arm64: zynqmp: Make zynqmp_firmware driver optional
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech Unifying receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
95
96 /*
97  * There are two hidpp protocols in use, the first version hidpp10 is known
98  * as register access protocol or RAP, the second version hidpp20 is known as
99  * feature access protocol or FAP
100  *
101  * Most older devices (including the Unifying usb receiver) use the RAP protocol
102  * where as most newer devices use the FAP protocol. Both protocols are
103  * compatible with the underlying transport, which could be usb, Unifiying, or
104  * bluetooth. The message lengths are defined by the hid vendor specific report
105  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
106  * the HIDPP_LONG report type (total message length 20 bytes)
107  *
108  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
109  * messages. The Unifying receiver itself responds to RAP messages (device index
110  * is 0xFF for the receiver), and all messages (short or long) with a device
111  * index between 1 and 6 are passed untouched to the corresponding paired
112  * Unifying device.
113  *
114  * The paired device can be RAP or FAP, it will receive the message untouched
115  * from the Unifiying receiver.
116  */
117
118 struct fap {
119         u8 feature_index;
120         u8 funcindex_clientid;
121         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
122 };
123
124 struct rap {
125         u8 sub_id;
126         u8 reg_address;
127         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129
130 struct hidpp_report {
131         u8 report_id;
132         u8 device_index;
133         union {
134                 struct fap fap;
135                 struct rap rap;
136                 u8 rawbytes[sizeof(struct fap)];
137         };
138 } __packed;
139
140 struct hidpp_battery {
141         u8 feature_index;
142         u8 solar_feature_index;
143         u8 voltage_feature_index;
144         struct power_supply_desc desc;
145         struct power_supply *ps;
146         char name[64];
147         int status;
148         int capacity;
149         int level;
150         int voltage;
151         int charge_type;
152         bool online;
153 };
154
155 /**
156  * struct hidpp_scroll_counter - Utility class for processing high-resolution
157  *                             scroll events.
158  * @dev: the input device for which events should be reported.
159  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
160  * @remainder: counts the number of high-resolution units moved since the last
161  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
162  *             only be used by class methods.
163  * @direction: direction of last movement (1 or -1)
164  * @last_time: last event time, used to reset remainder after inactivity
165  */
166 struct hidpp_scroll_counter {
167         int wheel_multiplier;
168         int remainder;
169         int direction;
170         unsigned long long last_time;
171 };
172
173 struct hidpp_device {
174         struct hid_device *hid_dev;
175         struct input_dev *input;
176         struct mutex send_mutex;
177         void *send_receive_buf;
178         char *name;             /* will never be NULL and should not be freed */
179         wait_queue_head_t wait;
180         int very_long_report_length;
181         bool answer_available;
182         u8 protocol_major;
183         u8 protocol_minor;
184
185         void *private_data;
186
187         struct work_struct work;
188         struct kfifo delayed_work_fifo;
189         atomic_t connected;
190         struct input_dev *delayed_input;
191
192         unsigned long quirks;
193         unsigned long capabilities;
194         u8 supported_reports;
195
196         struct hidpp_battery battery;
197         struct hidpp_scroll_counter vertical_wheel_counter;
198
199         u8 wireless_feature_index;
200 };
201
202 /* HID++ 1.0 error codes */
203 #define HIDPP_ERROR                             0x8f
204 #define HIDPP_ERROR_SUCCESS                     0x00
205 #define HIDPP_ERROR_INVALID_SUBID               0x01
206 #define HIDPP_ERROR_INVALID_ADRESS              0x02
207 #define HIDPP_ERROR_INVALID_VALUE               0x03
208 #define HIDPP_ERROR_CONNECT_FAIL                0x04
209 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
210 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
211 #define HIDPP_ERROR_BUSY                        0x07
212 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
213 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
215 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
216 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
217 /* HID++ 2.0 error codes */
218 #define HIDPP20_ERROR                           0xff
219
220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
221
222 static int __hidpp_send_report(struct hid_device *hdev,
223                                 struct hidpp_report *hidpp_report)
224 {
225         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
226         int fields_count, ret;
227
228         switch (hidpp_report->report_id) {
229         case REPORT_ID_HIDPP_SHORT:
230                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
231                 break;
232         case REPORT_ID_HIDPP_LONG:
233                 fields_count = HIDPP_REPORT_LONG_LENGTH;
234                 break;
235         case REPORT_ID_HIDPP_VERY_LONG:
236                 fields_count = hidpp->very_long_report_length;
237                 break;
238         default:
239                 return -ENODEV;
240         }
241
242         /*
243          * set the device_index as the receiver, it will be overwritten by
244          * hid_hw_request if needed
245          */
246         hidpp_report->device_index = 0xff;
247
248         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
249                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
250         } else {
251                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
252                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
253                         HID_REQ_SET_REPORT);
254         }
255
256         return ret == fields_count ? 0 : -1;
257 }
258
259 /**
260  * hidpp_send_message_sync() returns 0 in case of success, and something else
261  * in case of a failure.
262  * - If ' something else' is positive, that means that an error has been raised
263  *   by the protocol itself.
264  * - If ' something else' is negative, that means that we had a classic error
265  *   (-ENOMEM, -EPIPE, etc...)
266  */
267 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
268         struct hidpp_report *message,
269         struct hidpp_report *response)
270 {
271         int ret;
272
273         mutex_lock(&hidpp->send_mutex);
274
275         hidpp->send_receive_buf = response;
276         hidpp->answer_available = false;
277
278         /*
279          * So that we can later validate the answer when it arrives
280          * in hidpp_raw_event
281          */
282         *response = *message;
283
284         ret = __hidpp_send_report(hidpp->hid_dev, message);
285
286         if (ret) {
287                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
288                 memset(response, 0, sizeof(struct hidpp_report));
289                 goto exit;
290         }
291
292         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
293                                 5*HZ)) {
294                 dbg_hid("%s:timeout waiting for response\n", __func__);
295                 memset(response, 0, sizeof(struct hidpp_report));
296                 ret = -ETIMEDOUT;
297         }
298
299         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
300             response->rap.sub_id == HIDPP_ERROR) {
301                 ret = response->rap.params[1];
302                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
303                 goto exit;
304         }
305
306         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
307                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
308                         response->fap.feature_index == HIDPP20_ERROR) {
309                 ret = response->fap.params[1];
310                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
311                 goto exit;
312         }
313
314 exit:
315         mutex_unlock(&hidpp->send_mutex);
316         return ret;
317
318 }
319
320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
321         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
322         struct hidpp_report *response)
323 {
324         struct hidpp_report *message;
325         int ret;
326
327         if (param_count > sizeof(message->fap.params))
328                 return -EINVAL;
329
330         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
331         if (!message)
332                 return -ENOMEM;
333
334         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
335                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
336         else
337                 message->report_id = REPORT_ID_HIDPP_LONG;
338         message->fap.feature_index = feat_index;
339         message->fap.funcindex_clientid = funcindex_clientid;
340         memcpy(&message->fap.params, params, param_count);
341
342         ret = hidpp_send_message_sync(hidpp, message, response);
343         kfree(message);
344         return ret;
345 }
346
347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
348         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
349         struct hidpp_report *response)
350 {
351         struct hidpp_report *message;
352         int ret, max_count;
353
354         /* Send as long report if short reports are not supported. */
355         if (report_id == REPORT_ID_HIDPP_SHORT &&
356             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
357                 report_id = REPORT_ID_HIDPP_LONG;
358
359         switch (report_id) {
360         case REPORT_ID_HIDPP_SHORT:
361                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
362                 break;
363         case REPORT_ID_HIDPP_LONG:
364                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
365                 break;
366         case REPORT_ID_HIDPP_VERY_LONG:
367                 max_count = hidpp_dev->very_long_report_length - 4;
368                 break;
369         default:
370                 return -EINVAL;
371         }
372
373         if (param_count > max_count)
374                 return -EINVAL;
375
376         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
377         if (!message)
378                 return -ENOMEM;
379         message->report_id = report_id;
380         message->rap.sub_id = sub_id;
381         message->rap.reg_address = reg_address;
382         memcpy(&message->rap.params, params, param_count);
383
384         ret = hidpp_send_message_sync(hidpp_dev, message, response);
385         kfree(message);
386         return ret;
387 }
388
389 static void delayed_work_cb(struct work_struct *work)
390 {
391         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
392                                                         work);
393         hidpp_connect_event(hidpp);
394 }
395
396 static inline bool hidpp_match_answer(struct hidpp_report *question,
397                 struct hidpp_report *answer)
398 {
399         return (answer->fap.feature_index == question->fap.feature_index) &&
400            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
401 }
402
403 static inline bool hidpp_match_error(struct hidpp_report *question,
404                 struct hidpp_report *answer)
405 {
406         return ((answer->rap.sub_id == HIDPP_ERROR) ||
407             (answer->fap.feature_index == HIDPP20_ERROR)) &&
408             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
409             (answer->fap.params[0] == question->fap.funcindex_clientid);
410 }
411
412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
413                 struct hidpp_report *report)
414 {
415         return (hidpp->wireless_feature_index &&
416                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
417                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
418                 (report->rap.sub_id == 0x41));
419 }
420
421 /**
422  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
423  */
424 static void hidpp_prefix_name(char **name, int name_length)
425 {
426 #define PREFIX_LENGTH 9 /* "Logitech " */
427
428         int new_length;
429         char *new_name;
430
431         if (name_length > PREFIX_LENGTH &&
432             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
433                 /* The prefix has is already in the name */
434                 return;
435
436         new_length = PREFIX_LENGTH + name_length;
437         new_name = kzalloc(new_length, GFP_KERNEL);
438         if (!new_name)
439                 return;
440
441         snprintf(new_name, new_length, "Logitech %s", *name);
442
443         kfree(*name);
444
445         *name = new_name;
446 }
447
448 /**
449  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
450  *                                        events given a high-resolution wheel
451  *                                        movement.
452  * @counter: a hid_scroll_counter struct describing the wheel.
453  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
454  *                units.
455  *
456  * Given a high-resolution movement, this function converts the movement into
457  * fractions of 120 and emits high-resolution scroll events for the input
458  * device. It also uses the multiplier from &struct hid_scroll_counter to
459  * emit low-resolution scroll events when appropriate for
460  * backwards-compatibility with userspace input libraries.
461  */
462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
463                                                struct hidpp_scroll_counter *counter,
464                                                int hi_res_value)
465 {
466         int low_res_value, remainder, direction;
467         unsigned long long now, previous;
468
469         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
470         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
471
472         remainder = counter->remainder;
473         direction = hi_res_value > 0 ? 1 : -1;
474
475         now = sched_clock();
476         previous = counter->last_time;
477         counter->last_time = now;
478         /*
479          * Reset the remainder after a period of inactivity or when the
480          * direction changes. This prevents the REL_WHEEL emulation point
481          * from sliding for devices that don't always provide the same
482          * number of movements per detent.
483          */
484         if (now - previous > 1000000000 || direction != counter->direction)
485                 remainder = 0;
486
487         counter->direction = direction;
488         remainder += hi_res_value;
489
490         /* Some wheels will rest 7/8ths of a detent from the previous detent
491          * after slow movement, so we want the threshold for low-res events to
492          * be in the middle between two detents (e.g. after 4/8ths) as
493          * opposed to on the detents themselves (8/8ths).
494          */
495         if (abs(remainder) >= 60) {
496                 /* Add (or subtract) 1 because we want to trigger when the wheel
497                  * is half-way to the next detent (i.e. scroll 1 detent after a
498                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
499                  * etc.).
500                  */
501                 low_res_value = remainder / 120;
502                 if (low_res_value == 0)
503                         low_res_value = (hi_res_value > 0 ? 1 : -1);
504                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
505                 remainder -= low_res_value * 120;
506         }
507         counter->remainder = remainder;
508 }
509
510 /* -------------------------------------------------------------------------- */
511 /* HIDP++ 1.0 commands                                                        */
512 /* -------------------------------------------------------------------------- */
513
514 #define HIDPP_SET_REGISTER                              0x80
515 #define HIDPP_GET_REGISTER                              0x81
516 #define HIDPP_SET_LONG_REGISTER                         0x82
517 #define HIDPP_GET_LONG_REGISTER                         0x83
518
519 /**
520  * hidpp10_set_register - Modify a HID++ 1.0 register.
521  * @hidpp_dev: the device to set the register on.
522  * @register_address: the address of the register to modify.
523  * @byte: the byte of the register to modify. Should be less than 3.
524  * @mask: mask of the bits to modify
525  * @value: new values for the bits in mask
526  * Return: 0 if successful, otherwise a negative error code.
527  */
528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
529         u8 register_address, u8 byte, u8 mask, u8 value)
530 {
531         struct hidpp_report response;
532         int ret;
533         u8 params[3] = { 0 };
534
535         ret = hidpp_send_rap_command_sync(hidpp_dev,
536                                           REPORT_ID_HIDPP_SHORT,
537                                           HIDPP_GET_REGISTER,
538                                           register_address,
539                                           NULL, 0, &response);
540         if (ret)
541                 return ret;
542
543         memcpy(params, response.rap.params, 3);
544
545         params[byte] &= ~mask;
546         params[byte] |= value & mask;
547
548         return hidpp_send_rap_command_sync(hidpp_dev,
549                                            REPORT_ID_HIDPP_SHORT,
550                                            HIDPP_SET_REGISTER,
551                                            register_address,
552                                            params, 3, &response);
553 }
554
555 #define HIDPP_REG_ENABLE_REPORTS                        0x00
556 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
557 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
559 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
560 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
561
562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
563 {
564         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
565                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
566 }
567
568 #define HIDPP_REG_FEATURES                              0x01
569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
570 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
571
572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
574 {
575         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
576                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
577 }
578
579 #define HIDPP_REG_BATTERY_STATUS                        0x07
580
581 static int hidpp10_battery_status_map_level(u8 param)
582 {
583         int level;
584
585         switch (param) {
586         case 1 ... 2:
587                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
588                 break;
589         case 3 ... 4:
590                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
591                 break;
592         case 5 ... 6:
593                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
594                 break;
595         case 7:
596                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
597                 break;
598         default:
599                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
600         }
601
602         return level;
603 }
604
605 static int hidpp10_battery_status_map_status(u8 param)
606 {
607         int status;
608
609         switch (param) {
610         case 0x00:
611                 /* discharging (in use) */
612                 status = POWER_SUPPLY_STATUS_DISCHARGING;
613                 break;
614         case 0x21: /* (standard) charging */
615         case 0x24: /* fast charging */
616         case 0x25: /* slow charging */
617                 status = POWER_SUPPLY_STATUS_CHARGING;
618                 break;
619         case 0x26: /* topping charge */
620         case 0x22: /* charge complete */
621                 status = POWER_SUPPLY_STATUS_FULL;
622                 break;
623         case 0x20: /* unknown */
624                 status = POWER_SUPPLY_STATUS_UNKNOWN;
625                 break;
626         /*
627          * 0x01...0x1F = reserved (not charging)
628          * 0x23 = charging error
629          * 0x27..0xff = reserved
630          */
631         default:
632                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
633                 break;
634         }
635
636         return status;
637 }
638
639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
640 {
641         struct hidpp_report response;
642         int ret, status;
643
644         ret = hidpp_send_rap_command_sync(hidpp,
645                                         REPORT_ID_HIDPP_SHORT,
646                                         HIDPP_GET_REGISTER,
647                                         HIDPP_REG_BATTERY_STATUS,
648                                         NULL, 0, &response);
649         if (ret)
650                 return ret;
651
652         hidpp->battery.level =
653                 hidpp10_battery_status_map_level(response.rap.params[0]);
654         status = hidpp10_battery_status_map_status(response.rap.params[1]);
655         hidpp->battery.status = status;
656         /* the capacity is only available when discharging or full */
657         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
658                                 status == POWER_SUPPLY_STATUS_FULL;
659
660         return 0;
661 }
662
663 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
664
665 static int hidpp10_battery_mileage_map_status(u8 param)
666 {
667         int status;
668
669         switch (param >> 6) {
670         case 0x00:
671                 /* discharging (in use) */
672                 status = POWER_SUPPLY_STATUS_DISCHARGING;
673                 break;
674         case 0x01: /* charging */
675                 status = POWER_SUPPLY_STATUS_CHARGING;
676                 break;
677         case 0x02: /* charge complete */
678                 status = POWER_SUPPLY_STATUS_FULL;
679                 break;
680         /*
681          * 0x03 = charging error
682          */
683         default:
684                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
685                 break;
686         }
687
688         return status;
689 }
690
691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
692 {
693         struct hidpp_report response;
694         int ret, status;
695
696         ret = hidpp_send_rap_command_sync(hidpp,
697                                         REPORT_ID_HIDPP_SHORT,
698                                         HIDPP_GET_REGISTER,
699                                         HIDPP_REG_BATTERY_MILEAGE,
700                                         NULL, 0, &response);
701         if (ret)
702                 return ret;
703
704         hidpp->battery.capacity = response.rap.params[0];
705         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
706         hidpp->battery.status = status;
707         /* the capacity is only available when discharging or full */
708         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
709                                 status == POWER_SUPPLY_STATUS_FULL;
710
711         return 0;
712 }
713
714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
715 {
716         struct hidpp_report *report = (struct hidpp_report *)data;
717         int status, capacity, level;
718         bool changed;
719
720         if (report->report_id != REPORT_ID_HIDPP_SHORT)
721                 return 0;
722
723         switch (report->rap.sub_id) {
724         case HIDPP_REG_BATTERY_STATUS:
725                 capacity = hidpp->battery.capacity;
726                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
727                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
728                 break;
729         case HIDPP_REG_BATTERY_MILEAGE:
730                 capacity = report->rap.params[0];
731                 level = hidpp->battery.level;
732                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
733                 break;
734         default:
735                 return 0;
736         }
737
738         changed = capacity != hidpp->battery.capacity ||
739                   level != hidpp->battery.level ||
740                   status != hidpp->battery.status;
741
742         /* the capacity is only available when discharging or full */
743         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
744                                 status == POWER_SUPPLY_STATUS_FULL;
745
746         if (changed) {
747                 hidpp->battery.level = level;
748                 hidpp->battery.status = status;
749                 if (hidpp->battery.ps)
750                         power_supply_changed(hidpp->battery.ps);
751         }
752
753         return 0;
754 }
755
756 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
757 #define HIDPP_EXTENDED_PAIRING                          0x30
758 #define HIDPP_DEVICE_NAME                               0x40
759
760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
761 {
762         struct hidpp_report response;
763         int ret;
764         u8 params[1] = { HIDPP_DEVICE_NAME };
765         char *name;
766         int len;
767
768         ret = hidpp_send_rap_command_sync(hidpp_dev,
769                                         REPORT_ID_HIDPP_SHORT,
770                                         HIDPP_GET_LONG_REGISTER,
771                                         HIDPP_REG_PAIRING_INFORMATION,
772                                         params, 1, &response);
773         if (ret)
774                 return NULL;
775
776         len = response.rap.params[1];
777
778         if (2 + len > sizeof(response.rap.params))
779                 return NULL;
780
781         if (len < 4) /* logitech devices are usually at least Xddd */
782                 return NULL;
783
784         name = kzalloc(len + 1, GFP_KERNEL);
785         if (!name)
786                 return NULL;
787
788         memcpy(name, &response.rap.params[2], len);
789
790         /* include the terminating '\0' */
791         hidpp_prefix_name(&name, len + 1);
792
793         return name;
794 }
795
796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
797 {
798         struct hidpp_report response;
799         int ret;
800         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
801
802         ret = hidpp_send_rap_command_sync(hidpp,
803                                         REPORT_ID_HIDPP_SHORT,
804                                         HIDPP_GET_LONG_REGISTER,
805                                         HIDPP_REG_PAIRING_INFORMATION,
806                                         params, 1, &response);
807         if (ret)
808                 return ret;
809
810         /*
811          * We don't care about LE or BE, we will output it as a string
812          * with %4phD, so we need to keep the order.
813          */
814         *serial = *((u32 *)&response.rap.params[1]);
815         return 0;
816 }
817
818 static int hidpp_unifying_init(struct hidpp_device *hidpp)
819 {
820         struct hid_device *hdev = hidpp->hid_dev;
821         const char *name;
822         u32 serial;
823         int ret;
824
825         ret = hidpp_unifying_get_serial(hidpp, &serial);
826         if (ret)
827                 return ret;
828
829         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
830                  hdev->product, &serial);
831         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
832
833         name = hidpp_unifying_get_name(hidpp);
834         if (!name)
835                 return -EIO;
836
837         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
838         dbg_hid("HID++ Unifying: Got name: %s\n", name);
839
840         kfree(name);
841         return 0;
842 }
843
844 /* -------------------------------------------------------------------------- */
845 /* 0x0000: Root                                                               */
846 /* -------------------------------------------------------------------------- */
847
848 #define HIDPP_PAGE_ROOT                                 0x0000
849 #define HIDPP_PAGE_ROOT_IDX                             0x00
850
851 #define CMD_ROOT_GET_FEATURE                            0x01
852 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
853
854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
855         u8 *feature_index, u8 *feature_type)
856 {
857         struct hidpp_report response;
858         int ret;
859         u8 params[2] = { feature >> 8, feature & 0x00FF };
860
861         ret = hidpp_send_fap_command_sync(hidpp,
862                         HIDPP_PAGE_ROOT_IDX,
863                         CMD_ROOT_GET_FEATURE,
864                         params, 2, &response);
865         if (ret)
866                 return ret;
867
868         if (response.fap.params[0] == 0)
869                 return -ENOENT;
870
871         *feature_index = response.fap.params[0];
872         *feature_type = response.fap.params[1];
873
874         return ret;
875 }
876
877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
878 {
879         const u8 ping_byte = 0x5a;
880         u8 ping_data[3] = { 0, 0, ping_byte };
881         struct hidpp_report response;
882         int ret;
883
884         ret = hidpp_send_rap_command_sync(hidpp,
885                         REPORT_ID_HIDPP_SHORT,
886                         HIDPP_PAGE_ROOT_IDX,
887                         CMD_ROOT_GET_PROTOCOL_VERSION,
888                         ping_data, sizeof(ping_data), &response);
889
890         if (ret == HIDPP_ERROR_INVALID_SUBID) {
891                 hidpp->protocol_major = 1;
892                 hidpp->protocol_minor = 0;
893                 goto print_version;
894         }
895
896         /* the device might not be connected */
897         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
898                 return -EIO;
899
900         if (ret > 0) {
901                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
902                         __func__, ret);
903                 return -EPROTO;
904         }
905         if (ret)
906                 return ret;
907
908         if (response.rap.params[2] != ping_byte) {
909                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
910                         __func__, response.rap.params[2], ping_byte);
911                 return -EPROTO;
912         }
913
914         hidpp->protocol_major = response.rap.params[0];
915         hidpp->protocol_minor = response.rap.params[1];
916
917 print_version:
918         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
919                  hidpp->protocol_major, hidpp->protocol_minor);
920         return 0;
921 }
922
923 /* -------------------------------------------------------------------------- */
924 /* 0x0005: GetDeviceNameType                                                  */
925 /* -------------------------------------------------------------------------- */
926
927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
928
929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
932
933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
934         u8 feature_index, u8 *nameLength)
935 {
936         struct hidpp_report response;
937         int ret;
938
939         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
940                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
941
942         if (ret > 0) {
943                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
944                         __func__, ret);
945                 return -EPROTO;
946         }
947         if (ret)
948                 return ret;
949
950         *nameLength = response.fap.params[0];
951
952         return ret;
953 }
954
955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
956         u8 feature_index, u8 char_index, char *device_name, int len_buf)
957 {
958         struct hidpp_report response;
959         int ret, i;
960         int count;
961
962         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
963                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
964                 &response);
965
966         if (ret > 0) {
967                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
968                         __func__, ret);
969                 return -EPROTO;
970         }
971         if (ret)
972                 return ret;
973
974         switch (response.report_id) {
975         case REPORT_ID_HIDPP_VERY_LONG:
976                 count = hidpp->very_long_report_length - 4;
977                 break;
978         case REPORT_ID_HIDPP_LONG:
979                 count = HIDPP_REPORT_LONG_LENGTH - 4;
980                 break;
981         case REPORT_ID_HIDPP_SHORT:
982                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
983                 break;
984         default:
985                 return -EPROTO;
986         }
987
988         if (len_buf < count)
989                 count = len_buf;
990
991         for (i = 0; i < count; i++)
992                 device_name[i] = response.fap.params[i];
993
994         return count;
995 }
996
997 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
998 {
999         u8 feature_type;
1000         u8 feature_index;
1001         u8 __name_length;
1002         char *name;
1003         unsigned index = 0;
1004         int ret;
1005
1006         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1007                 &feature_index, &feature_type);
1008         if (ret)
1009                 return NULL;
1010
1011         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1012                 &__name_length);
1013         if (ret)
1014                 return NULL;
1015
1016         name = kzalloc(__name_length + 1, GFP_KERNEL);
1017         if (!name)
1018                 return NULL;
1019
1020         while (index < __name_length) {
1021                 ret = hidpp_devicenametype_get_device_name(hidpp,
1022                         feature_index, index, name + index,
1023                         __name_length - index);
1024                 if (ret <= 0) {
1025                         kfree(name);
1026                         return NULL;
1027                 }
1028                 index += ret;
1029         }
1030
1031         /* include the terminating '\0' */
1032         hidpp_prefix_name(&name, __name_length + 1);
1033
1034         return name;
1035 }
1036
1037 /* -------------------------------------------------------------------------- */
1038 /* 0x1000: Battery level status                                               */
1039 /* -------------------------------------------------------------------------- */
1040
1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1042
1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1045
1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1047
1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1049 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1051
1052 static int hidpp_map_battery_level(int capacity)
1053 {
1054         if (capacity < 11)
1055                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1056         /*
1057          * The spec says this should be < 31 but some devices report 30
1058          * with brand new batteries and Windows reports 30 as "Good".
1059          */
1060         else if (capacity < 30)
1061                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1062         else if (capacity < 81)
1063                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1064         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1065 }
1066
1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1068                                                     int *next_capacity,
1069                                                     int *level)
1070 {
1071         int status;
1072
1073         *capacity = data[0];
1074         *next_capacity = data[1];
1075         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1076
1077         /* When discharging, we can rely on the device reported capacity.
1078          * For all other states the device reports 0 (unknown).
1079          */
1080         switch (data[2]) {
1081                 case 0: /* discharging (in use) */
1082                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1083                         *level = hidpp_map_battery_level(*capacity);
1084                         break;
1085                 case 1: /* recharging */
1086                         status = POWER_SUPPLY_STATUS_CHARGING;
1087                         break;
1088                 case 2: /* charge in final stage */
1089                         status = POWER_SUPPLY_STATUS_CHARGING;
1090                         break;
1091                 case 3: /* charge complete */
1092                         status = POWER_SUPPLY_STATUS_FULL;
1093                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1094                         *capacity = 100;
1095                         break;
1096                 case 4: /* recharging below optimal speed */
1097                         status = POWER_SUPPLY_STATUS_CHARGING;
1098                         break;
1099                 /* 5 = invalid battery type
1100                    6 = thermal error
1101                    7 = other charging error */
1102                 default:
1103                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1104                         break;
1105         }
1106
1107         return status;
1108 }
1109
1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1111                                                      u8 feature_index,
1112                                                      int *status,
1113                                                      int *capacity,
1114                                                      int *next_capacity,
1115                                                      int *level)
1116 {
1117         struct hidpp_report response;
1118         int ret;
1119         u8 *params = (u8 *)response.fap.params;
1120
1121         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1122                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1123                                           NULL, 0, &response);
1124         /* Ignore these intermittent errors */
1125         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1126                 return -EIO;
1127         if (ret > 0) {
1128                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1129                         __func__, ret);
1130                 return -EPROTO;
1131         }
1132         if (ret)
1133                 return ret;
1134
1135         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1136                                                            next_capacity,
1137                                                            level);
1138
1139         return 0;
1140 }
1141
1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1143                                                   u8 feature_index)
1144 {
1145         struct hidpp_report response;
1146         int ret;
1147         u8 *params = (u8 *)response.fap.params;
1148         unsigned int level_count, flags;
1149
1150         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1151                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1152                                           NULL, 0, &response);
1153         if (ret > 0) {
1154                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1155                         __func__, ret);
1156                 return -EPROTO;
1157         }
1158         if (ret)
1159                 return ret;
1160
1161         level_count = params[0];
1162         flags = params[1];
1163
1164         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1165                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1166         else
1167                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1168
1169         return 0;
1170 }
1171
1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1173 {
1174         u8 feature_type;
1175         int ret;
1176         int status, capacity, next_capacity, level;
1177
1178         if (hidpp->battery.feature_index == 0xff) {
1179                 ret = hidpp_root_get_feature(hidpp,
1180                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1181                                              &hidpp->battery.feature_index,
1182                                              &feature_type);
1183                 if (ret)
1184                         return ret;
1185         }
1186
1187         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1188                                                 hidpp->battery.feature_index,
1189                                                 &status, &capacity,
1190                                                 &next_capacity, &level);
1191         if (ret)
1192                 return ret;
1193
1194         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1195                                                 hidpp->battery.feature_index);
1196         if (ret)
1197                 return ret;
1198
1199         hidpp->battery.status = status;
1200         hidpp->battery.capacity = capacity;
1201         hidpp->battery.level = level;
1202         /* the capacity is only available when discharging or full */
1203         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1204                                 status == POWER_SUPPLY_STATUS_FULL;
1205
1206         return 0;
1207 }
1208
1209 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1210                                  u8 *data, int size)
1211 {
1212         struct hidpp_report *report = (struct hidpp_report *)data;
1213         int status, capacity, next_capacity, level;
1214         bool changed;
1215
1216         if (report->fap.feature_index != hidpp->battery.feature_index ||
1217             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1218                 return 0;
1219
1220         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1221                                                           &capacity,
1222                                                           &next_capacity,
1223                                                           &level);
1224
1225         /* the capacity is only available when discharging or full */
1226         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1227                                 status == POWER_SUPPLY_STATUS_FULL;
1228
1229         changed = capacity != hidpp->battery.capacity ||
1230                   level != hidpp->battery.level ||
1231                   status != hidpp->battery.status;
1232
1233         if (changed) {
1234                 hidpp->battery.level = level;
1235                 hidpp->battery.capacity = capacity;
1236                 hidpp->battery.status = status;
1237                 if (hidpp->battery.ps)
1238                         power_supply_changed(hidpp->battery.ps);
1239         }
1240
1241         return 0;
1242 }
1243
1244 /* -------------------------------------------------------------------------- */
1245 /* 0x1001: Battery voltage                                                    */
1246 /* -------------------------------------------------------------------------- */
1247
1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1249
1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1251
1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1253
1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1255                                                 int *level, int *charge_type)
1256 {
1257         int status;
1258
1259         long charge_sts = (long)data[2];
1260
1261         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1262         switch (data[2] & 0xe0) {
1263         case 0x00:
1264                 status = POWER_SUPPLY_STATUS_CHARGING;
1265                 break;
1266         case 0x20:
1267                 status = POWER_SUPPLY_STATUS_FULL;
1268                 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1269                 break;
1270         case 0x40:
1271                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1272                 break;
1273         case 0xe0:
1274                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1275                 break;
1276         default:
1277                 status = POWER_SUPPLY_STATUS_UNKNOWN;
1278         }
1279
1280         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1281         if (test_bit(3, &charge_sts)) {
1282                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1283         }
1284         if (test_bit(4, &charge_sts)) {
1285                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1286         }
1287
1288         if (test_bit(5, &charge_sts)) {
1289                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1290         }
1291
1292         *voltage = get_unaligned_be16(data);
1293
1294         return status;
1295 }
1296
1297 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1298                                                  u8 feature_index,
1299                                                  int *status, int *voltage,
1300                                                  int *level, int *charge_type)
1301 {
1302         struct hidpp_report response;
1303         int ret;
1304         u8 *params = (u8 *)response.fap.params;
1305
1306         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1307                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1308                                           NULL, 0, &response);
1309
1310         if (ret > 0) {
1311                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1312                         __func__, ret);
1313                 return -EPROTO;
1314         }
1315         if (ret)
1316                 return ret;
1317
1318         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1319
1320         *status = hidpp20_battery_map_status_voltage(params, voltage,
1321                                                      level, charge_type);
1322
1323         return 0;
1324 }
1325
1326 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1327 {
1328         u8 feature_type;
1329         int ret;
1330         int status, voltage, level, charge_type;
1331
1332         if (hidpp->battery.voltage_feature_index == 0xff) {
1333                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1334                                              &hidpp->battery.voltage_feature_index,
1335                                              &feature_type);
1336                 if (ret)
1337                         return ret;
1338         }
1339
1340         ret = hidpp20_battery_get_battery_voltage(hidpp,
1341                                                   hidpp->battery.voltage_feature_index,
1342                                                   &status, &voltage, &level, &charge_type);
1343
1344         if (ret)
1345                 return ret;
1346
1347         hidpp->battery.status = status;
1348         hidpp->battery.voltage = voltage;
1349         hidpp->battery.level = level;
1350         hidpp->battery.charge_type = charge_type;
1351         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1352
1353         return 0;
1354 }
1355
1356 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1357                                             u8 *data, int size)
1358 {
1359         struct hidpp_report *report = (struct hidpp_report *)data;
1360         int status, voltage, level, charge_type;
1361
1362         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1363                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1364                 return 0;
1365
1366         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1367                                                     &level, &charge_type);
1368
1369         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1370
1371         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1372                 hidpp->battery.voltage = voltage;
1373                 hidpp->battery.status = status;
1374                 hidpp->battery.level = level;
1375                 hidpp->battery.charge_type = charge_type;
1376                 if (hidpp->battery.ps)
1377                         power_supply_changed(hidpp->battery.ps);
1378         }
1379         return 0;
1380 }
1381
1382 static enum power_supply_property hidpp_battery_props[] = {
1383         POWER_SUPPLY_PROP_ONLINE,
1384         POWER_SUPPLY_PROP_STATUS,
1385         POWER_SUPPLY_PROP_SCOPE,
1386         POWER_SUPPLY_PROP_MODEL_NAME,
1387         POWER_SUPPLY_PROP_MANUFACTURER,
1388         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1389         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1390         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1391         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1392 };
1393
1394 static int hidpp_battery_get_property(struct power_supply *psy,
1395                                       enum power_supply_property psp,
1396                                       union power_supply_propval *val)
1397 {
1398         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1399         int ret = 0;
1400
1401         switch(psp) {
1402                 case POWER_SUPPLY_PROP_STATUS:
1403                         val->intval = hidpp->battery.status;
1404                         break;
1405                 case POWER_SUPPLY_PROP_CAPACITY:
1406                         val->intval = hidpp->battery.capacity;
1407                         break;
1408                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1409                         val->intval = hidpp->battery.level;
1410                         break;
1411                 case POWER_SUPPLY_PROP_SCOPE:
1412                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1413                         break;
1414                 case POWER_SUPPLY_PROP_ONLINE:
1415                         val->intval = hidpp->battery.online;
1416                         break;
1417                 case POWER_SUPPLY_PROP_MODEL_NAME:
1418                         if (!strncmp(hidpp->name, "Logitech ", 9))
1419                                 val->strval = hidpp->name + 9;
1420                         else
1421                                 val->strval = hidpp->name;
1422                         break;
1423                 case POWER_SUPPLY_PROP_MANUFACTURER:
1424                         val->strval = "Logitech";
1425                         break;
1426                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1427                         val->strval = hidpp->hid_dev->uniq;
1428                         break;
1429                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1430                         /* hardware reports voltage in in mV. sysfs expects uV */
1431                         val->intval = hidpp->battery.voltage * 1000;
1432                         break;
1433                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1434                         val->intval = hidpp->battery.charge_type;
1435                         break;
1436                 default:
1437                         ret = -EINVAL;
1438                         break;
1439         }
1440
1441         return ret;
1442 }
1443
1444 /* -------------------------------------------------------------------------- */
1445 /* 0x1d4b: Wireless device status                                             */
1446 /* -------------------------------------------------------------------------- */
1447 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1448
1449 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1450 {
1451         u8 feature_type;
1452         int ret;
1453
1454         ret = hidpp_root_get_feature(hidpp,
1455                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1456                                      &hidpp->wireless_feature_index,
1457                                      &feature_type);
1458
1459         return ret;
1460 }
1461
1462 /* -------------------------------------------------------------------------- */
1463 /* 0x2120: Hi-resolution scrolling                                            */
1464 /* -------------------------------------------------------------------------- */
1465
1466 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1467
1468 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1469
1470 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1471         bool enabled, u8 *multiplier)
1472 {
1473         u8 feature_index;
1474         u8 feature_type;
1475         int ret;
1476         u8 params[1];
1477         struct hidpp_report response;
1478
1479         ret = hidpp_root_get_feature(hidpp,
1480                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1481                                      &feature_index,
1482                                      &feature_type);
1483         if (ret)
1484                 return ret;
1485
1486         params[0] = enabled ? BIT(0) : 0;
1487         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1488                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1489                                           params, sizeof(params), &response);
1490         if (ret)
1491                 return ret;
1492         *multiplier = response.fap.params[1];
1493         return 0;
1494 }
1495
1496 /* -------------------------------------------------------------------------- */
1497 /* 0x2121: HiRes Wheel                                                        */
1498 /* -------------------------------------------------------------------------- */
1499
1500 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1501
1502 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1503 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1504
1505 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1506         u8 *multiplier)
1507 {
1508         u8 feature_index;
1509         u8 feature_type;
1510         int ret;
1511         struct hidpp_report response;
1512
1513         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1514                                      &feature_index, &feature_type);
1515         if (ret)
1516                 goto return_default;
1517
1518         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1519                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1520                                           NULL, 0, &response);
1521         if (ret)
1522                 goto return_default;
1523
1524         *multiplier = response.fap.params[0];
1525         return 0;
1526 return_default:
1527         hid_warn(hidpp->hid_dev,
1528                  "Couldn't get wheel multiplier (error %d)\n", ret);
1529         return ret;
1530 }
1531
1532 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1533         bool high_resolution, bool use_hidpp)
1534 {
1535         u8 feature_index;
1536         u8 feature_type;
1537         int ret;
1538         u8 params[1];
1539         struct hidpp_report response;
1540
1541         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1542                                      &feature_index, &feature_type);
1543         if (ret)
1544                 return ret;
1545
1546         params[0] = (invert          ? BIT(2) : 0) |
1547                     (high_resolution ? BIT(1) : 0) |
1548                     (use_hidpp       ? BIT(0) : 0);
1549
1550         return hidpp_send_fap_command_sync(hidpp, feature_index,
1551                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1552                                            params, sizeof(params), &response);
1553 }
1554
1555 /* -------------------------------------------------------------------------- */
1556 /* 0x4301: Solar Keyboard                                                     */
1557 /* -------------------------------------------------------------------------- */
1558
1559 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1560
1561 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1562
1563 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1564 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1565 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1566
1567 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1568 {
1569         struct hidpp_report response;
1570         u8 params[2] = { 1, 1 };
1571         u8 feature_type;
1572         int ret;
1573
1574         if (hidpp->battery.feature_index == 0xff) {
1575                 ret = hidpp_root_get_feature(hidpp,
1576                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1577                                              &hidpp->battery.solar_feature_index,
1578                                              &feature_type);
1579                 if (ret)
1580                         return ret;
1581         }
1582
1583         ret = hidpp_send_fap_command_sync(hidpp,
1584                                           hidpp->battery.solar_feature_index,
1585                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1586                                           params, 2, &response);
1587         if (ret > 0) {
1588                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1589                         __func__, ret);
1590                 return -EPROTO;
1591         }
1592         if (ret)
1593                 return ret;
1594
1595         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1596
1597         return 0;
1598 }
1599
1600 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1601                                      u8 *data, int size)
1602 {
1603         struct hidpp_report *report = (struct hidpp_report *)data;
1604         int capacity, lux, status;
1605         u8 function;
1606
1607         function = report->fap.funcindex_clientid;
1608
1609
1610         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1611             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1612               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1613               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1614                 return 0;
1615
1616         capacity = report->fap.params[0];
1617
1618         switch (function) {
1619         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1620                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1621                 if (lux > 200)
1622                         status = POWER_SUPPLY_STATUS_CHARGING;
1623                 else
1624                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1625                 break;
1626         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1627         default:
1628                 if (capacity < hidpp->battery.capacity)
1629                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1630                 else
1631                         status = POWER_SUPPLY_STATUS_CHARGING;
1632
1633         }
1634
1635         if (capacity == 100)
1636                 status = POWER_SUPPLY_STATUS_FULL;
1637
1638         hidpp->battery.online = true;
1639         if (capacity != hidpp->battery.capacity ||
1640             status != hidpp->battery.status) {
1641                 hidpp->battery.capacity = capacity;
1642                 hidpp->battery.status = status;
1643                 if (hidpp->battery.ps)
1644                         power_supply_changed(hidpp->battery.ps);
1645         }
1646
1647         return 0;
1648 }
1649
1650 /* -------------------------------------------------------------------------- */
1651 /* 0x6010: Touchpad FW items                                                  */
1652 /* -------------------------------------------------------------------------- */
1653
1654 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1655
1656 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1657
1658 struct hidpp_touchpad_fw_items {
1659         uint8_t presence;
1660         uint8_t desired_state;
1661         uint8_t state;
1662         uint8_t persistent;
1663 };
1664
1665 /**
1666  * send a set state command to the device by reading the current items->state
1667  * field. items is then filled with the current state.
1668  */
1669 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1670                                        u8 feature_index,
1671                                        struct hidpp_touchpad_fw_items *items)
1672 {
1673         struct hidpp_report response;
1674         int ret;
1675         u8 *params = (u8 *)response.fap.params;
1676
1677         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1678                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1679
1680         if (ret > 0) {
1681                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1682                         __func__, ret);
1683                 return -EPROTO;
1684         }
1685         if (ret)
1686                 return ret;
1687
1688         items->presence = params[0];
1689         items->desired_state = params[1];
1690         items->state = params[2];
1691         items->persistent = params[3];
1692
1693         return 0;
1694 }
1695
1696 /* -------------------------------------------------------------------------- */
1697 /* 0x6100: TouchPadRawXY                                                      */
1698 /* -------------------------------------------------------------------------- */
1699
1700 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1701
1702 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1703 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1704
1705 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1706
1707 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1708 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1709
1710 struct hidpp_touchpad_raw_info {
1711         u16 x_size;
1712         u16 y_size;
1713         u8 z_range;
1714         u8 area_range;
1715         u8 timestamp_unit;
1716         u8 maxcontacts;
1717         u8 origin;
1718         u16 res;
1719 };
1720
1721 struct hidpp_touchpad_raw_xy_finger {
1722         u8 contact_type;
1723         u8 contact_status;
1724         u16 x;
1725         u16 y;
1726         u8 z;
1727         u8 area;
1728         u8 finger_id;
1729 };
1730
1731 struct hidpp_touchpad_raw_xy {
1732         u16 timestamp;
1733         struct hidpp_touchpad_raw_xy_finger fingers[2];
1734         u8 spurious_flag;
1735         u8 end_of_frame;
1736         u8 finger_count;
1737         u8 button;
1738 };
1739
1740 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1741         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1742 {
1743         struct hidpp_report response;
1744         int ret;
1745         u8 *params = (u8 *)response.fap.params;
1746
1747         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1748                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1749
1750         if (ret > 0) {
1751                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1752                         __func__, ret);
1753                 return -EPROTO;
1754         }
1755         if (ret)
1756                 return ret;
1757
1758         raw_info->x_size = get_unaligned_be16(&params[0]);
1759         raw_info->y_size = get_unaligned_be16(&params[2]);
1760         raw_info->z_range = params[4];
1761         raw_info->area_range = params[5];
1762         raw_info->maxcontacts = params[7];
1763         raw_info->origin = params[8];
1764         /* res is given in unit per inch */
1765         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1766
1767         return ret;
1768 }
1769
1770 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1771                 u8 feature_index, bool send_raw_reports,
1772                 bool sensor_enhanced_settings)
1773 {
1774         struct hidpp_report response;
1775
1776         /*
1777          * Params:
1778          *   bit 0 - enable raw
1779          *   bit 1 - 16bit Z, no area
1780          *   bit 2 - enhanced sensitivity
1781          *   bit 3 - width, height (4 bits each) instead of area
1782          *   bit 4 - send raw + gestures (degrades smoothness)
1783          *   remaining bits - reserved
1784          */
1785         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1786
1787         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1788                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1789 }
1790
1791 static void hidpp_touchpad_touch_event(u8 *data,
1792         struct hidpp_touchpad_raw_xy_finger *finger)
1793 {
1794         u8 x_m = data[0] << 2;
1795         u8 y_m = data[2] << 2;
1796
1797         finger->x = x_m << 6 | data[1];
1798         finger->y = y_m << 6 | data[3];
1799
1800         finger->contact_type = data[0] >> 6;
1801         finger->contact_status = data[2] >> 6;
1802
1803         finger->z = data[4];
1804         finger->area = data[5];
1805         finger->finger_id = data[6] >> 4;
1806 }
1807
1808 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1809                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1810 {
1811         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1812         raw_xy->end_of_frame = data[8] & 0x01;
1813         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1814         raw_xy->finger_count = data[15] & 0x0f;
1815         raw_xy->button = (data[8] >> 2) & 0x01;
1816
1817         if (raw_xy->finger_count) {
1818                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1819                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1820         }
1821 }
1822
1823 /* -------------------------------------------------------------------------- */
1824 /* 0x8123: Force feedback support                                             */
1825 /* -------------------------------------------------------------------------- */
1826
1827 #define HIDPP_FF_GET_INFO               0x01
1828 #define HIDPP_FF_RESET_ALL              0x11
1829 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1830 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1831 #define HIDPP_FF_DESTROY_EFFECT         0x41
1832 #define HIDPP_FF_GET_APERTURE           0x51
1833 #define HIDPP_FF_SET_APERTURE           0x61
1834 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1835 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1836
1837 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1838 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1839 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1840 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1841
1842 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1843 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1844 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1845 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1847 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1848 #define HIDPP_FF_EFFECT_SPRING          0x06
1849 #define HIDPP_FF_EFFECT_DAMPER          0x07
1850 #define HIDPP_FF_EFFECT_FRICTION        0x08
1851 #define HIDPP_FF_EFFECT_INERTIA         0x09
1852 #define HIDPP_FF_EFFECT_RAMP            0x0A
1853
1854 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1855
1856 #define HIDPP_FF_EFFECTID_NONE          -1
1857 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1858 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
1859
1860 #define HIDPP_FF_MAX_PARAMS     20
1861 #define HIDPP_FF_RESERVED_SLOTS 1
1862
1863 struct hidpp_ff_private_data {
1864         struct hidpp_device *hidpp;
1865         u8 feature_index;
1866         u8 version;
1867         u16 gain;
1868         s16 range;
1869         u8 slot_autocenter;
1870         u8 num_effects;
1871         int *effect_ids;
1872         struct workqueue_struct *wq;
1873         atomic_t workqueue_size;
1874 };
1875
1876 struct hidpp_ff_work_data {
1877         struct work_struct work;
1878         struct hidpp_ff_private_data *data;
1879         int effect_id;
1880         u8 command;
1881         u8 params[HIDPP_FF_MAX_PARAMS];
1882         u8 size;
1883 };
1884
1885 static const signed short hidpp_ff_effects[] = {
1886         FF_CONSTANT,
1887         FF_PERIODIC,
1888         FF_SINE,
1889         FF_SQUARE,
1890         FF_SAW_UP,
1891         FF_SAW_DOWN,
1892         FF_TRIANGLE,
1893         FF_SPRING,
1894         FF_DAMPER,
1895         FF_AUTOCENTER,
1896         FF_GAIN,
1897         -1
1898 };
1899
1900 static const signed short hidpp_ff_effects_v2[] = {
1901         FF_RAMP,
1902         FF_FRICTION,
1903         FF_INERTIA,
1904         -1
1905 };
1906
1907 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1908         HIDPP_FF_EFFECT_SPRING,
1909         HIDPP_FF_EFFECT_FRICTION,
1910         HIDPP_FF_EFFECT_DAMPER,
1911         HIDPP_FF_EFFECT_INERTIA
1912 };
1913
1914 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1915         "spring",
1916         "friction",
1917         "damper",
1918         "inertia"
1919 };
1920
1921
1922 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1923 {
1924         int i;
1925
1926         for (i = 0; i < data->num_effects; i++)
1927                 if (data->effect_ids[i] == effect_id)
1928                         return i+1;
1929
1930         return 0;
1931 }
1932
1933 static void hidpp_ff_work_handler(struct work_struct *w)
1934 {
1935         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1936         struct hidpp_ff_private_data *data = wd->data;
1937         struct hidpp_report response;
1938         u8 slot;
1939         int ret;
1940
1941         /* add slot number if needed */
1942         switch (wd->effect_id) {
1943         case HIDPP_FF_EFFECTID_AUTOCENTER:
1944                 wd->params[0] = data->slot_autocenter;
1945                 break;
1946         case HIDPP_FF_EFFECTID_NONE:
1947                 /* leave slot as zero */
1948                 break;
1949         default:
1950                 /* find current slot for effect */
1951                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1952                 break;
1953         }
1954
1955         /* send command and wait for reply */
1956         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1957                 wd->command, wd->params, wd->size, &response);
1958
1959         if (ret) {
1960                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1961                 goto out;
1962         }
1963
1964         /* parse return data */
1965         switch (wd->command) {
1966         case HIDPP_FF_DOWNLOAD_EFFECT:
1967                 slot = response.fap.params[0];
1968                 if (slot > 0 && slot <= data->num_effects) {
1969                         if (wd->effect_id >= 0)
1970                                 /* regular effect uploaded */
1971                                 data->effect_ids[slot-1] = wd->effect_id;
1972                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1973                                 /* autocenter spring uploaded */
1974                                 data->slot_autocenter = slot;
1975                 }
1976                 break;
1977         case HIDPP_FF_DESTROY_EFFECT:
1978                 if (wd->effect_id >= 0)
1979                         /* regular effect destroyed */
1980                         data->effect_ids[wd->params[0]-1] = -1;
1981                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1982                         /* autocenter spring destoyed */
1983                         data->slot_autocenter = 0;
1984                 break;
1985         case HIDPP_FF_SET_GLOBAL_GAINS:
1986                 data->gain = (wd->params[0] << 8) + wd->params[1];
1987                 break;
1988         case HIDPP_FF_SET_APERTURE:
1989                 data->range = (wd->params[0] << 8) + wd->params[1];
1990                 break;
1991         default:
1992                 /* no action needed */
1993                 break;
1994         }
1995
1996 out:
1997         atomic_dec(&data->workqueue_size);
1998         kfree(wd);
1999 }
2000
2001 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2002 {
2003         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2004         int s;
2005
2006         if (!wd)
2007                 return -ENOMEM;
2008
2009         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2010
2011         wd->data = data;
2012         wd->effect_id = effect_id;
2013         wd->command = command;
2014         wd->size = size;
2015         memcpy(wd->params, params, size);
2016
2017         atomic_inc(&data->workqueue_size);
2018         queue_work(data->wq, &wd->work);
2019
2020         /* warn about excessive queue size */
2021         s = atomic_read(&data->workqueue_size);
2022         if (s >= 20 && s % 20 == 0)
2023                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2024
2025         return 0;
2026 }
2027
2028 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2029 {
2030         struct hidpp_ff_private_data *data = dev->ff->private;
2031         u8 params[20];
2032         u8 size;
2033         int force;
2034
2035         /* set common parameters */
2036         params[2] = effect->replay.length >> 8;
2037         params[3] = effect->replay.length & 255;
2038         params[4] = effect->replay.delay >> 8;
2039         params[5] = effect->replay.delay & 255;
2040
2041         switch (effect->type) {
2042         case FF_CONSTANT:
2043                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2044                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2045                 params[6] = force >> 8;
2046                 params[7] = force & 255;
2047                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2048                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2049                 params[10] = effect->u.constant.envelope.attack_length & 255;
2050                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2051                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2052                 params[13] = effect->u.constant.envelope.fade_length & 255;
2053                 size = 14;
2054                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2055                                 effect->u.constant.level,
2056                                 effect->direction, force);
2057                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2058                                 effect->u.constant.envelope.attack_level,
2059                                 effect->u.constant.envelope.attack_length,
2060                                 effect->u.constant.envelope.fade_level,
2061                                 effect->u.constant.envelope.fade_length);
2062                 break;
2063         case FF_PERIODIC:
2064         {
2065                 switch (effect->u.periodic.waveform) {
2066                 case FF_SINE:
2067                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2068                         break;
2069                 case FF_SQUARE:
2070                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2071                         break;
2072                 case FF_SAW_UP:
2073                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2074                         break;
2075                 case FF_SAW_DOWN:
2076                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2077                         break;
2078                 case FF_TRIANGLE:
2079                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2080                         break;
2081                 default:
2082                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2083                         return -EINVAL;
2084                 }
2085                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2086                 params[6] = effect->u.periodic.magnitude >> 8;
2087                 params[7] = effect->u.periodic.magnitude & 255;
2088                 params[8] = effect->u.periodic.offset >> 8;
2089                 params[9] = effect->u.periodic.offset & 255;
2090                 params[10] = effect->u.periodic.period >> 8;
2091                 params[11] = effect->u.periodic.period & 255;
2092                 params[12] = effect->u.periodic.phase >> 8;
2093                 params[13] = effect->u.periodic.phase & 255;
2094                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2095                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2096                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2097                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2098                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2099                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2100                 size = 20;
2101                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2102                                 effect->u.periodic.magnitude, effect->direction,
2103                                 effect->u.periodic.offset,
2104                                 effect->u.periodic.period,
2105                                 effect->u.periodic.phase);
2106                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2107                                 effect->u.periodic.envelope.attack_level,
2108                                 effect->u.periodic.envelope.attack_length,
2109                                 effect->u.periodic.envelope.fade_level,
2110                                 effect->u.periodic.envelope.fade_length);
2111                 break;
2112         }
2113         case FF_RAMP:
2114                 params[1] = HIDPP_FF_EFFECT_RAMP;
2115                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2116                 params[6] = force >> 8;
2117                 params[7] = force & 255;
2118                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2119                 params[8] = force >> 8;
2120                 params[9] = force & 255;
2121                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2122                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2123                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2124                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2125                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2126                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2127                 size = 16;
2128                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2129                                 effect->u.ramp.start_level,
2130                                 effect->u.ramp.end_level,
2131                                 effect->direction, force);
2132                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2133                                 effect->u.ramp.envelope.attack_level,
2134                                 effect->u.ramp.envelope.attack_length,
2135                                 effect->u.ramp.envelope.fade_level,
2136                                 effect->u.ramp.envelope.fade_length);
2137                 break;
2138         case FF_FRICTION:
2139         case FF_INERTIA:
2140         case FF_SPRING:
2141         case FF_DAMPER:
2142                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2143                 params[6] = effect->u.condition[0].left_saturation >> 9;
2144                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2145                 params[8] = effect->u.condition[0].left_coeff >> 8;
2146                 params[9] = effect->u.condition[0].left_coeff & 255;
2147                 params[10] = effect->u.condition[0].deadband >> 9;
2148                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2149                 params[12] = effect->u.condition[0].center >> 8;
2150                 params[13] = effect->u.condition[0].center & 255;
2151                 params[14] = effect->u.condition[0].right_coeff >> 8;
2152                 params[15] = effect->u.condition[0].right_coeff & 255;
2153                 params[16] = effect->u.condition[0].right_saturation >> 9;
2154                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2155                 size = 18;
2156                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2157                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2158                                 effect->u.condition[0].left_coeff,
2159                                 effect->u.condition[0].left_saturation,
2160                                 effect->u.condition[0].right_coeff,
2161                                 effect->u.condition[0].right_saturation);
2162                 dbg_hid("          deadband=%d, center=%d\n",
2163                                 effect->u.condition[0].deadband,
2164                                 effect->u.condition[0].center);
2165                 break;
2166         default:
2167                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2168                 return -EINVAL;
2169         }
2170
2171         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2172 }
2173
2174 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2175 {
2176         struct hidpp_ff_private_data *data = dev->ff->private;
2177         u8 params[2];
2178
2179         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2180
2181         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2182
2183         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2184 }
2185
2186 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2187 {
2188         struct hidpp_ff_private_data *data = dev->ff->private;
2189         u8 slot = 0;
2190
2191         dbg_hid("Erasing effect %d.\n", effect_id);
2192
2193         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2194 }
2195
2196 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2197 {
2198         struct hidpp_ff_private_data *data = dev->ff->private;
2199         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2200
2201         dbg_hid("Setting autocenter to %d.\n", magnitude);
2202
2203         /* start a standard spring effect */
2204         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2205         /* zero delay and duration */
2206         params[2] = params[3] = params[4] = params[5] = 0;
2207         /* set coeff to 25% of saturation */
2208         params[8] = params[14] = magnitude >> 11;
2209         params[9] = params[15] = (magnitude >> 3) & 255;
2210         params[6] = params[16] = magnitude >> 9;
2211         params[7] = params[17] = (magnitude >> 1) & 255;
2212         /* zero deadband and center */
2213         params[10] = params[11] = params[12] = params[13] = 0;
2214
2215         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2216 }
2217
2218 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2219 {
2220         struct hidpp_ff_private_data *data = dev->ff->private;
2221         u8 params[4];
2222
2223         dbg_hid("Setting gain to %d.\n", gain);
2224
2225         params[0] = gain >> 8;
2226         params[1] = gain & 255;
2227         params[2] = 0; /* no boost */
2228         params[3] = 0;
2229
2230         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2231 }
2232
2233 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2234 {
2235         struct hid_device *hid = to_hid_device(dev);
2236         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2237         struct input_dev *idev = hidinput->input;
2238         struct hidpp_ff_private_data *data = idev->ff->private;
2239
2240         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2241 }
2242
2243 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2244 {
2245         struct hid_device *hid = to_hid_device(dev);
2246         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2247         struct input_dev *idev = hidinput->input;
2248         struct hidpp_ff_private_data *data = idev->ff->private;
2249         u8 params[2];
2250         int range = simple_strtoul(buf, NULL, 10);
2251
2252         range = clamp(range, 180, 900);
2253
2254         params[0] = range >> 8;
2255         params[1] = range & 0x00FF;
2256
2257         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2258
2259         return count;
2260 }
2261
2262 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2263
2264 static void hidpp_ff_destroy(struct ff_device *ff)
2265 {
2266         struct hidpp_ff_private_data *data = ff->private;
2267         struct hid_device *hid = data->hidpp->hid_dev;
2268
2269         hid_info(hid, "Unloading HID++ force feedback.\n");
2270
2271         device_remove_file(&hid->dev, &dev_attr_range);
2272         destroy_workqueue(data->wq);
2273         kfree(data->effect_ids);
2274 }
2275
2276 static int hidpp_ff_init(struct hidpp_device *hidpp,
2277                          struct hidpp_ff_private_data *data)
2278 {
2279         struct hid_device *hid = hidpp->hid_dev;
2280         struct hid_input *hidinput;
2281         struct input_dev *dev;
2282         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2283         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2284         struct ff_device *ff;
2285         int error, j, num_slots = data->num_effects;
2286         u8 version;
2287
2288         if (list_empty(&hid->inputs)) {
2289                 hid_err(hid, "no inputs found\n");
2290                 return -ENODEV;
2291         }
2292         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2293         dev = hidinput->input;
2294
2295         if (!dev) {
2296                 hid_err(hid, "Struct input_dev not set!\n");
2297                 return -EINVAL;
2298         }
2299
2300         /* Get firmware release */
2301         version = bcdDevice & 255;
2302
2303         /* Set supported force feedback capabilities */
2304         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2305                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2306         if (version > 1)
2307                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2308                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2309
2310         error = input_ff_create(dev, num_slots);
2311
2312         if (error) {
2313                 hid_err(dev, "Failed to create FF device!\n");
2314                 return error;
2315         }
2316         /*
2317          * Create a copy of passed data, so we can transfer memory
2318          * ownership to FF core
2319          */
2320         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2321         if (!data)
2322                 return -ENOMEM;
2323         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2324         if (!data->effect_ids) {
2325                 kfree(data);
2326                 return -ENOMEM;
2327         }
2328         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2329         if (!data->wq) {
2330                 kfree(data->effect_ids);
2331                 kfree(data);
2332                 return -ENOMEM;
2333         }
2334
2335         data->hidpp = hidpp;
2336         data->version = version;
2337         for (j = 0; j < num_slots; j++)
2338                 data->effect_ids[j] = -1;
2339
2340         ff = dev->ff;
2341         ff->private = data;
2342
2343         ff->upload = hidpp_ff_upload_effect;
2344         ff->erase = hidpp_ff_erase_effect;
2345         ff->playback = hidpp_ff_playback;
2346         ff->set_gain = hidpp_ff_set_gain;
2347         ff->set_autocenter = hidpp_ff_set_autocenter;
2348         ff->destroy = hidpp_ff_destroy;
2349
2350         /* Create sysfs interface */
2351         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2352         if (error)
2353                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2354
2355         /* init the hardware command queue */
2356         atomic_set(&data->workqueue_size, 0);
2357
2358         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2359                  version);
2360
2361         return 0;
2362 }
2363
2364 /* ************************************************************************** */
2365 /*                                                                            */
2366 /* Device Support                                                             */
2367 /*                                                                            */
2368 /* ************************************************************************** */
2369
2370 /* -------------------------------------------------------------------------- */
2371 /* Touchpad HID++ devices                                                     */
2372 /* -------------------------------------------------------------------------- */
2373
2374 #define WTP_MANUAL_RESOLUTION                           39
2375
2376 struct wtp_data {
2377         u16 x_size, y_size;
2378         u8 finger_count;
2379         u8 mt_feature_index;
2380         u8 button_feature_index;
2381         u8 maxcontacts;
2382         bool flip_y;
2383         unsigned int resolution;
2384 };
2385
2386 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2387                 struct hid_field *field, struct hid_usage *usage,
2388                 unsigned long **bit, int *max)
2389 {
2390         return -1;
2391 }
2392
2393 static void wtp_populate_input(struct hidpp_device *hidpp,
2394                                struct input_dev *input_dev)
2395 {
2396         struct wtp_data *wd = hidpp->private_data;
2397
2398         __set_bit(EV_ABS, input_dev->evbit);
2399         __set_bit(EV_KEY, input_dev->evbit);
2400         __clear_bit(EV_REL, input_dev->evbit);
2401         __clear_bit(EV_LED, input_dev->evbit);
2402
2403         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2404         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2405         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2406         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2407
2408         /* Max pressure is not given by the devices, pick one */
2409         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2410
2411         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2412
2413         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2414                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2415         else
2416                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2417
2418         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2419                 INPUT_MT_DROP_UNUSED);
2420 }
2421
2422 static void wtp_touch_event(struct hidpp_device *hidpp,
2423         struct hidpp_touchpad_raw_xy_finger *touch_report)
2424 {
2425         struct wtp_data *wd = hidpp->private_data;
2426         int slot;
2427
2428         if (!touch_report->finger_id || touch_report->contact_type)
2429                 /* no actual data */
2430                 return;
2431
2432         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2433
2434         input_mt_slot(hidpp->input, slot);
2435         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2436                                         touch_report->contact_status);
2437         if (touch_report->contact_status) {
2438                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2439                                 touch_report->x);
2440                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2441                                 wd->flip_y ? wd->y_size - touch_report->y :
2442                                              touch_report->y);
2443                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2444                                 touch_report->area);
2445         }
2446 }
2447
2448 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2449                 struct hidpp_touchpad_raw_xy *raw)
2450 {
2451         int i;
2452
2453         for (i = 0; i < 2; i++)
2454                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2455
2456         if (raw->end_of_frame &&
2457             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2458                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2459
2460         if (raw->end_of_frame || raw->finger_count <= 2) {
2461                 input_mt_sync_frame(hidpp->input);
2462                 input_sync(hidpp->input);
2463         }
2464 }
2465
2466 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2467 {
2468         struct wtp_data *wd = hidpp->private_data;
2469         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2470                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2471         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2472                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2473         struct hidpp_touchpad_raw_xy raw = {
2474                 .timestamp = data[1],
2475                 .fingers = {
2476                         {
2477                                 .contact_type = 0,
2478                                 .contact_status = !!data[7],
2479                                 .x = get_unaligned_le16(&data[3]),
2480                                 .y = get_unaligned_le16(&data[5]),
2481                                 .z = c1_area,
2482                                 .area = c1_area,
2483                                 .finger_id = data[2],
2484                         }, {
2485                                 .contact_type = 0,
2486                                 .contact_status = !!data[13],
2487                                 .x = get_unaligned_le16(&data[9]),
2488                                 .y = get_unaligned_le16(&data[11]),
2489                                 .z = c2_area,
2490                                 .area = c2_area,
2491                                 .finger_id = data[8],
2492                         }
2493                 },
2494                 .finger_count = wd->maxcontacts,
2495                 .spurious_flag = 0,
2496                 .end_of_frame = (data[0] >> 7) == 0,
2497                 .button = data[0] & 0x01,
2498         };
2499
2500         wtp_send_raw_xy_event(hidpp, &raw);
2501
2502         return 1;
2503 }
2504
2505 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2506 {
2507         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2508         struct wtp_data *wd = hidpp->private_data;
2509         struct hidpp_report *report = (struct hidpp_report *)data;
2510         struct hidpp_touchpad_raw_xy raw;
2511
2512         if (!wd || !hidpp->input)
2513                 return 1;
2514
2515         switch (data[0]) {
2516         case 0x02:
2517                 if (size < 2) {
2518                         hid_err(hdev, "Received HID report of bad size (%d)",
2519                                 size);
2520                         return 1;
2521                 }
2522                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2523                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2524                                         !!(data[1] & 0x01));
2525                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2526                                         !!(data[1] & 0x02));
2527                         input_sync(hidpp->input);
2528                         return 0;
2529                 } else {
2530                         if (size < 21)
2531                                 return 1;
2532                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2533                 }
2534         case REPORT_ID_HIDPP_LONG:
2535                 /* size is already checked in hidpp_raw_event. */
2536                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2537                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2538                         return 1;
2539                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2540
2541                 wtp_send_raw_xy_event(hidpp, &raw);
2542                 return 0;
2543         }
2544
2545         return 0;
2546 }
2547
2548 static int wtp_get_config(struct hidpp_device *hidpp)
2549 {
2550         struct wtp_data *wd = hidpp->private_data;
2551         struct hidpp_touchpad_raw_info raw_info = {0};
2552         u8 feature_type;
2553         int ret;
2554
2555         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2556                 &wd->mt_feature_index, &feature_type);
2557         if (ret)
2558                 /* means that the device is not powered up */
2559                 return ret;
2560
2561         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2562                 &raw_info);
2563         if (ret)
2564                 return ret;
2565
2566         wd->x_size = raw_info.x_size;
2567         wd->y_size = raw_info.y_size;
2568         wd->maxcontacts = raw_info.maxcontacts;
2569         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2570         wd->resolution = raw_info.res;
2571         if (!wd->resolution)
2572                 wd->resolution = WTP_MANUAL_RESOLUTION;
2573
2574         return 0;
2575 }
2576
2577 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2578 {
2579         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2580         struct wtp_data *wd;
2581
2582         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2583                         GFP_KERNEL);
2584         if (!wd)
2585                 return -ENOMEM;
2586
2587         hidpp->private_data = wd;
2588
2589         return 0;
2590 };
2591
2592 static int wtp_connect(struct hid_device *hdev, bool connected)
2593 {
2594         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2595         struct wtp_data *wd = hidpp->private_data;
2596         int ret;
2597
2598         if (!wd->x_size) {
2599                 ret = wtp_get_config(hidpp);
2600                 if (ret) {
2601                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2602                         return ret;
2603                 }
2604         }
2605
2606         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2607                         true, true);
2608 }
2609
2610 /* ------------------------------------------------------------------------- */
2611 /* Logitech M560 devices                                                     */
2612 /* ------------------------------------------------------------------------- */
2613
2614 /*
2615  * Logitech M560 protocol overview
2616  *
2617  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2618  * the sides buttons are pressed, it sends some keyboard keys events
2619  * instead of buttons ones.
2620  * To complicate things further, the middle button keys sequence
2621  * is different from the odd press and the even press.
2622  *
2623  * forward button -> Super_R
2624  * backward button -> Super_L+'d' (press only)
2625  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2626  *                  2nd time: left-click (press only)
2627  * NB: press-only means that when the button is pressed, the
2628  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2629  * together sequentially; instead when the button is released, no event is
2630  * generated !
2631  *
2632  * With the command
2633  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2634  * the mouse reacts differently:
2635  * - it never sends a keyboard key event
2636  * - for the three mouse button it sends:
2637  *      middle button               press   11<xx>0a 3500af00...
2638  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2639  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2640  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2641  */
2642
2643 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2644
2645 /* how buttons are mapped in the report */
2646 #define M560_MOUSE_BTN_LEFT             0x01
2647 #define M560_MOUSE_BTN_RIGHT            0x02
2648 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2649 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2650
2651 #define M560_SUB_ID                     0x0a
2652 #define M560_BUTTON_MODE_REGISTER       0x35
2653
2654 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2655 {
2656         struct hidpp_report response;
2657         struct hidpp_device *hidpp_dev;
2658
2659         hidpp_dev = hid_get_drvdata(hdev);
2660
2661         return hidpp_send_rap_command_sync(
2662                 hidpp_dev,
2663                 REPORT_ID_HIDPP_SHORT,
2664                 M560_SUB_ID,
2665                 M560_BUTTON_MODE_REGISTER,
2666                 (u8 *)m560_config_parameter,
2667                 sizeof(m560_config_parameter),
2668                 &response
2669         );
2670 }
2671
2672 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2673 {
2674         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2675
2676         /* sanity check */
2677         if (!hidpp->input) {
2678                 hid_err(hdev, "error in parameter\n");
2679                 return -EINVAL;
2680         }
2681
2682         if (size < 7) {
2683                 hid_err(hdev, "error in report\n");
2684                 return 0;
2685         }
2686
2687         if (data[0] == REPORT_ID_HIDPP_LONG &&
2688             data[2] == M560_SUB_ID && data[6] == 0x00) {
2689                 /*
2690                  * m560 mouse report for middle, forward and backward button
2691                  *
2692                  * data[0] = 0x11
2693                  * data[1] = device-id
2694                  * data[2] = 0x0a
2695                  * data[5] = 0xaf -> middle
2696                  *           0xb0 -> forward
2697                  *           0xae -> backward
2698                  *           0x00 -> release all
2699                  * data[6] = 0x00
2700                  */
2701
2702                 switch (data[5]) {
2703                 case 0xaf:
2704                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2705                         break;
2706                 case 0xb0:
2707                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2708                         break;
2709                 case 0xae:
2710                         input_report_key(hidpp->input, BTN_BACK, 1);
2711                         break;
2712                 case 0x00:
2713                         input_report_key(hidpp->input, BTN_BACK, 0);
2714                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2715                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2716                         break;
2717                 default:
2718                         hid_err(hdev, "error in report\n");
2719                         return 0;
2720                 }
2721                 input_sync(hidpp->input);
2722
2723         } else if (data[0] == 0x02) {
2724                 /*
2725                  * Logitech M560 mouse report
2726                  *
2727                  * data[0] = type (0x02)
2728                  * data[1..2] = buttons
2729                  * data[3..5] = xy
2730                  * data[6] = wheel
2731                  */
2732
2733                 int v;
2734
2735                 input_report_key(hidpp->input, BTN_LEFT,
2736                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2737                 input_report_key(hidpp->input, BTN_RIGHT,
2738                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2739
2740                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2741                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2742                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2743                                          -120);
2744                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2745                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2746                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2747                                          120);
2748                 }
2749
2750                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2751                 input_report_rel(hidpp->input, REL_X, v);
2752
2753                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2754                 input_report_rel(hidpp->input, REL_Y, v);
2755
2756                 v = hid_snto32(data[6], 8);
2757                 if (v != 0)
2758                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2759                                         &hidpp->vertical_wheel_counter, v);
2760
2761                 input_sync(hidpp->input);
2762         }
2763
2764         return 1;
2765 }
2766
2767 static void m560_populate_input(struct hidpp_device *hidpp,
2768                                 struct input_dev *input_dev)
2769 {
2770         __set_bit(EV_KEY, input_dev->evbit);
2771         __set_bit(BTN_MIDDLE, input_dev->keybit);
2772         __set_bit(BTN_RIGHT, input_dev->keybit);
2773         __set_bit(BTN_LEFT, input_dev->keybit);
2774         __set_bit(BTN_BACK, input_dev->keybit);
2775         __set_bit(BTN_FORWARD, input_dev->keybit);
2776
2777         __set_bit(EV_REL, input_dev->evbit);
2778         __set_bit(REL_X, input_dev->relbit);
2779         __set_bit(REL_Y, input_dev->relbit);
2780         __set_bit(REL_WHEEL, input_dev->relbit);
2781         __set_bit(REL_HWHEEL, input_dev->relbit);
2782         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2783         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2784 }
2785
2786 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2787                 struct hid_field *field, struct hid_usage *usage,
2788                 unsigned long **bit, int *max)
2789 {
2790         return -1;
2791 }
2792
2793 /* ------------------------------------------------------------------------- */
2794 /* Logitech K400 devices                                                     */
2795 /* ------------------------------------------------------------------------- */
2796
2797 /*
2798  * The Logitech K400 keyboard has an embedded touchpad which is seen
2799  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2800  * tap-to-click but the setting is not remembered accross reset, annoying some
2801  * users.
2802  *
2803  * We can toggle this feature from the host by using the feature 0x6010:
2804  * Touchpad FW items
2805  */
2806
2807 struct k400_private_data {
2808         u8 feature_index;
2809 };
2810
2811 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2812 {
2813         struct k400_private_data *k400 = hidpp->private_data;
2814         struct hidpp_touchpad_fw_items items = {};
2815         int ret;
2816         u8 feature_type;
2817
2818         if (!k400->feature_index) {
2819                 ret = hidpp_root_get_feature(hidpp,
2820                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2821                         &k400->feature_index, &feature_type);
2822                 if (ret)
2823                         /* means that the device is not powered up */
2824                         return ret;
2825         }
2826
2827         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2828         if (ret)
2829                 return ret;
2830
2831         return 0;
2832 }
2833
2834 static int k400_allocate(struct hid_device *hdev)
2835 {
2836         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2837         struct k400_private_data *k400;
2838
2839         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2840                             GFP_KERNEL);
2841         if (!k400)
2842                 return -ENOMEM;
2843
2844         hidpp->private_data = k400;
2845
2846         return 0;
2847 };
2848
2849 static int k400_connect(struct hid_device *hdev, bool connected)
2850 {
2851         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2852
2853         if (!disable_tap_to_click)
2854                 return 0;
2855
2856         return k400_disable_tap_to_click(hidpp);
2857 }
2858
2859 /* ------------------------------------------------------------------------- */
2860 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2861 /* ------------------------------------------------------------------------- */
2862
2863 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2864
2865 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
2866                                   struct hidpp_ff_private_data *data)
2867 {
2868         struct hidpp_report response;
2869         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
2870                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
2871         };
2872         int ret;
2873
2874         /* initialize with zero autocenter to get wheel in usable state */
2875
2876         dbg_hid("Setting autocenter to 0.\n");
2877         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2878                                           HIDPP_FF_DOWNLOAD_EFFECT,
2879                                           params, ARRAY_SIZE(params),
2880                                           &response);
2881         if (ret)
2882                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
2883         else
2884                 data->slot_autocenter = response.fap.params[0];
2885
2886         return ret;
2887 }
2888
2889 static int g920_get_config(struct hidpp_device *hidpp,
2890                            struct hidpp_ff_private_data *data)
2891 {
2892         struct hidpp_report response;
2893         u8 feature_type;
2894         int ret;
2895
2896         memset(data, 0, sizeof(*data));
2897
2898         /* Find feature and store for later use */
2899         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2900                                      &data->feature_index, &feature_type);
2901         if (ret)
2902                 return ret;
2903
2904         /* Read number of slots available in device */
2905         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2906                                           HIDPP_FF_GET_INFO,
2907                                           NULL, 0,
2908                                           &response);
2909         if (ret) {
2910                 if (ret < 0)
2911                         return ret;
2912                 hid_err(hidpp->hid_dev,
2913                         "%s: received protocol error 0x%02x\n", __func__, ret);
2914                 return -EPROTO;
2915         }
2916
2917         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2918
2919         /* reset all forces */
2920         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2921                                           HIDPP_FF_RESET_ALL,
2922                                           NULL, 0,
2923                                           &response);
2924         if (ret)
2925                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
2926
2927         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2928                                           HIDPP_FF_GET_APERTURE,
2929                                           NULL, 0,
2930                                           &response);
2931         if (ret) {
2932                 hid_warn(hidpp->hid_dev,
2933                          "Failed to read range from device!\n");
2934         }
2935         data->range = ret ?
2936                 900 : get_unaligned_be16(&response.fap.params[0]);
2937
2938         /* Read the current gain values */
2939         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2940                                           HIDPP_FF_GET_GLOBAL_GAINS,
2941                                           NULL, 0,
2942                                           &response);
2943         if (ret)
2944                 hid_warn(hidpp->hid_dev,
2945                          "Failed to read gain values from device!\n");
2946         data->gain = ret ?
2947                 0xffff : get_unaligned_be16(&response.fap.params[0]);
2948
2949         /* ignore boost value at response.fap.params[2] */
2950
2951         return g920_ff_set_autocenter(hidpp, data);
2952 }
2953
2954 /* -------------------------------------------------------------------------- */
2955 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2956 /* -------------------------------------------------------------------------- */
2957 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2958 {
2959         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2960                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2961                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2962 }
2963
2964 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2965                                    u8 *data, int size)
2966 {
2967         s8 value, hvalue;
2968
2969         if (!hidpp->input)
2970                 return -EINVAL;
2971
2972         if (size < 7)
2973                 return 0;
2974
2975         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2976                 return 0;
2977
2978         value = data[3];
2979         hvalue = data[4];
2980
2981         input_report_rel(hidpp->input, REL_WHEEL, value);
2982         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2983         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2984         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2985         input_sync(hidpp->input);
2986
2987         return 1;
2988 }
2989
2990 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2991                                          struct input_dev *input_dev)
2992 {
2993         __set_bit(EV_REL, input_dev->evbit);
2994         __set_bit(REL_WHEEL, input_dev->relbit);
2995         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2996         __set_bit(REL_HWHEEL, input_dev->relbit);
2997         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2998 }
2999
3000 /* -------------------------------------------------------------------------- */
3001 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3002 /* -------------------------------------------------------------------------- */
3003 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3004 {
3005         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3006                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3007                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3008 }
3009
3010 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3011                                     u8 *data, int size)
3012 {
3013         int i;
3014
3015         if (!hidpp->input)
3016                 return -EINVAL;
3017
3018         if (size < 7)
3019                 return 0;
3020
3021         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3022             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3023                 return 0;
3024
3025         /*
3026          * Buttons are either delivered through the regular mouse report *or*
3027          * through the extra buttons report. At least for button 6 how it is
3028          * delivered differs per receiver firmware version. Even receivers with
3029          * the same usb-id show different behavior, so we handle both cases.
3030          */
3031         for (i = 0; i < 8; i++)
3032                 input_report_key(hidpp->input, BTN_MOUSE + i,
3033                                  (data[3] & (1 << i)));
3034
3035         /* Some mice report events on button 9+, use BTN_MISC */
3036         for (i = 0; i < 8; i++)
3037                 input_report_key(hidpp->input, BTN_MISC + i,
3038                                  (data[4] & (1 << i)));
3039
3040         input_sync(hidpp->input);
3041         return 1;
3042 }
3043
3044 static void hidpp10_extra_mouse_buttons_populate_input(
3045                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3046 {
3047         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3048         __set_bit(BTN_0, input_dev->keybit);
3049         __set_bit(BTN_1, input_dev->keybit);
3050         __set_bit(BTN_2, input_dev->keybit);
3051         __set_bit(BTN_3, input_dev->keybit);
3052         __set_bit(BTN_4, input_dev->keybit);
3053         __set_bit(BTN_5, input_dev->keybit);
3054         __set_bit(BTN_6, input_dev->keybit);
3055         __set_bit(BTN_7, input_dev->keybit);
3056 }
3057
3058 /* -------------------------------------------------------------------------- */
3059 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3060 /* -------------------------------------------------------------------------- */
3061
3062 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3063 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3064                                               u8 *_rdesc, unsigned int *rsize)
3065 {
3066         /* Note 0 terminated so we can use strnstr to search for this. */
3067         static const char consumer_rdesc_start[] = {
3068                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3069                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3070                 0xA1, 0x01,     /* COLLECTION (Application)            */
3071                 0x85, 0x03,     /* REPORT_ID = 3                       */
3072                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3073                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3074                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3075                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3076         };
3077         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3078         unsigned int size;
3079
3080         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3081         size = *rsize - (consumer_rdesc - rdesc);
3082         if (consumer_rdesc && size >= 25) {
3083                 consumer_rdesc[15] = 0x7f;
3084                 consumer_rdesc[16] = 0x10;
3085                 consumer_rdesc[20] = 0x7f;
3086                 consumer_rdesc[21] = 0x10;
3087         }
3088         return _rdesc;
3089 }
3090
3091 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3092 {
3093         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3094                                     HIDPP_ENABLE_CONSUMER_REPORT,
3095                                     HIDPP_ENABLE_CONSUMER_REPORT);
3096 }
3097
3098 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3099                                            u8 *data, int size)
3100 {
3101         u8 consumer_report[5];
3102
3103         if (size < 7)
3104                 return 0;
3105
3106         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3107             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3108                 return 0;
3109
3110         /*
3111          * Build a normal consumer report (3) out of the data, this detour
3112          * is necessary to get some keyboards to report their 0x10xx usages.
3113          */
3114         consumer_report[0] = 0x03;
3115         memcpy(&consumer_report[1], &data[3], 4);
3116         /* We are called from atomic context */
3117         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3118                              consumer_report, 5, 1);
3119
3120         return 1;
3121 }
3122
3123 /* -------------------------------------------------------------------------- */
3124 /* High-resolution scroll wheels                                              */
3125 /* -------------------------------------------------------------------------- */
3126
3127 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3128 {
3129         int ret;
3130         u8 multiplier = 1;
3131
3132         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3133                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3134                 if (ret == 0)
3135                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3136         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3137                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3138                                                            &multiplier);
3139         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3140                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3141                 multiplier = 8;
3142         }
3143         if (ret)
3144                 return ret;
3145
3146         if (multiplier == 0)
3147                 multiplier = 1;
3148
3149         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3150         hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
3151         return 0;
3152 }
3153
3154 /* -------------------------------------------------------------------------- */
3155 /* Generic HID++ devices                                                      */
3156 /* -------------------------------------------------------------------------- */
3157
3158 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3159                               unsigned int *rsize)
3160 {
3161         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3162
3163         if (!hidpp)
3164                 return rdesc;
3165
3166         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3167         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3168             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3169                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3170
3171         return rdesc;
3172 }
3173
3174 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3175                 struct hid_field *field, struct hid_usage *usage,
3176                 unsigned long **bit, int *max)
3177 {
3178         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3179
3180         if (!hidpp)
3181                 return 0;
3182
3183         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3184                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3185         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3186                         field->application != HID_GD_MOUSE)
3187                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3188
3189         return 0;
3190 }
3191
3192 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3193                 struct hid_field *field, struct hid_usage *usage,
3194                 unsigned long **bit, int *max)
3195 {
3196         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3197
3198         if (!hidpp)
3199                 return 0;
3200
3201         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3202         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3203                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3204                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3205                                 usage->code == ABS_RZ)) {
3206                         field->application = HID_GD_MULTIAXIS;
3207                 }
3208         }
3209
3210         return 0;
3211 }
3212
3213
3214 static void hidpp_populate_input(struct hidpp_device *hidpp,
3215                                  struct input_dev *input)
3216 {
3217         hidpp->input = input;
3218
3219         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3220                 wtp_populate_input(hidpp, input);
3221         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3222                 m560_populate_input(hidpp, input);
3223
3224         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3225                 hidpp10_wheel_populate_input(hidpp, input);
3226
3227         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3228                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3229 }
3230
3231 static int hidpp_input_configured(struct hid_device *hdev,
3232                                 struct hid_input *hidinput)
3233 {
3234         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3235         struct input_dev *input = hidinput->input;
3236
3237         if (!hidpp)
3238                 return 0;
3239
3240         hidpp_populate_input(hidpp, input);
3241
3242         return 0;
3243 }
3244
3245 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3246                 int size)
3247 {
3248         struct hidpp_report *question = hidpp->send_receive_buf;
3249         struct hidpp_report *answer = hidpp->send_receive_buf;
3250         struct hidpp_report *report = (struct hidpp_report *)data;
3251         int ret;
3252
3253         /*
3254          * If the mutex is locked then we have a pending answer from a
3255          * previously sent command.
3256          */
3257         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3258                 /*
3259                  * Check for a correct hidpp20 answer or the corresponding
3260                  * error
3261                  */
3262                 if (hidpp_match_answer(question, report) ||
3263                                 hidpp_match_error(question, report)) {
3264                         *answer = *report;
3265                         hidpp->answer_available = true;
3266                         wake_up(&hidpp->wait);
3267                         /*
3268                          * This was an answer to a command that this driver sent
3269                          * We return 1 to hid-core to avoid forwarding the
3270                          * command upstream as it has been treated by the driver
3271                          */
3272
3273                         return 1;
3274                 }
3275         }
3276
3277         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3278                 atomic_set(&hidpp->connected,
3279                                 !(report->rap.params[0] & (1 << 6)));
3280                 if (schedule_work(&hidpp->work) == 0)
3281                         dbg_hid("%s: connect event already queued\n", __func__);
3282                 return 1;
3283         }
3284
3285         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3286                 ret = hidpp20_battery_event(hidpp, data, size);
3287                 if (ret != 0)
3288                         return ret;
3289                 ret = hidpp_solar_battery_event(hidpp, data, size);
3290                 if (ret != 0)
3291                         return ret;
3292                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3293                 if (ret != 0)
3294                         return ret;
3295         }
3296
3297         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3298                 ret = hidpp10_battery_event(hidpp, data, size);
3299                 if (ret != 0)
3300                         return ret;
3301         }
3302
3303         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3304                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3305                 if (ret != 0)
3306                         return ret;
3307         }
3308
3309         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3310                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3311                 if (ret != 0)
3312                         return ret;
3313         }
3314
3315         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3316                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3317                 if (ret != 0)
3318                         return ret;
3319         }
3320
3321         return 0;
3322 }
3323
3324 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3325                 u8 *data, int size)
3326 {
3327         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3328         int ret = 0;
3329
3330         if (!hidpp)
3331                 return 0;
3332
3333         /* Generic HID++ processing. */
3334         switch (data[0]) {
3335         case REPORT_ID_HIDPP_VERY_LONG:
3336                 if (size != hidpp->very_long_report_length) {
3337                         hid_err(hdev, "received hid++ report of bad size (%d)",
3338                                 size);
3339                         return 1;
3340                 }
3341                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3342                 break;
3343         case REPORT_ID_HIDPP_LONG:
3344                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3345                         hid_err(hdev, "received hid++ report of bad size (%d)",
3346                                 size);
3347                         return 1;
3348                 }
3349                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3350                 break;
3351         case REPORT_ID_HIDPP_SHORT:
3352                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3353                         hid_err(hdev, "received hid++ report of bad size (%d)",
3354                                 size);
3355                         return 1;
3356                 }
3357                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3358                 break;
3359         }
3360
3361         /* If no report is available for further processing, skip calling
3362          * raw_event of subclasses. */
3363         if (ret != 0)
3364                 return ret;
3365
3366         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3367                 return wtp_raw_event(hdev, data, size);
3368         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3369                 return m560_raw_event(hdev, data, size);
3370
3371         return 0;
3372 }
3373
3374 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3375         struct hid_usage *usage, __s32 value)
3376 {
3377         /* This function will only be called for scroll events, due to the
3378          * restriction imposed in hidpp_usages.
3379          */
3380         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3381         struct hidpp_scroll_counter *counter;
3382
3383         if (!hidpp)
3384                 return 0;
3385
3386         counter = &hidpp->vertical_wheel_counter;
3387         /* A scroll event may occur before the multiplier has been retrieved or
3388          * the input device set, or high-res scroll enabling may fail. In such
3389          * cases we must return early (falling back to default behaviour) to
3390          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3391          */
3392         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3393             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3394                 return 0;
3395
3396         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3397         return 1;
3398 }
3399
3400 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3401 {
3402         static atomic_t battery_no = ATOMIC_INIT(0);
3403         struct power_supply_config cfg = { .drv_data = hidpp };
3404         struct power_supply_desc *desc = &hidpp->battery.desc;
3405         enum power_supply_property *battery_props;
3406         struct hidpp_battery *battery;
3407         unsigned int num_battery_props;
3408         unsigned long n;
3409         int ret;
3410
3411         if (hidpp->battery.ps)
3412                 return 0;
3413
3414         hidpp->battery.feature_index = 0xff;
3415         hidpp->battery.solar_feature_index = 0xff;
3416         hidpp->battery.voltage_feature_index = 0xff;
3417
3418         if (hidpp->protocol_major >= 2) {
3419                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3420                         ret = hidpp_solar_request_battery_event(hidpp);
3421                 else {
3422                         ret = hidpp20_query_battery_voltage_info(hidpp);
3423                         if (ret)
3424                                 ret = hidpp20_query_battery_info(hidpp);
3425                 }
3426
3427                 if (ret)
3428                         return ret;
3429                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3430         } else {
3431                 ret = hidpp10_query_battery_status(hidpp);
3432                 if (ret) {
3433                         ret = hidpp10_query_battery_mileage(hidpp);
3434                         if (ret)
3435                                 return -ENOENT;
3436                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3437                 } else {
3438                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3439                 }
3440                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3441         }
3442
3443         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3444                                      hidpp_battery_props,
3445                                      sizeof(hidpp_battery_props),
3446                                      GFP_KERNEL);
3447         if (!battery_props)
3448                 return -ENOMEM;
3449
3450         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3451
3452         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3453                 battery_props[num_battery_props++] =
3454                                 POWER_SUPPLY_PROP_CAPACITY;
3455
3456         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3457                 battery_props[num_battery_props++] =
3458                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3459
3460         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3461                 battery_props[num_battery_props++] =
3462                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3463
3464         battery = &hidpp->battery;
3465
3466         n = atomic_inc_return(&battery_no) - 1;
3467         desc->properties = battery_props;
3468         desc->num_properties = num_battery_props;
3469         desc->get_property = hidpp_battery_get_property;
3470         sprintf(battery->name, "hidpp_battery_%ld", n);
3471         desc->name = battery->name;
3472         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3473         desc->use_for_apm = 0;
3474
3475         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3476                                                  &battery->desc,
3477                                                  &cfg);
3478         if (IS_ERR(battery->ps))
3479                 return PTR_ERR(battery->ps);
3480
3481         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3482
3483         return ret;
3484 }
3485
3486 static void hidpp_overwrite_name(struct hid_device *hdev)
3487 {
3488         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3489         char *name;
3490
3491         if (hidpp->protocol_major < 2)
3492                 return;
3493
3494         name = hidpp_get_device_name(hidpp);
3495
3496         if (!name) {
3497                 hid_err(hdev, "unable to retrieve the name of the device");
3498         } else {
3499                 dbg_hid("HID++: Got name: %s\n", name);
3500                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3501         }
3502
3503         kfree(name);
3504 }
3505
3506 static int hidpp_input_open(struct input_dev *dev)
3507 {
3508         struct hid_device *hid = input_get_drvdata(dev);
3509
3510         return hid_hw_open(hid);
3511 }
3512
3513 static void hidpp_input_close(struct input_dev *dev)
3514 {
3515         struct hid_device *hid = input_get_drvdata(dev);
3516
3517         hid_hw_close(hid);
3518 }
3519
3520 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3521 {
3522         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3523         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3524
3525         if (!input_dev)
3526                 return NULL;
3527
3528         input_set_drvdata(input_dev, hdev);
3529         input_dev->open = hidpp_input_open;
3530         input_dev->close = hidpp_input_close;
3531
3532         input_dev->name = hidpp->name;
3533         input_dev->phys = hdev->phys;
3534         input_dev->uniq = hdev->uniq;
3535         input_dev->id.bustype = hdev->bus;
3536         input_dev->id.vendor  = hdev->vendor;
3537         input_dev->id.product = hdev->product;
3538         input_dev->id.version = hdev->version;
3539         input_dev->dev.parent = &hdev->dev;
3540
3541         return input_dev;
3542 }
3543
3544 static void hidpp_connect_event(struct hidpp_device *hidpp)
3545 {
3546         struct hid_device *hdev = hidpp->hid_dev;
3547         int ret = 0;
3548         bool connected = atomic_read(&hidpp->connected);
3549         struct input_dev *input;
3550         char *name, *devm_name;
3551
3552         if (!connected) {
3553                 if (hidpp->battery.ps) {
3554                         hidpp->battery.online = false;
3555                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3556                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3557                         power_supply_changed(hidpp->battery.ps);
3558                 }
3559                 return;
3560         }
3561
3562         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3563                 ret = wtp_connect(hdev, connected);
3564                 if (ret)
3565                         return;
3566         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3567                 ret = m560_send_config_command(hdev, connected);
3568                 if (ret)
3569                         return;
3570         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3571                 ret = k400_connect(hdev, connected);
3572                 if (ret)
3573                         return;
3574         }
3575
3576         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3577                 ret = hidpp10_wheel_connect(hidpp);
3578                 if (ret)
3579                         return;
3580         }
3581
3582         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3583                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3584                 if (ret)
3585                         return;
3586         }
3587
3588         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3589                 ret = hidpp10_consumer_keys_connect(hidpp);
3590                 if (ret)
3591                         return;
3592         }
3593
3594         /* the device is already connected, we can ask for its name and
3595          * protocol */
3596         if (!hidpp->protocol_major) {
3597                 ret = hidpp_root_get_protocol_version(hidpp);
3598                 if (ret) {
3599                         hid_err(hdev, "Can not get the protocol version.\n");
3600                         return;
3601                 }
3602         }
3603
3604         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3605                 name = hidpp_get_device_name(hidpp);
3606                 if (name) {
3607                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3608                                                    "%s", name);
3609                         kfree(name);
3610                         if (!devm_name)
3611                                 return;
3612
3613                         hidpp->name = devm_name;
3614                 }
3615         }
3616
3617         hidpp_initialize_battery(hidpp);
3618
3619         /* forward current battery state */
3620         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3621                 hidpp10_enable_battery_reporting(hidpp);
3622                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3623                         hidpp10_query_battery_mileage(hidpp);
3624                 else
3625                         hidpp10_query_battery_status(hidpp);
3626         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3627                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3628                         hidpp20_query_battery_voltage_info(hidpp);
3629                 else
3630                         hidpp20_query_battery_info(hidpp);
3631         }
3632         if (hidpp->battery.ps)
3633                 power_supply_changed(hidpp->battery.ps);
3634
3635         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3636                 hi_res_scroll_enable(hidpp);
3637
3638         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3639                 /* if the input nodes are already created, we can stop now */
3640                 return;
3641
3642         input = hidpp_allocate_input(hdev);
3643         if (!input) {
3644                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3645                 return;
3646         }
3647
3648         hidpp_populate_input(hidpp, input);
3649
3650         ret = input_register_device(input);
3651         if (ret)
3652                 input_free_device(input);
3653
3654         hidpp->delayed_input = input;
3655 }
3656
3657 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3658
3659 static struct attribute *sysfs_attrs[] = {
3660         &dev_attr_builtin_power_supply.attr,
3661         NULL
3662 };
3663
3664 static const struct attribute_group ps_attribute_group = {
3665         .attrs = sysfs_attrs
3666 };
3667
3668 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3669 {
3670         struct hid_report_enum *re;
3671         struct hid_report *report;
3672
3673         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3674         report = re->report_id_hash[id];
3675         if (!report)
3676                 return 0;
3677
3678         return report->field[0]->report_count + 1;
3679 }
3680
3681 static u8 hidpp_validate_device(struct hid_device *hdev)
3682 {
3683         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3684         int id, report_length;
3685         u8 supported_reports = 0;
3686
3687         id = REPORT_ID_HIDPP_SHORT;
3688         report_length = hidpp_get_report_length(hdev, id);
3689         if (report_length) {
3690                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3691                         goto bad_device;
3692
3693                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3694         }
3695
3696         id = REPORT_ID_HIDPP_LONG;
3697         report_length = hidpp_get_report_length(hdev, id);
3698         if (report_length) {
3699                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3700                         goto bad_device;
3701
3702                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3703         }
3704
3705         id = REPORT_ID_HIDPP_VERY_LONG;
3706         report_length = hidpp_get_report_length(hdev, id);
3707         if (report_length) {
3708                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3709                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3710                         goto bad_device;
3711
3712                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3713                 hidpp->very_long_report_length = report_length;
3714         }
3715
3716         return supported_reports;
3717
3718 bad_device:
3719         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3720         return false;
3721 }
3722
3723 static bool hidpp_application_equals(struct hid_device *hdev,
3724                                      unsigned int application)
3725 {
3726         struct list_head *report_list;
3727         struct hid_report *report;
3728
3729         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3730         report = list_first_entry_or_null(report_list, struct hid_report, list);
3731         return report && report->application == application;
3732 }
3733
3734 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3735 {
3736         struct hidpp_device *hidpp;
3737         int ret;
3738         bool connected;
3739         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3740         struct hidpp_ff_private_data data;
3741
3742         /* report_fixup needs drvdata to be set before we call hid_parse */
3743         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3744         if (!hidpp)
3745                 return -ENOMEM;
3746
3747         hidpp->hid_dev = hdev;
3748         hidpp->name = hdev->name;
3749         hidpp->quirks = id->driver_data;
3750         hid_set_drvdata(hdev, hidpp);
3751
3752         ret = hid_parse(hdev);
3753         if (ret) {
3754                 hid_err(hdev, "%s:parse failed\n", __func__);
3755                 return ret;
3756         }
3757
3758         /*
3759          * Make sure the device is HID++ capable, otherwise treat as generic HID
3760          */
3761         hidpp->supported_reports = hidpp_validate_device(hdev);
3762
3763         if (!hidpp->supported_reports) {
3764                 hid_set_drvdata(hdev, NULL);
3765                 devm_kfree(&hdev->dev, hidpp);
3766                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3767         }
3768
3769         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3770                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3771
3772         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3773             hidpp_application_equals(hdev, HID_GD_MOUSE))
3774                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3775                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3776
3777         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3778             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3779                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3780
3781         if (disable_raw_mode) {
3782                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3783                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3784         }
3785
3786         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3787                 ret = wtp_allocate(hdev, id);
3788                 if (ret)
3789                         return ret;
3790         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3791                 ret = k400_allocate(hdev);
3792                 if (ret)
3793                         return ret;
3794         }
3795
3796         INIT_WORK(&hidpp->work, delayed_work_cb);
3797         mutex_init(&hidpp->send_mutex);
3798         init_waitqueue_head(&hidpp->wait);
3799
3800         /* indicates we are handling the battery properties in the kernel */
3801         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3802         if (ret)
3803                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3804                          hdev->name);
3805
3806         /*
3807          * Plain USB connections need to actually call start and open
3808          * on the transport driver to allow incoming data.
3809          */
3810         ret = hid_hw_start(hdev, 0);
3811         if (ret) {
3812                 hid_err(hdev, "hw start failed\n");
3813                 goto hid_hw_start_fail;
3814         }
3815
3816         ret = hid_hw_open(hdev);
3817         if (ret < 0) {
3818                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3819                         __func__, ret);
3820                 goto hid_hw_open_fail;
3821         }
3822
3823         /* Allow incoming packets */
3824         hid_device_io_start(hdev);
3825
3826         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3827                 hidpp_unifying_init(hidpp);
3828
3829         connected = hidpp_root_get_protocol_version(hidpp) == 0;
3830         atomic_set(&hidpp->connected, connected);
3831         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3832                 if (!connected) {
3833                         ret = -ENODEV;
3834                         hid_err(hdev, "Device not connected");
3835                         goto hid_hw_init_fail;
3836                 }
3837
3838                 hidpp_overwrite_name(hdev);
3839         }
3840
3841         if (connected && hidpp->protocol_major >= 2) {
3842                 ret = hidpp_set_wireless_feature_index(hidpp);
3843                 if (ret == -ENOENT)
3844                         hidpp->wireless_feature_index = 0;
3845                 else if (ret)
3846                         goto hid_hw_init_fail;
3847         }
3848
3849         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3850                 ret = wtp_get_config(hidpp);
3851                 if (ret)
3852                         goto hid_hw_init_fail;
3853         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3854                 ret = g920_get_config(hidpp, &data);
3855                 if (ret)
3856                         goto hid_hw_init_fail;
3857         }
3858
3859         hidpp_connect_event(hidpp);
3860
3861         /* Reset the HID node state */
3862         hid_device_io_stop(hdev);
3863         hid_hw_close(hdev);
3864         hid_hw_stop(hdev);
3865
3866         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3867                 connect_mask &= ~HID_CONNECT_HIDINPUT;
3868
3869         /* Now export the actual inputs and hidraw nodes to the world */
3870         ret = hid_hw_start(hdev, connect_mask);
3871         if (ret) {
3872                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3873                 goto hid_hw_start_fail;
3874         }
3875
3876         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3877                 ret = hidpp_ff_init(hidpp, &data);
3878                 if (ret)
3879                         hid_warn(hidpp->hid_dev,
3880                      "Unable to initialize force feedback support, errno %d\n",
3881                                  ret);
3882         }
3883
3884         return ret;
3885
3886 hid_hw_init_fail:
3887         hid_hw_close(hdev);
3888 hid_hw_open_fail:
3889         hid_hw_stop(hdev);
3890 hid_hw_start_fail:
3891         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3892         cancel_work_sync(&hidpp->work);
3893         mutex_destroy(&hidpp->send_mutex);
3894         return ret;
3895 }
3896
3897 static void hidpp_remove(struct hid_device *hdev)
3898 {
3899         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3900
3901         if (!hidpp)
3902                 return hid_hw_stop(hdev);
3903
3904         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3905
3906         hid_hw_stop(hdev);
3907         cancel_work_sync(&hidpp->work);
3908         mutex_destroy(&hidpp->send_mutex);
3909 }
3910
3911 #define LDJ_DEVICE(product) \
3912         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3913                    USB_VENDOR_ID_LOGITECH, (product))
3914
3915 #define L27MHZ_DEVICE(product) \
3916         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3917                    USB_VENDOR_ID_LOGITECH, (product))
3918
3919 static const struct hid_device_id hidpp_devices[] = {
3920         { /* wireless touchpad */
3921           LDJ_DEVICE(0x4011),
3922           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3923                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3924         { /* wireless touchpad T650 */
3925           LDJ_DEVICE(0x4101),
3926           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3927         { /* wireless touchpad T651 */
3928           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3929                 USB_DEVICE_ID_LOGITECH_T651),
3930           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3931         { /* Mouse Logitech Anywhere MX */
3932           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3933         { /* Mouse Logitech Cube */
3934           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3935         { /* Mouse Logitech M335 */
3936           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3937         { /* Mouse Logitech M515 */
3938           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3939         { /* Mouse logitech M560 */
3940           LDJ_DEVICE(0x402d),
3941           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3942                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3943         { /* Mouse Logitech M705 (firmware RQM17) */
3944           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3945         { /* Mouse Logitech M705 (firmware RQM67) */
3946           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3947         { /* Mouse Logitech M720 */
3948           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3949         { /* Mouse Logitech MX Anywhere 2 */
3950           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3951         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3952         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3953         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3954         { /* Mouse Logitech MX Anywhere 2S */
3955           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3956         { /* Mouse Logitech MX Master */
3957           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3958         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3959         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3960         { /* Mouse Logitech MX Master 2S */
3961           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3962         { /* Mouse Logitech MX Master 3 */
3963           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3964         { /* Mouse Logitech Performance MX */
3965           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3966         { /* Keyboard logitech K400 */
3967           LDJ_DEVICE(0x4024),
3968           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3969         { /* Solar Keyboard Logitech K750 */
3970           LDJ_DEVICE(0x4002),
3971           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3972         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3973           LDJ_DEVICE(0xb305),
3974           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3975         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
3976           LDJ_DEVICE(0xb30b),
3977           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3978
3979         { LDJ_DEVICE(HID_ANY_ID) },
3980
3981         { /* Keyboard LX501 (Y-RR53) */
3982           L27MHZ_DEVICE(0x0049),
3983           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3984         { /* Keyboard MX3000 (Y-RAM74) */
3985           L27MHZ_DEVICE(0x0057),
3986           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3987         { /* Keyboard MX3200 (Y-RAV80) */
3988           L27MHZ_DEVICE(0x005c),
3989           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3990         { /* S510 Media Remote */
3991           L27MHZ_DEVICE(0x00fe),
3992           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3993
3994         { L27MHZ_DEVICE(HID_ANY_ID) },
3995
3996         { /* Logitech G403 Wireless Gaming Mouse over USB */
3997           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3998         { /* Logitech G703 Gaming Mouse over USB */
3999           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4000         { /* Logitech G703 Hero Gaming Mouse over USB */
4001           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4002         { /* Logitech G900 Gaming Mouse over USB */
4003           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4004         { /* Logitech G903 Gaming Mouse over USB */
4005           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4006         { /* Logitech G903 Hero Gaming Mouse over USB */
4007           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4008         { /* Logitech G920 Wheel over USB */
4009           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4010                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4011         { /* Logitech G Pro Gaming Mouse over USB */
4012           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4013
4014         { /* MX5000 keyboard over Bluetooth */
4015           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4016           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4017         { /* MX5500 keyboard over Bluetooth */
4018           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4019           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4020         { /* MX Master mouse over Bluetooth */
4021           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4022           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4023         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4024           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4025         { /* MX Master 3 mouse over Bluetooth */
4026           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4027           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4028         {}
4029 };
4030
4031 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4032
4033 static const struct hid_usage_id hidpp_usages[] = {
4034         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4035         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4036 };
4037
4038 static struct hid_driver hidpp_driver = {
4039         .name = "logitech-hidpp-device",
4040         .id_table = hidpp_devices,
4041         .report_fixup = hidpp_report_fixup,
4042         .probe = hidpp_probe,
4043         .remove = hidpp_remove,
4044         .raw_event = hidpp_raw_event,
4045         .usage_table = hidpp_usages,
4046         .event = hidpp_event,
4047         .input_configured = hidpp_input_configured,
4048         .input_mapping = hidpp_input_mapping,
4049         .input_mapped = hidpp_input_mapped,
4050 };
4051
4052 module_hid_driver(hidpp_driver);