scsi: hisi_sas: Reduce HISI_SAS_SGE_PAGE_CNT in size
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/kfifo.h>
26 #include <linux/input/mt.h>
27 #include <linux/workqueue.h>
28 #include <linux/atomic.h>
29 #include <linux/fixp-arith.h>
30 #include <asm/unaligned.h>
31 #include "usbhid/usbhid.h"
32 #include "hid-ids.h"
33
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
37
38 static bool disable_raw_mode;
39 module_param(disable_raw_mode, bool, 0644);
40 MODULE_PARM_DESC(disable_raw_mode,
41         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
42
43 static bool disable_tap_to_click;
44 module_param(disable_tap_to_click, bool, 0644);
45 MODULE_PARM_DESC(disable_tap_to_click,
46         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
47
48 #define REPORT_ID_HIDPP_SHORT                   0x10
49 #define REPORT_ID_HIDPP_LONG                    0x11
50 #define REPORT_ID_HIDPP_VERY_LONG               0x12
51
52 #define HIDPP_REPORT_SHORT_LENGTH               7
53 #define HIDPP_REPORT_LONG_LENGTH                20
54 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94
95 /*
96  * There are two hidpp protocols in use, the first version hidpp10 is known
97  * as register access protocol or RAP, the second version hidpp20 is known as
98  * feature access protocol or FAP
99  *
100  * Most older devices (including the Unifying usb receiver) use the RAP protocol
101  * where as most newer devices use the FAP protocol. Both protocols are
102  * compatible with the underlying transport, which could be usb, Unifiying, or
103  * bluetooth. The message lengths are defined by the hid vendor specific report
104  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
105  * the HIDPP_LONG report type (total message length 20 bytes)
106  *
107  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
108  * messages. The Unifying receiver itself responds to RAP messages (device index
109  * is 0xFF for the receiver), and all messages (short or long) with a device
110  * index between 1 and 6 are passed untouched to the corresponding paired
111  * Unifying device.
112  *
113  * The paired device can be RAP or FAP, it will receive the message untouched
114  * from the Unifiying receiver.
115  */
116
117 struct fap {
118         u8 feature_index;
119         u8 funcindex_clientid;
120         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
121 };
122
123 struct rap {
124         u8 sub_id;
125         u8 reg_address;
126         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
127 };
128
129 struct hidpp_report {
130         u8 report_id;
131         u8 device_index;
132         union {
133                 struct fap fap;
134                 struct rap rap;
135                 u8 rawbytes[sizeof(struct fap)];
136         };
137 } __packed;
138
139 struct hidpp_battery {
140         u8 feature_index;
141         u8 solar_feature_index;
142         struct power_supply_desc desc;
143         struct power_supply *ps;
144         char name[64];
145         int status;
146         int capacity;
147         int level;
148         bool online;
149 };
150
151 /**
152  * struct hidpp_scroll_counter - Utility class for processing high-resolution
153  *                             scroll events.
154  * @dev: the input device for which events should be reported.
155  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
156  * @remainder: counts the number of high-resolution units moved since the last
157  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
158  *             only be used by class methods.
159  * @direction: direction of last movement (1 or -1)
160  * @last_time: last event time, used to reset remainder after inactivity
161  */
162 struct hidpp_scroll_counter {
163         int wheel_multiplier;
164         int remainder;
165         int direction;
166         unsigned long long last_time;
167 };
168
169 struct hidpp_device {
170         struct hid_device *hid_dev;
171         struct input_dev *input;
172         struct mutex send_mutex;
173         void *send_receive_buf;
174         char *name;             /* will never be NULL and should not be freed */
175         wait_queue_head_t wait;
176         int very_long_report_length;
177         bool answer_available;
178         u8 protocol_major;
179         u8 protocol_minor;
180
181         void *private_data;
182
183         struct work_struct work;
184         struct kfifo delayed_work_fifo;
185         atomic_t connected;
186         struct input_dev *delayed_input;
187
188         unsigned long quirks;
189         unsigned long capabilities;
190
191         struct hidpp_battery battery;
192         struct hidpp_scroll_counter vertical_wheel_counter;
193 };
194
195 /* HID++ 1.0 error codes */
196 #define HIDPP_ERROR                             0x8f
197 #define HIDPP_ERROR_SUCCESS                     0x00
198 #define HIDPP_ERROR_INVALID_SUBID               0x01
199 #define HIDPP_ERROR_INVALID_ADRESS              0x02
200 #define HIDPP_ERROR_INVALID_VALUE               0x03
201 #define HIDPP_ERROR_CONNECT_FAIL                0x04
202 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
203 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
204 #define HIDPP_ERROR_BUSY                        0x07
205 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
206 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
207 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
208 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
209 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
210 /* HID++ 2.0 error codes */
211 #define HIDPP20_ERROR                           0xff
212
213 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
214
215 static int __hidpp_send_report(struct hid_device *hdev,
216                                 struct hidpp_report *hidpp_report)
217 {
218         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
219         int fields_count, ret;
220
221         switch (hidpp_report->report_id) {
222         case REPORT_ID_HIDPP_SHORT:
223                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
224                 break;
225         case REPORT_ID_HIDPP_LONG:
226                 fields_count = HIDPP_REPORT_LONG_LENGTH;
227                 break;
228         case REPORT_ID_HIDPP_VERY_LONG:
229                 fields_count = hidpp->very_long_report_length;
230                 break;
231         default:
232                 return -ENODEV;
233         }
234
235         /*
236          * set the device_index as the receiver, it will be overwritten by
237          * hid_hw_request if needed
238          */
239         hidpp_report->device_index = 0xff;
240
241         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
242                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
243         } else {
244                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
245                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
246                         HID_REQ_SET_REPORT);
247         }
248
249         return ret == fields_count ? 0 : -1;
250 }
251
252 /**
253  * hidpp_send_message_sync() returns 0 in case of success, and something else
254  * in case of a failure.
255  * - If ' something else' is positive, that means that an error has been raised
256  *   by the protocol itself.
257  * - If ' something else' is negative, that means that we had a classic error
258  *   (-ENOMEM, -EPIPE, etc...)
259  */
260 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
261         struct hidpp_report *message,
262         struct hidpp_report *response)
263 {
264         int ret;
265
266         mutex_lock(&hidpp->send_mutex);
267
268         hidpp->send_receive_buf = response;
269         hidpp->answer_available = false;
270
271         /*
272          * So that we can later validate the answer when it arrives
273          * in hidpp_raw_event
274          */
275         *response = *message;
276
277         ret = __hidpp_send_report(hidpp->hid_dev, message);
278
279         if (ret) {
280                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
281                 memset(response, 0, sizeof(struct hidpp_report));
282                 goto exit;
283         }
284
285         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
286                                 5*HZ)) {
287                 dbg_hid("%s:timeout waiting for response\n", __func__);
288                 memset(response, 0, sizeof(struct hidpp_report));
289                 ret = -ETIMEDOUT;
290         }
291
292         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
293             response->rap.sub_id == HIDPP_ERROR) {
294                 ret = response->rap.params[1];
295                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
296                 goto exit;
297         }
298
299         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
300                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
301                         response->fap.feature_index == HIDPP20_ERROR) {
302                 ret = response->fap.params[1];
303                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
304                 goto exit;
305         }
306
307 exit:
308         mutex_unlock(&hidpp->send_mutex);
309         return ret;
310
311 }
312
313 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
314         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
315         struct hidpp_report *response)
316 {
317         struct hidpp_report *message;
318         int ret;
319
320         if (param_count > sizeof(message->fap.params))
321                 return -EINVAL;
322
323         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
324         if (!message)
325                 return -ENOMEM;
326
327         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
328                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
329         else
330                 message->report_id = REPORT_ID_HIDPP_LONG;
331         message->fap.feature_index = feat_index;
332         message->fap.funcindex_clientid = funcindex_clientid;
333         memcpy(&message->fap.params, params, param_count);
334
335         ret = hidpp_send_message_sync(hidpp, message, response);
336         kfree(message);
337         return ret;
338 }
339
340 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
341         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
342         struct hidpp_report *response)
343 {
344         struct hidpp_report *message;
345         int ret, max_count;
346
347         switch (report_id) {
348         case REPORT_ID_HIDPP_SHORT:
349                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
350                 break;
351         case REPORT_ID_HIDPP_LONG:
352                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
353                 break;
354         case REPORT_ID_HIDPP_VERY_LONG:
355                 max_count = hidpp_dev->very_long_report_length - 4;
356                 break;
357         default:
358                 return -EINVAL;
359         }
360
361         if (param_count > max_count)
362                 return -EINVAL;
363
364         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
365         if (!message)
366                 return -ENOMEM;
367         message->report_id = report_id;
368         message->rap.sub_id = sub_id;
369         message->rap.reg_address = reg_address;
370         memcpy(&message->rap.params, params, param_count);
371
372         ret = hidpp_send_message_sync(hidpp_dev, message, response);
373         kfree(message);
374         return ret;
375 }
376
377 static void delayed_work_cb(struct work_struct *work)
378 {
379         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
380                                                         work);
381         hidpp_connect_event(hidpp);
382 }
383
384 static inline bool hidpp_match_answer(struct hidpp_report *question,
385                 struct hidpp_report *answer)
386 {
387         return (answer->fap.feature_index == question->fap.feature_index) &&
388            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
389 }
390
391 static inline bool hidpp_match_error(struct hidpp_report *question,
392                 struct hidpp_report *answer)
393 {
394         return ((answer->rap.sub_id == HIDPP_ERROR) ||
395             (answer->fap.feature_index == HIDPP20_ERROR)) &&
396             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
397             (answer->fap.params[0] == question->fap.funcindex_clientid);
398 }
399
400 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
401 {
402         return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
403                 (report->rap.sub_id == 0x41);
404 }
405
406 /**
407  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
408  */
409 static void hidpp_prefix_name(char **name, int name_length)
410 {
411 #define PREFIX_LENGTH 9 /* "Logitech " */
412
413         int new_length;
414         char *new_name;
415
416         if (name_length > PREFIX_LENGTH &&
417             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
418                 /* The prefix has is already in the name */
419                 return;
420
421         new_length = PREFIX_LENGTH + name_length;
422         new_name = kzalloc(new_length, GFP_KERNEL);
423         if (!new_name)
424                 return;
425
426         snprintf(new_name, new_length, "Logitech %s", *name);
427
428         kfree(*name);
429
430         *name = new_name;
431 }
432
433 /**
434  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
435  *                                        events given a high-resolution wheel
436  *                                        movement.
437  * @counter: a hid_scroll_counter struct describing the wheel.
438  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
439  *                units.
440  *
441  * Given a high-resolution movement, this function converts the movement into
442  * fractions of 120 and emits high-resolution scroll events for the input
443  * device. It also uses the multiplier from &struct hid_scroll_counter to
444  * emit low-resolution scroll events when appropriate for
445  * backwards-compatibility with userspace input libraries.
446  */
447 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
448                                                struct hidpp_scroll_counter *counter,
449                                                int hi_res_value)
450 {
451         int low_res_value, remainder, direction;
452         unsigned long long now, previous;
453
454         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
455         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
456
457         remainder = counter->remainder;
458         direction = hi_res_value > 0 ? 1 : -1;
459
460         now = sched_clock();
461         previous = counter->last_time;
462         counter->last_time = now;
463         /*
464          * Reset the remainder after a period of inactivity or when the
465          * direction changes. This prevents the REL_WHEEL emulation point
466          * from sliding for devices that don't always provide the same
467          * number of movements per detent.
468          */
469         if (now - previous > 1000000000 || direction != counter->direction)
470                 remainder = 0;
471
472         counter->direction = direction;
473         remainder += hi_res_value;
474
475         /* Some wheels will rest 7/8ths of a detent from the previous detent
476          * after slow movement, so we want the threshold for low-res events to
477          * be in the middle between two detents (e.g. after 4/8ths) as
478          * opposed to on the detents themselves (8/8ths).
479          */
480         if (abs(remainder) >= 60) {
481                 /* Add (or subtract) 1 because we want to trigger when the wheel
482                  * is half-way to the next detent (i.e. scroll 1 detent after a
483                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
484                  * etc.).
485                  */
486                 low_res_value = remainder / 120;
487                 if (low_res_value == 0)
488                         low_res_value = (hi_res_value > 0 ? 1 : -1);
489                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
490                 remainder -= low_res_value * 120;
491         }
492         counter->remainder = remainder;
493 }
494
495 /* -------------------------------------------------------------------------- */
496 /* HIDP++ 1.0 commands                                                        */
497 /* -------------------------------------------------------------------------- */
498
499 #define HIDPP_SET_REGISTER                              0x80
500 #define HIDPP_GET_REGISTER                              0x81
501 #define HIDPP_SET_LONG_REGISTER                         0x82
502 #define HIDPP_GET_LONG_REGISTER                         0x83
503
504 /**
505  * hidpp10_set_register - Modify a HID++ 1.0 register.
506  * @hidpp_dev: the device to set the register on.
507  * @register_address: the address of the register to modify.
508  * @byte: the byte of the register to modify. Should be less than 3.
509  * @mask: mask of the bits to modify
510  * @value: new values for the bits in mask
511  * Return: 0 if successful, otherwise a negative error code.
512  */
513 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
514         u8 register_address, u8 byte, u8 mask, u8 value)
515 {
516         struct hidpp_report response;
517         int ret;
518         u8 params[3] = { 0 };
519
520         ret = hidpp_send_rap_command_sync(hidpp_dev,
521                                           REPORT_ID_HIDPP_SHORT,
522                                           HIDPP_GET_REGISTER,
523                                           register_address,
524                                           NULL, 0, &response);
525         if (ret)
526                 return ret;
527
528         memcpy(params, response.rap.params, 3);
529
530         params[byte] &= ~mask;
531         params[byte] |= value & mask;
532
533         return hidpp_send_rap_command_sync(hidpp_dev,
534                                            REPORT_ID_HIDPP_SHORT,
535                                            HIDPP_SET_REGISTER,
536                                            register_address,
537                                            params, 3, &response);
538 }
539
540 #define HIDPP_REG_ENABLE_REPORTS                        0x00
541 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
542 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
543 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
544 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
545 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
546
547 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
548 {
549         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
550                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
551 }
552
553 #define HIDPP_REG_FEATURES                              0x01
554 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
555 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
556
557 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
558 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
559 {
560         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
561                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
562 }
563
564 #define HIDPP_REG_BATTERY_STATUS                        0x07
565
566 static int hidpp10_battery_status_map_level(u8 param)
567 {
568         int level;
569
570         switch (param) {
571         case 1 ... 2:
572                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
573                 break;
574         case 3 ... 4:
575                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
576                 break;
577         case 5 ... 6:
578                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
579                 break;
580         case 7:
581                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
582                 break;
583         default:
584                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
585         }
586
587         return level;
588 }
589
590 static int hidpp10_battery_status_map_status(u8 param)
591 {
592         int status;
593
594         switch (param) {
595         case 0x00:
596                 /* discharging (in use) */
597                 status = POWER_SUPPLY_STATUS_DISCHARGING;
598                 break;
599         case 0x21: /* (standard) charging */
600         case 0x24: /* fast charging */
601         case 0x25: /* slow charging */
602                 status = POWER_SUPPLY_STATUS_CHARGING;
603                 break;
604         case 0x26: /* topping charge */
605         case 0x22: /* charge complete */
606                 status = POWER_SUPPLY_STATUS_FULL;
607                 break;
608         case 0x20: /* unknown */
609                 status = POWER_SUPPLY_STATUS_UNKNOWN;
610                 break;
611         /*
612          * 0x01...0x1F = reserved (not charging)
613          * 0x23 = charging error
614          * 0x27..0xff = reserved
615          */
616         default:
617                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
618                 break;
619         }
620
621         return status;
622 }
623
624 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
625 {
626         struct hidpp_report response;
627         int ret, status;
628
629         ret = hidpp_send_rap_command_sync(hidpp,
630                                         REPORT_ID_HIDPP_SHORT,
631                                         HIDPP_GET_REGISTER,
632                                         HIDPP_REG_BATTERY_STATUS,
633                                         NULL, 0, &response);
634         if (ret)
635                 return ret;
636
637         hidpp->battery.level =
638                 hidpp10_battery_status_map_level(response.rap.params[0]);
639         status = hidpp10_battery_status_map_status(response.rap.params[1]);
640         hidpp->battery.status = status;
641         /* the capacity is only available when discharging or full */
642         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
643                                 status == POWER_SUPPLY_STATUS_FULL;
644
645         return 0;
646 }
647
648 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
649
650 static int hidpp10_battery_mileage_map_status(u8 param)
651 {
652         int status;
653
654         switch (param >> 6) {
655         case 0x00:
656                 /* discharging (in use) */
657                 status = POWER_SUPPLY_STATUS_DISCHARGING;
658                 break;
659         case 0x01: /* charging */
660                 status = POWER_SUPPLY_STATUS_CHARGING;
661                 break;
662         case 0x02: /* charge complete */
663                 status = POWER_SUPPLY_STATUS_FULL;
664                 break;
665         /*
666          * 0x03 = charging error
667          */
668         default:
669                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
670                 break;
671         }
672
673         return status;
674 }
675
676 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
677 {
678         struct hidpp_report response;
679         int ret, status;
680
681         ret = hidpp_send_rap_command_sync(hidpp,
682                                         REPORT_ID_HIDPP_SHORT,
683                                         HIDPP_GET_REGISTER,
684                                         HIDPP_REG_BATTERY_MILEAGE,
685                                         NULL, 0, &response);
686         if (ret)
687                 return ret;
688
689         hidpp->battery.capacity = response.rap.params[0];
690         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
691         hidpp->battery.status = status;
692         /* the capacity is only available when discharging or full */
693         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
694                                 status == POWER_SUPPLY_STATUS_FULL;
695
696         return 0;
697 }
698
699 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
700 {
701         struct hidpp_report *report = (struct hidpp_report *)data;
702         int status, capacity, level;
703         bool changed;
704
705         if (report->report_id != REPORT_ID_HIDPP_SHORT)
706                 return 0;
707
708         switch (report->rap.sub_id) {
709         case HIDPP_REG_BATTERY_STATUS:
710                 capacity = hidpp->battery.capacity;
711                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
712                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
713                 break;
714         case HIDPP_REG_BATTERY_MILEAGE:
715                 capacity = report->rap.params[0];
716                 level = hidpp->battery.level;
717                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
718                 break;
719         default:
720                 return 0;
721         }
722
723         changed = capacity != hidpp->battery.capacity ||
724                   level != hidpp->battery.level ||
725                   status != hidpp->battery.status;
726
727         /* the capacity is only available when discharging or full */
728         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
729                                 status == POWER_SUPPLY_STATUS_FULL;
730
731         if (changed) {
732                 hidpp->battery.level = level;
733                 hidpp->battery.status = status;
734                 if (hidpp->battery.ps)
735                         power_supply_changed(hidpp->battery.ps);
736         }
737
738         return 0;
739 }
740
741 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
742 #define HIDPP_EXTENDED_PAIRING                          0x30
743 #define HIDPP_DEVICE_NAME                               0x40
744
745 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
746 {
747         struct hidpp_report response;
748         int ret;
749         u8 params[1] = { HIDPP_DEVICE_NAME };
750         char *name;
751         int len;
752
753         ret = hidpp_send_rap_command_sync(hidpp_dev,
754                                         REPORT_ID_HIDPP_SHORT,
755                                         HIDPP_GET_LONG_REGISTER,
756                                         HIDPP_REG_PAIRING_INFORMATION,
757                                         params, 1, &response);
758         if (ret)
759                 return NULL;
760
761         len = response.rap.params[1];
762
763         if (2 + len > sizeof(response.rap.params))
764                 return NULL;
765
766         if (len < 4) /* logitech devices are usually at least Xddd */
767                 return NULL;
768
769         name = kzalloc(len + 1, GFP_KERNEL);
770         if (!name)
771                 return NULL;
772
773         memcpy(name, &response.rap.params[2], len);
774
775         /* include the terminating '\0' */
776         hidpp_prefix_name(&name, len + 1);
777
778         return name;
779 }
780
781 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
782 {
783         struct hidpp_report response;
784         int ret;
785         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
786
787         ret = hidpp_send_rap_command_sync(hidpp,
788                                         REPORT_ID_HIDPP_SHORT,
789                                         HIDPP_GET_LONG_REGISTER,
790                                         HIDPP_REG_PAIRING_INFORMATION,
791                                         params, 1, &response);
792         if (ret)
793                 return ret;
794
795         /*
796          * We don't care about LE or BE, we will output it as a string
797          * with %4phD, so we need to keep the order.
798          */
799         *serial = *((u32 *)&response.rap.params[1]);
800         return 0;
801 }
802
803 static int hidpp_unifying_init(struct hidpp_device *hidpp)
804 {
805         struct hid_device *hdev = hidpp->hid_dev;
806         const char *name;
807         u32 serial;
808         int ret;
809
810         ret = hidpp_unifying_get_serial(hidpp, &serial);
811         if (ret)
812                 return ret;
813
814         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
815                  hdev->product, &serial);
816         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
817
818         name = hidpp_unifying_get_name(hidpp);
819         if (!name)
820                 return -EIO;
821
822         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
823         dbg_hid("HID++ Unifying: Got name: %s\n", name);
824
825         kfree(name);
826         return 0;
827 }
828
829 /* -------------------------------------------------------------------------- */
830 /* 0x0000: Root                                                               */
831 /* -------------------------------------------------------------------------- */
832
833 #define HIDPP_PAGE_ROOT                                 0x0000
834 #define HIDPP_PAGE_ROOT_IDX                             0x00
835
836 #define CMD_ROOT_GET_FEATURE                            0x01
837 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
838
839 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
840         u8 *feature_index, u8 *feature_type)
841 {
842         struct hidpp_report response;
843         int ret;
844         u8 params[2] = { feature >> 8, feature & 0x00FF };
845
846         ret = hidpp_send_fap_command_sync(hidpp,
847                         HIDPP_PAGE_ROOT_IDX,
848                         CMD_ROOT_GET_FEATURE,
849                         params, 2, &response);
850         if (ret)
851                 return ret;
852
853         if (response.fap.params[0] == 0)
854                 return -ENOENT;
855
856         *feature_index = response.fap.params[0];
857         *feature_type = response.fap.params[1];
858
859         return ret;
860 }
861
862 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
863 {
864         const u8 ping_byte = 0x5a;
865         u8 ping_data[3] = { 0, 0, ping_byte };
866         struct hidpp_report response;
867         int ret;
868
869         ret = hidpp_send_rap_command_sync(hidpp,
870                         REPORT_ID_HIDPP_SHORT,
871                         HIDPP_PAGE_ROOT_IDX,
872                         CMD_ROOT_GET_PROTOCOL_VERSION,
873                         ping_data, sizeof(ping_data), &response);
874
875         if (ret == HIDPP_ERROR_INVALID_SUBID) {
876                 hidpp->protocol_major = 1;
877                 hidpp->protocol_minor = 0;
878                 goto print_version;
879         }
880
881         /* the device might not be connected */
882         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
883                 return -EIO;
884
885         if (ret > 0) {
886                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
887                         __func__, ret);
888                 return -EPROTO;
889         }
890         if (ret)
891                 return ret;
892
893         if (response.rap.params[2] != ping_byte) {
894                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
895                         __func__, response.rap.params[2], ping_byte);
896                 return -EPROTO;
897         }
898
899         hidpp->protocol_major = response.rap.params[0];
900         hidpp->protocol_minor = response.rap.params[1];
901
902 print_version:
903         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
904                  hidpp->protocol_major, hidpp->protocol_minor);
905         return 0;
906 }
907
908 /* -------------------------------------------------------------------------- */
909 /* 0x0005: GetDeviceNameType                                                  */
910 /* -------------------------------------------------------------------------- */
911
912 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
913
914 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
915 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
916 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
917
918 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
919         u8 feature_index, u8 *nameLength)
920 {
921         struct hidpp_report response;
922         int ret;
923
924         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
925                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
926
927         if (ret > 0) {
928                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
929                         __func__, ret);
930                 return -EPROTO;
931         }
932         if (ret)
933                 return ret;
934
935         *nameLength = response.fap.params[0];
936
937         return ret;
938 }
939
940 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
941         u8 feature_index, u8 char_index, char *device_name, int len_buf)
942 {
943         struct hidpp_report response;
944         int ret, i;
945         int count;
946
947         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
948                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
949                 &response);
950
951         if (ret > 0) {
952                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
953                         __func__, ret);
954                 return -EPROTO;
955         }
956         if (ret)
957                 return ret;
958
959         switch (response.report_id) {
960         case REPORT_ID_HIDPP_VERY_LONG:
961                 count = hidpp->very_long_report_length - 4;
962                 break;
963         case REPORT_ID_HIDPP_LONG:
964                 count = HIDPP_REPORT_LONG_LENGTH - 4;
965                 break;
966         case REPORT_ID_HIDPP_SHORT:
967                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
968                 break;
969         default:
970                 return -EPROTO;
971         }
972
973         if (len_buf < count)
974                 count = len_buf;
975
976         for (i = 0; i < count; i++)
977                 device_name[i] = response.fap.params[i];
978
979         return count;
980 }
981
982 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
983 {
984         u8 feature_type;
985         u8 feature_index;
986         u8 __name_length;
987         char *name;
988         unsigned index = 0;
989         int ret;
990
991         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
992                 &feature_index, &feature_type);
993         if (ret)
994                 return NULL;
995
996         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
997                 &__name_length);
998         if (ret)
999                 return NULL;
1000
1001         name = kzalloc(__name_length + 1, GFP_KERNEL);
1002         if (!name)
1003                 return NULL;
1004
1005         while (index < __name_length) {
1006                 ret = hidpp_devicenametype_get_device_name(hidpp,
1007                         feature_index, index, name + index,
1008                         __name_length - index);
1009                 if (ret <= 0) {
1010                         kfree(name);
1011                         return NULL;
1012                 }
1013                 index += ret;
1014         }
1015
1016         /* include the terminating '\0' */
1017         hidpp_prefix_name(&name, __name_length + 1);
1018
1019         return name;
1020 }
1021
1022 /* -------------------------------------------------------------------------- */
1023 /* 0x1000: Battery level status                                               */
1024 /* -------------------------------------------------------------------------- */
1025
1026 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1027
1028 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1029 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1030
1031 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1032
1033 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1034 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1035 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1036
1037 static int hidpp_map_battery_level(int capacity)
1038 {
1039         if (capacity < 11)
1040                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1041         /*
1042          * The spec says this should be < 31 but some devices report 30
1043          * with brand new batteries and Windows reports 30 as "Good".
1044          */
1045         else if (capacity < 30)
1046                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1047         else if (capacity < 81)
1048                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1049         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1050 }
1051
1052 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1053                                                     int *next_capacity,
1054                                                     int *level)
1055 {
1056         int status;
1057
1058         *capacity = data[0];
1059         *next_capacity = data[1];
1060         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1061
1062         /* When discharging, we can rely on the device reported capacity.
1063          * For all other states the device reports 0 (unknown).
1064          */
1065         switch (data[2]) {
1066                 case 0: /* discharging (in use) */
1067                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1068                         *level = hidpp_map_battery_level(*capacity);
1069                         break;
1070                 case 1: /* recharging */
1071                         status = POWER_SUPPLY_STATUS_CHARGING;
1072                         break;
1073                 case 2: /* charge in final stage */
1074                         status = POWER_SUPPLY_STATUS_CHARGING;
1075                         break;
1076                 case 3: /* charge complete */
1077                         status = POWER_SUPPLY_STATUS_FULL;
1078                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1079                         *capacity = 100;
1080                         break;
1081                 case 4: /* recharging below optimal speed */
1082                         status = POWER_SUPPLY_STATUS_CHARGING;
1083                         break;
1084                 /* 5 = invalid battery type
1085                    6 = thermal error
1086                    7 = other charging error */
1087                 default:
1088                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1089                         break;
1090         }
1091
1092         return status;
1093 }
1094
1095 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1096                                                      u8 feature_index,
1097                                                      int *status,
1098                                                      int *capacity,
1099                                                      int *next_capacity,
1100                                                      int *level)
1101 {
1102         struct hidpp_report response;
1103         int ret;
1104         u8 *params = (u8 *)response.fap.params;
1105
1106         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1107                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1108                                           NULL, 0, &response);
1109         if (ret > 0) {
1110                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1111                         __func__, ret);
1112                 return -EPROTO;
1113         }
1114         if (ret)
1115                 return ret;
1116
1117         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1118                                                            next_capacity,
1119                                                            level);
1120
1121         return 0;
1122 }
1123
1124 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1125                                                   u8 feature_index)
1126 {
1127         struct hidpp_report response;
1128         int ret;
1129         u8 *params = (u8 *)response.fap.params;
1130         unsigned int level_count, flags;
1131
1132         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1133                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1134                                           NULL, 0, &response);
1135         if (ret > 0) {
1136                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1137                         __func__, ret);
1138                 return -EPROTO;
1139         }
1140         if (ret)
1141                 return ret;
1142
1143         level_count = params[0];
1144         flags = params[1];
1145
1146         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1147                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1148         else
1149                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1150
1151         return 0;
1152 }
1153
1154 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1155 {
1156         u8 feature_type;
1157         int ret;
1158         int status, capacity, next_capacity, level;
1159
1160         if (hidpp->battery.feature_index == 0xff) {
1161                 ret = hidpp_root_get_feature(hidpp,
1162                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1163                                              &hidpp->battery.feature_index,
1164                                              &feature_type);
1165                 if (ret)
1166                         return ret;
1167         }
1168
1169         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1170                                                 hidpp->battery.feature_index,
1171                                                 &status, &capacity,
1172                                                 &next_capacity, &level);
1173         if (ret)
1174                 return ret;
1175
1176         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1177                                                 hidpp->battery.feature_index);
1178         if (ret)
1179                 return ret;
1180
1181         hidpp->battery.status = status;
1182         hidpp->battery.capacity = capacity;
1183         hidpp->battery.level = level;
1184         /* the capacity is only available when discharging or full */
1185         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1186                                 status == POWER_SUPPLY_STATUS_FULL;
1187
1188         return 0;
1189 }
1190
1191 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1192                                  u8 *data, int size)
1193 {
1194         struct hidpp_report *report = (struct hidpp_report *)data;
1195         int status, capacity, next_capacity, level;
1196         bool changed;
1197
1198         if (report->fap.feature_index != hidpp->battery.feature_index ||
1199             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1200                 return 0;
1201
1202         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1203                                                           &capacity,
1204                                                           &next_capacity,
1205                                                           &level);
1206
1207         /* the capacity is only available when discharging or full */
1208         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1209                                 status == POWER_SUPPLY_STATUS_FULL;
1210
1211         changed = capacity != hidpp->battery.capacity ||
1212                   level != hidpp->battery.level ||
1213                   status != hidpp->battery.status;
1214
1215         if (changed) {
1216                 hidpp->battery.level = level;
1217                 hidpp->battery.capacity = capacity;
1218                 hidpp->battery.status = status;
1219                 if (hidpp->battery.ps)
1220                         power_supply_changed(hidpp->battery.ps);
1221         }
1222
1223         return 0;
1224 }
1225
1226 static enum power_supply_property hidpp_battery_props[] = {
1227         POWER_SUPPLY_PROP_ONLINE,
1228         POWER_SUPPLY_PROP_STATUS,
1229         POWER_SUPPLY_PROP_SCOPE,
1230         POWER_SUPPLY_PROP_MODEL_NAME,
1231         POWER_SUPPLY_PROP_MANUFACTURER,
1232         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1233         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1234         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1235 };
1236
1237 static int hidpp_battery_get_property(struct power_supply *psy,
1238                                       enum power_supply_property psp,
1239                                       union power_supply_propval *val)
1240 {
1241         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1242         int ret = 0;
1243
1244         switch(psp) {
1245                 case POWER_SUPPLY_PROP_STATUS:
1246                         val->intval = hidpp->battery.status;
1247                         break;
1248                 case POWER_SUPPLY_PROP_CAPACITY:
1249                         val->intval = hidpp->battery.capacity;
1250                         break;
1251                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1252                         val->intval = hidpp->battery.level;
1253                         break;
1254                 case POWER_SUPPLY_PROP_SCOPE:
1255                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1256                         break;
1257                 case POWER_SUPPLY_PROP_ONLINE:
1258                         val->intval = hidpp->battery.online;
1259                         break;
1260                 case POWER_SUPPLY_PROP_MODEL_NAME:
1261                         if (!strncmp(hidpp->name, "Logitech ", 9))
1262                                 val->strval = hidpp->name + 9;
1263                         else
1264                                 val->strval = hidpp->name;
1265                         break;
1266                 case POWER_SUPPLY_PROP_MANUFACTURER:
1267                         val->strval = "Logitech";
1268                         break;
1269                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1270                         val->strval = hidpp->hid_dev->uniq;
1271                         break;
1272                 default:
1273                         ret = -EINVAL;
1274                         break;
1275         }
1276
1277         return ret;
1278 }
1279
1280 /* -------------------------------------------------------------------------- */
1281 /* 0x2120: Hi-resolution scrolling                                            */
1282 /* -------------------------------------------------------------------------- */
1283
1284 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1285
1286 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1287
1288 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1289         bool enabled, u8 *multiplier)
1290 {
1291         u8 feature_index;
1292         u8 feature_type;
1293         int ret;
1294         u8 params[1];
1295         struct hidpp_report response;
1296
1297         ret = hidpp_root_get_feature(hidpp,
1298                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1299                                      &feature_index,
1300                                      &feature_type);
1301         if (ret)
1302                 return ret;
1303
1304         params[0] = enabled ? BIT(0) : 0;
1305         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1306                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1307                                           params, sizeof(params), &response);
1308         if (ret)
1309                 return ret;
1310         *multiplier = response.fap.params[1];
1311         return 0;
1312 }
1313
1314 /* -------------------------------------------------------------------------- */
1315 /* 0x2121: HiRes Wheel                                                        */
1316 /* -------------------------------------------------------------------------- */
1317
1318 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1319
1320 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1321 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1322
1323 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1324         u8 *multiplier)
1325 {
1326         u8 feature_index;
1327         u8 feature_type;
1328         int ret;
1329         struct hidpp_report response;
1330
1331         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1332                                      &feature_index, &feature_type);
1333         if (ret)
1334                 goto return_default;
1335
1336         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1337                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1338                                           NULL, 0, &response);
1339         if (ret)
1340                 goto return_default;
1341
1342         *multiplier = response.fap.params[0];
1343         return 0;
1344 return_default:
1345         hid_warn(hidpp->hid_dev,
1346                  "Couldn't get wheel multiplier (error %d)\n", ret);
1347         return ret;
1348 }
1349
1350 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1351         bool high_resolution, bool use_hidpp)
1352 {
1353         u8 feature_index;
1354         u8 feature_type;
1355         int ret;
1356         u8 params[1];
1357         struct hidpp_report response;
1358
1359         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1360                                      &feature_index, &feature_type);
1361         if (ret)
1362                 return ret;
1363
1364         params[0] = (invert          ? BIT(2) : 0) |
1365                     (high_resolution ? BIT(1) : 0) |
1366                     (use_hidpp       ? BIT(0) : 0);
1367
1368         return hidpp_send_fap_command_sync(hidpp, feature_index,
1369                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1370                                            params, sizeof(params), &response);
1371 }
1372
1373 /* -------------------------------------------------------------------------- */
1374 /* 0x4301: Solar Keyboard                                                     */
1375 /* -------------------------------------------------------------------------- */
1376
1377 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1378
1379 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1380
1381 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1382 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1383 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1384
1385 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1386 {
1387         struct hidpp_report response;
1388         u8 params[2] = { 1, 1 };
1389         u8 feature_type;
1390         int ret;
1391
1392         if (hidpp->battery.feature_index == 0xff) {
1393                 ret = hidpp_root_get_feature(hidpp,
1394                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1395                                              &hidpp->battery.solar_feature_index,
1396                                              &feature_type);
1397                 if (ret)
1398                         return ret;
1399         }
1400
1401         ret = hidpp_send_fap_command_sync(hidpp,
1402                                           hidpp->battery.solar_feature_index,
1403                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1404                                           params, 2, &response);
1405         if (ret > 0) {
1406                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1407                         __func__, ret);
1408                 return -EPROTO;
1409         }
1410         if (ret)
1411                 return ret;
1412
1413         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1414
1415         return 0;
1416 }
1417
1418 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1419                                      u8 *data, int size)
1420 {
1421         struct hidpp_report *report = (struct hidpp_report *)data;
1422         int capacity, lux, status;
1423         u8 function;
1424
1425         function = report->fap.funcindex_clientid;
1426
1427
1428         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1429             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1430               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1431               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1432                 return 0;
1433
1434         capacity = report->fap.params[0];
1435
1436         switch (function) {
1437         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1438                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1439                 if (lux > 200)
1440                         status = POWER_SUPPLY_STATUS_CHARGING;
1441                 else
1442                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1443                 break;
1444         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1445         default:
1446                 if (capacity < hidpp->battery.capacity)
1447                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1448                 else
1449                         status = POWER_SUPPLY_STATUS_CHARGING;
1450
1451         }
1452
1453         if (capacity == 100)
1454                 status = POWER_SUPPLY_STATUS_FULL;
1455
1456         hidpp->battery.online = true;
1457         if (capacity != hidpp->battery.capacity ||
1458             status != hidpp->battery.status) {
1459                 hidpp->battery.capacity = capacity;
1460                 hidpp->battery.status = status;
1461                 if (hidpp->battery.ps)
1462                         power_supply_changed(hidpp->battery.ps);
1463         }
1464
1465         return 0;
1466 }
1467
1468 /* -------------------------------------------------------------------------- */
1469 /* 0x6010: Touchpad FW items                                                  */
1470 /* -------------------------------------------------------------------------- */
1471
1472 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1473
1474 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1475
1476 struct hidpp_touchpad_fw_items {
1477         uint8_t presence;
1478         uint8_t desired_state;
1479         uint8_t state;
1480         uint8_t persistent;
1481 };
1482
1483 /**
1484  * send a set state command to the device by reading the current items->state
1485  * field. items is then filled with the current state.
1486  */
1487 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1488                                        u8 feature_index,
1489                                        struct hidpp_touchpad_fw_items *items)
1490 {
1491         struct hidpp_report response;
1492         int ret;
1493         u8 *params = (u8 *)response.fap.params;
1494
1495         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1496                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1497
1498         if (ret > 0) {
1499                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1500                         __func__, ret);
1501                 return -EPROTO;
1502         }
1503         if (ret)
1504                 return ret;
1505
1506         items->presence = params[0];
1507         items->desired_state = params[1];
1508         items->state = params[2];
1509         items->persistent = params[3];
1510
1511         return 0;
1512 }
1513
1514 /* -------------------------------------------------------------------------- */
1515 /* 0x6100: TouchPadRawXY                                                      */
1516 /* -------------------------------------------------------------------------- */
1517
1518 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1519
1520 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1521 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1522
1523 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1524
1525 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1526 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1527
1528 struct hidpp_touchpad_raw_info {
1529         u16 x_size;
1530         u16 y_size;
1531         u8 z_range;
1532         u8 area_range;
1533         u8 timestamp_unit;
1534         u8 maxcontacts;
1535         u8 origin;
1536         u16 res;
1537 };
1538
1539 struct hidpp_touchpad_raw_xy_finger {
1540         u8 contact_type;
1541         u8 contact_status;
1542         u16 x;
1543         u16 y;
1544         u8 z;
1545         u8 area;
1546         u8 finger_id;
1547 };
1548
1549 struct hidpp_touchpad_raw_xy {
1550         u16 timestamp;
1551         struct hidpp_touchpad_raw_xy_finger fingers[2];
1552         u8 spurious_flag;
1553         u8 end_of_frame;
1554         u8 finger_count;
1555         u8 button;
1556 };
1557
1558 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1559         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1560 {
1561         struct hidpp_report response;
1562         int ret;
1563         u8 *params = (u8 *)response.fap.params;
1564
1565         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1566                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1567
1568         if (ret > 0) {
1569                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1570                         __func__, ret);
1571                 return -EPROTO;
1572         }
1573         if (ret)
1574                 return ret;
1575
1576         raw_info->x_size = get_unaligned_be16(&params[0]);
1577         raw_info->y_size = get_unaligned_be16(&params[2]);
1578         raw_info->z_range = params[4];
1579         raw_info->area_range = params[5];
1580         raw_info->maxcontacts = params[7];
1581         raw_info->origin = params[8];
1582         /* res is given in unit per inch */
1583         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1584
1585         return ret;
1586 }
1587
1588 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1589                 u8 feature_index, bool send_raw_reports,
1590                 bool sensor_enhanced_settings)
1591 {
1592         struct hidpp_report response;
1593
1594         /*
1595          * Params:
1596          *   bit 0 - enable raw
1597          *   bit 1 - 16bit Z, no area
1598          *   bit 2 - enhanced sensitivity
1599          *   bit 3 - width, height (4 bits each) instead of area
1600          *   bit 4 - send raw + gestures (degrades smoothness)
1601          *   remaining bits - reserved
1602          */
1603         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1604
1605         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1606                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1607 }
1608
1609 static void hidpp_touchpad_touch_event(u8 *data,
1610         struct hidpp_touchpad_raw_xy_finger *finger)
1611 {
1612         u8 x_m = data[0] << 2;
1613         u8 y_m = data[2] << 2;
1614
1615         finger->x = x_m << 6 | data[1];
1616         finger->y = y_m << 6 | data[3];
1617
1618         finger->contact_type = data[0] >> 6;
1619         finger->contact_status = data[2] >> 6;
1620
1621         finger->z = data[4];
1622         finger->area = data[5];
1623         finger->finger_id = data[6] >> 4;
1624 }
1625
1626 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1627                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1628 {
1629         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1630         raw_xy->end_of_frame = data[8] & 0x01;
1631         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1632         raw_xy->finger_count = data[15] & 0x0f;
1633         raw_xy->button = (data[8] >> 2) & 0x01;
1634
1635         if (raw_xy->finger_count) {
1636                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1637                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1638         }
1639 }
1640
1641 /* -------------------------------------------------------------------------- */
1642 /* 0x8123: Force feedback support                                             */
1643 /* -------------------------------------------------------------------------- */
1644
1645 #define HIDPP_FF_GET_INFO               0x01
1646 #define HIDPP_FF_RESET_ALL              0x11
1647 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1648 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1649 #define HIDPP_FF_DESTROY_EFFECT         0x41
1650 #define HIDPP_FF_GET_APERTURE           0x51
1651 #define HIDPP_FF_SET_APERTURE           0x61
1652 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1653 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1654
1655 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1656 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1657 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1658 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1659
1660 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1661 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1662 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1663 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1664 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1665 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1666 #define HIDPP_FF_EFFECT_SPRING          0x06
1667 #define HIDPP_FF_EFFECT_DAMPER          0x07
1668 #define HIDPP_FF_EFFECT_FRICTION        0x08
1669 #define HIDPP_FF_EFFECT_INERTIA         0x09
1670 #define HIDPP_FF_EFFECT_RAMP            0x0A
1671
1672 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1673
1674 #define HIDPP_FF_EFFECTID_NONE          -1
1675 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1676
1677 #define HIDPP_FF_MAX_PARAMS     20
1678 #define HIDPP_FF_RESERVED_SLOTS 1
1679
1680 struct hidpp_ff_private_data {
1681         struct hidpp_device *hidpp;
1682         u8 feature_index;
1683         u8 version;
1684         u16 gain;
1685         s16 range;
1686         u8 slot_autocenter;
1687         u8 num_effects;
1688         int *effect_ids;
1689         struct workqueue_struct *wq;
1690         atomic_t workqueue_size;
1691 };
1692
1693 struct hidpp_ff_work_data {
1694         struct work_struct work;
1695         struct hidpp_ff_private_data *data;
1696         int effect_id;
1697         u8 command;
1698         u8 params[HIDPP_FF_MAX_PARAMS];
1699         u8 size;
1700 };
1701
1702 static const signed short hidpp_ff_effects[] = {
1703         FF_CONSTANT,
1704         FF_PERIODIC,
1705         FF_SINE,
1706         FF_SQUARE,
1707         FF_SAW_UP,
1708         FF_SAW_DOWN,
1709         FF_TRIANGLE,
1710         FF_SPRING,
1711         FF_DAMPER,
1712         FF_AUTOCENTER,
1713         FF_GAIN,
1714         -1
1715 };
1716
1717 static const signed short hidpp_ff_effects_v2[] = {
1718         FF_RAMP,
1719         FF_FRICTION,
1720         FF_INERTIA,
1721         -1
1722 };
1723
1724 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1725         HIDPP_FF_EFFECT_SPRING,
1726         HIDPP_FF_EFFECT_FRICTION,
1727         HIDPP_FF_EFFECT_DAMPER,
1728         HIDPP_FF_EFFECT_INERTIA
1729 };
1730
1731 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1732         "spring",
1733         "friction",
1734         "damper",
1735         "inertia"
1736 };
1737
1738
1739 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1740 {
1741         int i;
1742
1743         for (i = 0; i < data->num_effects; i++)
1744                 if (data->effect_ids[i] == effect_id)
1745                         return i+1;
1746
1747         return 0;
1748 }
1749
1750 static void hidpp_ff_work_handler(struct work_struct *w)
1751 {
1752         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1753         struct hidpp_ff_private_data *data = wd->data;
1754         struct hidpp_report response;
1755         u8 slot;
1756         int ret;
1757
1758         /* add slot number if needed */
1759         switch (wd->effect_id) {
1760         case HIDPP_FF_EFFECTID_AUTOCENTER:
1761                 wd->params[0] = data->slot_autocenter;
1762                 break;
1763         case HIDPP_FF_EFFECTID_NONE:
1764                 /* leave slot as zero */
1765                 break;
1766         default:
1767                 /* find current slot for effect */
1768                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1769                 break;
1770         }
1771
1772         /* send command and wait for reply */
1773         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1774                 wd->command, wd->params, wd->size, &response);
1775
1776         if (ret) {
1777                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1778                 goto out;
1779         }
1780
1781         /* parse return data */
1782         switch (wd->command) {
1783         case HIDPP_FF_DOWNLOAD_EFFECT:
1784                 slot = response.fap.params[0];
1785                 if (slot > 0 && slot <= data->num_effects) {
1786                         if (wd->effect_id >= 0)
1787                                 /* regular effect uploaded */
1788                                 data->effect_ids[slot-1] = wd->effect_id;
1789                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1790                                 /* autocenter spring uploaded */
1791                                 data->slot_autocenter = slot;
1792                 }
1793                 break;
1794         case HIDPP_FF_DESTROY_EFFECT:
1795                 if (wd->effect_id >= 0)
1796                         /* regular effect destroyed */
1797                         data->effect_ids[wd->params[0]-1] = -1;
1798                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1799                         /* autocenter spring destoyed */
1800                         data->slot_autocenter = 0;
1801                 break;
1802         case HIDPP_FF_SET_GLOBAL_GAINS:
1803                 data->gain = (wd->params[0] << 8) + wd->params[1];
1804                 break;
1805         case HIDPP_FF_SET_APERTURE:
1806                 data->range = (wd->params[0] << 8) + wd->params[1];
1807                 break;
1808         default:
1809                 /* no action needed */
1810                 break;
1811         }
1812
1813 out:
1814         atomic_dec(&data->workqueue_size);
1815         kfree(wd);
1816 }
1817
1818 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1819 {
1820         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1821         int s;
1822
1823         if (!wd)
1824                 return -ENOMEM;
1825
1826         INIT_WORK(&wd->work, hidpp_ff_work_handler);
1827
1828         wd->data = data;
1829         wd->effect_id = effect_id;
1830         wd->command = command;
1831         wd->size = size;
1832         memcpy(wd->params, params, size);
1833
1834         atomic_inc(&data->workqueue_size);
1835         queue_work(data->wq, &wd->work);
1836
1837         /* warn about excessive queue size */
1838         s = atomic_read(&data->workqueue_size);
1839         if (s >= 20 && s % 20 == 0)
1840                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1841
1842         return 0;
1843 }
1844
1845 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1846 {
1847         struct hidpp_ff_private_data *data = dev->ff->private;
1848         u8 params[20];
1849         u8 size;
1850         int force;
1851
1852         /* set common parameters */
1853         params[2] = effect->replay.length >> 8;
1854         params[3] = effect->replay.length & 255;
1855         params[4] = effect->replay.delay >> 8;
1856         params[5] = effect->replay.delay & 255;
1857
1858         switch (effect->type) {
1859         case FF_CONSTANT:
1860                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1861                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
1862                 params[6] = force >> 8;
1863                 params[7] = force & 255;
1864                 params[8] = effect->u.constant.envelope.attack_level >> 7;
1865                 params[9] = effect->u.constant.envelope.attack_length >> 8;
1866                 params[10] = effect->u.constant.envelope.attack_length & 255;
1867                 params[11] = effect->u.constant.envelope.fade_level >> 7;
1868                 params[12] = effect->u.constant.envelope.fade_length >> 8;
1869                 params[13] = effect->u.constant.envelope.fade_length & 255;
1870                 size = 14;
1871                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1872                                 effect->u.constant.level,
1873                                 effect->direction, force);
1874                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1875                                 effect->u.constant.envelope.attack_level,
1876                                 effect->u.constant.envelope.attack_length,
1877                                 effect->u.constant.envelope.fade_level,
1878                                 effect->u.constant.envelope.fade_length);
1879                 break;
1880         case FF_PERIODIC:
1881         {
1882                 switch (effect->u.periodic.waveform) {
1883                 case FF_SINE:
1884                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1885                         break;
1886                 case FF_SQUARE:
1887                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1888                         break;
1889                 case FF_SAW_UP:
1890                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1891                         break;
1892                 case FF_SAW_DOWN:
1893                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1894                         break;
1895                 case FF_TRIANGLE:
1896                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1897                         break;
1898                 default:
1899                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1900                         return -EINVAL;
1901                 }
1902                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1903                 params[6] = effect->u.periodic.magnitude >> 8;
1904                 params[7] = effect->u.periodic.magnitude & 255;
1905                 params[8] = effect->u.periodic.offset >> 8;
1906                 params[9] = effect->u.periodic.offset & 255;
1907                 params[10] = effect->u.periodic.period >> 8;
1908                 params[11] = effect->u.periodic.period & 255;
1909                 params[12] = effect->u.periodic.phase >> 8;
1910                 params[13] = effect->u.periodic.phase & 255;
1911                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
1912                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
1913                 params[16] = effect->u.periodic.envelope.attack_length & 255;
1914                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
1915                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
1916                 params[19] = effect->u.periodic.envelope.fade_length & 255;
1917                 size = 20;
1918                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1919                                 effect->u.periodic.magnitude, effect->direction,
1920                                 effect->u.periodic.offset,
1921                                 effect->u.periodic.period,
1922                                 effect->u.periodic.phase);
1923                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1924                                 effect->u.periodic.envelope.attack_level,
1925                                 effect->u.periodic.envelope.attack_length,
1926                                 effect->u.periodic.envelope.fade_level,
1927                                 effect->u.periodic.envelope.fade_length);
1928                 break;
1929         }
1930         case FF_RAMP:
1931                 params[1] = HIDPP_FF_EFFECT_RAMP;
1932                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1933                 params[6] = force >> 8;
1934                 params[7] = force & 255;
1935                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1936                 params[8] = force >> 8;
1937                 params[9] = force & 255;
1938                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
1939                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
1940                 params[12] = effect->u.ramp.envelope.attack_length & 255;
1941                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
1942                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
1943                 params[15] = effect->u.ramp.envelope.fade_length & 255;
1944                 size = 16;
1945                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1946                                 effect->u.ramp.start_level,
1947                                 effect->u.ramp.end_level,
1948                                 effect->direction, force);
1949                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1950                                 effect->u.ramp.envelope.attack_level,
1951                                 effect->u.ramp.envelope.attack_length,
1952                                 effect->u.ramp.envelope.fade_level,
1953                                 effect->u.ramp.envelope.fade_length);
1954                 break;
1955         case FF_FRICTION:
1956         case FF_INERTIA:
1957         case FF_SPRING:
1958         case FF_DAMPER:
1959                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1960                 params[6] = effect->u.condition[0].left_saturation >> 9;
1961                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1962                 params[8] = effect->u.condition[0].left_coeff >> 8;
1963                 params[9] = effect->u.condition[0].left_coeff & 255;
1964                 params[10] = effect->u.condition[0].deadband >> 9;
1965                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1966                 params[12] = effect->u.condition[0].center >> 8;
1967                 params[13] = effect->u.condition[0].center & 255;
1968                 params[14] = effect->u.condition[0].right_coeff >> 8;
1969                 params[15] = effect->u.condition[0].right_coeff & 255;
1970                 params[16] = effect->u.condition[0].right_saturation >> 9;
1971                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1972                 size = 18;
1973                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1974                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1975                                 effect->u.condition[0].left_coeff,
1976                                 effect->u.condition[0].left_saturation,
1977                                 effect->u.condition[0].right_coeff,
1978                                 effect->u.condition[0].right_saturation);
1979                 dbg_hid("          deadband=%d, center=%d\n",
1980                                 effect->u.condition[0].deadband,
1981                                 effect->u.condition[0].center);
1982                 break;
1983         default:
1984                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1985                 return -EINVAL;
1986         }
1987
1988         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1989 }
1990
1991 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1992 {
1993         struct hidpp_ff_private_data *data = dev->ff->private;
1994         u8 params[2];
1995
1996         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1997
1998         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1999
2000         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2001 }
2002
2003 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2004 {
2005         struct hidpp_ff_private_data *data = dev->ff->private;
2006         u8 slot = 0;
2007
2008         dbg_hid("Erasing effect %d.\n", effect_id);
2009
2010         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2011 }
2012
2013 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2014 {
2015         struct hidpp_ff_private_data *data = dev->ff->private;
2016         u8 params[18];
2017
2018         dbg_hid("Setting autocenter to %d.\n", magnitude);
2019
2020         /* start a standard spring effect */
2021         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2022         /* zero delay and duration */
2023         params[2] = params[3] = params[4] = params[5] = 0;
2024         /* set coeff to 25% of saturation */
2025         params[8] = params[14] = magnitude >> 11;
2026         params[9] = params[15] = (magnitude >> 3) & 255;
2027         params[6] = params[16] = magnitude >> 9;
2028         params[7] = params[17] = (magnitude >> 1) & 255;
2029         /* zero deadband and center */
2030         params[10] = params[11] = params[12] = params[13] = 0;
2031
2032         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2033 }
2034
2035 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2036 {
2037         struct hidpp_ff_private_data *data = dev->ff->private;
2038         u8 params[4];
2039
2040         dbg_hid("Setting gain to %d.\n", gain);
2041
2042         params[0] = gain >> 8;
2043         params[1] = gain & 255;
2044         params[2] = 0; /* no boost */
2045         params[3] = 0;
2046
2047         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2048 }
2049
2050 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2051 {
2052         struct hid_device *hid = to_hid_device(dev);
2053         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2054         struct input_dev *idev = hidinput->input;
2055         struct hidpp_ff_private_data *data = idev->ff->private;
2056
2057         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2058 }
2059
2060 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2061 {
2062         struct hid_device *hid = to_hid_device(dev);
2063         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2064         struct input_dev *idev = hidinput->input;
2065         struct hidpp_ff_private_data *data = idev->ff->private;
2066         u8 params[2];
2067         int range = simple_strtoul(buf, NULL, 10);
2068
2069         range = clamp(range, 180, 900);
2070
2071         params[0] = range >> 8;
2072         params[1] = range & 0x00FF;
2073
2074         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2075
2076         return count;
2077 }
2078
2079 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2080
2081 static void hidpp_ff_destroy(struct ff_device *ff)
2082 {
2083         struct hidpp_ff_private_data *data = ff->private;
2084
2085         kfree(data->effect_ids);
2086 }
2087
2088 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2089 {
2090         struct hid_device *hid = hidpp->hid_dev;
2091         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2092         struct input_dev *dev = hidinput->input;
2093         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2094         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2095         struct ff_device *ff;
2096         struct hidpp_report response;
2097         struct hidpp_ff_private_data *data;
2098         int error, j, num_slots;
2099         u8 version;
2100
2101         if (!dev) {
2102                 hid_err(hid, "Struct input_dev not set!\n");
2103                 return -EINVAL;
2104         }
2105
2106         /* Get firmware release */
2107         version = bcdDevice & 255;
2108
2109         /* Set supported force feedback capabilities */
2110         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2111                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2112         if (version > 1)
2113                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2114                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2115
2116         /* Read number of slots available in device */
2117         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2118                 HIDPP_FF_GET_INFO, NULL, 0, &response);
2119         if (error) {
2120                 if (error < 0)
2121                         return error;
2122                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2123                         __func__, error);
2124                 return -EPROTO;
2125         }
2126
2127         num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2128
2129         error = input_ff_create(dev, num_slots);
2130
2131         if (error) {
2132                 hid_err(dev, "Failed to create FF device!\n");
2133                 return error;
2134         }
2135
2136         data = kzalloc(sizeof(*data), GFP_KERNEL);
2137         if (!data)
2138                 return -ENOMEM;
2139         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2140         if (!data->effect_ids) {
2141                 kfree(data);
2142                 return -ENOMEM;
2143         }
2144         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2145         if (!data->wq) {
2146                 kfree(data->effect_ids);
2147                 kfree(data);
2148                 return -ENOMEM;
2149         }
2150
2151         data->hidpp = hidpp;
2152         data->feature_index = feature_index;
2153         data->version = version;
2154         data->slot_autocenter = 0;
2155         data->num_effects = num_slots;
2156         for (j = 0; j < num_slots; j++)
2157                 data->effect_ids[j] = -1;
2158
2159         ff = dev->ff;
2160         ff->private = data;
2161
2162         ff->upload = hidpp_ff_upload_effect;
2163         ff->erase = hidpp_ff_erase_effect;
2164         ff->playback = hidpp_ff_playback;
2165         ff->set_gain = hidpp_ff_set_gain;
2166         ff->set_autocenter = hidpp_ff_set_autocenter;
2167         ff->destroy = hidpp_ff_destroy;
2168
2169
2170         /* reset all forces */
2171         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2172                 HIDPP_FF_RESET_ALL, NULL, 0, &response);
2173
2174         /* Read current Range */
2175         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2176                 HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2177         if (error)
2178                 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2179         data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2180
2181         /* Create sysfs interface */
2182         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2183         if (error)
2184                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2185
2186         /* Read the current gain values */
2187         error = hidpp_send_fap_command_sync(hidpp, feature_index,
2188                 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2189         if (error)
2190                 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2191         data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2192         /* ignore boost value at response.fap.params[2] */
2193
2194         /* init the hardware command queue */
2195         atomic_set(&data->workqueue_size, 0);
2196
2197         /* initialize with zero autocenter to get wheel in usable state */
2198         hidpp_ff_set_autocenter(dev, 0);
2199
2200         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2201                  version);
2202
2203         return 0;
2204 }
2205
2206 static int hidpp_ff_deinit(struct hid_device *hid)
2207 {
2208         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2209         struct input_dev *dev = hidinput->input;
2210         struct hidpp_ff_private_data *data;
2211
2212         if (!dev) {
2213                 hid_err(hid, "Struct input_dev not found!\n");
2214                 return -EINVAL;
2215         }
2216
2217         hid_info(hid, "Unloading HID++ force feedback.\n");
2218         data = dev->ff->private;
2219         if (!data) {
2220                 hid_err(hid, "Private data not found!\n");
2221                 return -EINVAL;
2222         }
2223
2224         destroy_workqueue(data->wq);
2225         device_remove_file(&hid->dev, &dev_attr_range);
2226
2227         return 0;
2228 }
2229
2230
2231 /* ************************************************************************** */
2232 /*                                                                            */
2233 /* Device Support                                                             */
2234 /*                                                                            */
2235 /* ************************************************************************** */
2236
2237 /* -------------------------------------------------------------------------- */
2238 /* Touchpad HID++ devices                                                     */
2239 /* -------------------------------------------------------------------------- */
2240
2241 #define WTP_MANUAL_RESOLUTION                           39
2242
2243 struct wtp_data {
2244         u16 x_size, y_size;
2245         u8 finger_count;
2246         u8 mt_feature_index;
2247         u8 button_feature_index;
2248         u8 maxcontacts;
2249         bool flip_y;
2250         unsigned int resolution;
2251 };
2252
2253 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2254                 struct hid_field *field, struct hid_usage *usage,
2255                 unsigned long **bit, int *max)
2256 {
2257         return -1;
2258 }
2259
2260 static void wtp_populate_input(struct hidpp_device *hidpp,
2261                                struct input_dev *input_dev)
2262 {
2263         struct wtp_data *wd = hidpp->private_data;
2264
2265         __set_bit(EV_ABS, input_dev->evbit);
2266         __set_bit(EV_KEY, input_dev->evbit);
2267         __clear_bit(EV_REL, input_dev->evbit);
2268         __clear_bit(EV_LED, input_dev->evbit);
2269
2270         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2271         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2272         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2273         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2274
2275         /* Max pressure is not given by the devices, pick one */
2276         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2277
2278         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2279
2280         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2281                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2282         else
2283                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2284
2285         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2286                 INPUT_MT_DROP_UNUSED);
2287 }
2288
2289 static void wtp_touch_event(struct hidpp_device *hidpp,
2290         struct hidpp_touchpad_raw_xy_finger *touch_report)
2291 {
2292         struct wtp_data *wd = hidpp->private_data;
2293         int slot;
2294
2295         if (!touch_report->finger_id || touch_report->contact_type)
2296                 /* no actual data */
2297                 return;
2298
2299         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2300
2301         input_mt_slot(hidpp->input, slot);
2302         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2303                                         touch_report->contact_status);
2304         if (touch_report->contact_status) {
2305                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2306                                 touch_report->x);
2307                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2308                                 wd->flip_y ? wd->y_size - touch_report->y :
2309                                              touch_report->y);
2310                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2311                                 touch_report->area);
2312         }
2313 }
2314
2315 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2316                 struct hidpp_touchpad_raw_xy *raw)
2317 {
2318         int i;
2319
2320         for (i = 0; i < 2; i++)
2321                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2322
2323         if (raw->end_of_frame &&
2324             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2325                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2326
2327         if (raw->end_of_frame || raw->finger_count <= 2) {
2328                 input_mt_sync_frame(hidpp->input);
2329                 input_sync(hidpp->input);
2330         }
2331 }
2332
2333 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2334 {
2335         struct wtp_data *wd = hidpp->private_data;
2336         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2337                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2338         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2339                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2340         struct hidpp_touchpad_raw_xy raw = {
2341                 .timestamp = data[1],
2342                 .fingers = {
2343                         {
2344                                 .contact_type = 0,
2345                                 .contact_status = !!data[7],
2346                                 .x = get_unaligned_le16(&data[3]),
2347                                 .y = get_unaligned_le16(&data[5]),
2348                                 .z = c1_area,
2349                                 .area = c1_area,
2350                                 .finger_id = data[2],
2351                         }, {
2352                                 .contact_type = 0,
2353                                 .contact_status = !!data[13],
2354                                 .x = get_unaligned_le16(&data[9]),
2355                                 .y = get_unaligned_le16(&data[11]),
2356                                 .z = c2_area,
2357                                 .area = c2_area,
2358                                 .finger_id = data[8],
2359                         }
2360                 },
2361                 .finger_count = wd->maxcontacts,
2362                 .spurious_flag = 0,
2363                 .end_of_frame = (data[0] >> 7) == 0,
2364                 .button = data[0] & 0x01,
2365         };
2366
2367         wtp_send_raw_xy_event(hidpp, &raw);
2368
2369         return 1;
2370 }
2371
2372 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2373 {
2374         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2375         struct wtp_data *wd = hidpp->private_data;
2376         struct hidpp_report *report = (struct hidpp_report *)data;
2377         struct hidpp_touchpad_raw_xy raw;
2378
2379         if (!wd || !hidpp->input)
2380                 return 1;
2381
2382         switch (data[0]) {
2383         case 0x02:
2384                 if (size < 2) {
2385                         hid_err(hdev, "Received HID report of bad size (%d)",
2386                                 size);
2387                         return 1;
2388                 }
2389                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2390                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2391                                         !!(data[1] & 0x01));
2392                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2393                                         !!(data[1] & 0x02));
2394                         input_sync(hidpp->input);
2395                         return 0;
2396                 } else {
2397                         if (size < 21)
2398                                 return 1;
2399                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2400                 }
2401         case REPORT_ID_HIDPP_LONG:
2402                 /* size is already checked in hidpp_raw_event. */
2403                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2404                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2405                         return 1;
2406                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2407
2408                 wtp_send_raw_xy_event(hidpp, &raw);
2409                 return 0;
2410         }
2411
2412         return 0;
2413 }
2414
2415 static int wtp_get_config(struct hidpp_device *hidpp)
2416 {
2417         struct wtp_data *wd = hidpp->private_data;
2418         struct hidpp_touchpad_raw_info raw_info = {0};
2419         u8 feature_type;
2420         int ret;
2421
2422         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2423                 &wd->mt_feature_index, &feature_type);
2424         if (ret)
2425                 /* means that the device is not powered up */
2426                 return ret;
2427
2428         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2429                 &raw_info);
2430         if (ret)
2431                 return ret;
2432
2433         wd->x_size = raw_info.x_size;
2434         wd->y_size = raw_info.y_size;
2435         wd->maxcontacts = raw_info.maxcontacts;
2436         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2437         wd->resolution = raw_info.res;
2438         if (!wd->resolution)
2439                 wd->resolution = WTP_MANUAL_RESOLUTION;
2440
2441         return 0;
2442 }
2443
2444 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2445 {
2446         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2447         struct wtp_data *wd;
2448
2449         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2450                         GFP_KERNEL);
2451         if (!wd)
2452                 return -ENOMEM;
2453
2454         hidpp->private_data = wd;
2455
2456         return 0;
2457 };
2458
2459 static int wtp_connect(struct hid_device *hdev, bool connected)
2460 {
2461         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2462         struct wtp_data *wd = hidpp->private_data;
2463         int ret;
2464
2465         if (!wd->x_size) {
2466                 ret = wtp_get_config(hidpp);
2467                 if (ret) {
2468                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2469                         return ret;
2470                 }
2471         }
2472
2473         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2474                         true, true);
2475 }
2476
2477 /* ------------------------------------------------------------------------- */
2478 /* Logitech M560 devices                                                     */
2479 /* ------------------------------------------------------------------------- */
2480
2481 /*
2482  * Logitech M560 protocol overview
2483  *
2484  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2485  * the sides buttons are pressed, it sends some keyboard keys events
2486  * instead of buttons ones.
2487  * To complicate things further, the middle button keys sequence
2488  * is different from the odd press and the even press.
2489  *
2490  * forward button -> Super_R
2491  * backward button -> Super_L+'d' (press only)
2492  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2493  *                  2nd time: left-click (press only)
2494  * NB: press-only means that when the button is pressed, the
2495  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2496  * together sequentially; instead when the button is released, no event is
2497  * generated !
2498  *
2499  * With the command
2500  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2501  * the mouse reacts differently:
2502  * - it never sends a keyboard key event
2503  * - for the three mouse button it sends:
2504  *      middle button               press   11<xx>0a 3500af00...
2505  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2506  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2507  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2508  */
2509
2510 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2511
2512 /* how buttons are mapped in the report */
2513 #define M560_MOUSE_BTN_LEFT             0x01
2514 #define M560_MOUSE_BTN_RIGHT            0x02
2515 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2516 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2517
2518 #define M560_SUB_ID                     0x0a
2519 #define M560_BUTTON_MODE_REGISTER       0x35
2520
2521 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2522 {
2523         struct hidpp_report response;
2524         struct hidpp_device *hidpp_dev;
2525
2526         hidpp_dev = hid_get_drvdata(hdev);
2527
2528         return hidpp_send_rap_command_sync(
2529                 hidpp_dev,
2530                 REPORT_ID_HIDPP_SHORT,
2531                 M560_SUB_ID,
2532                 M560_BUTTON_MODE_REGISTER,
2533                 (u8 *)m560_config_parameter,
2534                 sizeof(m560_config_parameter),
2535                 &response
2536         );
2537 }
2538
2539 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2540 {
2541         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2542
2543         /* sanity check */
2544         if (!hidpp->input) {
2545                 hid_err(hdev, "error in parameter\n");
2546                 return -EINVAL;
2547         }
2548
2549         if (size < 7) {
2550                 hid_err(hdev, "error in report\n");
2551                 return 0;
2552         }
2553
2554         if (data[0] == REPORT_ID_HIDPP_LONG &&
2555             data[2] == M560_SUB_ID && data[6] == 0x00) {
2556                 /*
2557                  * m560 mouse report for middle, forward and backward button
2558                  *
2559                  * data[0] = 0x11
2560                  * data[1] = device-id
2561                  * data[2] = 0x0a
2562                  * data[5] = 0xaf -> middle
2563                  *           0xb0 -> forward
2564                  *           0xae -> backward
2565                  *           0x00 -> release all
2566                  * data[6] = 0x00
2567                  */
2568
2569                 switch (data[5]) {
2570                 case 0xaf:
2571                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2572                         break;
2573                 case 0xb0:
2574                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2575                         break;
2576                 case 0xae:
2577                         input_report_key(hidpp->input, BTN_BACK, 1);
2578                         break;
2579                 case 0x00:
2580                         input_report_key(hidpp->input, BTN_BACK, 0);
2581                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2582                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2583                         break;
2584                 default:
2585                         hid_err(hdev, "error in report\n");
2586                         return 0;
2587                 }
2588                 input_sync(hidpp->input);
2589
2590         } else if (data[0] == 0x02) {
2591                 /*
2592                  * Logitech M560 mouse report
2593                  *
2594                  * data[0] = type (0x02)
2595                  * data[1..2] = buttons
2596                  * data[3..5] = xy
2597                  * data[6] = wheel
2598                  */
2599
2600                 int v;
2601
2602                 input_report_key(hidpp->input, BTN_LEFT,
2603                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2604                 input_report_key(hidpp->input, BTN_RIGHT,
2605                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2606
2607                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2608                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2609                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2610                                          -120);
2611                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2612                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2613                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2614                                          120);
2615                 }
2616
2617                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2618                 input_report_rel(hidpp->input, REL_X, v);
2619
2620                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2621                 input_report_rel(hidpp->input, REL_Y, v);
2622
2623                 v = hid_snto32(data[6], 8);
2624                 if (v != 0)
2625                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2626                                         &hidpp->vertical_wheel_counter, v);
2627
2628                 input_sync(hidpp->input);
2629         }
2630
2631         return 1;
2632 }
2633
2634 static void m560_populate_input(struct hidpp_device *hidpp,
2635                                 struct input_dev *input_dev)
2636 {
2637         __set_bit(EV_KEY, input_dev->evbit);
2638         __set_bit(BTN_MIDDLE, input_dev->keybit);
2639         __set_bit(BTN_RIGHT, input_dev->keybit);
2640         __set_bit(BTN_LEFT, input_dev->keybit);
2641         __set_bit(BTN_BACK, input_dev->keybit);
2642         __set_bit(BTN_FORWARD, input_dev->keybit);
2643
2644         __set_bit(EV_REL, input_dev->evbit);
2645         __set_bit(REL_X, input_dev->relbit);
2646         __set_bit(REL_Y, input_dev->relbit);
2647         __set_bit(REL_WHEEL, input_dev->relbit);
2648         __set_bit(REL_HWHEEL, input_dev->relbit);
2649         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2650         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2651 }
2652
2653 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2654                 struct hid_field *field, struct hid_usage *usage,
2655                 unsigned long **bit, int *max)
2656 {
2657         return -1;
2658 }
2659
2660 /* ------------------------------------------------------------------------- */
2661 /* Logitech K400 devices                                                     */
2662 /* ------------------------------------------------------------------------- */
2663
2664 /*
2665  * The Logitech K400 keyboard has an embedded touchpad which is seen
2666  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2667  * tap-to-click but the setting is not remembered accross reset, annoying some
2668  * users.
2669  *
2670  * We can toggle this feature from the host by using the feature 0x6010:
2671  * Touchpad FW items
2672  */
2673
2674 struct k400_private_data {
2675         u8 feature_index;
2676 };
2677
2678 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2679 {
2680         struct k400_private_data *k400 = hidpp->private_data;
2681         struct hidpp_touchpad_fw_items items = {};
2682         int ret;
2683         u8 feature_type;
2684
2685         if (!k400->feature_index) {
2686                 ret = hidpp_root_get_feature(hidpp,
2687                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2688                         &k400->feature_index, &feature_type);
2689                 if (ret)
2690                         /* means that the device is not powered up */
2691                         return ret;
2692         }
2693
2694         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2695         if (ret)
2696                 return ret;
2697
2698         return 0;
2699 }
2700
2701 static int k400_allocate(struct hid_device *hdev)
2702 {
2703         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2704         struct k400_private_data *k400;
2705
2706         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2707                             GFP_KERNEL);
2708         if (!k400)
2709                 return -ENOMEM;
2710
2711         hidpp->private_data = k400;
2712
2713         return 0;
2714 };
2715
2716 static int k400_connect(struct hid_device *hdev, bool connected)
2717 {
2718         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2719
2720         if (!disable_tap_to_click)
2721                 return 0;
2722
2723         return k400_disable_tap_to_click(hidpp);
2724 }
2725
2726 /* ------------------------------------------------------------------------- */
2727 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2728 /* ------------------------------------------------------------------------- */
2729
2730 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2731
2732 static int g920_get_config(struct hidpp_device *hidpp)
2733 {
2734         u8 feature_type;
2735         u8 feature_index;
2736         int ret;
2737
2738         /* Find feature and store for later use */
2739         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2740                 &feature_index, &feature_type);
2741         if (ret)
2742                 return ret;
2743
2744         ret = hidpp_ff_init(hidpp, feature_index);
2745         if (ret)
2746                 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2747                                 ret);
2748
2749         return 0;
2750 }
2751
2752 /* -------------------------------------------------------------------------- */
2753 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2754 /* -------------------------------------------------------------------------- */
2755 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2756 {
2757         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2758                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2759                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2760 }
2761
2762 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2763                                    u8 *data, int size)
2764 {
2765         s8 value, hvalue;
2766
2767         if (!hidpp->input)
2768                 return -EINVAL;
2769
2770         if (size < 7)
2771                 return 0;
2772
2773         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2774                 return 0;
2775
2776         value = data[3];
2777         hvalue = data[4];
2778
2779         input_report_rel(hidpp->input, REL_WHEEL, value);
2780         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2781         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2782         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2783         input_sync(hidpp->input);
2784
2785         return 1;
2786 }
2787
2788 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2789                                          struct input_dev *input_dev)
2790 {
2791         __set_bit(EV_REL, input_dev->evbit);
2792         __set_bit(REL_WHEEL, input_dev->relbit);
2793         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2794         __set_bit(REL_HWHEEL, input_dev->relbit);
2795         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2796 }
2797
2798 /* -------------------------------------------------------------------------- */
2799 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
2800 /* -------------------------------------------------------------------------- */
2801 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
2802 {
2803         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2804                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
2805                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
2806 }
2807
2808 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
2809                                     u8 *data, int size)
2810 {
2811         int i;
2812
2813         if (!hidpp->input)
2814                 return -EINVAL;
2815
2816         if (size < 7)
2817                 return 0;
2818
2819         if (data[0] != REPORT_ID_HIDPP_SHORT ||
2820             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
2821                 return 0;
2822
2823         /*
2824          * Buttons are either delivered through the regular mouse report *or*
2825          * through the extra buttons report. At least for button 6 how it is
2826          * delivered differs per receiver firmware version. Even receivers with
2827          * the same usb-id show different behavior, so we handle both cases.
2828          */
2829         for (i = 0; i < 8; i++)
2830                 input_report_key(hidpp->input, BTN_MOUSE + i,
2831                                  (data[3] & (1 << i)));
2832
2833         /* Some mice report events on button 9+, use BTN_MISC */
2834         for (i = 0; i < 8; i++)
2835                 input_report_key(hidpp->input, BTN_MISC + i,
2836                                  (data[4] & (1 << i)));
2837
2838         input_sync(hidpp->input);
2839         return 1;
2840 }
2841
2842 static void hidpp10_extra_mouse_buttons_populate_input(
2843                         struct hidpp_device *hidpp, struct input_dev *input_dev)
2844 {
2845         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
2846         __set_bit(BTN_0, input_dev->keybit);
2847         __set_bit(BTN_1, input_dev->keybit);
2848         __set_bit(BTN_2, input_dev->keybit);
2849         __set_bit(BTN_3, input_dev->keybit);
2850         __set_bit(BTN_4, input_dev->keybit);
2851         __set_bit(BTN_5, input_dev->keybit);
2852         __set_bit(BTN_6, input_dev->keybit);
2853         __set_bit(BTN_7, input_dev->keybit);
2854 }
2855
2856 /* -------------------------------------------------------------------------- */
2857 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
2858 /* -------------------------------------------------------------------------- */
2859
2860 /* Find the consumer-page input report desc and change Maximums to 0x107f */
2861 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
2862                                               u8 *_rdesc, unsigned int *rsize)
2863 {
2864         /* Note 0 terminated so we can use strnstr to search for this. */
2865         const char consumer_rdesc_start[] = {
2866                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
2867                 0x09, 0x01,     /* USAGE (Consumer Control)            */
2868                 0xA1, 0x01,     /* COLLECTION (Application)            */
2869                 0x85, 0x03,     /* REPORT_ID = 3                       */
2870                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
2871                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
2872                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
2873                 0x26, 0x00      /* LOGICAL_MAX (...                    */
2874         };
2875         char *consumer_rdesc, *rdesc = (char *)_rdesc;
2876         unsigned int size;
2877
2878         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
2879         size = *rsize - (consumer_rdesc - rdesc);
2880         if (consumer_rdesc && size >= 25) {
2881                 consumer_rdesc[15] = 0x7f;
2882                 consumer_rdesc[16] = 0x10;
2883                 consumer_rdesc[20] = 0x7f;
2884                 consumer_rdesc[21] = 0x10;
2885         }
2886         return _rdesc;
2887 }
2888
2889 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
2890 {
2891         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2892                                     HIDPP_ENABLE_CONSUMER_REPORT,
2893                                     HIDPP_ENABLE_CONSUMER_REPORT);
2894 }
2895
2896 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
2897                                            u8 *data, int size)
2898 {
2899         u8 consumer_report[5];
2900
2901         if (size < 7)
2902                 return 0;
2903
2904         if (data[0] != REPORT_ID_HIDPP_SHORT ||
2905             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
2906                 return 0;
2907
2908         /*
2909          * Build a normal consumer report (3) out of the data, this detour
2910          * is necessary to get some keyboards to report their 0x10xx usages.
2911          */
2912         consumer_report[0] = 0x03;
2913         memcpy(&consumer_report[1], &data[3], 4);
2914         /* We are called from atomic context */
2915         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
2916                              consumer_report, 5, 1);
2917
2918         return 1;
2919 }
2920
2921 /* -------------------------------------------------------------------------- */
2922 /* High-resolution scroll wheels                                              */
2923 /* -------------------------------------------------------------------------- */
2924
2925 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2926 {
2927         int ret;
2928         u8 multiplier = 1;
2929
2930         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2931                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2932                 if (ret == 0)
2933                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2934         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2935                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2936                                                            &multiplier);
2937         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2938                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
2939                 multiplier = 8;
2940         }
2941         if (ret)
2942                 return ret;
2943
2944         if (multiplier == 0)
2945                 multiplier = 1;
2946
2947         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2948         hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2949         return 0;
2950 }
2951
2952 /* -------------------------------------------------------------------------- */
2953 /* Generic HID++ devices                                                      */
2954 /* -------------------------------------------------------------------------- */
2955
2956 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
2957                               unsigned int *rsize)
2958 {
2959         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2960
2961         if (!hidpp)
2962                 return rdesc;
2963
2964         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
2965         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
2966             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
2967                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
2968
2969         return rdesc;
2970 }
2971
2972 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2973                 struct hid_field *field, struct hid_usage *usage,
2974                 unsigned long **bit, int *max)
2975 {
2976         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2977
2978         if (!hidpp)
2979                 return 0;
2980
2981         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2982                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2983         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2984                         field->application != HID_GD_MOUSE)
2985                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
2986
2987         return 0;
2988 }
2989
2990 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2991                 struct hid_field *field, struct hid_usage *usage,
2992                 unsigned long **bit, int *max)
2993 {
2994         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2995
2996         if (!hidpp)
2997                 return 0;
2998
2999         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3000         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3001                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3002                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3003                                 usage->code == ABS_RZ)) {
3004                         field->application = HID_GD_MULTIAXIS;
3005                 }
3006         }
3007
3008         return 0;
3009 }
3010
3011
3012 static void hidpp_populate_input(struct hidpp_device *hidpp,
3013                                  struct input_dev *input)
3014 {
3015         hidpp->input = input;
3016
3017         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3018                 wtp_populate_input(hidpp, input);
3019         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3020                 m560_populate_input(hidpp, input);
3021
3022         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3023                 hidpp10_wheel_populate_input(hidpp, input);
3024
3025         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3026                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3027 }
3028
3029 static int hidpp_input_configured(struct hid_device *hdev,
3030                                 struct hid_input *hidinput)
3031 {
3032         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3033         struct input_dev *input = hidinput->input;
3034
3035         if (!hidpp)
3036                 return 0;
3037
3038         hidpp_populate_input(hidpp, input);
3039
3040         return 0;
3041 }
3042
3043 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3044                 int size)
3045 {
3046         struct hidpp_report *question = hidpp->send_receive_buf;
3047         struct hidpp_report *answer = hidpp->send_receive_buf;
3048         struct hidpp_report *report = (struct hidpp_report *)data;
3049         int ret;
3050
3051         /*
3052          * If the mutex is locked then we have a pending answer from a
3053          * previously sent command.
3054          */
3055         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3056                 /*
3057                  * Check for a correct hidpp20 answer or the corresponding
3058                  * error
3059                  */
3060                 if (hidpp_match_answer(question, report) ||
3061                                 hidpp_match_error(question, report)) {
3062                         *answer = *report;
3063                         hidpp->answer_available = true;
3064                         wake_up(&hidpp->wait);
3065                         /*
3066                          * This was an answer to a command that this driver sent
3067                          * We return 1 to hid-core to avoid forwarding the
3068                          * command upstream as it has been treated by the driver
3069                          */
3070
3071                         return 1;
3072                 }
3073         }
3074
3075         if (unlikely(hidpp_report_is_connect_event(report))) {
3076                 atomic_set(&hidpp->connected,
3077                                 !(report->rap.params[0] & (1 << 6)));
3078                 if (schedule_work(&hidpp->work) == 0)
3079                         dbg_hid("%s: connect event already queued\n", __func__);
3080                 return 1;
3081         }
3082
3083         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3084                 ret = hidpp20_battery_event(hidpp, data, size);
3085                 if (ret != 0)
3086                         return ret;
3087                 ret = hidpp_solar_battery_event(hidpp, data, size);
3088                 if (ret != 0)
3089                         return ret;
3090         }
3091
3092         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3093                 ret = hidpp10_battery_event(hidpp, data, size);
3094                 if (ret != 0)
3095                         return ret;
3096         }
3097
3098         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3099                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3100                 if (ret != 0)
3101                         return ret;
3102         }
3103
3104         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3105                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3106                 if (ret != 0)
3107                         return ret;
3108         }
3109
3110         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3111                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3112                 if (ret != 0)
3113                         return ret;
3114         }
3115
3116         return 0;
3117 }
3118
3119 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3120                 u8 *data, int size)
3121 {
3122         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3123         int ret = 0;
3124
3125         if (!hidpp)
3126                 return 0;
3127
3128         /* Generic HID++ processing. */
3129         switch (data[0]) {
3130         case REPORT_ID_HIDPP_VERY_LONG:
3131                 if (size != hidpp->very_long_report_length) {
3132                         hid_err(hdev, "received hid++ report of bad size (%d)",
3133                                 size);
3134                         return 1;
3135                 }
3136                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3137                 break;
3138         case REPORT_ID_HIDPP_LONG:
3139                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3140                         hid_err(hdev, "received hid++ report of bad size (%d)",
3141                                 size);
3142                         return 1;
3143                 }
3144                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3145                 break;
3146         case REPORT_ID_HIDPP_SHORT:
3147                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3148                         hid_err(hdev, "received hid++ report of bad size (%d)",
3149                                 size);
3150                         return 1;
3151                 }
3152                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3153                 break;
3154         }
3155
3156         /* If no report is available for further processing, skip calling
3157          * raw_event of subclasses. */
3158         if (ret != 0)
3159                 return ret;
3160
3161         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3162                 return wtp_raw_event(hdev, data, size);
3163         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3164                 return m560_raw_event(hdev, data, size);
3165
3166         return 0;
3167 }
3168
3169 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3170         struct hid_usage *usage, __s32 value)
3171 {
3172         /* This function will only be called for scroll events, due to the
3173          * restriction imposed in hidpp_usages.
3174          */
3175         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3176         struct hidpp_scroll_counter *counter;
3177
3178         if (!hidpp)
3179                 return 0;
3180
3181         counter = &hidpp->vertical_wheel_counter;
3182         /* A scroll event may occur before the multiplier has been retrieved or
3183          * the input device set, or high-res scroll enabling may fail. In such
3184          * cases we must return early (falling back to default behaviour) to
3185          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3186          */
3187         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3188             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3189                 return 0;
3190
3191         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3192         return 1;
3193 }
3194
3195 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3196 {
3197         static atomic_t battery_no = ATOMIC_INIT(0);
3198         struct power_supply_config cfg = { .drv_data = hidpp };
3199         struct power_supply_desc *desc = &hidpp->battery.desc;
3200         enum power_supply_property *battery_props;
3201         struct hidpp_battery *battery;
3202         unsigned int num_battery_props;
3203         unsigned long n;
3204         int ret;
3205
3206         if (hidpp->battery.ps)
3207                 return 0;
3208
3209         hidpp->battery.feature_index = 0xff;
3210         hidpp->battery.solar_feature_index = 0xff;
3211
3212         if (hidpp->protocol_major >= 2) {
3213                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3214                         ret = hidpp_solar_request_battery_event(hidpp);
3215                 else
3216                         ret = hidpp20_query_battery_info(hidpp);
3217
3218                 if (ret)
3219                         return ret;
3220                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3221         } else {
3222                 ret = hidpp10_query_battery_status(hidpp);
3223                 if (ret) {
3224                         ret = hidpp10_query_battery_mileage(hidpp);
3225                         if (ret)
3226                                 return -ENOENT;
3227                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3228                 } else {
3229                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3230                 }
3231                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3232         }
3233
3234         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3235                                      hidpp_battery_props,
3236                                      sizeof(hidpp_battery_props),
3237                                      GFP_KERNEL);
3238         if (!battery_props)
3239                 return -ENOMEM;
3240
3241         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3242
3243         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3244                 battery_props[num_battery_props++] =
3245                                 POWER_SUPPLY_PROP_CAPACITY;
3246
3247         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3248                 battery_props[num_battery_props++] =
3249                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3250
3251         battery = &hidpp->battery;
3252
3253         n = atomic_inc_return(&battery_no) - 1;
3254         desc->properties = battery_props;
3255         desc->num_properties = num_battery_props;
3256         desc->get_property = hidpp_battery_get_property;
3257         sprintf(battery->name, "hidpp_battery_%ld", n);
3258         desc->name = battery->name;
3259         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3260         desc->use_for_apm = 0;
3261
3262         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3263                                                  &battery->desc,
3264                                                  &cfg);
3265         if (IS_ERR(battery->ps))
3266                 return PTR_ERR(battery->ps);
3267
3268         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3269
3270         return ret;
3271 }
3272
3273 static void hidpp_overwrite_name(struct hid_device *hdev)
3274 {
3275         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3276         char *name;
3277
3278         if (hidpp->protocol_major < 2)
3279                 return;
3280
3281         name = hidpp_get_device_name(hidpp);
3282
3283         if (!name) {
3284                 hid_err(hdev, "unable to retrieve the name of the device");
3285         } else {
3286                 dbg_hid("HID++: Got name: %s\n", name);
3287                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3288         }
3289
3290         kfree(name);
3291 }
3292
3293 static int hidpp_input_open(struct input_dev *dev)
3294 {
3295         struct hid_device *hid = input_get_drvdata(dev);
3296
3297         return hid_hw_open(hid);
3298 }
3299
3300 static void hidpp_input_close(struct input_dev *dev)
3301 {
3302         struct hid_device *hid = input_get_drvdata(dev);
3303
3304         hid_hw_close(hid);
3305 }
3306
3307 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3308 {
3309         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3310         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3311
3312         if (!input_dev)
3313                 return NULL;
3314
3315         input_set_drvdata(input_dev, hdev);
3316         input_dev->open = hidpp_input_open;
3317         input_dev->close = hidpp_input_close;
3318
3319         input_dev->name = hidpp->name;
3320         input_dev->phys = hdev->phys;
3321         input_dev->uniq = hdev->uniq;
3322         input_dev->id.bustype = hdev->bus;
3323         input_dev->id.vendor  = hdev->vendor;
3324         input_dev->id.product = hdev->product;
3325         input_dev->id.version = hdev->version;
3326         input_dev->dev.parent = &hdev->dev;
3327
3328         return input_dev;
3329 }
3330
3331 static void hidpp_connect_event(struct hidpp_device *hidpp)
3332 {
3333         struct hid_device *hdev = hidpp->hid_dev;
3334         int ret = 0;
3335         bool connected = atomic_read(&hidpp->connected);
3336         struct input_dev *input;
3337         char *name, *devm_name;
3338
3339         if (!connected) {
3340                 if (hidpp->battery.ps) {
3341                         hidpp->battery.online = false;
3342                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3343                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3344                         power_supply_changed(hidpp->battery.ps);
3345                 }
3346                 return;
3347         }
3348
3349         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3350                 ret = wtp_connect(hdev, connected);
3351                 if (ret)
3352                         return;
3353         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3354                 ret = m560_send_config_command(hdev, connected);
3355                 if (ret)
3356                         return;
3357         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3358                 ret = k400_connect(hdev, connected);
3359                 if (ret)
3360                         return;
3361         }
3362
3363         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3364                 ret = hidpp10_wheel_connect(hidpp);
3365                 if (ret)
3366                         return;
3367         }
3368
3369         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3370                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3371                 if (ret)
3372                         return;
3373         }
3374
3375         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3376                 ret = hidpp10_consumer_keys_connect(hidpp);
3377                 if (ret)
3378                         return;
3379         }
3380
3381         /* the device is already connected, we can ask for its name and
3382          * protocol */
3383         if (!hidpp->protocol_major) {
3384                 ret = hidpp_root_get_protocol_version(hidpp);
3385                 if (ret) {
3386                         hid_err(hdev, "Can not get the protocol version.\n");
3387                         return;
3388                 }
3389         }
3390
3391         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3392                 name = hidpp_get_device_name(hidpp);
3393                 if (name) {
3394                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3395                                                    "%s", name);
3396                         kfree(name);
3397                         if (!devm_name)
3398                                 return;
3399
3400                         hidpp->name = devm_name;
3401                 }
3402         }
3403
3404         hidpp_initialize_battery(hidpp);
3405
3406         /* forward current battery state */
3407         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3408                 hidpp10_enable_battery_reporting(hidpp);
3409                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3410                         hidpp10_query_battery_mileage(hidpp);
3411                 else
3412                         hidpp10_query_battery_status(hidpp);
3413         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3414                 hidpp20_query_battery_info(hidpp);
3415         }
3416         if (hidpp->battery.ps)
3417                 power_supply_changed(hidpp->battery.ps);
3418
3419         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3420                 hi_res_scroll_enable(hidpp);
3421
3422         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3423                 /* if the input nodes are already created, we can stop now */
3424                 return;
3425
3426         input = hidpp_allocate_input(hdev);
3427         if (!input) {
3428                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3429                 return;
3430         }
3431
3432         hidpp_populate_input(hidpp, input);
3433
3434         ret = input_register_device(input);
3435         if (ret)
3436                 input_free_device(input);
3437
3438         hidpp->delayed_input = input;
3439 }
3440
3441 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3442
3443 static struct attribute *sysfs_attrs[] = {
3444         &dev_attr_builtin_power_supply.attr,
3445         NULL
3446 };
3447
3448 static const struct attribute_group ps_attribute_group = {
3449         .attrs = sysfs_attrs
3450 };
3451
3452 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3453 {
3454         struct hid_report_enum *re;
3455         struct hid_report *report;
3456
3457         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3458         report = re->report_id_hash[id];
3459         if (!report)
3460                 return 0;
3461
3462         return report->field[0]->report_count + 1;
3463 }
3464
3465 static bool hidpp_validate_report(struct hid_device *hdev, int id,
3466                                   int expected_length, bool optional)
3467 {
3468         int report_length;
3469
3470         if (id >= HID_MAX_IDS || id < 0) {
3471                 hid_err(hdev, "invalid HID report id %u\n", id);
3472                 return false;
3473         }
3474
3475         report_length = hidpp_get_report_length(hdev, id);
3476         if (!report_length)
3477                 return optional;
3478
3479         if (report_length < expected_length) {
3480                 hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3481                 return false;
3482         }
3483
3484         return true;
3485 }
3486
3487 static bool hidpp_validate_device(struct hid_device *hdev)
3488 {
3489         return hidpp_validate_report(hdev, REPORT_ID_HIDPP_SHORT,
3490                                      HIDPP_REPORT_SHORT_LENGTH, false) &&
3491                hidpp_validate_report(hdev, REPORT_ID_HIDPP_LONG,
3492                                      HIDPP_REPORT_LONG_LENGTH, true);
3493 }
3494
3495 static bool hidpp_application_equals(struct hid_device *hdev,
3496                                      unsigned int application)
3497 {
3498         struct list_head *report_list;
3499         struct hid_report *report;
3500
3501         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3502         report = list_first_entry_or_null(report_list, struct hid_report, list);
3503         return report && report->application == application;
3504 }
3505
3506 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3507 {
3508         struct hidpp_device *hidpp;
3509         int ret;
3510         bool connected;
3511         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3512
3513         /* report_fixup needs drvdata to be set before we call hid_parse */
3514         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3515         if (!hidpp)
3516                 return -ENOMEM;
3517
3518         hidpp->hid_dev = hdev;
3519         hidpp->name = hdev->name;
3520         hidpp->quirks = id->driver_data;
3521         hid_set_drvdata(hdev, hidpp);
3522
3523         ret = hid_parse(hdev);
3524         if (ret) {
3525                 hid_err(hdev, "%s:parse failed\n", __func__);
3526                 return ret;
3527         }
3528
3529         /*
3530          * Make sure the device is HID++ capable, otherwise treat as generic HID
3531          */
3532         if (!hidpp_validate_device(hdev)) {
3533                 hid_set_drvdata(hdev, NULL);
3534                 devm_kfree(&hdev->dev, hidpp);
3535                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3536         }
3537
3538         hidpp->very_long_report_length =
3539                 hidpp_get_report_length(hdev, REPORT_ID_HIDPP_VERY_LONG);
3540         if (hidpp->very_long_report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3541                 hidpp->very_long_report_length = HIDPP_REPORT_VERY_LONG_MAX_LENGTH;
3542
3543         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3544                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3545
3546         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3547             hidpp_application_equals(hdev, HID_GD_MOUSE))
3548                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3549                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3550
3551         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3552             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3553                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3554
3555         if (disable_raw_mode) {
3556                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3557                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3558         }
3559
3560         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3561                 ret = wtp_allocate(hdev, id);
3562                 if (ret)
3563                         return ret;
3564         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3565                 ret = k400_allocate(hdev);
3566                 if (ret)
3567                         return ret;
3568         }
3569
3570         INIT_WORK(&hidpp->work, delayed_work_cb);
3571         mutex_init(&hidpp->send_mutex);
3572         init_waitqueue_head(&hidpp->wait);
3573
3574         /* indicates we are handling the battery properties in the kernel */
3575         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3576         if (ret)
3577                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3578                          hdev->name);
3579
3580         /*
3581          * Plain USB connections need to actually call start and open
3582          * on the transport driver to allow incoming data.
3583          */
3584         ret = hid_hw_start(hdev, 0);
3585         if (ret) {
3586                 hid_err(hdev, "hw start failed\n");
3587                 goto hid_hw_start_fail;
3588         }
3589
3590         ret = hid_hw_open(hdev);
3591         if (ret < 0) {
3592                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3593                         __func__, ret);
3594                 hid_hw_stop(hdev);
3595                 goto hid_hw_open_fail;
3596         }
3597
3598         /* Allow incoming packets */
3599         hid_device_io_start(hdev);
3600
3601         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3602                 hidpp_unifying_init(hidpp);
3603
3604         connected = hidpp_root_get_protocol_version(hidpp) == 0;
3605         atomic_set(&hidpp->connected, connected);
3606         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3607                 if (!connected) {
3608                         ret = -ENODEV;
3609                         hid_err(hdev, "Device not connected");
3610                         goto hid_hw_init_fail;
3611                 }
3612
3613                 hidpp_overwrite_name(hdev);
3614         }
3615
3616         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3617                 ret = wtp_get_config(hidpp);
3618                 if (ret)
3619                         goto hid_hw_init_fail;
3620         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3621                 ret = g920_get_config(hidpp);
3622                 if (ret)
3623                         goto hid_hw_init_fail;
3624         }
3625
3626         hidpp_connect_event(hidpp);
3627
3628         /* Reset the HID node state */
3629         hid_device_io_stop(hdev);
3630         hid_hw_close(hdev);
3631         hid_hw_stop(hdev);
3632
3633         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3634                 connect_mask &= ~HID_CONNECT_HIDINPUT;
3635
3636         /* Now export the actual inputs and hidraw nodes to the world */
3637         ret = hid_hw_start(hdev, connect_mask);
3638         if (ret) {
3639                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3640                 goto hid_hw_start_fail;
3641         }
3642
3643         return ret;
3644
3645 hid_hw_init_fail:
3646         hid_hw_close(hdev);
3647 hid_hw_open_fail:
3648         hid_hw_stop(hdev);
3649 hid_hw_start_fail:
3650         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3651         cancel_work_sync(&hidpp->work);
3652         mutex_destroy(&hidpp->send_mutex);
3653         return ret;
3654 }
3655
3656 static void hidpp_remove(struct hid_device *hdev)
3657 {
3658         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3659
3660         if (!hidpp)
3661                 return hid_hw_stop(hdev);
3662
3663         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3664
3665         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)
3666                 hidpp_ff_deinit(hdev);
3667
3668         hid_hw_stop(hdev);
3669         cancel_work_sync(&hidpp->work);
3670         mutex_destroy(&hidpp->send_mutex);
3671 }
3672
3673 #define LDJ_DEVICE(product) \
3674         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3675                    USB_VENDOR_ID_LOGITECH, (product))
3676
3677 #define L27MHZ_DEVICE(product) \
3678         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3679                    USB_VENDOR_ID_LOGITECH, (product))
3680
3681 static const struct hid_device_id hidpp_devices[] = {
3682         { /* wireless touchpad */
3683           LDJ_DEVICE(0x4011),
3684           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3685                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3686         { /* wireless touchpad T650 */
3687           LDJ_DEVICE(0x4101),
3688           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3689         { /* wireless touchpad T651 */
3690           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3691                 USB_DEVICE_ID_LOGITECH_T651),
3692           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3693         { /* Mouse Logitech Anywhere MX */
3694           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3695         { /* Mouse Logitech Cube */
3696           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3697         { /* Mouse Logitech M335 */
3698           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3699         { /* Mouse Logitech M515 */
3700           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3701         { /* Mouse logitech M560 */
3702           LDJ_DEVICE(0x402d),
3703           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3704                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3705         { /* Mouse Logitech M705 (firmware RQM17) */
3706           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3707         { /* Mouse Logitech M705 (firmware RQM67) */
3708           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3709         { /* Mouse Logitech M720 */
3710           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3711         { /* Mouse Logitech MX Anywhere 2 */
3712           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3713         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3714         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3715         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3716         { /* Mouse Logitech MX Anywhere 2S */
3717           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3718         { /* Mouse Logitech MX Master */
3719           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3720         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3721         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3722         { /* Mouse Logitech MX Master 2S */
3723           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3724         { /* Mouse Logitech Performance MX */
3725           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3726         { /* Keyboard logitech K400 */
3727           LDJ_DEVICE(0x4024),
3728           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3729         { /* Solar Keyboard Logitech K750 */
3730           LDJ_DEVICE(0x4002),
3731           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3732         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3733           LDJ_DEVICE(0xb305),
3734           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3735
3736         { LDJ_DEVICE(HID_ANY_ID) },
3737
3738         { /* Keyboard LX501 (Y-RR53) */
3739           L27MHZ_DEVICE(0x0049),
3740           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3741         { /* Keyboard MX3000 (Y-RAM74) */
3742           L27MHZ_DEVICE(0x0057),
3743           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3744         { /* Keyboard MX3200 (Y-RAV80) */
3745           L27MHZ_DEVICE(0x005c),
3746           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3747
3748         { L27MHZ_DEVICE(HID_ANY_ID) },
3749
3750         { /* Logitech G403 Gaming Mouse over USB */
3751           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3752         { /* Logitech G700 Gaming Mouse over USB */
3753           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC06B) },
3754         { /* Logitech G900 Gaming Mouse over USB */
3755           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
3756         { /* Logitech G920 Wheel over USB */
3757           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3758                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3759
3760         { /* MX5000 keyboard over Bluetooth */
3761           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
3762           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3763         {}
3764 };
3765
3766 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3767
3768 static const struct hid_usage_id hidpp_usages[] = {
3769         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3770         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3771 };
3772
3773 static struct hid_driver hidpp_driver = {
3774         .name = "logitech-hidpp-device",
3775         .id_table = hidpp_devices,
3776         .report_fixup = hidpp_report_fixup,
3777         .probe = hidpp_probe,
3778         .remove = hidpp_remove,
3779         .raw_event = hidpp_raw_event,
3780         .usage_table = hidpp_usages,
3781         .event = hidpp_event,
3782         .input_configured = hidpp_input_configured,
3783         .input_mapping = hidpp_input_mapping,
3784         .input_mapped = hidpp_input_mapped,
3785 };
3786
3787 module_hid_driver(hidpp_driver);