fbmem: don't allow too huge resolutions
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59 #define HIDPP_SUB_ID_USER_IFACE_EVENT           0x08
60 #define HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST      BIT(5)
61
62 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
63 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
64 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
65 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
66 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
67
68 /* bits 2..20 are reserved for classes */
69 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
70 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
71 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
72 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
73 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
75 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
76 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
77 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
78 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
79 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
80
81 /* These are just aliases for now */
82 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
83 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
84
85 /* Convenience constant to check for any high-res support. */
86 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
87                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
88                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
89
90 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
91
92 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
93 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
94 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
95 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
96 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
97 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE     BIT(5)
98 #define HIDPP_CAPABILITY_UNIFIED_BATTERY        BIT(6)
99
100 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
101
102 /*
103  * There are two hidpp protocols in use, the first version hidpp10 is known
104  * as register access protocol or RAP, the second version hidpp20 is known as
105  * feature access protocol or FAP
106  *
107  * Most older devices (including the Unifying usb receiver) use the RAP protocol
108  * where as most newer devices use the FAP protocol. Both protocols are
109  * compatible with the underlying transport, which could be usb, Unifiying, or
110  * bluetooth. The message lengths are defined by the hid vendor specific report
111  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
112  * the HIDPP_LONG report type (total message length 20 bytes)
113  *
114  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
115  * messages. The Unifying receiver itself responds to RAP messages (device index
116  * is 0xFF for the receiver), and all messages (short or long) with a device
117  * index between 1 and 6 are passed untouched to the corresponding paired
118  * Unifying device.
119  *
120  * The paired device can be RAP or FAP, it will receive the message untouched
121  * from the Unifiying receiver.
122  */
123
124 struct fap {
125         u8 feature_index;
126         u8 funcindex_clientid;
127         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129
130 struct rap {
131         u8 sub_id;
132         u8 reg_address;
133         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
134 };
135
136 struct hidpp_report {
137         u8 report_id;
138         u8 device_index;
139         union {
140                 struct fap fap;
141                 struct rap rap;
142                 u8 rawbytes[sizeof(struct fap)];
143         };
144 } __packed;
145
146 struct hidpp_battery {
147         u8 feature_index;
148         u8 solar_feature_index;
149         u8 voltage_feature_index;
150         struct power_supply_desc desc;
151         struct power_supply *ps;
152         char name[64];
153         int status;
154         int capacity;
155         int level;
156         int voltage;
157         int charge_type;
158         bool online;
159         u8 supported_levels_1004;
160 };
161
162 /**
163  * struct hidpp_scroll_counter - Utility class for processing high-resolution
164  *                             scroll events.
165  * @dev: the input device for which events should be reported.
166  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
167  * @remainder: counts the number of high-resolution units moved since the last
168  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
169  *             only be used by class methods.
170  * @direction: direction of last movement (1 or -1)
171  * @last_time: last event time, used to reset remainder after inactivity
172  */
173 struct hidpp_scroll_counter {
174         int wheel_multiplier;
175         int remainder;
176         int direction;
177         unsigned long long last_time;
178 };
179
180 struct hidpp_device {
181         struct hid_device *hid_dev;
182         struct input_dev *input;
183         struct mutex send_mutex;
184         void *send_receive_buf;
185         char *name;             /* will never be NULL and should not be freed */
186         wait_queue_head_t wait;
187         int very_long_report_length;
188         bool answer_available;
189         u8 protocol_major;
190         u8 protocol_minor;
191
192         void *private_data;
193
194         struct work_struct work;
195         struct kfifo delayed_work_fifo;
196         atomic_t connected;
197         struct input_dev *delayed_input;
198
199         unsigned long quirks;
200         unsigned long capabilities;
201         u8 supported_reports;
202
203         struct hidpp_battery battery;
204         struct hidpp_scroll_counter vertical_wheel_counter;
205
206         u8 wireless_feature_index;
207 };
208
209 /* HID++ 1.0 error codes */
210 #define HIDPP_ERROR                             0x8f
211 #define HIDPP_ERROR_SUCCESS                     0x00
212 #define HIDPP_ERROR_INVALID_SUBID               0x01
213 #define HIDPP_ERROR_INVALID_ADRESS              0x02
214 #define HIDPP_ERROR_INVALID_VALUE               0x03
215 #define HIDPP_ERROR_CONNECT_FAIL                0x04
216 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
217 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
218 #define HIDPP_ERROR_BUSY                        0x07
219 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
220 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
221 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
222 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
223 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
224 /* HID++ 2.0 error codes */
225 #define HIDPP20_ERROR                           0xff
226
227 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
228
229 static int __hidpp_send_report(struct hid_device *hdev,
230                                 struct hidpp_report *hidpp_report)
231 {
232         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
233         int fields_count, ret;
234
235         switch (hidpp_report->report_id) {
236         case REPORT_ID_HIDPP_SHORT:
237                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
238                 break;
239         case REPORT_ID_HIDPP_LONG:
240                 fields_count = HIDPP_REPORT_LONG_LENGTH;
241                 break;
242         case REPORT_ID_HIDPP_VERY_LONG:
243                 fields_count = hidpp->very_long_report_length;
244                 break;
245         default:
246                 return -ENODEV;
247         }
248
249         /*
250          * set the device_index as the receiver, it will be overwritten by
251          * hid_hw_request if needed
252          */
253         hidpp_report->device_index = 0xff;
254
255         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
256                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
257         } else {
258                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
259                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
260                         HID_REQ_SET_REPORT);
261         }
262
263         return ret == fields_count ? 0 : -1;
264 }
265
266 /*
267  * hidpp_send_message_sync() returns 0 in case of success, and something else
268  * in case of a failure.
269  * - If ' something else' is positive, that means that an error has been raised
270  *   by the protocol itself.
271  * - If ' something else' is negative, that means that we had a classic error
272  *   (-ENOMEM, -EPIPE, etc...)
273  */
274 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
275         struct hidpp_report *message,
276         struct hidpp_report *response)
277 {
278         int ret;
279
280         mutex_lock(&hidpp->send_mutex);
281
282         hidpp->send_receive_buf = response;
283         hidpp->answer_available = false;
284
285         /*
286          * So that we can later validate the answer when it arrives
287          * in hidpp_raw_event
288          */
289         *response = *message;
290
291         ret = __hidpp_send_report(hidpp->hid_dev, message);
292
293         if (ret) {
294                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
295                 memset(response, 0, sizeof(struct hidpp_report));
296                 goto exit;
297         }
298
299         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
300                                 5*HZ)) {
301                 dbg_hid("%s:timeout waiting for response\n", __func__);
302                 memset(response, 0, sizeof(struct hidpp_report));
303                 ret = -ETIMEDOUT;
304         }
305
306         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
307             response->rap.sub_id == HIDPP_ERROR) {
308                 ret = response->rap.params[1];
309                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
310                 goto exit;
311         }
312
313         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
314                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
315                         response->fap.feature_index == HIDPP20_ERROR) {
316                 ret = response->fap.params[1];
317                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
318                 goto exit;
319         }
320
321 exit:
322         mutex_unlock(&hidpp->send_mutex);
323         return ret;
324
325 }
326
327 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
328         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
329         struct hidpp_report *response)
330 {
331         struct hidpp_report *message;
332         int ret;
333
334         if (param_count > sizeof(message->fap.params))
335                 return -EINVAL;
336
337         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
338         if (!message)
339                 return -ENOMEM;
340
341         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
342                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
343         else
344                 message->report_id = REPORT_ID_HIDPP_LONG;
345         message->fap.feature_index = feat_index;
346         message->fap.funcindex_clientid = funcindex_clientid;
347         memcpy(&message->fap.params, params, param_count);
348
349         ret = hidpp_send_message_sync(hidpp, message, response);
350         kfree(message);
351         return ret;
352 }
353
354 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
355         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
356         struct hidpp_report *response)
357 {
358         struct hidpp_report *message;
359         int ret, max_count;
360
361         /* Send as long report if short reports are not supported. */
362         if (report_id == REPORT_ID_HIDPP_SHORT &&
363             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
364                 report_id = REPORT_ID_HIDPP_LONG;
365
366         switch (report_id) {
367         case REPORT_ID_HIDPP_SHORT:
368                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
369                 break;
370         case REPORT_ID_HIDPP_LONG:
371                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
372                 break;
373         case REPORT_ID_HIDPP_VERY_LONG:
374                 max_count = hidpp_dev->very_long_report_length - 4;
375                 break;
376         default:
377                 return -EINVAL;
378         }
379
380         if (param_count > max_count)
381                 return -EINVAL;
382
383         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
384         if (!message)
385                 return -ENOMEM;
386         message->report_id = report_id;
387         message->rap.sub_id = sub_id;
388         message->rap.reg_address = reg_address;
389         memcpy(&message->rap.params, params, param_count);
390
391         ret = hidpp_send_message_sync(hidpp_dev, message, response);
392         kfree(message);
393         return ret;
394 }
395
396 static void delayed_work_cb(struct work_struct *work)
397 {
398         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
399                                                         work);
400         hidpp_connect_event(hidpp);
401 }
402
403 static inline bool hidpp_match_answer(struct hidpp_report *question,
404                 struct hidpp_report *answer)
405 {
406         return (answer->fap.feature_index == question->fap.feature_index) &&
407            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
408 }
409
410 static inline bool hidpp_match_error(struct hidpp_report *question,
411                 struct hidpp_report *answer)
412 {
413         return ((answer->rap.sub_id == HIDPP_ERROR) ||
414             (answer->fap.feature_index == HIDPP20_ERROR)) &&
415             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
416             (answer->fap.params[0] == question->fap.funcindex_clientid);
417 }
418
419 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
420                 struct hidpp_report *report)
421 {
422         return (hidpp->wireless_feature_index &&
423                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
424                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
425                 (report->rap.sub_id == 0x41));
426 }
427
428 /*
429  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
430  */
431 static void hidpp_prefix_name(char **name, int name_length)
432 {
433 #define PREFIX_LENGTH 9 /* "Logitech " */
434
435         int new_length;
436         char *new_name;
437
438         if (name_length > PREFIX_LENGTH &&
439             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
440                 /* The prefix has is already in the name */
441                 return;
442
443         new_length = PREFIX_LENGTH + name_length;
444         new_name = kzalloc(new_length, GFP_KERNEL);
445         if (!new_name)
446                 return;
447
448         snprintf(new_name, new_length, "Logitech %s", *name);
449
450         kfree(*name);
451
452         *name = new_name;
453 }
454
455 /**
456  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
457  *                                        events given a high-resolution wheel
458  *                                        movement.
459  * @input_dev: Pointer to the input device
460  * @counter: a hid_scroll_counter struct describing the wheel.
461  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
462  *                units.
463  *
464  * Given a high-resolution movement, this function converts the movement into
465  * fractions of 120 and emits high-resolution scroll events for the input
466  * device. It also uses the multiplier from &struct hid_scroll_counter to
467  * emit low-resolution scroll events when appropriate for
468  * backwards-compatibility with userspace input libraries.
469  */
470 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
471                                                struct hidpp_scroll_counter *counter,
472                                                int hi_res_value)
473 {
474         int low_res_value, remainder, direction;
475         unsigned long long now, previous;
476
477         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
478         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
479
480         remainder = counter->remainder;
481         direction = hi_res_value > 0 ? 1 : -1;
482
483         now = sched_clock();
484         previous = counter->last_time;
485         counter->last_time = now;
486         /*
487          * Reset the remainder after a period of inactivity or when the
488          * direction changes. This prevents the REL_WHEEL emulation point
489          * from sliding for devices that don't always provide the same
490          * number of movements per detent.
491          */
492         if (now - previous > 1000000000 || direction != counter->direction)
493                 remainder = 0;
494
495         counter->direction = direction;
496         remainder += hi_res_value;
497
498         /* Some wheels will rest 7/8ths of a detent from the previous detent
499          * after slow movement, so we want the threshold for low-res events to
500          * be in the middle between two detents (e.g. after 4/8ths) as
501          * opposed to on the detents themselves (8/8ths).
502          */
503         if (abs(remainder) >= 60) {
504                 /* Add (or subtract) 1 because we want to trigger when the wheel
505                  * is half-way to the next detent (i.e. scroll 1 detent after a
506                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
507                  * etc.).
508                  */
509                 low_res_value = remainder / 120;
510                 if (low_res_value == 0)
511                         low_res_value = (hi_res_value > 0 ? 1 : -1);
512                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
513                 remainder -= low_res_value * 120;
514         }
515         counter->remainder = remainder;
516 }
517
518 /* -------------------------------------------------------------------------- */
519 /* HIDP++ 1.0 commands                                                        */
520 /* -------------------------------------------------------------------------- */
521
522 #define HIDPP_SET_REGISTER                              0x80
523 #define HIDPP_GET_REGISTER                              0x81
524 #define HIDPP_SET_LONG_REGISTER                         0x82
525 #define HIDPP_GET_LONG_REGISTER                         0x83
526
527 /**
528  * hidpp10_set_register - Modify a HID++ 1.0 register.
529  * @hidpp_dev: the device to set the register on.
530  * @register_address: the address of the register to modify.
531  * @byte: the byte of the register to modify. Should be less than 3.
532  * @mask: mask of the bits to modify
533  * @value: new values for the bits in mask
534  * Return: 0 if successful, otherwise a negative error code.
535  */
536 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
537         u8 register_address, u8 byte, u8 mask, u8 value)
538 {
539         struct hidpp_report response;
540         int ret;
541         u8 params[3] = { 0 };
542
543         ret = hidpp_send_rap_command_sync(hidpp_dev,
544                                           REPORT_ID_HIDPP_SHORT,
545                                           HIDPP_GET_REGISTER,
546                                           register_address,
547                                           NULL, 0, &response);
548         if (ret)
549                 return ret;
550
551         memcpy(params, response.rap.params, 3);
552
553         params[byte] &= ~mask;
554         params[byte] |= value & mask;
555
556         return hidpp_send_rap_command_sync(hidpp_dev,
557                                            REPORT_ID_HIDPP_SHORT,
558                                            HIDPP_SET_REGISTER,
559                                            register_address,
560                                            params, 3, &response);
561 }
562
563 #define HIDPP_REG_ENABLE_REPORTS                        0x00
564 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
565 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
566 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
567 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
568 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
569
570 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
571 {
572         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
573                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
574 }
575
576 #define HIDPP_REG_FEATURES                              0x01
577 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
578 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
579
580 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
581 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
582 {
583         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
584                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
585 }
586
587 #define HIDPP_REG_BATTERY_STATUS                        0x07
588
589 static int hidpp10_battery_status_map_level(u8 param)
590 {
591         int level;
592
593         switch (param) {
594         case 1 ... 2:
595                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
596                 break;
597         case 3 ... 4:
598                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
599                 break;
600         case 5 ... 6:
601                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
602                 break;
603         case 7:
604                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
605                 break;
606         default:
607                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
608         }
609
610         return level;
611 }
612
613 static int hidpp10_battery_status_map_status(u8 param)
614 {
615         int status;
616
617         switch (param) {
618         case 0x00:
619                 /* discharging (in use) */
620                 status = POWER_SUPPLY_STATUS_DISCHARGING;
621                 break;
622         case 0x21: /* (standard) charging */
623         case 0x24: /* fast charging */
624         case 0x25: /* slow charging */
625                 status = POWER_SUPPLY_STATUS_CHARGING;
626                 break;
627         case 0x26: /* topping charge */
628         case 0x22: /* charge complete */
629                 status = POWER_SUPPLY_STATUS_FULL;
630                 break;
631         case 0x20: /* unknown */
632                 status = POWER_SUPPLY_STATUS_UNKNOWN;
633                 break;
634         /*
635          * 0x01...0x1F = reserved (not charging)
636          * 0x23 = charging error
637          * 0x27..0xff = reserved
638          */
639         default:
640                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
641                 break;
642         }
643
644         return status;
645 }
646
647 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
648 {
649         struct hidpp_report response;
650         int ret, status;
651
652         ret = hidpp_send_rap_command_sync(hidpp,
653                                         REPORT_ID_HIDPP_SHORT,
654                                         HIDPP_GET_REGISTER,
655                                         HIDPP_REG_BATTERY_STATUS,
656                                         NULL, 0, &response);
657         if (ret)
658                 return ret;
659
660         hidpp->battery.level =
661                 hidpp10_battery_status_map_level(response.rap.params[0]);
662         status = hidpp10_battery_status_map_status(response.rap.params[1]);
663         hidpp->battery.status = status;
664         /* the capacity is only available when discharging or full */
665         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
666                                 status == POWER_SUPPLY_STATUS_FULL;
667
668         return 0;
669 }
670
671 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
672
673 static int hidpp10_battery_mileage_map_status(u8 param)
674 {
675         int status;
676
677         switch (param >> 6) {
678         case 0x00:
679                 /* discharging (in use) */
680                 status = POWER_SUPPLY_STATUS_DISCHARGING;
681                 break;
682         case 0x01: /* charging */
683                 status = POWER_SUPPLY_STATUS_CHARGING;
684                 break;
685         case 0x02: /* charge complete */
686                 status = POWER_SUPPLY_STATUS_FULL;
687                 break;
688         /*
689          * 0x03 = charging error
690          */
691         default:
692                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
693                 break;
694         }
695
696         return status;
697 }
698
699 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
700 {
701         struct hidpp_report response;
702         int ret, status;
703
704         ret = hidpp_send_rap_command_sync(hidpp,
705                                         REPORT_ID_HIDPP_SHORT,
706                                         HIDPP_GET_REGISTER,
707                                         HIDPP_REG_BATTERY_MILEAGE,
708                                         NULL, 0, &response);
709         if (ret)
710                 return ret;
711
712         hidpp->battery.capacity = response.rap.params[0];
713         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
714         hidpp->battery.status = status;
715         /* the capacity is only available when discharging or full */
716         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
717                                 status == POWER_SUPPLY_STATUS_FULL;
718
719         return 0;
720 }
721
722 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
723 {
724         struct hidpp_report *report = (struct hidpp_report *)data;
725         int status, capacity, level;
726         bool changed;
727
728         if (report->report_id != REPORT_ID_HIDPP_SHORT)
729                 return 0;
730
731         switch (report->rap.sub_id) {
732         case HIDPP_REG_BATTERY_STATUS:
733                 capacity = hidpp->battery.capacity;
734                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
735                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
736                 break;
737         case HIDPP_REG_BATTERY_MILEAGE:
738                 capacity = report->rap.params[0];
739                 level = hidpp->battery.level;
740                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
741                 break;
742         default:
743                 return 0;
744         }
745
746         changed = capacity != hidpp->battery.capacity ||
747                   level != hidpp->battery.level ||
748                   status != hidpp->battery.status;
749
750         /* the capacity is only available when discharging or full */
751         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
752                                 status == POWER_SUPPLY_STATUS_FULL;
753
754         if (changed) {
755                 hidpp->battery.level = level;
756                 hidpp->battery.status = status;
757                 if (hidpp->battery.ps)
758                         power_supply_changed(hidpp->battery.ps);
759         }
760
761         return 0;
762 }
763
764 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
765 #define HIDPP_EXTENDED_PAIRING                          0x30
766 #define HIDPP_DEVICE_NAME                               0x40
767
768 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
769 {
770         struct hidpp_report response;
771         int ret;
772         u8 params[1] = { HIDPP_DEVICE_NAME };
773         char *name;
774         int len;
775
776         ret = hidpp_send_rap_command_sync(hidpp_dev,
777                                         REPORT_ID_HIDPP_SHORT,
778                                         HIDPP_GET_LONG_REGISTER,
779                                         HIDPP_REG_PAIRING_INFORMATION,
780                                         params, 1, &response);
781         if (ret)
782                 return NULL;
783
784         len = response.rap.params[1];
785
786         if (2 + len > sizeof(response.rap.params))
787                 return NULL;
788
789         if (len < 4) /* logitech devices are usually at least Xddd */
790                 return NULL;
791
792         name = kzalloc(len + 1, GFP_KERNEL);
793         if (!name)
794                 return NULL;
795
796         memcpy(name, &response.rap.params[2], len);
797
798         /* include the terminating '\0' */
799         hidpp_prefix_name(&name, len + 1);
800
801         return name;
802 }
803
804 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
805 {
806         struct hidpp_report response;
807         int ret;
808         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
809
810         ret = hidpp_send_rap_command_sync(hidpp,
811                                         REPORT_ID_HIDPP_SHORT,
812                                         HIDPP_GET_LONG_REGISTER,
813                                         HIDPP_REG_PAIRING_INFORMATION,
814                                         params, 1, &response);
815         if (ret)
816                 return ret;
817
818         /*
819          * We don't care about LE or BE, we will output it as a string
820          * with %4phD, so we need to keep the order.
821          */
822         *serial = *((u32 *)&response.rap.params[1]);
823         return 0;
824 }
825
826 static int hidpp_unifying_init(struct hidpp_device *hidpp)
827 {
828         struct hid_device *hdev = hidpp->hid_dev;
829         const char *name;
830         u32 serial;
831         int ret;
832
833         ret = hidpp_unifying_get_serial(hidpp, &serial);
834         if (ret)
835                 return ret;
836
837         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
838                  hdev->product, &serial);
839         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
840
841         name = hidpp_unifying_get_name(hidpp);
842         if (!name)
843                 return -EIO;
844
845         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
846         dbg_hid("HID++ Unifying: Got name: %s\n", name);
847
848         kfree(name);
849         return 0;
850 }
851
852 /* -------------------------------------------------------------------------- */
853 /* 0x0000: Root                                                               */
854 /* -------------------------------------------------------------------------- */
855
856 #define HIDPP_PAGE_ROOT                                 0x0000
857 #define HIDPP_PAGE_ROOT_IDX                             0x00
858
859 #define CMD_ROOT_GET_FEATURE                            0x01
860 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
861
862 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
863         u8 *feature_index, u8 *feature_type)
864 {
865         struct hidpp_report response;
866         int ret;
867         u8 params[2] = { feature >> 8, feature & 0x00FF };
868
869         ret = hidpp_send_fap_command_sync(hidpp,
870                         HIDPP_PAGE_ROOT_IDX,
871                         CMD_ROOT_GET_FEATURE,
872                         params, 2, &response);
873         if (ret)
874                 return ret;
875
876         if (response.fap.params[0] == 0)
877                 return -ENOENT;
878
879         *feature_index = response.fap.params[0];
880         *feature_type = response.fap.params[1];
881
882         return ret;
883 }
884
885 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
886 {
887         const u8 ping_byte = 0x5a;
888         u8 ping_data[3] = { 0, 0, ping_byte };
889         struct hidpp_report response;
890         int ret;
891
892         ret = hidpp_send_rap_command_sync(hidpp,
893                         REPORT_ID_HIDPP_SHORT,
894                         HIDPP_PAGE_ROOT_IDX,
895                         CMD_ROOT_GET_PROTOCOL_VERSION,
896                         ping_data, sizeof(ping_data), &response);
897
898         if (ret == HIDPP_ERROR_INVALID_SUBID) {
899                 hidpp->protocol_major = 1;
900                 hidpp->protocol_minor = 0;
901                 goto print_version;
902         }
903
904         /* the device might not be connected */
905         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
906                 return -EIO;
907
908         if (ret > 0) {
909                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
910                         __func__, ret);
911                 return -EPROTO;
912         }
913         if (ret)
914                 return ret;
915
916         if (response.rap.params[2] != ping_byte) {
917                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
918                         __func__, response.rap.params[2], ping_byte);
919                 return -EPROTO;
920         }
921
922         hidpp->protocol_major = response.rap.params[0];
923         hidpp->protocol_minor = response.rap.params[1];
924
925 print_version:
926         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
927                  hidpp->protocol_major, hidpp->protocol_minor);
928         return 0;
929 }
930
931 /* -------------------------------------------------------------------------- */
932 /* 0x0005: GetDeviceNameType                                                  */
933 /* -------------------------------------------------------------------------- */
934
935 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
936
937 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
938 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
939 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
940
941 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
942         u8 feature_index, u8 *nameLength)
943 {
944         struct hidpp_report response;
945         int ret;
946
947         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
948                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
949
950         if (ret > 0) {
951                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
952                         __func__, ret);
953                 return -EPROTO;
954         }
955         if (ret)
956                 return ret;
957
958         *nameLength = response.fap.params[0];
959
960         return ret;
961 }
962
963 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
964         u8 feature_index, u8 char_index, char *device_name, int len_buf)
965 {
966         struct hidpp_report response;
967         int ret, i;
968         int count;
969
970         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
971                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
972                 &response);
973
974         if (ret > 0) {
975                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
976                         __func__, ret);
977                 return -EPROTO;
978         }
979         if (ret)
980                 return ret;
981
982         switch (response.report_id) {
983         case REPORT_ID_HIDPP_VERY_LONG:
984                 count = hidpp->very_long_report_length - 4;
985                 break;
986         case REPORT_ID_HIDPP_LONG:
987                 count = HIDPP_REPORT_LONG_LENGTH - 4;
988                 break;
989         case REPORT_ID_HIDPP_SHORT:
990                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
991                 break;
992         default:
993                 return -EPROTO;
994         }
995
996         if (len_buf < count)
997                 count = len_buf;
998
999         for (i = 0; i < count; i++)
1000                 device_name[i] = response.fap.params[i];
1001
1002         return count;
1003 }
1004
1005 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1006 {
1007         u8 feature_type;
1008         u8 feature_index;
1009         u8 __name_length;
1010         char *name;
1011         unsigned index = 0;
1012         int ret;
1013
1014         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1015                 &feature_index, &feature_type);
1016         if (ret)
1017                 return NULL;
1018
1019         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1020                 &__name_length);
1021         if (ret)
1022                 return NULL;
1023
1024         name = kzalloc(__name_length + 1, GFP_KERNEL);
1025         if (!name)
1026                 return NULL;
1027
1028         while (index < __name_length) {
1029                 ret = hidpp_devicenametype_get_device_name(hidpp,
1030                         feature_index, index, name + index,
1031                         __name_length - index);
1032                 if (ret <= 0) {
1033                         kfree(name);
1034                         return NULL;
1035                 }
1036                 index += ret;
1037         }
1038
1039         /* include the terminating '\0' */
1040         hidpp_prefix_name(&name, __name_length + 1);
1041
1042         return name;
1043 }
1044
1045 /* -------------------------------------------------------------------------- */
1046 /* 0x1000: Battery level status                                               */
1047 /* -------------------------------------------------------------------------- */
1048
1049 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1050
1051 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1052 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1053
1054 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1055
1056 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1057 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1058 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1059
1060 static int hidpp_map_battery_level(int capacity)
1061 {
1062         if (capacity < 11)
1063                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1064         /*
1065          * The spec says this should be < 31 but some devices report 30
1066          * with brand new batteries and Windows reports 30 as "Good".
1067          */
1068         else if (capacity < 30)
1069                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1070         else if (capacity < 81)
1071                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1072         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1073 }
1074
1075 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1076                                                     int *next_capacity,
1077                                                     int *level)
1078 {
1079         int status;
1080
1081         *capacity = data[0];
1082         *next_capacity = data[1];
1083         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1084
1085         /* When discharging, we can rely on the device reported capacity.
1086          * For all other states the device reports 0 (unknown).
1087          */
1088         switch (data[2]) {
1089                 case 0: /* discharging (in use) */
1090                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1091                         *level = hidpp_map_battery_level(*capacity);
1092                         break;
1093                 case 1: /* recharging */
1094                         status = POWER_SUPPLY_STATUS_CHARGING;
1095                         break;
1096                 case 2: /* charge in final stage */
1097                         status = POWER_SUPPLY_STATUS_CHARGING;
1098                         break;
1099                 case 3: /* charge complete */
1100                         status = POWER_SUPPLY_STATUS_FULL;
1101                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1102                         *capacity = 100;
1103                         break;
1104                 case 4: /* recharging below optimal speed */
1105                         status = POWER_SUPPLY_STATUS_CHARGING;
1106                         break;
1107                 /* 5 = invalid battery type
1108                    6 = thermal error
1109                    7 = other charging error */
1110                 default:
1111                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1112                         break;
1113         }
1114
1115         return status;
1116 }
1117
1118 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1119                                                      u8 feature_index,
1120                                                      int *status,
1121                                                      int *capacity,
1122                                                      int *next_capacity,
1123                                                      int *level)
1124 {
1125         struct hidpp_report response;
1126         int ret;
1127         u8 *params = (u8 *)response.fap.params;
1128
1129         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1130                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1131                                           NULL, 0, &response);
1132         /* Ignore these intermittent errors */
1133         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1134                 return -EIO;
1135         if (ret > 0) {
1136                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1137                         __func__, ret);
1138                 return -EPROTO;
1139         }
1140         if (ret)
1141                 return ret;
1142
1143         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1144                                                            next_capacity,
1145                                                            level);
1146
1147         return 0;
1148 }
1149
1150 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1151                                                   u8 feature_index)
1152 {
1153         struct hidpp_report response;
1154         int ret;
1155         u8 *params = (u8 *)response.fap.params;
1156         unsigned int level_count, flags;
1157
1158         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1159                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1160                                           NULL, 0, &response);
1161         if (ret > 0) {
1162                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1163                         __func__, ret);
1164                 return -EPROTO;
1165         }
1166         if (ret)
1167                 return ret;
1168
1169         level_count = params[0];
1170         flags = params[1];
1171
1172         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1173                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1174         else
1175                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1176
1177         return 0;
1178 }
1179
1180 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1181 {
1182         u8 feature_type;
1183         int ret;
1184         int status, capacity, next_capacity, level;
1185
1186         if (hidpp->battery.feature_index == 0xff) {
1187                 ret = hidpp_root_get_feature(hidpp,
1188                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1189                                              &hidpp->battery.feature_index,
1190                                              &feature_type);
1191                 if (ret)
1192                         return ret;
1193         }
1194
1195         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1196                                                 hidpp->battery.feature_index,
1197                                                 &status, &capacity,
1198                                                 &next_capacity, &level);
1199         if (ret)
1200                 return ret;
1201
1202         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1203                                                 hidpp->battery.feature_index);
1204         if (ret)
1205                 return ret;
1206
1207         hidpp->battery.status = status;
1208         hidpp->battery.capacity = capacity;
1209         hidpp->battery.level = level;
1210         /* the capacity is only available when discharging or full */
1211         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1212                                 status == POWER_SUPPLY_STATUS_FULL;
1213
1214         return 0;
1215 }
1216
1217 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1218                                  u8 *data, int size)
1219 {
1220         struct hidpp_report *report = (struct hidpp_report *)data;
1221         int status, capacity, next_capacity, level;
1222         bool changed;
1223
1224         if (report->fap.feature_index != hidpp->battery.feature_index ||
1225             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1226                 return 0;
1227
1228         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1229                                                           &capacity,
1230                                                           &next_capacity,
1231                                                           &level);
1232
1233         /* the capacity is only available when discharging or full */
1234         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1235                                 status == POWER_SUPPLY_STATUS_FULL;
1236
1237         changed = capacity != hidpp->battery.capacity ||
1238                   level != hidpp->battery.level ||
1239                   status != hidpp->battery.status;
1240
1241         if (changed) {
1242                 hidpp->battery.level = level;
1243                 hidpp->battery.capacity = capacity;
1244                 hidpp->battery.status = status;
1245                 if (hidpp->battery.ps)
1246                         power_supply_changed(hidpp->battery.ps);
1247         }
1248
1249         return 0;
1250 }
1251
1252 /* -------------------------------------------------------------------------- */
1253 /* 0x1001: Battery voltage                                                    */
1254 /* -------------------------------------------------------------------------- */
1255
1256 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1257
1258 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1259
1260 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1261
1262 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1263                                                 int *level, int *charge_type)
1264 {
1265         int status;
1266
1267         long flags = (long) data[2];
1268         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1269
1270         if (flags & 0x80)
1271                 switch (flags & 0x07) {
1272                 case 0:
1273                         status = POWER_SUPPLY_STATUS_CHARGING;
1274                         break;
1275                 case 1:
1276                         status = POWER_SUPPLY_STATUS_FULL;
1277                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1278                         break;
1279                 case 2:
1280                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1281                         break;
1282                 default:
1283                         status = POWER_SUPPLY_STATUS_UNKNOWN;
1284                         break;
1285                 }
1286         else
1287                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1288
1289         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1290         if (test_bit(3, &flags)) {
1291                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1292         }
1293         if (test_bit(4, &flags)) {
1294                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1295         }
1296         if (test_bit(5, &flags)) {
1297                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1298         }
1299
1300         *voltage = get_unaligned_be16(data);
1301
1302         return status;
1303 }
1304
1305 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1306                                                  u8 feature_index,
1307                                                  int *status, int *voltage,
1308                                                  int *level, int *charge_type)
1309 {
1310         struct hidpp_report response;
1311         int ret;
1312         u8 *params = (u8 *)response.fap.params;
1313
1314         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1315                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1316                                           NULL, 0, &response);
1317
1318         if (ret > 0) {
1319                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1320                         __func__, ret);
1321                 return -EPROTO;
1322         }
1323         if (ret)
1324                 return ret;
1325
1326         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1327
1328         *status = hidpp20_battery_map_status_voltage(params, voltage,
1329                                                      level, charge_type);
1330
1331         return 0;
1332 }
1333
1334 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1335 {
1336         u8 feature_type;
1337         int ret;
1338         int status, voltage, level, charge_type;
1339
1340         if (hidpp->battery.voltage_feature_index == 0xff) {
1341                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1342                                              &hidpp->battery.voltage_feature_index,
1343                                              &feature_type);
1344                 if (ret)
1345                         return ret;
1346         }
1347
1348         ret = hidpp20_battery_get_battery_voltage(hidpp,
1349                                                   hidpp->battery.voltage_feature_index,
1350                                                   &status, &voltage, &level, &charge_type);
1351
1352         if (ret)
1353                 return ret;
1354
1355         hidpp->battery.status = status;
1356         hidpp->battery.voltage = voltage;
1357         hidpp->battery.level = level;
1358         hidpp->battery.charge_type = charge_type;
1359         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1360
1361         return 0;
1362 }
1363
1364 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1365                                             u8 *data, int size)
1366 {
1367         struct hidpp_report *report = (struct hidpp_report *)data;
1368         int status, voltage, level, charge_type;
1369
1370         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1371                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1372                 return 0;
1373
1374         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1375                                                     &level, &charge_type);
1376
1377         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1378
1379         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1380                 hidpp->battery.voltage = voltage;
1381                 hidpp->battery.status = status;
1382                 hidpp->battery.level = level;
1383                 hidpp->battery.charge_type = charge_type;
1384                 if (hidpp->battery.ps)
1385                         power_supply_changed(hidpp->battery.ps);
1386         }
1387         return 0;
1388 }
1389
1390 /* -------------------------------------------------------------------------- */
1391 /* 0x1004: Unified battery                                                    */
1392 /* -------------------------------------------------------------------------- */
1393
1394 #define HIDPP_PAGE_UNIFIED_BATTERY                              0x1004
1395
1396 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES                    0x00
1397 #define CMD_UNIFIED_BATTERY_GET_STATUS                          0x10
1398
1399 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT                      0x00
1400
1401 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL                     BIT(0)
1402 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW                          BIT(1)
1403 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD                         BIT(2)
1404 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL                         BIT(3)
1405
1406 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE                 BIT(0)
1407 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE              BIT(1)
1408
1409 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1410                                                    u8 feature_index)
1411 {
1412         struct hidpp_report response;
1413         int ret;
1414         u8 *params = (u8 *)response.fap.params;
1415
1416         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1417             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1418                 /* we have already set the device capabilities, so let's skip */
1419                 return 0;
1420         }
1421
1422         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1423                                           CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1424                                           NULL, 0, &response);
1425         /* Ignore these intermittent errors */
1426         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1427                 return -EIO;
1428         if (ret > 0) {
1429                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1430                         __func__, ret);
1431                 return -EPROTO;
1432         }
1433         if (ret)
1434                 return ret;
1435
1436         /*
1437          * If the device supports state of charge (battery percentage) we won't
1438          * export the battery level information. there are 4 possible battery
1439          * levels and they all are optional, this means that the device might
1440          * not support any of them, we are just better off with the battery
1441          * percentage.
1442          */
1443         if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1444                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1445                 hidpp->battery.supported_levels_1004 = 0;
1446         } else {
1447                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1448                 hidpp->battery.supported_levels_1004 = params[0];
1449         }
1450
1451         return 0;
1452 }
1453
1454 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1455                                              u8 charging_status,
1456                                              u8 external_power_status)
1457 {
1458         int status;
1459
1460         switch (charging_status) {
1461                 case 0: /* discharging */
1462                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1463                         break;
1464                 case 1: /* charging */
1465                 case 2: /* charging slow */
1466                         status = POWER_SUPPLY_STATUS_CHARGING;
1467                         break;
1468                 case 3: /* complete */
1469                         status = POWER_SUPPLY_STATUS_FULL;
1470                         break;
1471                 case 4: /* error */
1472                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1473                         hid_info(hidpp->hid_dev, "%s: charging error",
1474                                  hidpp->name);
1475                         break;
1476                 default:
1477                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1478                         break;
1479         }
1480
1481         return status;
1482 }
1483
1484 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1485                                             u8 battery_level)
1486 {
1487         /* cler unsupported level bits */
1488         battery_level &= hidpp->battery.supported_levels_1004;
1489
1490         if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1491                 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1492         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1493                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1494         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1495                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1496         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1497                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1498
1499         return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1500 }
1501
1502 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1503                                              u8 feature_index,
1504                                              u8 *state_of_charge,
1505                                              int *status,
1506                                              int *level)
1507 {
1508         struct hidpp_report response;
1509         int ret;
1510         u8 *params = (u8 *)response.fap.params;
1511
1512         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1513                                           CMD_UNIFIED_BATTERY_GET_STATUS,
1514                                           NULL, 0, &response);
1515         /* Ignore these intermittent errors */
1516         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1517                 return -EIO;
1518         if (ret > 0) {
1519                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1520                         __func__, ret);
1521                 return -EPROTO;
1522         }
1523         if (ret)
1524                 return ret;
1525
1526         *state_of_charge = params[0];
1527         *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1528         *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1529
1530         return 0;
1531 }
1532
1533 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1534 {
1535         u8 feature_type;
1536         int ret;
1537         u8 state_of_charge;
1538         int status, level;
1539
1540         if (hidpp->battery.feature_index == 0xff) {
1541                 ret = hidpp_root_get_feature(hidpp,
1542                                              HIDPP_PAGE_UNIFIED_BATTERY,
1543                                              &hidpp->battery.feature_index,
1544                                              &feature_type);
1545                 if (ret)
1546                         return ret;
1547         }
1548
1549         ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1550                                         hidpp->battery.feature_index);
1551         if (ret)
1552                 return ret;
1553
1554         ret = hidpp20_unifiedbattery_get_status(hidpp,
1555                                                 hidpp->battery.feature_index,
1556                                                 &state_of_charge,
1557                                                 &status,
1558                                                 &level);
1559         if (ret)
1560                 return ret;
1561
1562         hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1563         hidpp->battery.capacity = state_of_charge;
1564         hidpp->battery.status = status;
1565         hidpp->battery.level = level;
1566         hidpp->battery.online = true;
1567
1568         return 0;
1569 }
1570
1571 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1572                                  u8 *data, int size)
1573 {
1574         struct hidpp_report *report = (struct hidpp_report *)data;
1575         u8 *params = (u8 *)report->fap.params;
1576         int state_of_charge, status, level;
1577         bool changed;
1578
1579         if (report->fap.feature_index != hidpp->battery.feature_index ||
1580             report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1581                 return 0;
1582
1583         state_of_charge = params[0];
1584         status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1585         level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1586
1587         changed = status != hidpp->battery.status ||
1588                   (state_of_charge != hidpp->battery.capacity &&
1589                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1590                   (level != hidpp->battery.level &&
1591                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1592
1593         if (changed) {
1594                 hidpp->battery.capacity = state_of_charge;
1595                 hidpp->battery.status = status;
1596                 hidpp->battery.level = level;
1597                 if (hidpp->battery.ps)
1598                         power_supply_changed(hidpp->battery.ps);
1599         }
1600
1601         return 0;
1602 }
1603
1604 /* -------------------------------------------------------------------------- */
1605 /* Battery feature helpers                                                    */
1606 /* -------------------------------------------------------------------------- */
1607
1608 static enum power_supply_property hidpp_battery_props[] = {
1609         POWER_SUPPLY_PROP_ONLINE,
1610         POWER_SUPPLY_PROP_STATUS,
1611         POWER_SUPPLY_PROP_SCOPE,
1612         POWER_SUPPLY_PROP_MODEL_NAME,
1613         POWER_SUPPLY_PROP_MANUFACTURER,
1614         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1615         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1616         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1617         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1618 };
1619
1620 static int hidpp_battery_get_property(struct power_supply *psy,
1621                                       enum power_supply_property psp,
1622                                       union power_supply_propval *val)
1623 {
1624         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1625         int ret = 0;
1626
1627         switch(psp) {
1628                 case POWER_SUPPLY_PROP_STATUS:
1629                         val->intval = hidpp->battery.status;
1630                         break;
1631                 case POWER_SUPPLY_PROP_CAPACITY:
1632                         val->intval = hidpp->battery.capacity;
1633                         break;
1634                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1635                         val->intval = hidpp->battery.level;
1636                         break;
1637                 case POWER_SUPPLY_PROP_SCOPE:
1638                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1639                         break;
1640                 case POWER_SUPPLY_PROP_ONLINE:
1641                         val->intval = hidpp->battery.online;
1642                         break;
1643                 case POWER_SUPPLY_PROP_MODEL_NAME:
1644                         if (!strncmp(hidpp->name, "Logitech ", 9))
1645                                 val->strval = hidpp->name + 9;
1646                         else
1647                                 val->strval = hidpp->name;
1648                         break;
1649                 case POWER_SUPPLY_PROP_MANUFACTURER:
1650                         val->strval = "Logitech";
1651                         break;
1652                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1653                         val->strval = hidpp->hid_dev->uniq;
1654                         break;
1655                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1656                         /* hardware reports voltage in in mV. sysfs expects uV */
1657                         val->intval = hidpp->battery.voltage * 1000;
1658                         break;
1659                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1660                         val->intval = hidpp->battery.charge_type;
1661                         break;
1662                 default:
1663                         ret = -EINVAL;
1664                         break;
1665         }
1666
1667         return ret;
1668 }
1669
1670 /* -------------------------------------------------------------------------- */
1671 /* 0x1d4b: Wireless device status                                             */
1672 /* -------------------------------------------------------------------------- */
1673 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1674
1675 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1676 {
1677         u8 feature_type;
1678         int ret;
1679
1680         ret = hidpp_root_get_feature(hidpp,
1681                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1682                                      &hidpp->wireless_feature_index,
1683                                      &feature_type);
1684
1685         return ret;
1686 }
1687
1688 /* -------------------------------------------------------------------------- */
1689 /* 0x2120: Hi-resolution scrolling                                            */
1690 /* -------------------------------------------------------------------------- */
1691
1692 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1693
1694 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1695
1696 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1697         bool enabled, u8 *multiplier)
1698 {
1699         u8 feature_index;
1700         u8 feature_type;
1701         int ret;
1702         u8 params[1];
1703         struct hidpp_report response;
1704
1705         ret = hidpp_root_get_feature(hidpp,
1706                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1707                                      &feature_index,
1708                                      &feature_type);
1709         if (ret)
1710                 return ret;
1711
1712         params[0] = enabled ? BIT(0) : 0;
1713         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1714                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1715                                           params, sizeof(params), &response);
1716         if (ret)
1717                 return ret;
1718         *multiplier = response.fap.params[1];
1719         return 0;
1720 }
1721
1722 /* -------------------------------------------------------------------------- */
1723 /* 0x2121: HiRes Wheel                                                        */
1724 /* -------------------------------------------------------------------------- */
1725
1726 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1727
1728 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1729 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1730
1731 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1732         u8 *multiplier)
1733 {
1734         u8 feature_index;
1735         u8 feature_type;
1736         int ret;
1737         struct hidpp_report response;
1738
1739         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1740                                      &feature_index, &feature_type);
1741         if (ret)
1742                 goto return_default;
1743
1744         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1745                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1746                                           NULL, 0, &response);
1747         if (ret)
1748                 goto return_default;
1749
1750         *multiplier = response.fap.params[0];
1751         return 0;
1752 return_default:
1753         hid_warn(hidpp->hid_dev,
1754                  "Couldn't get wheel multiplier (error %d)\n", ret);
1755         return ret;
1756 }
1757
1758 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1759         bool high_resolution, bool use_hidpp)
1760 {
1761         u8 feature_index;
1762         u8 feature_type;
1763         int ret;
1764         u8 params[1];
1765         struct hidpp_report response;
1766
1767         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1768                                      &feature_index, &feature_type);
1769         if (ret)
1770                 return ret;
1771
1772         params[0] = (invert          ? BIT(2) : 0) |
1773                     (high_resolution ? BIT(1) : 0) |
1774                     (use_hidpp       ? BIT(0) : 0);
1775
1776         return hidpp_send_fap_command_sync(hidpp, feature_index,
1777                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1778                                            params, sizeof(params), &response);
1779 }
1780
1781 /* -------------------------------------------------------------------------- */
1782 /* 0x4301: Solar Keyboard                                                     */
1783 /* -------------------------------------------------------------------------- */
1784
1785 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1786
1787 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1788
1789 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1790 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1791 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1792
1793 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1794 {
1795         struct hidpp_report response;
1796         u8 params[2] = { 1, 1 };
1797         u8 feature_type;
1798         int ret;
1799
1800         if (hidpp->battery.feature_index == 0xff) {
1801                 ret = hidpp_root_get_feature(hidpp,
1802                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1803                                              &hidpp->battery.solar_feature_index,
1804                                              &feature_type);
1805                 if (ret)
1806                         return ret;
1807         }
1808
1809         ret = hidpp_send_fap_command_sync(hidpp,
1810                                           hidpp->battery.solar_feature_index,
1811                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1812                                           params, 2, &response);
1813         if (ret > 0) {
1814                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1815                         __func__, ret);
1816                 return -EPROTO;
1817         }
1818         if (ret)
1819                 return ret;
1820
1821         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1822
1823         return 0;
1824 }
1825
1826 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1827                                      u8 *data, int size)
1828 {
1829         struct hidpp_report *report = (struct hidpp_report *)data;
1830         int capacity, lux, status;
1831         u8 function;
1832
1833         function = report->fap.funcindex_clientid;
1834
1835
1836         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1837             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1838               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1839               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1840                 return 0;
1841
1842         capacity = report->fap.params[0];
1843
1844         switch (function) {
1845         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1846                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1847                 if (lux > 200)
1848                         status = POWER_SUPPLY_STATUS_CHARGING;
1849                 else
1850                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1851                 break;
1852         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1853         default:
1854                 if (capacity < hidpp->battery.capacity)
1855                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1856                 else
1857                         status = POWER_SUPPLY_STATUS_CHARGING;
1858
1859         }
1860
1861         if (capacity == 100)
1862                 status = POWER_SUPPLY_STATUS_FULL;
1863
1864         hidpp->battery.online = true;
1865         if (capacity != hidpp->battery.capacity ||
1866             status != hidpp->battery.status) {
1867                 hidpp->battery.capacity = capacity;
1868                 hidpp->battery.status = status;
1869                 if (hidpp->battery.ps)
1870                         power_supply_changed(hidpp->battery.ps);
1871         }
1872
1873         return 0;
1874 }
1875
1876 /* -------------------------------------------------------------------------- */
1877 /* 0x6010: Touchpad FW items                                                  */
1878 /* -------------------------------------------------------------------------- */
1879
1880 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1881
1882 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1883
1884 struct hidpp_touchpad_fw_items {
1885         uint8_t presence;
1886         uint8_t desired_state;
1887         uint8_t state;
1888         uint8_t persistent;
1889 };
1890
1891 /*
1892  * send a set state command to the device by reading the current items->state
1893  * field. items is then filled with the current state.
1894  */
1895 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1896                                        u8 feature_index,
1897                                        struct hidpp_touchpad_fw_items *items)
1898 {
1899         struct hidpp_report response;
1900         int ret;
1901         u8 *params = (u8 *)response.fap.params;
1902
1903         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1904                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1905
1906         if (ret > 0) {
1907                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1908                         __func__, ret);
1909                 return -EPROTO;
1910         }
1911         if (ret)
1912                 return ret;
1913
1914         items->presence = params[0];
1915         items->desired_state = params[1];
1916         items->state = params[2];
1917         items->persistent = params[3];
1918
1919         return 0;
1920 }
1921
1922 /* -------------------------------------------------------------------------- */
1923 /* 0x6100: TouchPadRawXY                                                      */
1924 /* -------------------------------------------------------------------------- */
1925
1926 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1927
1928 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1929 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1930
1931 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1932
1933 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1934 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1935
1936 struct hidpp_touchpad_raw_info {
1937         u16 x_size;
1938         u16 y_size;
1939         u8 z_range;
1940         u8 area_range;
1941         u8 timestamp_unit;
1942         u8 maxcontacts;
1943         u8 origin;
1944         u16 res;
1945 };
1946
1947 struct hidpp_touchpad_raw_xy_finger {
1948         u8 contact_type;
1949         u8 contact_status;
1950         u16 x;
1951         u16 y;
1952         u8 z;
1953         u8 area;
1954         u8 finger_id;
1955 };
1956
1957 struct hidpp_touchpad_raw_xy {
1958         u16 timestamp;
1959         struct hidpp_touchpad_raw_xy_finger fingers[2];
1960         u8 spurious_flag;
1961         u8 end_of_frame;
1962         u8 finger_count;
1963         u8 button;
1964 };
1965
1966 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1967         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1968 {
1969         struct hidpp_report response;
1970         int ret;
1971         u8 *params = (u8 *)response.fap.params;
1972
1973         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1974                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1975
1976         if (ret > 0) {
1977                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1978                         __func__, ret);
1979                 return -EPROTO;
1980         }
1981         if (ret)
1982                 return ret;
1983
1984         raw_info->x_size = get_unaligned_be16(&params[0]);
1985         raw_info->y_size = get_unaligned_be16(&params[2]);
1986         raw_info->z_range = params[4];
1987         raw_info->area_range = params[5];
1988         raw_info->maxcontacts = params[7];
1989         raw_info->origin = params[8];
1990         /* res is given in unit per inch */
1991         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1992
1993         return ret;
1994 }
1995
1996 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1997                 u8 feature_index, bool send_raw_reports,
1998                 bool sensor_enhanced_settings)
1999 {
2000         struct hidpp_report response;
2001
2002         /*
2003          * Params:
2004          *   bit 0 - enable raw
2005          *   bit 1 - 16bit Z, no area
2006          *   bit 2 - enhanced sensitivity
2007          *   bit 3 - width, height (4 bits each) instead of area
2008          *   bit 4 - send raw + gestures (degrades smoothness)
2009          *   remaining bits - reserved
2010          */
2011         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2012
2013         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2014                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2015 }
2016
2017 static void hidpp_touchpad_touch_event(u8 *data,
2018         struct hidpp_touchpad_raw_xy_finger *finger)
2019 {
2020         u8 x_m = data[0] << 2;
2021         u8 y_m = data[2] << 2;
2022
2023         finger->x = x_m << 6 | data[1];
2024         finger->y = y_m << 6 | data[3];
2025
2026         finger->contact_type = data[0] >> 6;
2027         finger->contact_status = data[2] >> 6;
2028
2029         finger->z = data[4];
2030         finger->area = data[5];
2031         finger->finger_id = data[6] >> 4;
2032 }
2033
2034 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2035                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2036 {
2037         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2038         raw_xy->end_of_frame = data[8] & 0x01;
2039         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2040         raw_xy->finger_count = data[15] & 0x0f;
2041         raw_xy->button = (data[8] >> 2) & 0x01;
2042
2043         if (raw_xy->finger_count) {
2044                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2045                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2046         }
2047 }
2048
2049 /* -------------------------------------------------------------------------- */
2050 /* 0x8123: Force feedback support                                             */
2051 /* -------------------------------------------------------------------------- */
2052
2053 #define HIDPP_FF_GET_INFO               0x01
2054 #define HIDPP_FF_RESET_ALL              0x11
2055 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
2056 #define HIDPP_FF_SET_EFFECT_STATE       0x31
2057 #define HIDPP_FF_DESTROY_EFFECT         0x41
2058 #define HIDPP_FF_GET_APERTURE           0x51
2059 #define HIDPP_FF_SET_APERTURE           0x61
2060 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
2061 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
2062
2063 #define HIDPP_FF_EFFECT_STATE_GET       0x00
2064 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
2065 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
2066 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
2067
2068 #define HIDPP_FF_EFFECT_CONSTANT        0x00
2069 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
2070 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
2071 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
2072 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
2073 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
2074 #define HIDPP_FF_EFFECT_SPRING          0x06
2075 #define HIDPP_FF_EFFECT_DAMPER          0x07
2076 #define HIDPP_FF_EFFECT_FRICTION        0x08
2077 #define HIDPP_FF_EFFECT_INERTIA         0x09
2078 #define HIDPP_FF_EFFECT_RAMP            0x0A
2079
2080 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
2081
2082 #define HIDPP_FF_EFFECTID_NONE          -1
2083 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
2084 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
2085
2086 #define HIDPP_FF_MAX_PARAMS     20
2087 #define HIDPP_FF_RESERVED_SLOTS 1
2088
2089 struct hidpp_ff_private_data {
2090         struct hidpp_device *hidpp;
2091         u8 feature_index;
2092         u8 version;
2093         u16 gain;
2094         s16 range;
2095         u8 slot_autocenter;
2096         u8 num_effects;
2097         int *effect_ids;
2098         struct workqueue_struct *wq;
2099         atomic_t workqueue_size;
2100 };
2101
2102 struct hidpp_ff_work_data {
2103         struct work_struct work;
2104         struct hidpp_ff_private_data *data;
2105         int effect_id;
2106         u8 command;
2107         u8 params[HIDPP_FF_MAX_PARAMS];
2108         u8 size;
2109 };
2110
2111 static const signed short hidpp_ff_effects[] = {
2112         FF_CONSTANT,
2113         FF_PERIODIC,
2114         FF_SINE,
2115         FF_SQUARE,
2116         FF_SAW_UP,
2117         FF_SAW_DOWN,
2118         FF_TRIANGLE,
2119         FF_SPRING,
2120         FF_DAMPER,
2121         FF_AUTOCENTER,
2122         FF_GAIN,
2123         -1
2124 };
2125
2126 static const signed short hidpp_ff_effects_v2[] = {
2127         FF_RAMP,
2128         FF_FRICTION,
2129         FF_INERTIA,
2130         -1
2131 };
2132
2133 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2134         HIDPP_FF_EFFECT_SPRING,
2135         HIDPP_FF_EFFECT_FRICTION,
2136         HIDPP_FF_EFFECT_DAMPER,
2137         HIDPP_FF_EFFECT_INERTIA
2138 };
2139
2140 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2141         "spring",
2142         "friction",
2143         "damper",
2144         "inertia"
2145 };
2146
2147
2148 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2149 {
2150         int i;
2151
2152         for (i = 0; i < data->num_effects; i++)
2153                 if (data->effect_ids[i] == effect_id)
2154                         return i+1;
2155
2156         return 0;
2157 }
2158
2159 static void hidpp_ff_work_handler(struct work_struct *w)
2160 {
2161         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2162         struct hidpp_ff_private_data *data = wd->data;
2163         struct hidpp_report response;
2164         u8 slot;
2165         int ret;
2166
2167         /* add slot number if needed */
2168         switch (wd->effect_id) {
2169         case HIDPP_FF_EFFECTID_AUTOCENTER:
2170                 wd->params[0] = data->slot_autocenter;
2171                 break;
2172         case HIDPP_FF_EFFECTID_NONE:
2173                 /* leave slot as zero */
2174                 break;
2175         default:
2176                 /* find current slot for effect */
2177                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2178                 break;
2179         }
2180
2181         /* send command and wait for reply */
2182         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2183                 wd->command, wd->params, wd->size, &response);
2184
2185         if (ret) {
2186                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2187                 goto out;
2188         }
2189
2190         /* parse return data */
2191         switch (wd->command) {
2192         case HIDPP_FF_DOWNLOAD_EFFECT:
2193                 slot = response.fap.params[0];
2194                 if (slot > 0 && slot <= data->num_effects) {
2195                         if (wd->effect_id >= 0)
2196                                 /* regular effect uploaded */
2197                                 data->effect_ids[slot-1] = wd->effect_id;
2198                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2199                                 /* autocenter spring uploaded */
2200                                 data->slot_autocenter = slot;
2201                 }
2202                 break;
2203         case HIDPP_FF_DESTROY_EFFECT:
2204                 if (wd->effect_id >= 0)
2205                         /* regular effect destroyed */
2206                         data->effect_ids[wd->params[0]-1] = -1;
2207                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2208                         /* autocenter spring destoyed */
2209                         data->slot_autocenter = 0;
2210                 break;
2211         case HIDPP_FF_SET_GLOBAL_GAINS:
2212                 data->gain = (wd->params[0] << 8) + wd->params[1];
2213                 break;
2214         case HIDPP_FF_SET_APERTURE:
2215                 data->range = (wd->params[0] << 8) + wd->params[1];
2216                 break;
2217         default:
2218                 /* no action needed */
2219                 break;
2220         }
2221
2222 out:
2223         atomic_dec(&data->workqueue_size);
2224         kfree(wd);
2225 }
2226
2227 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2228 {
2229         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2230         int s;
2231
2232         if (!wd)
2233                 return -ENOMEM;
2234
2235         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2236
2237         wd->data = data;
2238         wd->effect_id = effect_id;
2239         wd->command = command;
2240         wd->size = size;
2241         memcpy(wd->params, params, size);
2242
2243         atomic_inc(&data->workqueue_size);
2244         queue_work(data->wq, &wd->work);
2245
2246         /* warn about excessive queue size */
2247         s = atomic_read(&data->workqueue_size);
2248         if (s >= 20 && s % 20 == 0)
2249                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2250
2251         return 0;
2252 }
2253
2254 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2255 {
2256         struct hidpp_ff_private_data *data = dev->ff->private;
2257         u8 params[20];
2258         u8 size;
2259         int force;
2260
2261         /* set common parameters */
2262         params[2] = effect->replay.length >> 8;
2263         params[3] = effect->replay.length & 255;
2264         params[4] = effect->replay.delay >> 8;
2265         params[5] = effect->replay.delay & 255;
2266
2267         switch (effect->type) {
2268         case FF_CONSTANT:
2269                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2270                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2271                 params[6] = force >> 8;
2272                 params[7] = force & 255;
2273                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2274                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2275                 params[10] = effect->u.constant.envelope.attack_length & 255;
2276                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2277                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2278                 params[13] = effect->u.constant.envelope.fade_length & 255;
2279                 size = 14;
2280                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2281                                 effect->u.constant.level,
2282                                 effect->direction, force);
2283                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2284                                 effect->u.constant.envelope.attack_level,
2285                                 effect->u.constant.envelope.attack_length,
2286                                 effect->u.constant.envelope.fade_level,
2287                                 effect->u.constant.envelope.fade_length);
2288                 break;
2289         case FF_PERIODIC:
2290         {
2291                 switch (effect->u.periodic.waveform) {
2292                 case FF_SINE:
2293                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2294                         break;
2295                 case FF_SQUARE:
2296                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2297                         break;
2298                 case FF_SAW_UP:
2299                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2300                         break;
2301                 case FF_SAW_DOWN:
2302                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2303                         break;
2304                 case FF_TRIANGLE:
2305                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2306                         break;
2307                 default:
2308                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2309                         return -EINVAL;
2310                 }
2311                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2312                 params[6] = effect->u.periodic.magnitude >> 8;
2313                 params[7] = effect->u.periodic.magnitude & 255;
2314                 params[8] = effect->u.periodic.offset >> 8;
2315                 params[9] = effect->u.periodic.offset & 255;
2316                 params[10] = effect->u.periodic.period >> 8;
2317                 params[11] = effect->u.periodic.period & 255;
2318                 params[12] = effect->u.periodic.phase >> 8;
2319                 params[13] = effect->u.periodic.phase & 255;
2320                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2321                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2322                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2323                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2324                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2325                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2326                 size = 20;
2327                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2328                                 effect->u.periodic.magnitude, effect->direction,
2329                                 effect->u.periodic.offset,
2330                                 effect->u.periodic.period,
2331                                 effect->u.periodic.phase);
2332                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2333                                 effect->u.periodic.envelope.attack_level,
2334                                 effect->u.periodic.envelope.attack_length,
2335                                 effect->u.periodic.envelope.fade_level,
2336                                 effect->u.periodic.envelope.fade_length);
2337                 break;
2338         }
2339         case FF_RAMP:
2340                 params[1] = HIDPP_FF_EFFECT_RAMP;
2341                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2342                 params[6] = force >> 8;
2343                 params[7] = force & 255;
2344                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2345                 params[8] = force >> 8;
2346                 params[9] = force & 255;
2347                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2348                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2349                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2350                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2351                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2352                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2353                 size = 16;
2354                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2355                                 effect->u.ramp.start_level,
2356                                 effect->u.ramp.end_level,
2357                                 effect->direction, force);
2358                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2359                                 effect->u.ramp.envelope.attack_level,
2360                                 effect->u.ramp.envelope.attack_length,
2361                                 effect->u.ramp.envelope.fade_level,
2362                                 effect->u.ramp.envelope.fade_length);
2363                 break;
2364         case FF_FRICTION:
2365         case FF_INERTIA:
2366         case FF_SPRING:
2367         case FF_DAMPER:
2368                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2369                 params[6] = effect->u.condition[0].left_saturation >> 9;
2370                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2371                 params[8] = effect->u.condition[0].left_coeff >> 8;
2372                 params[9] = effect->u.condition[0].left_coeff & 255;
2373                 params[10] = effect->u.condition[0].deadband >> 9;
2374                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2375                 params[12] = effect->u.condition[0].center >> 8;
2376                 params[13] = effect->u.condition[0].center & 255;
2377                 params[14] = effect->u.condition[0].right_coeff >> 8;
2378                 params[15] = effect->u.condition[0].right_coeff & 255;
2379                 params[16] = effect->u.condition[0].right_saturation >> 9;
2380                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2381                 size = 18;
2382                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2383                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2384                                 effect->u.condition[0].left_coeff,
2385                                 effect->u.condition[0].left_saturation,
2386                                 effect->u.condition[0].right_coeff,
2387                                 effect->u.condition[0].right_saturation);
2388                 dbg_hid("          deadband=%d, center=%d\n",
2389                                 effect->u.condition[0].deadband,
2390                                 effect->u.condition[0].center);
2391                 break;
2392         default:
2393                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2394                 return -EINVAL;
2395         }
2396
2397         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2398 }
2399
2400 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2401 {
2402         struct hidpp_ff_private_data *data = dev->ff->private;
2403         u8 params[2];
2404
2405         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2406
2407         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2408
2409         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2410 }
2411
2412 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2413 {
2414         struct hidpp_ff_private_data *data = dev->ff->private;
2415         u8 slot = 0;
2416
2417         dbg_hid("Erasing effect %d.\n", effect_id);
2418
2419         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2420 }
2421
2422 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2423 {
2424         struct hidpp_ff_private_data *data = dev->ff->private;
2425         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2426
2427         dbg_hid("Setting autocenter to %d.\n", magnitude);
2428
2429         /* start a standard spring effect */
2430         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2431         /* zero delay and duration */
2432         params[2] = params[3] = params[4] = params[5] = 0;
2433         /* set coeff to 25% of saturation */
2434         params[8] = params[14] = magnitude >> 11;
2435         params[9] = params[15] = (magnitude >> 3) & 255;
2436         params[6] = params[16] = magnitude >> 9;
2437         params[7] = params[17] = (magnitude >> 1) & 255;
2438         /* zero deadband and center */
2439         params[10] = params[11] = params[12] = params[13] = 0;
2440
2441         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2442 }
2443
2444 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2445 {
2446         struct hidpp_ff_private_data *data = dev->ff->private;
2447         u8 params[4];
2448
2449         dbg_hid("Setting gain to %d.\n", gain);
2450
2451         params[0] = gain >> 8;
2452         params[1] = gain & 255;
2453         params[2] = 0; /* no boost */
2454         params[3] = 0;
2455
2456         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2457 }
2458
2459 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2460 {
2461         struct hid_device *hid = to_hid_device(dev);
2462         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2463         struct input_dev *idev = hidinput->input;
2464         struct hidpp_ff_private_data *data = idev->ff->private;
2465
2466         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2467 }
2468
2469 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2470 {
2471         struct hid_device *hid = to_hid_device(dev);
2472         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2473         struct input_dev *idev = hidinput->input;
2474         struct hidpp_ff_private_data *data = idev->ff->private;
2475         u8 params[2];
2476         int range = simple_strtoul(buf, NULL, 10);
2477
2478         range = clamp(range, 180, 900);
2479
2480         params[0] = range >> 8;
2481         params[1] = range & 0x00FF;
2482
2483         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2484
2485         return count;
2486 }
2487
2488 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2489
2490 static void hidpp_ff_destroy(struct ff_device *ff)
2491 {
2492         struct hidpp_ff_private_data *data = ff->private;
2493         struct hid_device *hid = data->hidpp->hid_dev;
2494
2495         hid_info(hid, "Unloading HID++ force feedback.\n");
2496
2497         device_remove_file(&hid->dev, &dev_attr_range);
2498         destroy_workqueue(data->wq);
2499         kfree(data->effect_ids);
2500 }
2501
2502 static int hidpp_ff_init(struct hidpp_device *hidpp,
2503                          struct hidpp_ff_private_data *data)
2504 {
2505         struct hid_device *hid = hidpp->hid_dev;
2506         struct hid_input *hidinput;
2507         struct input_dev *dev;
2508         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2509         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2510         struct ff_device *ff;
2511         int error, j, num_slots = data->num_effects;
2512         u8 version;
2513
2514         if (list_empty(&hid->inputs)) {
2515                 hid_err(hid, "no inputs found\n");
2516                 return -ENODEV;
2517         }
2518         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2519         dev = hidinput->input;
2520
2521         if (!dev) {
2522                 hid_err(hid, "Struct input_dev not set!\n");
2523                 return -EINVAL;
2524         }
2525
2526         /* Get firmware release */
2527         version = bcdDevice & 255;
2528
2529         /* Set supported force feedback capabilities */
2530         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2531                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2532         if (version > 1)
2533                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2534                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2535
2536         error = input_ff_create(dev, num_slots);
2537
2538         if (error) {
2539                 hid_err(dev, "Failed to create FF device!\n");
2540                 return error;
2541         }
2542         /*
2543          * Create a copy of passed data, so we can transfer memory
2544          * ownership to FF core
2545          */
2546         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2547         if (!data)
2548                 return -ENOMEM;
2549         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2550         if (!data->effect_ids) {
2551                 kfree(data);
2552                 return -ENOMEM;
2553         }
2554         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2555         if (!data->wq) {
2556                 kfree(data->effect_ids);
2557                 kfree(data);
2558                 return -ENOMEM;
2559         }
2560
2561         data->hidpp = hidpp;
2562         data->version = version;
2563         for (j = 0; j < num_slots; j++)
2564                 data->effect_ids[j] = -1;
2565
2566         ff = dev->ff;
2567         ff->private = data;
2568
2569         ff->upload = hidpp_ff_upload_effect;
2570         ff->erase = hidpp_ff_erase_effect;
2571         ff->playback = hidpp_ff_playback;
2572         ff->set_gain = hidpp_ff_set_gain;
2573         ff->set_autocenter = hidpp_ff_set_autocenter;
2574         ff->destroy = hidpp_ff_destroy;
2575
2576         /* Create sysfs interface */
2577         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2578         if (error)
2579                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2580
2581         /* init the hardware command queue */
2582         atomic_set(&data->workqueue_size, 0);
2583
2584         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2585                  version);
2586
2587         return 0;
2588 }
2589
2590 /* ************************************************************************** */
2591 /*                                                                            */
2592 /* Device Support                                                             */
2593 /*                                                                            */
2594 /* ************************************************************************** */
2595
2596 /* -------------------------------------------------------------------------- */
2597 /* Touchpad HID++ devices                                                     */
2598 /* -------------------------------------------------------------------------- */
2599
2600 #define WTP_MANUAL_RESOLUTION                           39
2601
2602 struct wtp_data {
2603         u16 x_size, y_size;
2604         u8 finger_count;
2605         u8 mt_feature_index;
2606         u8 button_feature_index;
2607         u8 maxcontacts;
2608         bool flip_y;
2609         unsigned int resolution;
2610 };
2611
2612 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2613                 struct hid_field *field, struct hid_usage *usage,
2614                 unsigned long **bit, int *max)
2615 {
2616         return -1;
2617 }
2618
2619 static void wtp_populate_input(struct hidpp_device *hidpp,
2620                                struct input_dev *input_dev)
2621 {
2622         struct wtp_data *wd = hidpp->private_data;
2623
2624         __set_bit(EV_ABS, input_dev->evbit);
2625         __set_bit(EV_KEY, input_dev->evbit);
2626         __clear_bit(EV_REL, input_dev->evbit);
2627         __clear_bit(EV_LED, input_dev->evbit);
2628
2629         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2630         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2631         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2632         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2633
2634         /* Max pressure is not given by the devices, pick one */
2635         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2636
2637         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2638
2639         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2640                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2641         else
2642                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2643
2644         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2645                 INPUT_MT_DROP_UNUSED);
2646 }
2647
2648 static void wtp_touch_event(struct hidpp_device *hidpp,
2649         struct hidpp_touchpad_raw_xy_finger *touch_report)
2650 {
2651         struct wtp_data *wd = hidpp->private_data;
2652         int slot;
2653
2654         if (!touch_report->finger_id || touch_report->contact_type)
2655                 /* no actual data */
2656                 return;
2657
2658         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2659
2660         input_mt_slot(hidpp->input, slot);
2661         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2662                                         touch_report->contact_status);
2663         if (touch_report->contact_status) {
2664                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2665                                 touch_report->x);
2666                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2667                                 wd->flip_y ? wd->y_size - touch_report->y :
2668                                              touch_report->y);
2669                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2670                                 touch_report->area);
2671         }
2672 }
2673
2674 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2675                 struct hidpp_touchpad_raw_xy *raw)
2676 {
2677         int i;
2678
2679         for (i = 0; i < 2; i++)
2680                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2681
2682         if (raw->end_of_frame &&
2683             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2684                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2685
2686         if (raw->end_of_frame || raw->finger_count <= 2) {
2687                 input_mt_sync_frame(hidpp->input);
2688                 input_sync(hidpp->input);
2689         }
2690 }
2691
2692 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2693 {
2694         struct wtp_data *wd = hidpp->private_data;
2695         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2696                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2697         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2698                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2699         struct hidpp_touchpad_raw_xy raw = {
2700                 .timestamp = data[1],
2701                 .fingers = {
2702                         {
2703                                 .contact_type = 0,
2704                                 .contact_status = !!data[7],
2705                                 .x = get_unaligned_le16(&data[3]),
2706                                 .y = get_unaligned_le16(&data[5]),
2707                                 .z = c1_area,
2708                                 .area = c1_area,
2709                                 .finger_id = data[2],
2710                         }, {
2711                                 .contact_type = 0,
2712                                 .contact_status = !!data[13],
2713                                 .x = get_unaligned_le16(&data[9]),
2714                                 .y = get_unaligned_le16(&data[11]),
2715                                 .z = c2_area,
2716                                 .area = c2_area,
2717                                 .finger_id = data[8],
2718                         }
2719                 },
2720                 .finger_count = wd->maxcontacts,
2721                 .spurious_flag = 0,
2722                 .end_of_frame = (data[0] >> 7) == 0,
2723                 .button = data[0] & 0x01,
2724         };
2725
2726         wtp_send_raw_xy_event(hidpp, &raw);
2727
2728         return 1;
2729 }
2730
2731 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2732 {
2733         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2734         struct wtp_data *wd = hidpp->private_data;
2735         struct hidpp_report *report = (struct hidpp_report *)data;
2736         struct hidpp_touchpad_raw_xy raw;
2737
2738         if (!wd || !hidpp->input)
2739                 return 1;
2740
2741         switch (data[0]) {
2742         case 0x02:
2743                 if (size < 2) {
2744                         hid_err(hdev, "Received HID report of bad size (%d)",
2745                                 size);
2746                         return 1;
2747                 }
2748                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2749                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2750                                         !!(data[1] & 0x01));
2751                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2752                                         !!(data[1] & 0x02));
2753                         input_sync(hidpp->input);
2754                         return 0;
2755                 } else {
2756                         if (size < 21)
2757                                 return 1;
2758                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2759                 }
2760         case REPORT_ID_HIDPP_LONG:
2761                 /* size is already checked in hidpp_raw_event. */
2762                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2763                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2764                         return 1;
2765                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2766
2767                 wtp_send_raw_xy_event(hidpp, &raw);
2768                 return 0;
2769         }
2770
2771         return 0;
2772 }
2773
2774 static int wtp_get_config(struct hidpp_device *hidpp)
2775 {
2776         struct wtp_data *wd = hidpp->private_data;
2777         struct hidpp_touchpad_raw_info raw_info = {0};
2778         u8 feature_type;
2779         int ret;
2780
2781         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2782                 &wd->mt_feature_index, &feature_type);
2783         if (ret)
2784                 /* means that the device is not powered up */
2785                 return ret;
2786
2787         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2788                 &raw_info);
2789         if (ret)
2790                 return ret;
2791
2792         wd->x_size = raw_info.x_size;
2793         wd->y_size = raw_info.y_size;
2794         wd->maxcontacts = raw_info.maxcontacts;
2795         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2796         wd->resolution = raw_info.res;
2797         if (!wd->resolution)
2798                 wd->resolution = WTP_MANUAL_RESOLUTION;
2799
2800         return 0;
2801 }
2802
2803 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2804 {
2805         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2806         struct wtp_data *wd;
2807
2808         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2809                         GFP_KERNEL);
2810         if (!wd)
2811                 return -ENOMEM;
2812
2813         hidpp->private_data = wd;
2814
2815         return 0;
2816 };
2817
2818 static int wtp_connect(struct hid_device *hdev, bool connected)
2819 {
2820         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2821         struct wtp_data *wd = hidpp->private_data;
2822         int ret;
2823
2824         if (!wd->x_size) {
2825                 ret = wtp_get_config(hidpp);
2826                 if (ret) {
2827                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2828                         return ret;
2829                 }
2830         }
2831
2832         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2833                         true, true);
2834 }
2835
2836 /* ------------------------------------------------------------------------- */
2837 /* Logitech M560 devices                                                     */
2838 /* ------------------------------------------------------------------------- */
2839
2840 /*
2841  * Logitech M560 protocol overview
2842  *
2843  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2844  * the sides buttons are pressed, it sends some keyboard keys events
2845  * instead of buttons ones.
2846  * To complicate things further, the middle button keys sequence
2847  * is different from the odd press and the even press.
2848  *
2849  * forward button -> Super_R
2850  * backward button -> Super_L+'d' (press only)
2851  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2852  *                  2nd time: left-click (press only)
2853  * NB: press-only means that when the button is pressed, the
2854  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2855  * together sequentially; instead when the button is released, no event is
2856  * generated !
2857  *
2858  * With the command
2859  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2860  * the mouse reacts differently:
2861  * - it never sends a keyboard key event
2862  * - for the three mouse button it sends:
2863  *      middle button               press   11<xx>0a 3500af00...
2864  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2865  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2866  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2867  */
2868
2869 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2870
2871 /* how buttons are mapped in the report */
2872 #define M560_MOUSE_BTN_LEFT             0x01
2873 #define M560_MOUSE_BTN_RIGHT            0x02
2874 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2875 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2876
2877 #define M560_SUB_ID                     0x0a
2878 #define M560_BUTTON_MODE_REGISTER       0x35
2879
2880 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2881 {
2882         struct hidpp_report response;
2883         struct hidpp_device *hidpp_dev;
2884
2885         hidpp_dev = hid_get_drvdata(hdev);
2886
2887         return hidpp_send_rap_command_sync(
2888                 hidpp_dev,
2889                 REPORT_ID_HIDPP_SHORT,
2890                 M560_SUB_ID,
2891                 M560_BUTTON_MODE_REGISTER,
2892                 (u8 *)m560_config_parameter,
2893                 sizeof(m560_config_parameter),
2894                 &response
2895         );
2896 }
2897
2898 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2899 {
2900         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2901
2902         /* sanity check */
2903         if (!hidpp->input) {
2904                 hid_err(hdev, "error in parameter\n");
2905                 return -EINVAL;
2906         }
2907
2908         if (size < 7) {
2909                 hid_err(hdev, "error in report\n");
2910                 return 0;
2911         }
2912
2913         if (data[0] == REPORT_ID_HIDPP_LONG &&
2914             data[2] == M560_SUB_ID && data[6] == 0x00) {
2915                 /*
2916                  * m560 mouse report for middle, forward and backward button
2917                  *
2918                  * data[0] = 0x11
2919                  * data[1] = device-id
2920                  * data[2] = 0x0a
2921                  * data[5] = 0xaf -> middle
2922                  *           0xb0 -> forward
2923                  *           0xae -> backward
2924                  *           0x00 -> release all
2925                  * data[6] = 0x00
2926                  */
2927
2928                 switch (data[5]) {
2929                 case 0xaf:
2930                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2931                         break;
2932                 case 0xb0:
2933                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2934                         break;
2935                 case 0xae:
2936                         input_report_key(hidpp->input, BTN_BACK, 1);
2937                         break;
2938                 case 0x00:
2939                         input_report_key(hidpp->input, BTN_BACK, 0);
2940                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2941                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2942                         break;
2943                 default:
2944                         hid_err(hdev, "error in report\n");
2945                         return 0;
2946                 }
2947                 input_sync(hidpp->input);
2948
2949         } else if (data[0] == 0x02) {
2950                 /*
2951                  * Logitech M560 mouse report
2952                  *
2953                  * data[0] = type (0x02)
2954                  * data[1..2] = buttons
2955                  * data[3..5] = xy
2956                  * data[6] = wheel
2957                  */
2958
2959                 int v;
2960
2961                 input_report_key(hidpp->input, BTN_LEFT,
2962                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2963                 input_report_key(hidpp->input, BTN_RIGHT,
2964                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2965
2966                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2967                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2968                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2969                                          -120);
2970                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2971                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2972                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2973                                          120);
2974                 }
2975
2976                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2977                 input_report_rel(hidpp->input, REL_X, v);
2978
2979                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2980                 input_report_rel(hidpp->input, REL_Y, v);
2981
2982                 v = hid_snto32(data[6], 8);
2983                 if (v != 0)
2984                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2985                                         &hidpp->vertical_wheel_counter, v);
2986
2987                 input_sync(hidpp->input);
2988         }
2989
2990         return 1;
2991 }
2992
2993 static void m560_populate_input(struct hidpp_device *hidpp,
2994                                 struct input_dev *input_dev)
2995 {
2996         __set_bit(EV_KEY, input_dev->evbit);
2997         __set_bit(BTN_MIDDLE, input_dev->keybit);
2998         __set_bit(BTN_RIGHT, input_dev->keybit);
2999         __set_bit(BTN_LEFT, input_dev->keybit);
3000         __set_bit(BTN_BACK, input_dev->keybit);
3001         __set_bit(BTN_FORWARD, input_dev->keybit);
3002
3003         __set_bit(EV_REL, input_dev->evbit);
3004         __set_bit(REL_X, input_dev->relbit);
3005         __set_bit(REL_Y, input_dev->relbit);
3006         __set_bit(REL_WHEEL, input_dev->relbit);
3007         __set_bit(REL_HWHEEL, input_dev->relbit);
3008         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3009         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3010 }
3011
3012 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3013                 struct hid_field *field, struct hid_usage *usage,
3014                 unsigned long **bit, int *max)
3015 {
3016         return -1;
3017 }
3018
3019 /* ------------------------------------------------------------------------- */
3020 /* Logitech K400 devices                                                     */
3021 /* ------------------------------------------------------------------------- */
3022
3023 /*
3024  * The Logitech K400 keyboard has an embedded touchpad which is seen
3025  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3026  * tap-to-click but the setting is not remembered accross reset, annoying some
3027  * users.
3028  *
3029  * We can toggle this feature from the host by using the feature 0x6010:
3030  * Touchpad FW items
3031  */
3032
3033 struct k400_private_data {
3034         u8 feature_index;
3035 };
3036
3037 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3038 {
3039         struct k400_private_data *k400 = hidpp->private_data;
3040         struct hidpp_touchpad_fw_items items = {};
3041         int ret;
3042         u8 feature_type;
3043
3044         if (!k400->feature_index) {
3045                 ret = hidpp_root_get_feature(hidpp,
3046                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3047                         &k400->feature_index, &feature_type);
3048                 if (ret)
3049                         /* means that the device is not powered up */
3050                         return ret;
3051         }
3052
3053         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3054         if (ret)
3055                 return ret;
3056
3057         return 0;
3058 }
3059
3060 static int k400_allocate(struct hid_device *hdev)
3061 {
3062         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3063         struct k400_private_data *k400;
3064
3065         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3066                             GFP_KERNEL);
3067         if (!k400)
3068                 return -ENOMEM;
3069
3070         hidpp->private_data = k400;
3071
3072         return 0;
3073 };
3074
3075 static int k400_connect(struct hid_device *hdev, bool connected)
3076 {
3077         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3078
3079         if (!disable_tap_to_click)
3080                 return 0;
3081
3082         return k400_disable_tap_to_click(hidpp);
3083 }
3084
3085 /* ------------------------------------------------------------------------- */
3086 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3087 /* ------------------------------------------------------------------------- */
3088
3089 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
3090
3091 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3092                                   struct hidpp_ff_private_data *data)
3093 {
3094         struct hidpp_report response;
3095         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3096                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3097         };
3098         int ret;
3099
3100         /* initialize with zero autocenter to get wheel in usable state */
3101
3102         dbg_hid("Setting autocenter to 0.\n");
3103         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3104                                           HIDPP_FF_DOWNLOAD_EFFECT,
3105                                           params, ARRAY_SIZE(params),
3106                                           &response);
3107         if (ret)
3108                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3109         else
3110                 data->slot_autocenter = response.fap.params[0];
3111
3112         return ret;
3113 }
3114
3115 static int g920_get_config(struct hidpp_device *hidpp,
3116                            struct hidpp_ff_private_data *data)
3117 {
3118         struct hidpp_report response;
3119         u8 feature_type;
3120         int ret;
3121
3122         memset(data, 0, sizeof(*data));
3123
3124         /* Find feature and store for later use */
3125         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3126                                      &data->feature_index, &feature_type);
3127         if (ret)
3128                 return ret;
3129
3130         /* Read number of slots available in device */
3131         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3132                                           HIDPP_FF_GET_INFO,
3133                                           NULL, 0,
3134                                           &response);
3135         if (ret) {
3136                 if (ret < 0)
3137                         return ret;
3138                 hid_err(hidpp->hid_dev,
3139                         "%s: received protocol error 0x%02x\n", __func__, ret);
3140                 return -EPROTO;
3141         }
3142
3143         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3144
3145         /* reset all forces */
3146         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3147                                           HIDPP_FF_RESET_ALL,
3148                                           NULL, 0,
3149                                           &response);
3150         if (ret)
3151                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3152
3153         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3154                                           HIDPP_FF_GET_APERTURE,
3155                                           NULL, 0,
3156                                           &response);
3157         if (ret) {
3158                 hid_warn(hidpp->hid_dev,
3159                          "Failed to read range from device!\n");
3160         }
3161         data->range = ret ?
3162                 900 : get_unaligned_be16(&response.fap.params[0]);
3163
3164         /* Read the current gain values */
3165         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3166                                           HIDPP_FF_GET_GLOBAL_GAINS,
3167                                           NULL, 0,
3168                                           &response);
3169         if (ret)
3170                 hid_warn(hidpp->hid_dev,
3171                          "Failed to read gain values from device!\n");
3172         data->gain = ret ?
3173                 0xffff : get_unaligned_be16(&response.fap.params[0]);
3174
3175         /* ignore boost value at response.fap.params[2] */
3176
3177         return g920_ff_set_autocenter(hidpp, data);
3178 }
3179
3180 /* -------------------------------------------------------------------------- */
3181 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3182 /* -------------------------------------------------------------------------- */
3183 #define DINOVO_MINI_PRODUCT_ID          0xb30c
3184
3185 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3186                 struct hid_field *field, struct hid_usage *usage,
3187                 unsigned long **bit, int *max)
3188 {
3189         if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3190                 return 0;
3191
3192         switch (usage->hid & HID_USAGE) {
3193         case 0x00d: lg_map_key_clear(KEY_MEDIA);        break;
3194         default:
3195                 return 0;
3196         }
3197         return 1;
3198 }
3199
3200 /* -------------------------------------------------------------------------- */
3201 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3202 /* -------------------------------------------------------------------------- */
3203 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3204 {
3205         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3206                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3207                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3208 }
3209
3210 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3211                                    u8 *data, int size)
3212 {
3213         s8 value, hvalue;
3214
3215         if (!hidpp->input)
3216                 return -EINVAL;
3217
3218         if (size < 7)
3219                 return 0;
3220
3221         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3222                 return 0;
3223
3224         value = data[3];
3225         hvalue = data[4];
3226
3227         input_report_rel(hidpp->input, REL_WHEEL, value);
3228         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3229         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3230         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3231         input_sync(hidpp->input);
3232
3233         return 1;
3234 }
3235
3236 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3237                                          struct input_dev *input_dev)
3238 {
3239         __set_bit(EV_REL, input_dev->evbit);
3240         __set_bit(REL_WHEEL, input_dev->relbit);
3241         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3242         __set_bit(REL_HWHEEL, input_dev->relbit);
3243         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3244 }
3245
3246 /* -------------------------------------------------------------------------- */
3247 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3248 /* -------------------------------------------------------------------------- */
3249 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3250 {
3251         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3252                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3253                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3254 }
3255
3256 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3257                                     u8 *data, int size)
3258 {
3259         int i;
3260
3261         if (!hidpp->input)
3262                 return -EINVAL;
3263
3264         if (size < 7)
3265                 return 0;
3266
3267         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3268             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3269                 return 0;
3270
3271         /*
3272          * Buttons are either delivered through the regular mouse report *or*
3273          * through the extra buttons report. At least for button 6 how it is
3274          * delivered differs per receiver firmware version. Even receivers with
3275          * the same usb-id show different behavior, so we handle both cases.
3276          */
3277         for (i = 0; i < 8; i++)
3278                 input_report_key(hidpp->input, BTN_MOUSE + i,
3279                                  (data[3] & (1 << i)));
3280
3281         /* Some mice report events on button 9+, use BTN_MISC */
3282         for (i = 0; i < 8; i++)
3283                 input_report_key(hidpp->input, BTN_MISC + i,
3284                                  (data[4] & (1 << i)));
3285
3286         input_sync(hidpp->input);
3287         return 1;
3288 }
3289
3290 static void hidpp10_extra_mouse_buttons_populate_input(
3291                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3292 {
3293         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3294         __set_bit(BTN_0, input_dev->keybit);
3295         __set_bit(BTN_1, input_dev->keybit);
3296         __set_bit(BTN_2, input_dev->keybit);
3297         __set_bit(BTN_3, input_dev->keybit);
3298         __set_bit(BTN_4, input_dev->keybit);
3299         __set_bit(BTN_5, input_dev->keybit);
3300         __set_bit(BTN_6, input_dev->keybit);
3301         __set_bit(BTN_7, input_dev->keybit);
3302 }
3303
3304 /* -------------------------------------------------------------------------- */
3305 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3306 /* -------------------------------------------------------------------------- */
3307
3308 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3309 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3310                                               u8 *_rdesc, unsigned int *rsize)
3311 {
3312         /* Note 0 terminated so we can use strnstr to search for this. */
3313         static const char consumer_rdesc_start[] = {
3314                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3315                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3316                 0xA1, 0x01,     /* COLLECTION (Application)            */
3317                 0x85, 0x03,     /* REPORT_ID = 3                       */
3318                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3319                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3320                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3321                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3322         };
3323         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3324         unsigned int size;
3325
3326         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3327         size = *rsize - (consumer_rdesc - rdesc);
3328         if (consumer_rdesc && size >= 25) {
3329                 consumer_rdesc[15] = 0x7f;
3330                 consumer_rdesc[16] = 0x10;
3331                 consumer_rdesc[20] = 0x7f;
3332                 consumer_rdesc[21] = 0x10;
3333         }
3334         return _rdesc;
3335 }
3336
3337 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3338 {
3339         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3340                                     HIDPP_ENABLE_CONSUMER_REPORT,
3341                                     HIDPP_ENABLE_CONSUMER_REPORT);
3342 }
3343
3344 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3345                                            u8 *data, int size)
3346 {
3347         u8 consumer_report[5];
3348
3349         if (size < 7)
3350                 return 0;
3351
3352         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3353             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3354                 return 0;
3355
3356         /*
3357          * Build a normal consumer report (3) out of the data, this detour
3358          * is necessary to get some keyboards to report their 0x10xx usages.
3359          */
3360         consumer_report[0] = 0x03;
3361         memcpy(&consumer_report[1], &data[3], 4);
3362         /* We are called from atomic context */
3363         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3364                              consumer_report, 5, 1);
3365
3366         return 1;
3367 }
3368
3369 /* -------------------------------------------------------------------------- */
3370 /* High-resolution scroll wheels                                              */
3371 /* -------------------------------------------------------------------------- */
3372
3373 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3374 {
3375         int ret;
3376         u8 multiplier = 1;
3377
3378         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3379                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3380                 if (ret == 0)
3381                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3382         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3383                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3384                                                            &multiplier);
3385         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3386                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3387                 multiplier = 8;
3388         }
3389         if (ret)
3390                 return ret;
3391
3392         if (multiplier == 0)
3393                 multiplier = 1;
3394
3395         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3396         hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3397         return 0;
3398 }
3399
3400 /* -------------------------------------------------------------------------- */
3401 /* Generic HID++ devices                                                      */
3402 /* -------------------------------------------------------------------------- */
3403
3404 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3405                               unsigned int *rsize)
3406 {
3407         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3408
3409         if (!hidpp)
3410                 return rdesc;
3411
3412         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3413         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3414             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3415                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3416
3417         return rdesc;
3418 }
3419
3420 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3421                 struct hid_field *field, struct hid_usage *usage,
3422                 unsigned long **bit, int *max)
3423 {
3424         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3425
3426         if (!hidpp)
3427                 return 0;
3428
3429         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3430                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3431         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3432                         field->application != HID_GD_MOUSE)
3433                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3434
3435         if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3436                 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3437
3438         return 0;
3439 }
3440
3441 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3442                 struct hid_field *field, struct hid_usage *usage,
3443                 unsigned long **bit, int *max)
3444 {
3445         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3446
3447         if (!hidpp)
3448                 return 0;
3449
3450         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3451         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3452                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3453                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3454                                 usage->code == ABS_RZ)) {
3455                         field->application = HID_GD_MULTIAXIS;
3456                 }
3457         }
3458
3459         return 0;
3460 }
3461
3462
3463 static void hidpp_populate_input(struct hidpp_device *hidpp,
3464                                  struct input_dev *input)
3465 {
3466         hidpp->input = input;
3467
3468         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3469                 wtp_populate_input(hidpp, input);
3470         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3471                 m560_populate_input(hidpp, input);
3472
3473         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3474                 hidpp10_wheel_populate_input(hidpp, input);
3475
3476         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3477                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3478 }
3479
3480 static int hidpp_input_configured(struct hid_device *hdev,
3481                                 struct hid_input *hidinput)
3482 {
3483         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3484         struct input_dev *input = hidinput->input;
3485
3486         if (!hidpp)
3487                 return 0;
3488
3489         hidpp_populate_input(hidpp, input);
3490
3491         return 0;
3492 }
3493
3494 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3495                 int size)
3496 {
3497         struct hidpp_report *question = hidpp->send_receive_buf;
3498         struct hidpp_report *answer = hidpp->send_receive_buf;
3499         struct hidpp_report *report = (struct hidpp_report *)data;
3500         int ret;
3501
3502         /*
3503          * If the mutex is locked then we have a pending answer from a
3504          * previously sent command.
3505          */
3506         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3507                 /*
3508                  * Check for a correct hidpp20 answer or the corresponding
3509                  * error
3510                  */
3511                 if (hidpp_match_answer(question, report) ||
3512                                 hidpp_match_error(question, report)) {
3513                         *answer = *report;
3514                         hidpp->answer_available = true;
3515                         wake_up(&hidpp->wait);
3516                         /*
3517                          * This was an answer to a command that this driver sent
3518                          * We return 1 to hid-core to avoid forwarding the
3519                          * command upstream as it has been treated by the driver
3520                          */
3521
3522                         return 1;
3523                 }
3524         }
3525
3526         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3527                 atomic_set(&hidpp->connected,
3528                                 !(report->rap.params[0] & (1 << 6)));
3529                 if (schedule_work(&hidpp->work) == 0)
3530                         dbg_hid("%s: connect event already queued\n", __func__);
3531                 return 1;
3532         }
3533
3534         if (hidpp->hid_dev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3535             data[0] == REPORT_ID_HIDPP_SHORT &&
3536             data[2] == HIDPP_SUB_ID_USER_IFACE_EVENT &&
3537             (data[3] & HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST)) {
3538                 dev_err_ratelimited(&hidpp->hid_dev->dev,
3539                         "Error the keyboard's wireless encryption key has been lost, your keyboard will not work unless you re-configure encryption.\n");
3540                 dev_err_ratelimited(&hidpp->hid_dev->dev,
3541                         "See: https://gitlab.freedesktop.org/jwrdegoede/logitech-27mhz-keyboard-encryption-setup/\n");
3542         }
3543
3544         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3545                 ret = hidpp20_battery_event_1000(hidpp, data, size);
3546                 if (ret != 0)
3547                         return ret;
3548                 ret = hidpp20_battery_event_1004(hidpp, data, size);
3549                 if (ret != 0)
3550                         return ret;
3551                 ret = hidpp_solar_battery_event(hidpp, data, size);
3552                 if (ret != 0)
3553                         return ret;
3554                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3555                 if (ret != 0)
3556                         return ret;
3557         }
3558
3559         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3560                 ret = hidpp10_battery_event(hidpp, data, size);
3561                 if (ret != 0)
3562                         return ret;
3563         }
3564
3565         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3566                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3567                 if (ret != 0)
3568                         return ret;
3569         }
3570
3571         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3572                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3573                 if (ret != 0)
3574                         return ret;
3575         }
3576
3577         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3578                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3579                 if (ret != 0)
3580                         return ret;
3581         }
3582
3583         return 0;
3584 }
3585
3586 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3587                 u8 *data, int size)
3588 {
3589         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3590         int ret = 0;
3591
3592         if (!hidpp)
3593                 return 0;
3594
3595         /* Generic HID++ processing. */
3596         switch (data[0]) {
3597         case REPORT_ID_HIDPP_VERY_LONG:
3598                 if (size != hidpp->very_long_report_length) {
3599                         hid_err(hdev, "received hid++ report of bad size (%d)",
3600                                 size);
3601                         return 1;
3602                 }
3603                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3604                 break;
3605         case REPORT_ID_HIDPP_LONG:
3606                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3607                         hid_err(hdev, "received hid++ report of bad size (%d)",
3608                                 size);
3609                         return 1;
3610                 }
3611                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3612                 break;
3613         case REPORT_ID_HIDPP_SHORT:
3614                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3615                         hid_err(hdev, "received hid++ report of bad size (%d)",
3616                                 size);
3617                         return 1;
3618                 }
3619                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3620                 break;
3621         }
3622
3623         /* If no report is available for further processing, skip calling
3624          * raw_event of subclasses. */
3625         if (ret != 0)
3626                 return ret;
3627
3628         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3629                 return wtp_raw_event(hdev, data, size);
3630         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3631                 return m560_raw_event(hdev, data, size);
3632
3633         return 0;
3634 }
3635
3636 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3637         struct hid_usage *usage, __s32 value)
3638 {
3639         /* This function will only be called for scroll events, due to the
3640          * restriction imposed in hidpp_usages.
3641          */
3642         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3643         struct hidpp_scroll_counter *counter;
3644
3645         if (!hidpp)
3646                 return 0;
3647
3648         counter = &hidpp->vertical_wheel_counter;
3649         /* A scroll event may occur before the multiplier has been retrieved or
3650          * the input device set, or high-res scroll enabling may fail. In such
3651          * cases we must return early (falling back to default behaviour) to
3652          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3653          */
3654         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3655             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3656                 return 0;
3657
3658         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3659         return 1;
3660 }
3661
3662 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3663 {
3664         static atomic_t battery_no = ATOMIC_INIT(0);
3665         struct power_supply_config cfg = { .drv_data = hidpp };
3666         struct power_supply_desc *desc = &hidpp->battery.desc;
3667         enum power_supply_property *battery_props;
3668         struct hidpp_battery *battery;
3669         unsigned int num_battery_props;
3670         unsigned long n;
3671         int ret;
3672
3673         if (hidpp->battery.ps)
3674                 return 0;
3675
3676         hidpp->battery.feature_index = 0xff;
3677         hidpp->battery.solar_feature_index = 0xff;
3678         hidpp->battery.voltage_feature_index = 0xff;
3679
3680         if (hidpp->protocol_major >= 2) {
3681                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3682                         ret = hidpp_solar_request_battery_event(hidpp);
3683                 else {
3684                         /* we only support one battery feature right now, so let's
3685                            first check the ones that support battery level first
3686                            and leave voltage for last */
3687                         ret = hidpp20_query_battery_info_1000(hidpp);
3688                         if (ret)
3689                                 ret = hidpp20_query_battery_info_1004(hidpp);
3690                         if (ret)
3691                                 ret = hidpp20_query_battery_voltage_info(hidpp);
3692                 }
3693
3694                 if (ret)
3695                         return ret;
3696                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3697         } else {
3698                 ret = hidpp10_query_battery_status(hidpp);
3699                 if (ret) {
3700                         ret = hidpp10_query_battery_mileage(hidpp);
3701                         if (ret)
3702                                 return -ENOENT;
3703                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3704                 } else {
3705                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3706                 }
3707                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3708         }
3709
3710         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3711                                      hidpp_battery_props,
3712                                      sizeof(hidpp_battery_props),
3713                                      GFP_KERNEL);
3714         if (!battery_props)
3715                 return -ENOMEM;
3716
3717         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3718
3719         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3720             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3721                 battery_props[num_battery_props++] =
3722                                 POWER_SUPPLY_PROP_CAPACITY;
3723
3724         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3725                 battery_props[num_battery_props++] =
3726                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3727
3728         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3729                 battery_props[num_battery_props++] =
3730                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3731
3732         battery = &hidpp->battery;
3733
3734         n = atomic_inc_return(&battery_no) - 1;
3735         desc->properties = battery_props;
3736         desc->num_properties = num_battery_props;
3737         desc->get_property = hidpp_battery_get_property;
3738         sprintf(battery->name, "hidpp_battery_%ld", n);
3739         desc->name = battery->name;
3740         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3741         desc->use_for_apm = 0;
3742
3743         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3744                                                  &battery->desc,
3745                                                  &cfg);
3746         if (IS_ERR(battery->ps))
3747                 return PTR_ERR(battery->ps);
3748
3749         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3750
3751         return ret;
3752 }
3753
3754 static void hidpp_overwrite_name(struct hid_device *hdev)
3755 {
3756         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3757         char *name;
3758
3759         if (hidpp->protocol_major < 2)
3760                 return;
3761
3762         name = hidpp_get_device_name(hidpp);
3763
3764         if (!name) {
3765                 hid_err(hdev, "unable to retrieve the name of the device");
3766         } else {
3767                 dbg_hid("HID++: Got name: %s\n", name);
3768                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3769         }
3770
3771         kfree(name);
3772 }
3773
3774 static int hidpp_input_open(struct input_dev *dev)
3775 {
3776         struct hid_device *hid = input_get_drvdata(dev);
3777
3778         return hid_hw_open(hid);
3779 }
3780
3781 static void hidpp_input_close(struct input_dev *dev)
3782 {
3783         struct hid_device *hid = input_get_drvdata(dev);
3784
3785         hid_hw_close(hid);
3786 }
3787
3788 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3789 {
3790         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3791         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3792
3793         if (!input_dev)
3794                 return NULL;
3795
3796         input_set_drvdata(input_dev, hdev);
3797         input_dev->open = hidpp_input_open;
3798         input_dev->close = hidpp_input_close;
3799
3800         input_dev->name = hidpp->name;
3801         input_dev->phys = hdev->phys;
3802         input_dev->uniq = hdev->uniq;
3803         input_dev->id.bustype = hdev->bus;
3804         input_dev->id.vendor  = hdev->vendor;
3805         input_dev->id.product = hdev->product;
3806         input_dev->id.version = hdev->version;
3807         input_dev->dev.parent = &hdev->dev;
3808
3809         return input_dev;
3810 }
3811
3812 static void hidpp_connect_event(struct hidpp_device *hidpp)
3813 {
3814         struct hid_device *hdev = hidpp->hid_dev;
3815         int ret = 0;
3816         bool connected = atomic_read(&hidpp->connected);
3817         struct input_dev *input;
3818         char *name, *devm_name;
3819
3820         if (!connected) {
3821                 if (hidpp->battery.ps) {
3822                         hidpp->battery.online = false;
3823                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3824                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3825                         power_supply_changed(hidpp->battery.ps);
3826                 }
3827                 return;
3828         }
3829
3830         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3831                 ret = wtp_connect(hdev, connected);
3832                 if (ret)
3833                         return;
3834         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3835                 ret = m560_send_config_command(hdev, connected);
3836                 if (ret)
3837                         return;
3838         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3839                 ret = k400_connect(hdev, connected);
3840                 if (ret)
3841                         return;
3842         }
3843
3844         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3845                 ret = hidpp10_wheel_connect(hidpp);
3846                 if (ret)
3847                         return;
3848         }
3849
3850         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3851                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3852                 if (ret)
3853                         return;
3854         }
3855
3856         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3857                 ret = hidpp10_consumer_keys_connect(hidpp);
3858                 if (ret)
3859                         return;
3860         }
3861
3862         /* the device is already connected, we can ask for its name and
3863          * protocol */
3864         if (!hidpp->protocol_major) {
3865                 ret = hidpp_root_get_protocol_version(hidpp);
3866                 if (ret) {
3867                         hid_err(hdev, "Can not get the protocol version.\n");
3868                         return;
3869                 }
3870         }
3871
3872         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3873                 name = hidpp_get_device_name(hidpp);
3874                 if (name) {
3875                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3876                                                    "%s", name);
3877                         kfree(name);
3878                         if (!devm_name)
3879                                 return;
3880
3881                         hidpp->name = devm_name;
3882                 }
3883         }
3884
3885         hidpp_initialize_battery(hidpp);
3886
3887         /* forward current battery state */
3888         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3889                 hidpp10_enable_battery_reporting(hidpp);
3890                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3891                         hidpp10_query_battery_mileage(hidpp);
3892                 else
3893                         hidpp10_query_battery_status(hidpp);
3894         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3895                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3896                         hidpp20_query_battery_voltage_info(hidpp);
3897                 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3898                         hidpp20_query_battery_info_1004(hidpp);
3899                 else
3900                         hidpp20_query_battery_info_1000(hidpp);
3901         }
3902         if (hidpp->battery.ps)
3903                 power_supply_changed(hidpp->battery.ps);
3904
3905         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3906                 hi_res_scroll_enable(hidpp);
3907
3908         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3909                 /* if the input nodes are already created, we can stop now */
3910                 return;
3911
3912         input = hidpp_allocate_input(hdev);
3913         if (!input) {
3914                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3915                 return;
3916         }
3917
3918         hidpp_populate_input(hidpp, input);
3919
3920         ret = input_register_device(input);
3921         if (ret)
3922                 input_free_device(input);
3923
3924         hidpp->delayed_input = input;
3925 }
3926
3927 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3928
3929 static struct attribute *sysfs_attrs[] = {
3930         &dev_attr_builtin_power_supply.attr,
3931         NULL
3932 };
3933
3934 static const struct attribute_group ps_attribute_group = {
3935         .attrs = sysfs_attrs
3936 };
3937
3938 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3939 {
3940         struct hid_report_enum *re;
3941         struct hid_report *report;
3942
3943         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3944         report = re->report_id_hash[id];
3945         if (!report)
3946                 return 0;
3947
3948         return report->field[0]->report_count + 1;
3949 }
3950
3951 static u8 hidpp_validate_device(struct hid_device *hdev)
3952 {
3953         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3954         int id, report_length;
3955         u8 supported_reports = 0;
3956
3957         id = REPORT_ID_HIDPP_SHORT;
3958         report_length = hidpp_get_report_length(hdev, id);
3959         if (report_length) {
3960                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3961                         goto bad_device;
3962
3963                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3964         }
3965
3966         id = REPORT_ID_HIDPP_LONG;
3967         report_length = hidpp_get_report_length(hdev, id);
3968         if (report_length) {
3969                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3970                         goto bad_device;
3971
3972                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3973         }
3974
3975         id = REPORT_ID_HIDPP_VERY_LONG;
3976         report_length = hidpp_get_report_length(hdev, id);
3977         if (report_length) {
3978                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3979                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3980                         goto bad_device;
3981
3982                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3983                 hidpp->very_long_report_length = report_length;
3984         }
3985
3986         return supported_reports;
3987
3988 bad_device:
3989         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3990         return false;
3991 }
3992
3993 static bool hidpp_application_equals(struct hid_device *hdev,
3994                                      unsigned int application)
3995 {
3996         struct list_head *report_list;
3997         struct hid_report *report;
3998
3999         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
4000         report = list_first_entry_or_null(report_list, struct hid_report, list);
4001         return report && report->application == application;
4002 }
4003
4004 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
4005 {
4006         struct hidpp_device *hidpp;
4007         int ret;
4008         bool connected;
4009         unsigned int connect_mask = HID_CONNECT_DEFAULT;
4010         struct hidpp_ff_private_data data;
4011
4012         /* report_fixup needs drvdata to be set before we call hid_parse */
4013         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4014         if (!hidpp)
4015                 return -ENOMEM;
4016
4017         hidpp->hid_dev = hdev;
4018         hidpp->name = hdev->name;
4019         hidpp->quirks = id->driver_data;
4020         hid_set_drvdata(hdev, hidpp);
4021
4022         ret = hid_parse(hdev);
4023         if (ret) {
4024                 hid_err(hdev, "%s:parse failed\n", __func__);
4025                 return ret;
4026         }
4027
4028         /*
4029          * Make sure the device is HID++ capable, otherwise treat as generic HID
4030          */
4031         hidpp->supported_reports = hidpp_validate_device(hdev);
4032
4033         if (!hidpp->supported_reports) {
4034                 hid_set_drvdata(hdev, NULL);
4035                 devm_kfree(&hdev->dev, hidpp);
4036                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4037         }
4038
4039         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4040                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4041
4042         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4043             hidpp_application_equals(hdev, HID_GD_MOUSE))
4044                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4045                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4046
4047         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4048             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4049                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4050
4051         if (disable_raw_mode) {
4052                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4053                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4054         }
4055
4056         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4057                 ret = wtp_allocate(hdev, id);
4058                 if (ret)
4059                         return ret;
4060         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4061                 ret = k400_allocate(hdev);
4062                 if (ret)
4063                         return ret;
4064         }
4065
4066         INIT_WORK(&hidpp->work, delayed_work_cb);
4067         mutex_init(&hidpp->send_mutex);
4068         init_waitqueue_head(&hidpp->wait);
4069
4070         /* indicates we are handling the battery properties in the kernel */
4071         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4072         if (ret)
4073                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4074                          hdev->name);
4075
4076         /*
4077          * Plain USB connections need to actually call start and open
4078          * on the transport driver to allow incoming data.
4079          */
4080         ret = hid_hw_start(hdev, 0);
4081         if (ret) {
4082                 hid_err(hdev, "hw start failed\n");
4083                 goto hid_hw_start_fail;
4084         }
4085
4086         ret = hid_hw_open(hdev);
4087         if (ret < 0) {
4088                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4089                         __func__, ret);
4090                 goto hid_hw_open_fail;
4091         }
4092
4093         /* Allow incoming packets */
4094         hid_device_io_start(hdev);
4095
4096         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4097                 hidpp_unifying_init(hidpp);
4098
4099         connected = hidpp_root_get_protocol_version(hidpp) == 0;
4100         atomic_set(&hidpp->connected, connected);
4101         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4102                 if (!connected) {
4103                         ret = -ENODEV;
4104                         hid_err(hdev, "Device not connected");
4105                         goto hid_hw_init_fail;
4106                 }
4107
4108                 hidpp_overwrite_name(hdev);
4109         }
4110
4111         if (connected && hidpp->protocol_major >= 2) {
4112                 ret = hidpp_set_wireless_feature_index(hidpp);
4113                 if (ret == -ENOENT)
4114                         hidpp->wireless_feature_index = 0;
4115                 else if (ret)
4116                         goto hid_hw_init_fail;
4117         }
4118
4119         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4120                 ret = wtp_get_config(hidpp);
4121                 if (ret)
4122                         goto hid_hw_init_fail;
4123         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4124                 ret = g920_get_config(hidpp, &data);
4125                 if (ret)
4126                         goto hid_hw_init_fail;
4127         }
4128
4129         hidpp_connect_event(hidpp);
4130
4131         /* Reset the HID node state */
4132         hid_device_io_stop(hdev);
4133         hid_hw_close(hdev);
4134         hid_hw_stop(hdev);
4135
4136         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4137                 connect_mask &= ~HID_CONNECT_HIDINPUT;
4138
4139         /* Now export the actual inputs and hidraw nodes to the world */
4140         ret = hid_hw_start(hdev, connect_mask);
4141         if (ret) {
4142                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4143                 goto hid_hw_start_fail;
4144         }
4145
4146         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4147                 ret = hidpp_ff_init(hidpp, &data);
4148                 if (ret)
4149                         hid_warn(hidpp->hid_dev,
4150                      "Unable to initialize force feedback support, errno %d\n",
4151                                  ret);
4152         }
4153
4154         return ret;
4155
4156 hid_hw_init_fail:
4157         hid_hw_close(hdev);
4158 hid_hw_open_fail:
4159         hid_hw_stop(hdev);
4160 hid_hw_start_fail:
4161         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4162         cancel_work_sync(&hidpp->work);
4163         mutex_destroy(&hidpp->send_mutex);
4164         return ret;
4165 }
4166
4167 static void hidpp_remove(struct hid_device *hdev)
4168 {
4169         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4170
4171         if (!hidpp)
4172                 return hid_hw_stop(hdev);
4173
4174         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4175
4176         hid_hw_stop(hdev);
4177         cancel_work_sync(&hidpp->work);
4178         mutex_destroy(&hidpp->send_mutex);
4179 }
4180
4181 #define LDJ_DEVICE(product) \
4182         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4183                    USB_VENDOR_ID_LOGITECH, (product))
4184
4185 #define L27MHZ_DEVICE(product) \
4186         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4187                    USB_VENDOR_ID_LOGITECH, (product))
4188
4189 static const struct hid_device_id hidpp_devices[] = {
4190         { /* wireless touchpad */
4191           LDJ_DEVICE(0x4011),
4192           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4193                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4194         { /* wireless touchpad T650 */
4195           LDJ_DEVICE(0x4101),
4196           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4197         { /* wireless touchpad T651 */
4198           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4199                 USB_DEVICE_ID_LOGITECH_T651),
4200           .driver_data = HIDPP_QUIRK_CLASS_WTP },
4201         { /* Mouse Logitech Anywhere MX */
4202           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4203         { /* Mouse Logitech Cube */
4204           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4205         { /* Mouse Logitech M335 */
4206           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207         { /* Mouse Logitech M515 */
4208           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4209         { /* Mouse logitech M560 */
4210           LDJ_DEVICE(0x402d),
4211           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4212                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4213         { /* Mouse Logitech M705 (firmware RQM17) */
4214           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4215         { /* Mouse Logitech M705 (firmware RQM67) */
4216           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217         { /* Mouse Logitech M720 */
4218           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219         { /* Mouse Logitech MX Anywhere 2 */
4220           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221         { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4222         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4223         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4224         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4225         { /* Mouse Logitech MX Anywhere 2S */
4226           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4227         { /* Mouse Logitech MX Master */
4228           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4229         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4230         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4231         { /* Mouse Logitech MX Master 2S */
4232           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4233         { /* Mouse Logitech MX Master 3 */
4234           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4235         { /* Mouse Logitech Performance MX */
4236           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4237         { /* Keyboard logitech K400 */
4238           LDJ_DEVICE(0x4024),
4239           .driver_data = HIDPP_QUIRK_CLASS_K400 },
4240         { /* Solar Keyboard Logitech K750 */
4241           LDJ_DEVICE(0x4002),
4242           .driver_data = HIDPP_QUIRK_CLASS_K750 },
4243         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4244           LDJ_DEVICE(0xb305),
4245           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4246         { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4247           LDJ_DEVICE(0xb309),
4248           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4249         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4250           LDJ_DEVICE(0xb30b),
4251           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4252
4253         { LDJ_DEVICE(HID_ANY_ID) },
4254
4255         { /* Keyboard LX501 (Y-RR53) */
4256           L27MHZ_DEVICE(0x0049),
4257           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4258         { /* Keyboard MX3000 (Y-RAM74) */
4259           L27MHZ_DEVICE(0x0057),
4260           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4261         { /* Keyboard MX3200 (Y-RAV80) */
4262           L27MHZ_DEVICE(0x005c),
4263           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4264         { /* S510 Media Remote */
4265           L27MHZ_DEVICE(0x00fe),
4266           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4267
4268         { L27MHZ_DEVICE(HID_ANY_ID) },
4269
4270         { /* Logitech G403 Wireless Gaming Mouse over USB */
4271           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4272         { /* Logitech G703 Gaming Mouse over USB */
4273           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4274         { /* Logitech G703 Hero Gaming Mouse over USB */
4275           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4276         { /* Logitech G900 Gaming Mouse over USB */
4277           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4278         { /* Logitech G903 Gaming Mouse over USB */
4279           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4280         { /* Logitech G903 Hero Gaming Mouse over USB */
4281           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4282         { /* Logitech G920 Wheel over USB */
4283           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4284                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4285         { /* Logitech G Pro Gaming Mouse over USB */
4286           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4287
4288         { /* MX5000 keyboard over Bluetooth */
4289           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4290           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4291         { /* Dinovo Edge keyboard over Bluetooth */
4292           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4293           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4294         { /* MX5500 keyboard over Bluetooth */
4295           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4296           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4297         { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4298           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4299         { /* MX Master mouse over Bluetooth */
4300           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4301           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4302         { /* MX Ergo trackball over Bluetooth */
4303           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4304         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4305           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4306         { /* MX Master 3 mouse over Bluetooth */
4307           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4308           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4309         {}
4310 };
4311
4312 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4313
4314 static const struct hid_usage_id hidpp_usages[] = {
4315         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4316         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4317 };
4318
4319 static struct hid_driver hidpp_driver = {
4320         .name = "logitech-hidpp-device",
4321         .id_table = hidpp_devices,
4322         .report_fixup = hidpp_report_fixup,
4323         .probe = hidpp_probe,
4324         .remove = hidpp_remove,
4325         .raw_event = hidpp_raw_event,
4326         .usage_table = hidpp_usages,
4327         .event = hidpp_event,
4328         .input_configured = hidpp_input_configured,
4329         .input_mapping = hidpp_input_mapping,
4330         .input_mapped = hidpp_input_mapped,
4331 };
4332
4333 module_hid_driver(hidpp_driver);