive_buf;
3495         struct hidpp_report *report = (struct hidpp_report *)data;
3496         int ret;
3497
3498         /*
3499          * If the mutex is locked then we have a pending answer from a
3500          * previously sent command.
3501          */
3502         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3503                 /*
3504                  * Check for a correct hidpp20 answer or the corresponding
3505                  * error
3506                  */
3507                 if (hidpp_match_answer(question, report) ||
3508                                 hidpp_match_error(question, report)) {
3509                         *answer = *report;
3510                         hidpp->answer_available = true;
3511                         wake_up(&hidpp->wait);
3512                         /*
3513                          * This was an answer to a command that this driver sent
3514                          * We return 1 to hid-core to avoid forwarding the
3515                          * command upstream as it has been treated by the driver
3516                          */
3517
3518                         return 1;
3519                 }
3520         }
3521
3522         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3523                 atomic_set(&hidpp->connected,
3524                                 !(report->rap.params[0] & (1 << 6)));
3525                 if (schedule_work(&hidpp->work) == 0)
3526                         dbg_hid("%s: connect event already queued\n", __func__);
3527                 return 1;
3528         }
3529
3530         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3531                 ret = hidpp20_battery_event_1000(hidpp, data, size);
3532                 if (ret != 0)
3533                         return ret;
3534                 ret = hidpp20_battery_event_1004(hidpp, data, size);
3535                 if (ret != 0)
3536                         return ret;
3537                 ret = hidpp_solar_battery_event(hidpp, data, size);
3538                 if (ret != 0)
3539                         return ret;
3540                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3541                 if (ret != 0)
3542                         return ret;
3543         }
3544
3545         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3546                 ret = hidpp10_battery_event(hidpp, data, size);
3547                 if (ret != 0)
3548                         return ret;
3549         }
3550
3551         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3552                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3553                 if (ret != 0)
3554                         return ret;
3555         }
3556
3557         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3558                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3559                 if (ret != 0)
3560                         return ret;
3561         }
3562
3563         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3564                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3565                 if (ret != 0)
3566                         return ret;
3567         }
3568
3569         return 0;
3570 }
3571
3572 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3573                 u8 *data, int size)
3574 {
3575         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3576         int ret = 0;
3577
3578         if (!hidpp)
3579                 return 0;
3580
3581         /* Generic HID++ processing. */
3582         switch (data[0]) {
3583         case REPORT_ID_HIDPP_VERY_LONG:
3584                 if (size != hidpp->very_long_report_length) {
3585                         hid_err(hdev, "received hid++ report of bad size (%d)",
3586                                 size);
3587                         return 1;
3588                 }
3589                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3590                 break;
3591         case REPORT_ID_HIDPP_LONG:
3592                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3593                         hid_err(hdev, "received hid++ report of bad size (%d)",
3594                                 size);
3595                         return 1;
3596                 }
3597                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3598                 break;
3599         case REPORT_ID_HIDPP_SHORT:
3600                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3601                         hid_err(hdev, "received hid++ report of bad size (%d)",
3602                                 size);
3603                         return 1;
3604                 }
3605                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3606                 break;
3607         }
3608
3609         /* If no report is available for further processing, skip calling
3610          * raw_event of subclasses. */
3611         if (ret != 0)
3612                 return ret;
3613
3614         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3615                 return wtp_raw_event(hdev, data, size);
3616         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3617                 return m560_raw_event(hdev, data, size);
3618
3619         return 0;
3620 }
3621
3622 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3623         struct hid_usage *usage, __s32 value)
3624 {
3625         /* This function will only be called for scroll events, due to the
3626          * restriction imposed in hidpp_usages.
3627          */
3628         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3629         struct hidpp_scroll_counter *counter;
3630
3631         if (!hidpp)
3632                 return 0;
3633
3634         counter = &hidpp->vertical_wheel_counter;
3635         /* A scroll event may occur before the multiplier has been retrieved or
3636          * the input device set, or high-res scroll enabling may fail. In such
3637          * cases we must return early (falling back to default behaviour) to
3638          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3639          */
3640         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3641             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3642                 return 0;
3643
3644         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3645         return 1;
3646 }
3647
3648 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3649 {
3650         static atomic_t battery_no = ATOMIC_INIT(0);
3651         struct power_supply_config cfg = { .drv_data = hidpp };
3652         struct power_supply_desc *desc = &hidpp->battery.desc;
3653         enum power_supply_property *battery_props;
3654         struct hidpp_battery *battery;
3655         unsigned int num_battery_props;
3656         unsigned long n;
3657         int ret;
3658
3659         if (hidpp->battery.ps)
3660                 return 0;
3661
3662         hidpp->battery.feature_index = 0xff;
3663         hidpp->battery.solar_feature_index = 0xff;
3664         hidpp->battery.voltage_feature_index = 0xff;
3665
3666         if (hidpp->protocol_major >= 2) {
3667                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3668                         ret = hidpp_solar_request_battery_event(hidpp);
3669                 else {
3670                         /* we only support one battery feature right now, so let's
3671                            first check the ones that support battery level first
3672                            and leave voltage for last */
3673                         ret = hidpp20_query_battery_info_1000(hidpp);
3674                         if (ret)
3675                                 ret = hidpp20_query_battery_info_1004(hidpp);
3676                         if (ret)
3677                                 ret = hidpp20_query_battery_voltage_info(hidpp);
3678                 }
3679
3680                 if (ret)
3681                         return ret;
3682                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3683         } else {
3684                 ret = hidpp10_query_battery_status(hidpp);
3685                 if (ret) {
3686                         ret = hidpp10_query_battery_mileage(hidpp);
3687                         if (ret)
3688                                 return -ENOENT;
3689                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3690                 } else {
3691                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3692                 }
3693                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3694         }
3695
3696         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3697                                      hidpp_battery_props,
3698                                      sizeof(hidpp_battery_props),
3699                                      GFP_KERNEL);
3700         if (!battery_props)
3701                 return -ENOMEM;
3702
3703         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3704
3705         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3706             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3707                 battery_props[num_battery_props++] =
3708                                 POWER_SUPPLY_PROP_CAPACITY;
3709
3710         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3711                 battery_props[num_battery_props++] =
3712                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3713
3714         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3715                 battery_props[num_battery_props++] =
3716                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3717
3718         battery = &hidpp->battery;
3719
3720         n = atomic_inc_return(&battery_no) - 1;
3721         desc->properties = battery_props;
3722         desc->num_properties = num_battery_props;
3723         desc->get_property = hidpp_battery_get_property;
3724         sprintf(battery->name, "hidpp_battery_%ld", n);
3725         desc->name = battery->name;
3726         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3727         desc->use_for_apm = 0;
3728
3729         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3730                                                  &battery->desc,
3731                                                  &cfg);
3732         if (IS_ERR(battery->ps))
3733                 return PTR_ERR(battery->ps);
3734
3735         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3736
3737         return ret;
3738 }
3739
3740 static void hidpp_overwrite_name(struct hid_device *hdev)
3741 {
3742         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3743         char *name;
3744
3745         if (hidpp->protocol_major < 2)
3746                 return;
3747
3748         name = hidpp_get_device_name(hidpp);
3749
3750         if (!name) {
3751                 hid_err(hdev, "unable to retrieve the name of the device");
3752         } else {
3753                 dbg_hid("HID++: Got name: %s\n", name);
3754                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3755         }
3756
3757         kfree(name);
3758 }
3759
3760 static int hidpp_input_open(struct input_dev *dev)
3761 {
3762         struct hid_device *hid = input_get_drvdata(dev);
3763
3764         return hid_hw_open(hid);
3765 }
3766
3767 static void hidpp_input_close(struct input_dev *dev)
3768 {
3769         struct hid_device *hid = input_get_drvdata(dev);
3770
3771         hid_hw_close(hid);
3772 }
3773
3774 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3775 {
3776         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3777         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3778
3779         if (!input_dev)
3780                 return NULL;
3781
3782         input_set_drvdata(input_dev, hdev);
3783         input_dev->open = hidpp_input_open;
3784         input_dev->close = hidpp_input_close;
3785
3786         input_dev->name = hidpp->name;
3787         input_dev->phys = hdev->phys;
3788         input_dev->uniq = hdev->uniq;
3789         input_dev->id.bustype = hdev->bus;
3790         input_dev->id.vendor  = hdev->vendor;
3791         input_dev->id.product = hdev->product;
3792         input_dev->id.version = hdev->version;
3793         input_dev->dev.parent = &hdev->dev;
3794
3795         return input_dev;
3796 }
3797
3798 static void hidpp_connect_event(struct hidpp_device *hidpp)
3799 {
3800         struct hid_device *hdev = hidpp->hid_dev;
3801         int ret = 0;
3802         bool connected = atomic_read(&hidpp->connected);
3803         struct input_dev *input;
3804         char *name, *devm_name;
3805
3806         if (!connected) {
3807                 if (hidpp->battery.ps) {
3808                         hidpp->battery.online = false;
3809                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3810                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3811                         power_supply_changed(hidpp->battery.ps);
3812                 }
3813                 return;
3814         }
3815
3816         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3817                 ret = wtp_connect(hdev, connected);
3818                 if (ret)
3819                         return;
3820         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3821                 ret = m560_send_config_command(hdev, connected);
3822                 if (ret)
3823                         return;
3824         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3825                 ret = k400_connect(hdev, connected);
3826                 if (ret)
3827                         return;
3828         }
3829
3830         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3831                 ret = hidpp10_wheel_connect(hidpp);
3832                 if (ret)
3833                         return;
3834         }
3835
3836         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3837                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3838                 if (ret)
3839                         return;
3840         }
3841
3842         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3843                 ret = hidpp10_consumer_keys_connect(hidpp);
3844                 if (ret)
3845                         return;
3846         }
3847
3848         /* the device is already connected, we can ask for its name and
3849          * protocol */
3850         if (!hidpp->protocol_major) {
3851                 ret = hidpp_root_get_protocol_version(hidpp);
3852                 if (ret) {
3853                         hid_err(hdev, "Can not get the protocol version.\n");
3854                         return;
3855                 }
3856         }
3857
3858         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3859                 name = hidpp_get_device_name(hidpp);
3860                 if (name) {
3861                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3862                                                    "%s", name);
3863                         kfree(name);
3864                         if (!devm_name)
3865                                 return;
3866
3867                         hidpp->name = devm_name;
3868                 }
3869         }
3870
3871         hidpp_initialize_battery(hidpp);
3872
3873         /* forward current battery state */
3874         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3875                 hidpp10_enable_battery_reporting(hidpp);
3876                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3877                         hidpp10_query_battery_mileage(hidpp);
3878                 else
3879                         hidpp10_query_battery_status(hidpp);
3880         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3881                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3882                         hidpp20_query_battery_voltage_info(hidpp);
3883                 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3884                         hidpp20_query_battery_info_1004(hidpp);
3885                 else
3886                         hidpp20_query_battery_info_1000(hidpp);
3887         }
3888         if (hidpp->battery.ps)
3889                 power_supply_changed(hidpp->battery.ps);
3890
3891         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3892                 hi_res_scroll_enable(hidpp);
3893
3894         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3895                 /* if the input nodes are already created, we can stop now */
3896                 return;
3897
3898         input = hidpp_allocate_input(hdev);
3899         if (!input) {
3900                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3901                 return;
3902         }
3903
3904         hidpp_populate_input(hidpp, input);
3905
3906         ret = input_register_device(input);
3907         if (ret)
3908                 input_free_device(input);
3909
3910         hidpp->delayed_input = input;
3911 }
3912
3913 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3914
3915 static struct attribute *sysfs_attrs[] = {
3916         &dev_attr_builtin_power_supply.attr,
3917         NULL
3918 };
3919
3920 static const struct attribute_group ps_attribute_group = {
3921         .attrs = sysfs_attrs
3922 };
3923
3924 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3925 {
3926         struct hid_report_enum *re;
3927         struct hid_report *report;
3928
3929         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3930         report = re->report_id_hash[id];
3931         if (!report)
3932                 return 0;
3933
3934         return report->field[0]->report_count + 1;
3935 }
3936
3937 static u8 hidpp_validate_device(struct hid_device *hdev)
3938 {
3939         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3940         int id, report_length;
3941         u8 supported_reports = 0;
3942
3943         id = REPORT_ID_HIDPP_SHORT;
3944         report_length = hidpp_get_report_length(hdev, id);
3945         if (report_length) {
3946                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3947                         goto bad_device;
3948
3949                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3950         }
3951
3952         id = REPORT_ID_HIDPP_LONG;
3953         report_length = hidpp_get_report_length(hdev, id);
3954         if (report_length) {
3955                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3956                         goto bad_device;
3957
3958                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3959         }
3960
3961         id = REPORT_ID_HIDPP_VERY_LONG;
3962         report_length = hidpp_get_report_length(hdev, id);
3963         if (report_length) {
3964                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3965                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3966                         goto bad_device;
3967
3968                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3969                 hidpp->very_long_report_length = report_length;
3970         }
3971
3972         return supported_reports;
3973
3974 bad_device:
3975         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3976         return false;
3977 }
3978
3979 static bool hidpp_application_equals(struct hid_device *hdev,
3980                                      unsigned int application)
3981 {
3982         struct list_head *report_list;
3983         struct hid_report *report;
3984
3985         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3986         report = list_first_entry_or_null(report_list, struct hid_report, list);
3987         return report && report->application == application;
3988 }
3989
3990 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3991 {
3992         struct hidpp_device *hidpp;
3993         int ret;
3994         bool connected;
3995         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3996         struct hidpp_ff_private_data data;
3997
3998         /* report_fixup needs drvdata to be set before we call hid_parse */
3999         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4000         if (!hidpp)
4001                 return -ENOMEM;
4002
4003         hidpp->hid_dev = hdev;
4004         hidpp->name = hdev->name;
4005         hidpp->quirks = id->driver_data;
4006         hid_set_drvdata(hdev, hidpp);
4007
4008         ret = hid_parse(hdev);
4009         if (ret) {
4010                 hid_err(hdev, "%s:parse failed\n", __func__);
4011                 return ret;
4012         }
4013
4014         /*
4015          * Make sure the device is HID++ capable, otherwise treat as generic HID
4016          */
4017         hidpp->supported_reports = hidpp_validate_device(hdev);
4018
4019         if (!hidpp->supported_reports) {
4020                 hid_set_drvdata(hdev, NULL);
4021                 devm_kfree(&hdev->dev, hidpp);
4022                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4023         }
4024
4025         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4026                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4027
4028         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4029             hidpp_application_equals(hdev, HID_GD_MOUSE))
4030                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4031                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4032
4033         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4034             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4035                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4036
4037         if (disable_raw_mode) {
4038                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4039                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4040         }
4041
4042         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4043                 ret = wtp_allocate(hdev, id);
4044                 if (ret)
4045                         return ret;
4046         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4047                 ret = k400_allocate(hdev);
4048                 if (ret)
4049                         return ret;
4050         }
4051
4052         INIT_WORK(&hidpp->work, delayed_work_cb);
4053         mutex_init(&hidpp->send_mutex);
4054         init_waitqueue_head(&hidpp->wait);
4055
4056         /* indicates we are handling the battery properties in the kernel */
4057         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4058         if (ret)
4059                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4060                          hdev->name);
4061
4062         /*
4063          * Plain USB connections need to actually call start and open
4064          * on the transport driver to allow incoming data.
4065          */
4066         ret = hid_hw_start(hdev, 0);
4067         if (ret) {
4068                 hid_err(hdev, "hw start failed\n");
4069                 goto hid_hw_start_fail;
4070         }
4071
4072         ret = hid_hw_open(hdev);
4073         if (ret < 0) {
4074                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4075                         __func__, ret);
4076                 goto hid_hw_open_fail;
4077         }
4078
4079         /* Allow incoming packets */
4080         hid_device_io_start(hdev);
4081
4082         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4083                 hidpp_unifying_init(hidpp);
4084
4085         connected = hidpp_root_get_protocol_version(hidpp) == 0;
4086         atomic_set(&hidpp->connected, connected);
4087         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4088                 if (!connected) {
4089                         ret = -ENODEV;
4090                         hid_err(hdev, "Device not connected");
4091                         goto hid_hw_init_fail;
4092                 }
4093
4094                 hidpp_overwrite_name(hdev);
4095         }
4096
4097         if (connected && hidpp->protocol_major >= 2) {
4098                 ret = hidpp_set_wireless_feature_index(hidpp);
4099                 if (ret == -ENOENT)
4100                         hidpp->wireless_feature_index = 0;
4101                 else if (ret)
4102                         goto hid_hw_init_fail;
4103         }
4104
4105         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4106                 ret = wtp_get_config(hidpp);
4107                 if (ret)
4108                         goto hid_hw_init_fail;
4109         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4110                 ret = g920_get_config(hidpp, &data);
4111                 if (ret)
4112                         goto hid_hw_init_fail;
4113         }
4114
4115         hidpp_connect_event(hidpp);
4116
4117         /* Reset the HID node state */
4118         hid_device_io_stop(hdev);
4119         hid_hw_close(hdev);
4120         hid_hw_stop(hdev);
4121
4122         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4123                 connect_mask &= ~HID_CONNECT_HIDINPUT;
4124
4125         /* Now export the actual inputs and hidraw nodes to the world */
4126         ret = hid_hw_start(hdev, connect_mask);
4127         if (ret) {
4128                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4129                 goto hid_hw_start_fail;
4130         }
4131
4132         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4133                 ret = hidpp_ff_init(hidpp, &data);
4134                 if (ret)
4135                         hid_warn(hidpp->hid_dev,
4136                      "Unable to initialize force feedback support, errno %d\n",
4137                                  ret);
4138         }
4139
4140         return ret;
4141
4142 hid_hw_init_fail:
4143         hid_hw_close(hdev);
4144 hid_hw_open_fail:
4145         hid_hw_stop(hdev);
4146 hid_hw_start_fail:
4147         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4148         cancel_work_sync(&hidpp->work);
4149         mutex_destroy(&hidpp->send_mutex);
4150         return ret;
4151 }
4152
4153 static void hidpp_remove(struct hid_device *hdev)
4154 {
4155         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4156
4157         if (!hidpp)
4158                 return hid_hw_stop(hdev);
4159
4160         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4161
4162         hid_hw_stop(hdev);
4163         cancel_work_sync(&hidpp->work);
4164         mutex_destroy(&hidpp->send_mutex);
4165 }
4166
4167 #define LDJ_DEVICE(product) \
4168         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4169                    USB_VENDOR_ID_LOGITECH, (product))
4170
4171 #define L27MHZ_DEVICE(product) \
4172         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4173                    USB_VENDOR_ID_LOGITECH, (product))
4174
4175 static const struct hid_device_id hidpp_devices[] = {
4176         { /* wireless touchpad */
4177           LDJ_DEVICE(0x4011),
4178           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4179                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4180         { /* wireless touchpad T650 */
4181           LDJ_DEVICE(0x4101),
4182           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4183         { /* wireless touchpad T651 */
4184           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4185                 USB_DEVICE_ID_LOGITECH_T651),
4186           .driver_data = HIDPP_QUIRK_CLASS_WTP },
4187         { /* Mouse Logitech Anywhere MX */
4188           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4189         { /* Mouse Logitech Cube */
4190           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4191         { /* Mouse Logitech M335 */
4192           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4193         { /* Mouse Logitech M515 */
4194           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4195         { /* Mouse logitech M560 */
4196           LDJ_DEVICE(0x402d),
4197           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4198                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4199         { /* Mouse Logitech M705 (firmware RQM17) */
4200           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4201         { /* Mouse Logitech M705 (firmware RQM67) */
4202           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4203         { /* Mouse Logitech M720 */
4204           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4205         { /* Mouse Logitech MX Anywhere 2 */
4206           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207         { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4208         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4209         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4210         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4211         { /* Mouse Logitech MX Anywhere 2S */
4212           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4213         { /* Mouse Logitech MX Master */
4214           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4215         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4216         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217         { /* Mouse Logitech MX Master 2S */
4218           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219         { /* Mouse Logitech MX Master 3 */
4220           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221         { /* Mouse Logitech Performance MX */
4222           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4223         { /* Keyboard logitech K400 */
4224           LDJ_DEVICE(0x4024),
4225           .driver_data = HIDPP_QUIRK_CLASS_K400 },
4226         { /* Solar Keyboard Logitech K750 */
4227           LDJ_DEVICE(0x4002),
4228           .driver_data = HIDPP_QUIRK_CLASS_K750 },
4229         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4230           LDJ_DEVICE(0xb305),
4231           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4232         { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4233           LDJ_DEVICE(0xb309),
4234           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4235         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4236           LDJ_DEVICE(0xb30b),
4237           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4238
4239         { LDJ_DEVICE(HID_ANY_ID) },
4240
4241         { /* Keyboard LX501 (Y-RR53) */
4242           L27MHZ_DEVICE(0x0049),
4243           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4244         { /* Keyboard MX3000 (Y-RAM74) */
4245           L27MHZ_DEVICE(0x0057),
4246           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4247         { /* Keyboard MX3200 (Y-RAV80) */
4248           L27MHZ_DEVICE(0x005c),
4249           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4250         { /* S510 Media Remote */
4251           L27MHZ_DEVICE(0x00fe),
4252           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4253
4254         { L27MHZ_DEVICE(HID_ANY_ID) },
4255
4256         { /* Logitech G403 Wireless Gaming Mouse over USB */
4257           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4258         { /* Logitech G703 Gaming Mouse over USB */
4259           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4260         { /* Logitech G703 Hero Gaming Mouse over USB */
4261           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4262         { /* Logitech G900 Gaming Mouse over USB */
4263           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4264         { /* Logitech G903 Gaming Mouse over USB */
4265           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4266         { /* Logitech G903 Hero Gaming Mouse over USB */
4267           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4268         { /* Logitech G920 Wheel over USB */
4269           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4270                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4271         { /* Logitech G Pro Gaming Mouse over USB */
4272           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4273
4274         { /* MX5000 keyboard over Bluetooth */
4275           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4276           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4277         { /* Dinovo Edge keyboard over Bluetooth */
4278           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4279           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4280         { /* MX5500 keyboard over Bluetooth */
4281           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4282           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4283         { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4284           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4285         { /* MX Master mouse over Bluetooth */
4286           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4287           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4288         { /* MX Ergo trackball over Bluetooth */
4289           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4290         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4291           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4292         { /* MX Master 3 mouse over Bluetooth */
4293           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4294           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4295         {}
4296 };
4297
4298 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4299
4300 static const struct hid_usage_id hidpp_usages[] = {
4301         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4302         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4303 };
4304
4305 static struct hid_driver hidpp_driver = {
4306         .name = "logitech-hidpp-device",
4307         .id_table = hidpp_devices,
4308         .report_fixup = hidpp_report_fixup,
4309         .probe = hidpp_probe,
4310         .remove = hidpp_remove,
4311         .raw_event = hidpp_raw_event,
4312         .usage_table = hidpp_usages,
4313         .event = hidpp_event,
4314         .input_configured = hidpp_input_configured,
4315         .input_mapping = hidpp_input_mapping,
4316         .input_mapped = hidpp_input_mapped,
4317 };
4318
4319 module_hid_driver(hidpp_driver);