Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/math.h>
11
12 #include <video/imx-ipu-image-convert.h>
13
14 #include "ipu-prv.h"
15
16 /*
17  * The IC Resizer has a restriction that the output frame from the
18  * resizer must be 1024 or less in both width (pixels) and height
19  * (lines).
20  *
21  * The image converter attempts to split up a conversion when
22  * the desired output (converted) frame resolution exceeds the
23  * IC resizer limit of 1024 in either dimension.
24  *
25  * If either dimension of the output frame exceeds the limit, the
26  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
27  * of 4*4 or 16 tiles. A conversion is then carried out for each
28  * tile (but taking care to pass the full frame stride length to
29  * the DMA channel's parameter memory!). IDMA double-buffering is used
30  * to convert each tile back-to-back when possible (see note below
31  * when double_buffering boolean is set).
32  *
33  * Note that the input frame must be split up into the same number
34  * of tiles as the output frame:
35  *
36  *                       +---------+-----+
37  *   +-----+---+         |  A      | B   |
38  *   | A   | B |         |         |     |
39  *   +-----+---+   -->   +---------+-----+
40  *   | C   | D |         |  C      | D   |
41  *   +-----+---+         |         |     |
42  *                       +---------+-----+
43  *
44  * Clockwise 90° rotations are handled by first rescaling into a
45  * reusable temporary tile buffer and then rotating with the 8x8
46  * block rotator, writing to the correct destination:
47  *
48  *                                         +-----+-----+
49  *                                         |     |     |
50  *   +-----+---+         +---------+       | C   | A   |
51  *   | A   | B |         | A,B, |  |       |     |     |
52  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
53  *   | C   | D |         +---------+       +-----+-----+
54  *   +-----+---+                           | D   | B   |
55  *                                         |     |     |
56  *                                         +-----+-----+
57  *
58  * If the 8x8 block rotator is used, horizontal or vertical flipping
59  * is done during the rotation step, otherwise flipping is done
60  * during the scaling step.
61  * With rotation or flipping, tile order changes between input and
62  * output image. Tiles are numbered row major from top left to bottom
63  * right for both input and output image.
64  */
65
66 #define MAX_STRIPES_W    4
67 #define MAX_STRIPES_H    4
68 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
69
70 #define MIN_W     16
71 #define MIN_H     8
72 #define MAX_W     4096
73 #define MAX_H     4096
74
75 enum ipu_image_convert_type {
76         IMAGE_CONVERT_IN = 0,
77         IMAGE_CONVERT_OUT,
78 };
79
80 struct ipu_image_convert_dma_buf {
81         void          *virt;
82         dma_addr_t    phys;
83         unsigned long len;
84 };
85
86 struct ipu_image_convert_dma_chan {
87         int in;
88         int out;
89         int rot_in;
90         int rot_out;
91         int vdi_in_p;
92         int vdi_in;
93         int vdi_in_n;
94 };
95
96 /* dimensions of one tile */
97 struct ipu_image_tile {
98         u32 width;
99         u32 height;
100         u32 left;
101         u32 top;
102         /* size and strides are in bytes */
103         u32 size;
104         u32 stride;
105         u32 rot_stride;
106         /* start Y or packed offset of this tile */
107         u32 offset;
108         /* offset from start to tile in U plane, for planar formats */
109         u32 u_off;
110         /* offset from start to tile in V plane, for planar formats */
111         u32 v_off;
112 };
113
114 struct ipu_image_convert_image {
115         struct ipu_image base;
116         enum ipu_image_convert_type type;
117
118         const struct ipu_image_pixfmt *fmt;
119         unsigned int stride;
120
121         /* # of rows (horizontal stripes) if dest height is > 1024 */
122         unsigned int num_rows;
123         /* # of columns (vertical stripes) if dest width is > 1024 */
124         unsigned int num_cols;
125
126         struct ipu_image_tile tile[MAX_TILES];
127 };
128
129 struct ipu_image_pixfmt {
130         u32     fourcc;        /* V4L2 fourcc */
131         int     bpp;           /* total bpp */
132         int     uv_width_dec;  /* decimation in width for U/V planes */
133         int     uv_height_dec; /* decimation in height for U/V planes */
134         bool    planar;        /* planar format */
135         bool    uv_swapped;    /* U and V planes are swapped */
136         bool    uv_packed;     /* partial planar (U and V in same plane) */
137 };
138
139 struct ipu_image_convert_ctx;
140 struct ipu_image_convert_chan;
141 struct ipu_image_convert_priv;
142
143 enum eof_irq_mask {
144         EOF_IRQ_IN      = BIT(0),
145         EOF_IRQ_ROT_IN  = BIT(1),
146         EOF_IRQ_OUT     = BIT(2),
147         EOF_IRQ_ROT_OUT = BIT(3),
148 };
149
150 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
151 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |        \
152                               EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
153
154 struct ipu_image_convert_ctx {
155         struct ipu_image_convert_chan *chan;
156
157         ipu_image_convert_cb_t complete;
158         void *complete_context;
159
160         /* Source/destination image data and rotation mode */
161         struct ipu_image_convert_image in;
162         struct ipu_image_convert_image out;
163         struct ipu_ic_csc csc;
164         enum ipu_rotate_mode rot_mode;
165         u32 downsize_coeff_h;
166         u32 downsize_coeff_v;
167         u32 image_resize_coeff_h;
168         u32 image_resize_coeff_v;
169         u32 resize_coeffs_h[MAX_STRIPES_W];
170         u32 resize_coeffs_v[MAX_STRIPES_H];
171
172         /* intermediate buffer for rotation */
173         struct ipu_image_convert_dma_buf rot_intermediate[2];
174
175         /* current buffer number for double buffering */
176         int cur_buf_num;
177
178         bool aborting;
179         struct completion aborted;
180
181         /* can we use double-buffering for this conversion operation? */
182         bool double_buffering;
183         /* num_rows * num_cols */
184         unsigned int num_tiles;
185         /* next tile to process */
186         unsigned int next_tile;
187         /* where to place converted tile in dest image */
188         unsigned int out_tile_map[MAX_TILES];
189
190         /* mask of completed EOF irqs at every tile conversion */
191         enum eof_irq_mask eof_mask;
192
193         struct list_head list;
194 };
195
196 struct ipu_image_convert_chan {
197         struct ipu_image_convert_priv *priv;
198
199         enum ipu_ic_task ic_task;
200         const struct ipu_image_convert_dma_chan *dma_ch;
201
202         struct ipu_ic *ic;
203         struct ipuv3_channel *in_chan;
204         struct ipuv3_channel *out_chan;
205         struct ipuv3_channel *rotation_in_chan;
206         struct ipuv3_channel *rotation_out_chan;
207
208         /* the IPU end-of-frame irqs */
209         int in_eof_irq;
210         int rot_in_eof_irq;
211         int out_eof_irq;
212         int rot_out_eof_irq;
213
214         spinlock_t irqlock;
215
216         /* list of convert contexts */
217         struct list_head ctx_list;
218         /* queue of conversion runs */
219         struct list_head pending_q;
220         /* queue of completed runs */
221         struct list_head done_q;
222
223         /* the current conversion run */
224         struct ipu_image_convert_run *current_run;
225 };
226
227 struct ipu_image_convert_priv {
228         struct ipu_image_convert_chan chan[IC_NUM_TASKS];
229         struct ipu_soc *ipu;
230 };
231
232 static const struct ipu_image_convert_dma_chan
233 image_convert_dma_chan[IC_NUM_TASKS] = {
234         [IC_TASK_VIEWFINDER] = {
235                 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
236                 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
237                 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
238                 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
239                 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
240                 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
241                 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
242         },
243         [IC_TASK_POST_PROCESSOR] = {
244                 .in = IPUV3_CHANNEL_MEM_IC_PP,
245                 .out = IPUV3_CHANNEL_IC_PP_MEM,
246                 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
247                 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
248         },
249 };
250
251 static const struct ipu_image_pixfmt image_convert_formats[] = {
252         {
253                 .fourcc = V4L2_PIX_FMT_RGB565,
254                 .bpp    = 16,
255         }, {
256                 .fourcc = V4L2_PIX_FMT_RGB24,
257                 .bpp    = 24,
258         }, {
259                 .fourcc = V4L2_PIX_FMT_BGR24,
260                 .bpp    = 24,
261         }, {
262                 .fourcc = V4L2_PIX_FMT_RGB32,
263                 .bpp    = 32,
264         }, {
265                 .fourcc = V4L2_PIX_FMT_BGR32,
266                 .bpp    = 32,
267         }, {
268                 .fourcc = V4L2_PIX_FMT_XRGB32,
269                 .bpp    = 32,
270         }, {
271                 .fourcc = V4L2_PIX_FMT_XBGR32,
272                 .bpp    = 32,
273         }, {
274                 .fourcc = V4L2_PIX_FMT_BGRX32,
275                 .bpp    = 32,
276         }, {
277                 .fourcc = V4L2_PIX_FMT_RGBX32,
278                 .bpp    = 32,
279         }, {
280                 .fourcc = V4L2_PIX_FMT_YUYV,
281                 .bpp    = 16,
282                 .uv_width_dec = 2,
283                 .uv_height_dec = 1,
284         }, {
285                 .fourcc = V4L2_PIX_FMT_UYVY,
286                 .bpp    = 16,
287                 .uv_width_dec = 2,
288                 .uv_height_dec = 1,
289         }, {
290                 .fourcc = V4L2_PIX_FMT_YUV420,
291                 .bpp    = 12,
292                 .planar = true,
293                 .uv_width_dec = 2,
294                 .uv_height_dec = 2,
295         }, {
296                 .fourcc = V4L2_PIX_FMT_YVU420,
297                 .bpp    = 12,
298                 .planar = true,
299                 .uv_width_dec = 2,
300                 .uv_height_dec = 2,
301                 .uv_swapped = true,
302         }, {
303                 .fourcc = V4L2_PIX_FMT_NV12,
304                 .bpp    = 12,
305                 .planar = true,
306                 .uv_width_dec = 2,
307                 .uv_height_dec = 2,
308                 .uv_packed = true,
309         }, {
310                 .fourcc = V4L2_PIX_FMT_YUV422P,
311                 .bpp    = 16,
312                 .planar = true,
313                 .uv_width_dec = 2,
314                 .uv_height_dec = 1,
315         }, {
316                 .fourcc = V4L2_PIX_FMT_NV16,
317                 .bpp    = 16,
318                 .planar = true,
319                 .uv_width_dec = 2,
320                 .uv_height_dec = 1,
321                 .uv_packed = true,
322         },
323 };
324
325 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
326 {
327         const struct ipu_image_pixfmt *ret = NULL;
328         unsigned int i;
329
330         for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
331                 if (image_convert_formats[i].fourcc == fourcc) {
332                         ret = &image_convert_formats[i];
333                         break;
334                 }
335         }
336
337         return ret;
338 }
339
340 static void dump_format(struct ipu_image_convert_ctx *ctx,
341                         struct ipu_image_convert_image *ic_image)
342 {
343         struct ipu_image_convert_chan *chan = ctx->chan;
344         struct ipu_image_convert_priv *priv = chan->priv;
345
346         dev_dbg(priv->ipu->dev,
347                 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
348                 chan->ic_task, ctx,
349                 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
350                 ic_image->base.pix.width, ic_image->base.pix.height,
351                 ic_image->num_cols, ic_image->num_rows,
352                 ic_image->fmt->fourcc & 0xff,
353                 (ic_image->fmt->fourcc >> 8) & 0xff,
354                 (ic_image->fmt->fourcc >> 16) & 0xff,
355                 (ic_image->fmt->fourcc >> 24) & 0xff);
356 }
357
358 int ipu_image_convert_enum_format(int index, u32 *fourcc)
359 {
360         const struct ipu_image_pixfmt *fmt;
361
362         if (index >= (int)ARRAY_SIZE(image_convert_formats))
363                 return -EINVAL;
364
365         /* Format found */
366         fmt = &image_convert_formats[index];
367         *fourcc = fmt->fourcc;
368         return 0;
369 }
370 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
371
372 static void free_dma_buf(struct ipu_image_convert_priv *priv,
373                          struct ipu_image_convert_dma_buf *buf)
374 {
375         if (buf->virt)
376                 dma_free_coherent(priv->ipu->dev,
377                                   buf->len, buf->virt, buf->phys);
378         buf->virt = NULL;
379         buf->phys = 0;
380 }
381
382 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
383                          struct ipu_image_convert_dma_buf *buf,
384                          int size)
385 {
386         buf->len = PAGE_ALIGN(size);
387         buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
388                                        GFP_DMA | GFP_KERNEL);
389         if (!buf->virt) {
390                 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
391                 return -ENOMEM;
392         }
393
394         return 0;
395 }
396
397 static inline int num_stripes(int dim)
398 {
399         return (dim - 1) / 1024 + 1;
400 }
401
402 /*
403  * Calculate downsizing coefficients, which are the same for all tiles,
404  * and initial bilinear resizing coefficients, which are used to find the
405  * best seam positions.
406  * Also determine the number of tiles necessary to guarantee that no tile
407  * is larger than 1024 pixels in either dimension at the output and between
408  * IC downsizing and main processing sections.
409  */
410 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
411                                           struct ipu_image *in,
412                                           struct ipu_image *out)
413 {
414         u32 downsized_width = in->rect.width;
415         u32 downsized_height = in->rect.height;
416         u32 downsize_coeff_v = 0;
417         u32 downsize_coeff_h = 0;
418         u32 resized_width = out->rect.width;
419         u32 resized_height = out->rect.height;
420         u32 resize_coeff_h;
421         u32 resize_coeff_v;
422         u32 cols;
423         u32 rows;
424
425         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
426                 resized_width = out->rect.height;
427                 resized_height = out->rect.width;
428         }
429
430         /* Do not let invalid input lead to an endless loop below */
431         if (WARN_ON(resized_width == 0 || resized_height == 0))
432                 return -EINVAL;
433
434         while (downsized_width >= resized_width * 2) {
435                 downsized_width >>= 1;
436                 downsize_coeff_h++;
437         }
438
439         while (downsized_height >= resized_height * 2) {
440                 downsized_height >>= 1;
441                 downsize_coeff_v++;
442         }
443
444         /*
445          * Calculate the bilinear resizing coefficients that could be used if
446          * we were converting with a single tile. The bottom right output pixel
447          * should sample as close as possible to the bottom right input pixel
448          * out of the decimator, but not overshoot it:
449          */
450         resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
451         resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
452
453         /*
454          * Both the output of the IC downsizing section before being passed to
455          * the IC main processing section and the final output of the IC main
456          * processing section must be <= 1024 pixels in both dimensions.
457          */
458         cols = num_stripes(max_t(u32, downsized_width, resized_width));
459         rows = num_stripes(max_t(u32, downsized_height, resized_height));
460
461         dev_dbg(ctx->chan->priv->ipu->dev,
462                 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
463                 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
464                 resize_coeff_v, cols, rows);
465
466         if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
467             resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
468                 return -EINVAL;
469
470         ctx->downsize_coeff_h = downsize_coeff_h;
471         ctx->downsize_coeff_v = downsize_coeff_v;
472         ctx->image_resize_coeff_h = resize_coeff_h;
473         ctx->image_resize_coeff_v = resize_coeff_v;
474         ctx->in.num_cols = cols;
475         ctx->in.num_rows = rows;
476
477         return 0;
478 }
479
480 #define round_closest(x, y) round_down((x) + (y)/2, (y))
481
482 /*
483  * Find the best aligned seam position for the given column / row index.
484  * Rotation and image offsets are out of scope.
485  *
486  * @index: column / row index, used to calculate valid interval
487  * @in_edge: input right / bottom edge
488  * @out_edge: output right / bottom edge
489  * @in_align: input alignment, either horizontal 8-byte line start address
490  *            alignment, or pixel alignment due to image format
491  * @out_align: output alignment, either horizontal 8-byte line start address
492  *             alignment, or pixel alignment due to image format or rotator
493  *             block size
494  * @in_burst: horizontal input burst size in case of horizontal flip
495  * @out_burst: horizontal output burst size or rotator block size
496  * @downsize_coeff: downsizing section coefficient
497  * @resize_coeff: main processing section resizing coefficient
498  * @_in_seam: aligned input seam position return value
499  * @_out_seam: aligned output seam position return value
500  */
501 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
502                            unsigned int index,
503                            unsigned int in_edge,
504                            unsigned int out_edge,
505                            unsigned int in_align,
506                            unsigned int out_align,
507                            unsigned int in_burst,
508                            unsigned int out_burst,
509                            unsigned int downsize_coeff,
510                            unsigned int resize_coeff,
511                            u32 *_in_seam,
512                            u32 *_out_seam)
513 {
514         struct device *dev = ctx->chan->priv->ipu->dev;
515         unsigned int out_pos;
516         /* Input / output seam position candidates */
517         unsigned int out_seam = 0;
518         unsigned int in_seam = 0;
519         unsigned int min_diff = UINT_MAX;
520         unsigned int out_start;
521         unsigned int out_end;
522         unsigned int in_start;
523         unsigned int in_end;
524
525         /* Start within 1024 pixels of the right / bottom edge */
526         out_start = max_t(int, index * out_align, out_edge - 1024);
527         /* End before having to add more columns to the left / rows above */
528         out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
529
530         /*
531          * Limit input seam position to make sure that the downsized input tile
532          * to the right or bottom does not exceed 1024 pixels.
533          */
534         in_start = max_t(int, index * in_align,
535                          in_edge - (1024 << downsize_coeff));
536         in_end = min_t(unsigned int, in_edge,
537                        index * (1024 << downsize_coeff) + 1);
538
539         /*
540          * Output tiles must start at a multiple of 8 bytes horizontally and
541          * possibly at an even line horizontally depending on the pixel format.
542          * Only consider output aligned positions for the seam.
543          */
544         out_start = round_up(out_start, out_align);
545         for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
546                 unsigned int in_pos;
547                 unsigned int in_pos_aligned;
548                 unsigned int in_pos_rounded;
549                 unsigned int diff;
550
551                 /*
552                  * Tiles in the right row / bottom column may not be allowed to
553                  * overshoot horizontally / vertically. out_burst may be the
554                  * actual DMA burst size, or the rotator block size.
555                  */
556                 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
557                         continue;
558
559                 /*
560                  * Input sample position, corresponding to out_pos, 19.13 fixed
561                  * point.
562                  */
563                 in_pos = (out_pos * resize_coeff) << downsize_coeff;
564                 /*
565                  * The closest input sample position that we could actually
566                  * start the input tile at, 19.13 fixed point.
567                  */
568                 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
569                 /* Convert 19.13 fixed point to integer */
570                 in_pos_rounded = in_pos_aligned / 8192U;
571
572                 if (in_pos_rounded < in_start)
573                         continue;
574                 if (in_pos_rounded >= in_end)
575                         break;
576
577                 if ((in_burst > 1) &&
578                     (in_edge - in_pos_rounded) % in_burst)
579                         continue;
580
581                 diff = abs_diff(in_pos, in_pos_aligned);
582                 if (diff < min_diff) {
583                         in_seam = in_pos_rounded;
584                         out_seam = out_pos;
585                         min_diff = diff;
586                 }
587         }
588
589         *_out_seam = out_seam;
590         *_in_seam = in_seam;
591
592         dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
593                 __func__, out_seam, out_align, out_start, out_end,
594                 in_seam, in_align, in_start, in_end, min_diff / 8192,
595                 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
596 }
597
598 /*
599  * Tile left edges are required to be aligned to multiples of 8 bytes
600  * by the IDMAC.
601  */
602 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
603 {
604         if (fmt->planar)
605                 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
606         else
607                 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
608 }
609
610 /*
611  * Tile top edge alignment is only limited by chroma subsampling.
612  */
613 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
614 {
615         return fmt->uv_height_dec > 1 ? 2 : 1;
616 }
617
618 static inline u32 tile_width_align(enum ipu_image_convert_type type,
619                                    const struct ipu_image_pixfmt *fmt,
620                                    enum ipu_rotate_mode rot_mode)
621 {
622         if (type == IMAGE_CONVERT_IN) {
623                 /*
624                  * The IC burst reads 8 pixels at a time. Reading beyond the
625                  * end of the line is usually acceptable. Those pixels are
626                  * ignored, unless the IC has to write the scaled line in
627                  * reverse.
628                  */
629                 return (!ipu_rot_mode_is_irt(rot_mode) &&
630                         (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
631         }
632
633         /*
634          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
635          * formats to guarantee 8-byte aligned line start addresses in the
636          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
637          * for all other formats.
638          */
639         return (ipu_rot_mode_is_irt(rot_mode) &&
640                 fmt->planar && !fmt->uv_packed) ?
641                 8 * fmt->uv_width_dec : 8;
642 }
643
644 static inline u32 tile_height_align(enum ipu_image_convert_type type,
645                                     const struct ipu_image_pixfmt *fmt,
646                                     enum ipu_rotate_mode rot_mode)
647 {
648         if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
649                 return 2;
650
651         /*
652          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
653          * formats to guarantee 8-byte aligned line start addresses in the
654          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
655          * for all other formats.
656          */
657         return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
658 }
659
660 /*
661  * Fill in left position and width and for all tiles in an input column, and
662  * for all corresponding output tiles. If the 90° rotator is used, the output
663  * tiles are in a row, and output tile top position and height are set.
664  */
665 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
666                              unsigned int col,
667                              struct ipu_image_convert_image *in,
668                              unsigned int in_left, unsigned int in_width,
669                              struct ipu_image_convert_image *out,
670                              unsigned int out_left, unsigned int out_width)
671 {
672         unsigned int row, tile_idx;
673         struct ipu_image_tile *in_tile, *out_tile;
674
675         for (row = 0; row < in->num_rows; row++) {
676                 tile_idx = in->num_cols * row + col;
677                 in_tile = &in->tile[tile_idx];
678                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
679
680                 in_tile->left = in_left;
681                 in_tile->width = in_width;
682
683                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
684                         out_tile->top = out_left;
685                         out_tile->height = out_width;
686                 } else {
687                         out_tile->left = out_left;
688                         out_tile->width = out_width;
689                 }
690         }
691 }
692
693 /*
694  * Fill in top position and height and for all tiles in an input row, and
695  * for all corresponding output tiles. If the 90° rotator is used, the output
696  * tiles are in a column, and output tile left position and width are set.
697  */
698 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
699                           struct ipu_image_convert_image *in,
700                           unsigned int in_top, unsigned int in_height,
701                           struct ipu_image_convert_image *out,
702                           unsigned int out_top, unsigned int out_height)
703 {
704         unsigned int col, tile_idx;
705         struct ipu_image_tile *in_tile, *out_tile;
706
707         for (col = 0; col < in->num_cols; col++) {
708                 tile_idx = in->num_cols * row + col;
709                 in_tile = &in->tile[tile_idx];
710                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
711
712                 in_tile->top = in_top;
713                 in_tile->height = in_height;
714
715                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
716                         out_tile->left = out_top;
717                         out_tile->width = out_height;
718                 } else {
719                         out_tile->top = out_top;
720                         out_tile->height = out_height;
721                 }
722         }
723 }
724
725 /*
726  * Find the best horizontal and vertical seam positions to split into tiles.
727  * Minimize the fractional part of the input sampling position for the
728  * top / left pixels of each tile.
729  */
730 static void find_seams(struct ipu_image_convert_ctx *ctx,
731                        struct ipu_image_convert_image *in,
732                        struct ipu_image_convert_image *out)
733 {
734         struct device *dev = ctx->chan->priv->ipu->dev;
735         unsigned int resized_width = out->base.rect.width;
736         unsigned int resized_height = out->base.rect.height;
737         unsigned int col;
738         unsigned int row;
739         unsigned int in_left_align = tile_left_align(in->fmt);
740         unsigned int in_top_align = tile_top_align(in->fmt);
741         unsigned int out_left_align = tile_left_align(out->fmt);
742         unsigned int out_top_align = tile_top_align(out->fmt);
743         unsigned int out_width_align = tile_width_align(out->type, out->fmt,
744                                                         ctx->rot_mode);
745         unsigned int out_height_align = tile_height_align(out->type, out->fmt,
746                                                           ctx->rot_mode);
747         unsigned int in_right = in->base.rect.width;
748         unsigned int in_bottom = in->base.rect.height;
749         unsigned int out_right = out->base.rect.width;
750         unsigned int out_bottom = out->base.rect.height;
751         unsigned int flipped_out_left;
752         unsigned int flipped_out_top;
753
754         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
755                 /* Switch width/height and align top left to IRT block size */
756                 resized_width = out->base.rect.height;
757                 resized_height = out->base.rect.width;
758                 out_left_align = out_height_align;
759                 out_top_align = out_width_align;
760                 out_width_align = out_left_align;
761                 out_height_align = out_top_align;
762                 out_right = out->base.rect.height;
763                 out_bottom = out->base.rect.width;
764         }
765
766         for (col = in->num_cols - 1; col > 0; col--) {
767                 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
768                                           !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
769                 bool allow_out_overshoot = (col < in->num_cols - 1) &&
770                                            !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
771                 unsigned int in_left;
772                 unsigned int out_left;
773
774                 /*
775                  * Align input width to burst length if the scaling step flips
776                  * horizontally.
777                  */
778
779                 find_best_seam(ctx, col,
780                                in_right, out_right,
781                                in_left_align, out_left_align,
782                                allow_in_overshoot ? 1 : 8 /* burst length */,
783                                allow_out_overshoot ? 1 : out_width_align,
784                                ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
785                                &in_left, &out_left);
786
787                 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
788                         flipped_out_left = resized_width - out_right;
789                 else
790                         flipped_out_left = out_left;
791
792                 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
793                                  out, flipped_out_left, out_right - out_left);
794
795                 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
796                         in_left, in_right - in_left,
797                         flipped_out_left, out_right - out_left);
798
799                 in_right = in_left;
800                 out_right = out_left;
801         }
802
803         flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
804                            resized_width - out_right : 0;
805
806         fill_tile_column(ctx, 0, in, 0, in_right,
807                          out, flipped_out_left, out_right);
808
809         dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
810                 in_right, flipped_out_left, out_right);
811
812         for (row = in->num_rows - 1; row > 0; row--) {
813                 bool allow_overshoot = row < in->num_rows - 1;
814                 unsigned int in_top;
815                 unsigned int out_top;
816
817                 find_best_seam(ctx, row,
818                                in_bottom, out_bottom,
819                                in_top_align, out_top_align,
820                                1, allow_overshoot ? 1 : out_height_align,
821                                ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
822                                &in_top, &out_top);
823
824                 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
825                     ipu_rot_mode_is_irt(ctx->rot_mode))
826                         flipped_out_top = resized_height - out_bottom;
827                 else
828                         flipped_out_top = out_top;
829
830                 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
831                               out, flipped_out_top, out_bottom - out_top);
832
833                 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
834                         in_top, in_bottom - in_top,
835                         flipped_out_top, out_bottom - out_top);
836
837                 in_bottom = in_top;
838                 out_bottom = out_top;
839         }
840
841         if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
842             ipu_rot_mode_is_irt(ctx->rot_mode))
843                 flipped_out_top = resized_height - out_bottom;
844         else
845                 flipped_out_top = 0;
846
847         fill_tile_row(ctx, 0, in, 0, in_bottom,
848                       out, flipped_out_top, out_bottom);
849
850         dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
851                 in_bottom, flipped_out_top, out_bottom);
852 }
853
854 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
855                                 struct ipu_image_convert_image *image)
856 {
857         struct ipu_image_convert_chan *chan = ctx->chan;
858         struct ipu_image_convert_priv *priv = chan->priv;
859         unsigned int max_width = 1024;
860         unsigned int max_height = 1024;
861         unsigned int i;
862
863         if (image->type == IMAGE_CONVERT_IN) {
864                 /* Up to 4096x4096 input tile size */
865                 max_width <<= ctx->downsize_coeff_h;
866                 max_height <<= ctx->downsize_coeff_v;
867         }
868
869         for (i = 0; i < ctx->num_tiles; i++) {
870                 struct ipu_image_tile *tile;
871                 const unsigned int row = i / image->num_cols;
872                 const unsigned int col = i % image->num_cols;
873
874                 if (image->type == IMAGE_CONVERT_OUT)
875                         tile = &image->tile[ctx->out_tile_map[i]];
876                 else
877                         tile = &image->tile[i];
878
879                 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
880                         tile->width;
881
882                 if (image->fmt->planar) {
883                         tile->stride = tile->width;
884                         tile->rot_stride = tile->height;
885                 } else {
886                         tile->stride =
887                                 (image->fmt->bpp * tile->width) >> 3;
888                         tile->rot_stride =
889                                 (image->fmt->bpp * tile->height) >> 3;
890                 }
891
892                 dev_dbg(priv->ipu->dev,
893                         "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
894                         chan->ic_task, ctx,
895                         image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
896                         row, col,
897                         tile->width, tile->height, tile->left, tile->top);
898
899                 if (!tile->width || tile->width > max_width ||
900                     !tile->height || tile->height > max_height) {
901                         dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
902                                 image->type == IMAGE_CONVERT_IN ? "input" :
903                                 "output", tile->width, tile->height);
904                         return -EINVAL;
905                 }
906         }
907
908         return 0;
909 }
910
911 /*
912  * Use the rotation transformation to find the tile coordinates
913  * (row, col) of a tile in the destination frame that corresponds
914  * to the given tile coordinates of a source frame. The destination
915  * coordinate is then converted to a tile index.
916  */
917 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
918                                 int src_row, int src_col)
919 {
920         struct ipu_image_convert_chan *chan = ctx->chan;
921         struct ipu_image_convert_priv *priv = chan->priv;
922         struct ipu_image_convert_image *s_image = &ctx->in;
923         struct ipu_image_convert_image *d_image = &ctx->out;
924         int dst_row, dst_col;
925
926         /* with no rotation it's a 1:1 mapping */
927         if (ctx->rot_mode == IPU_ROTATE_NONE)
928                 return src_row * s_image->num_cols + src_col;
929
930         /*
931          * before doing the transform, first we have to translate
932          * source row,col for an origin in the center of s_image
933          */
934         src_row = src_row * 2 - (s_image->num_rows - 1);
935         src_col = src_col * 2 - (s_image->num_cols - 1);
936
937         /* do the rotation transform */
938         if (ctx->rot_mode & IPU_ROT_BIT_90) {
939                 dst_col = -src_row;
940                 dst_row = src_col;
941         } else {
942                 dst_col = src_col;
943                 dst_row = src_row;
944         }
945
946         /* apply flip */
947         if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
948                 dst_col = -dst_col;
949         if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
950                 dst_row = -dst_row;
951
952         dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
953                 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
954
955         /*
956          * finally translate dest row,col using an origin in upper
957          * left of d_image
958          */
959         dst_row += d_image->num_rows - 1;
960         dst_col += d_image->num_cols - 1;
961         dst_row /= 2;
962         dst_col /= 2;
963
964         return dst_row * d_image->num_cols + dst_col;
965 }
966
967 /*
968  * Fill the out_tile_map[] with transformed destination tile indeces.
969  */
970 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
971 {
972         struct ipu_image_convert_image *s_image = &ctx->in;
973         unsigned int row, col, tile = 0;
974
975         for (row = 0; row < s_image->num_rows; row++) {
976                 for (col = 0; col < s_image->num_cols; col++) {
977                         ctx->out_tile_map[tile] =
978                                 transform_tile_index(ctx, row, col);
979                         tile++;
980                 }
981         }
982 }
983
984 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
985                                     struct ipu_image_convert_image *image)
986 {
987         struct ipu_image_convert_chan *chan = ctx->chan;
988         struct ipu_image_convert_priv *priv = chan->priv;
989         const struct ipu_image_pixfmt *fmt = image->fmt;
990         unsigned int row, col, tile = 0;
991         u32 H, top, y_stride, uv_stride;
992         u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
993         u32 y_row_off, y_col_off, y_off;
994         u32 y_size, uv_size;
995
996         /* setup some convenience vars */
997         H = image->base.pix.height;
998
999         y_stride = image->stride;
1000         uv_stride = y_stride / fmt->uv_width_dec;
1001         if (fmt->uv_packed)
1002                 uv_stride *= 2;
1003
1004         y_size = H * y_stride;
1005         uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1006
1007         for (row = 0; row < image->num_rows; row++) {
1008                 top = image->tile[tile].top;
1009                 y_row_off = top * y_stride;
1010                 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1011
1012                 for (col = 0; col < image->num_cols; col++) {
1013                         y_col_off = image->tile[tile].left;
1014                         uv_col_off = y_col_off / fmt->uv_width_dec;
1015                         if (fmt->uv_packed)
1016                                 uv_col_off *= 2;
1017
1018                         y_off = y_row_off + y_col_off;
1019                         uv_off = uv_row_off + uv_col_off;
1020
1021                         u_off = y_size - y_off + uv_off;
1022                         v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1023                         if (fmt->uv_swapped)
1024                                 swap(u_off, v_off);
1025
1026                         image->tile[tile].offset = y_off;
1027                         image->tile[tile].u_off = u_off;
1028                         image->tile[tile++].v_off = v_off;
1029
1030                         if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1031                                 dev_err(priv->ipu->dev,
1032                                         "task %u: ctx %p: %s@[%d,%d]: "
1033                                         "y_off %08x, u_off %08x, v_off %08x\n",
1034                                         chan->ic_task, ctx,
1035                                         image->type == IMAGE_CONVERT_IN ?
1036                                         "Input" : "Output", row, col,
1037                                         y_off, u_off, v_off);
1038                                 return -EINVAL;
1039                         }
1040                 }
1041         }
1042
1043         return 0;
1044 }
1045
1046 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1047                                     struct ipu_image_convert_image *image)
1048 {
1049         struct ipu_image_convert_chan *chan = ctx->chan;
1050         struct ipu_image_convert_priv *priv = chan->priv;
1051         const struct ipu_image_pixfmt *fmt = image->fmt;
1052         unsigned int row, col, tile = 0;
1053         u32 bpp, stride, offset;
1054         u32 row_off, col_off;
1055
1056         /* setup some convenience vars */
1057         stride = image->stride;
1058         bpp = fmt->bpp;
1059
1060         for (row = 0; row < image->num_rows; row++) {
1061                 row_off = image->tile[tile].top * stride;
1062
1063                 for (col = 0; col < image->num_cols; col++) {
1064                         col_off = (image->tile[tile].left * bpp) >> 3;
1065
1066                         offset = row_off + col_off;
1067
1068                         image->tile[tile].offset = offset;
1069                         image->tile[tile].u_off = 0;
1070                         image->tile[tile++].v_off = 0;
1071
1072                         if (offset & 0x7) {
1073                                 dev_err(priv->ipu->dev,
1074                                         "task %u: ctx %p: %s@[%d,%d]: "
1075                                         "phys %08x\n",
1076                                         chan->ic_task, ctx,
1077                                         image->type == IMAGE_CONVERT_IN ?
1078                                         "Input" : "Output", row, col,
1079                                         row_off + col_off);
1080                                 return -EINVAL;
1081                         }
1082                 }
1083         }
1084
1085         return 0;
1086 }
1087
1088 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1089                               struct ipu_image_convert_image *image)
1090 {
1091         if (image->fmt->planar)
1092                 return calc_tile_offsets_planar(ctx, image);
1093
1094         return calc_tile_offsets_packed(ctx, image);
1095 }
1096
1097 /*
1098  * Calculate the resizing ratio for the IC main processing section given input
1099  * size, fixed downsizing coefficient, and output size.
1100  * Either round to closest for the next tile's first pixel to minimize seams
1101  * and distortion (for all but right column / bottom row), or round down to
1102  * avoid sampling beyond the edges of the input image for this tile's last
1103  * pixel.
1104  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1105  */
1106 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1107                              u32 output_size, bool allow_overshoot)
1108 {
1109         u32 downsized = input_size >> downsize_coeff;
1110
1111         if (allow_overshoot)
1112                 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1113         else
1114                 return 8192 * (downsized - 1) / (output_size - 1);
1115 }
1116
1117 /*
1118  * Slightly modify resize coefficients per tile to hide the bilinear
1119  * interpolator reset at tile borders, shifting the right / bottom edge
1120  * by up to a half input pixel. This removes noticeable seams between
1121  * tiles at higher upscaling factors.
1122  */
1123 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1124 {
1125         struct ipu_image_convert_chan *chan = ctx->chan;
1126         struct ipu_image_convert_priv *priv = chan->priv;
1127         struct ipu_image_tile *in_tile, *out_tile;
1128         unsigned int col, row, tile_idx;
1129         unsigned int last_output;
1130
1131         for (col = 0; col < ctx->in.num_cols; col++) {
1132                 bool closest = (col < ctx->in.num_cols - 1) &&
1133                                !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1134                 u32 resized_width;
1135                 u32 resize_coeff_h;
1136                 u32 in_width;
1137
1138                 tile_idx = col;
1139                 in_tile = &ctx->in.tile[tile_idx];
1140                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1141
1142                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1143                         resized_width = out_tile->height;
1144                 else
1145                         resized_width = out_tile->width;
1146
1147                 resize_coeff_h = calc_resize_coeff(in_tile->width,
1148                                                    ctx->downsize_coeff_h,
1149                                                    resized_width, closest);
1150
1151                 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1152                         __func__, col, resize_coeff_h);
1153
1154                 /*
1155                  * With the horizontal scaling factor known, round up resized
1156                  * width (output width or height) to burst size.
1157                  */
1158                 resized_width = round_up(resized_width, 8);
1159
1160                 /*
1161                  * Calculate input width from the last accessed input pixel
1162                  * given resized width and scaling coefficients. Round up to
1163                  * burst size.
1164                  */
1165                 last_output = resized_width - 1;
1166                 if (closest && ((last_output * resize_coeff_h) % 8192))
1167                         last_output++;
1168                 in_width = round_up(
1169                         (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1170                         << ctx->downsize_coeff_h, 8);
1171
1172                 for (row = 0; row < ctx->in.num_rows; row++) {
1173                         tile_idx = row * ctx->in.num_cols + col;
1174                         in_tile = &ctx->in.tile[tile_idx];
1175                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1176
1177                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1178                                 out_tile->height = resized_width;
1179                         else
1180                                 out_tile->width = resized_width;
1181
1182                         in_tile->width = in_width;
1183                 }
1184
1185                 ctx->resize_coeffs_h[col] = resize_coeff_h;
1186         }
1187
1188         for (row = 0; row < ctx->in.num_rows; row++) {
1189                 bool closest = (row < ctx->in.num_rows - 1) &&
1190                                !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1191                 u32 resized_height;
1192                 u32 resize_coeff_v;
1193                 u32 in_height;
1194
1195                 tile_idx = row * ctx->in.num_cols;
1196                 in_tile = &ctx->in.tile[tile_idx];
1197                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1198
1199                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1200                         resized_height = out_tile->width;
1201                 else
1202                         resized_height = out_tile->height;
1203
1204                 resize_coeff_v = calc_resize_coeff(in_tile->height,
1205                                                    ctx->downsize_coeff_v,
1206                                                    resized_height, closest);
1207
1208                 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1209                         __func__, row, resize_coeff_v);
1210
1211                 /*
1212                  * With the vertical scaling factor known, round up resized
1213                  * height (output width or height) to IDMAC limitations.
1214                  */
1215                 resized_height = round_up(resized_height, 2);
1216
1217                 /*
1218                  * Calculate input width from the last accessed input pixel
1219                  * given resized height and scaling coefficients. Align to
1220                  * IDMAC restrictions.
1221                  */
1222                 last_output = resized_height - 1;
1223                 if (closest && ((last_output * resize_coeff_v) % 8192))
1224                         last_output++;
1225                 in_height = round_up(
1226                         (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1227                         << ctx->downsize_coeff_v, 2);
1228
1229                 for (col = 0; col < ctx->in.num_cols; col++) {
1230                         tile_idx = row * ctx->in.num_cols + col;
1231                         in_tile = &ctx->in.tile[tile_idx];
1232                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1233
1234                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1235                                 out_tile->width = resized_height;
1236                         else
1237                                 out_tile->height = resized_height;
1238
1239                         in_tile->height = in_height;
1240                 }
1241
1242                 ctx->resize_coeffs_v[row] = resize_coeff_v;
1243         }
1244 }
1245
1246 /*
1247  * return the number of runs in given queue (pending_q or done_q)
1248  * for this context. hold irqlock when calling.
1249  */
1250 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1251                          struct list_head *q)
1252 {
1253         struct ipu_image_convert_run *run;
1254         int count = 0;
1255
1256         lockdep_assert_held(&ctx->chan->irqlock);
1257
1258         list_for_each_entry(run, q, list) {
1259                 if (run->ctx == ctx)
1260                         count++;
1261         }
1262
1263         return count;
1264 }
1265
1266 static void convert_stop(struct ipu_image_convert_run *run)
1267 {
1268         struct ipu_image_convert_ctx *ctx = run->ctx;
1269         struct ipu_image_convert_chan *chan = ctx->chan;
1270         struct ipu_image_convert_priv *priv = chan->priv;
1271
1272         dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1273                 __func__, chan->ic_task, ctx, run);
1274
1275         /* disable IC tasks and the channels */
1276         ipu_ic_task_disable(chan->ic);
1277         ipu_idmac_disable_channel(chan->in_chan);
1278         ipu_idmac_disable_channel(chan->out_chan);
1279
1280         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1281                 ipu_idmac_disable_channel(chan->rotation_in_chan);
1282                 ipu_idmac_disable_channel(chan->rotation_out_chan);
1283                 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1284         }
1285
1286         ipu_ic_disable(chan->ic);
1287 }
1288
1289 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1290                                struct ipuv3_channel *channel,
1291                                struct ipu_image_convert_image *image,
1292                                enum ipu_rotate_mode rot_mode,
1293                                bool rot_swap_width_height,
1294                                unsigned int tile)
1295 {
1296         struct ipu_image_convert_chan *chan = ctx->chan;
1297         unsigned int burst_size;
1298         u32 width, height, stride;
1299         dma_addr_t addr0, addr1 = 0;
1300         struct ipu_image tile_image;
1301         unsigned int tile_idx[2];
1302
1303         if (image->type == IMAGE_CONVERT_OUT) {
1304                 tile_idx[0] = ctx->out_tile_map[tile];
1305                 tile_idx[1] = ctx->out_tile_map[1];
1306         } else {
1307                 tile_idx[0] = tile;
1308                 tile_idx[1] = 1;
1309         }
1310
1311         if (rot_swap_width_height) {
1312                 width = image->tile[tile_idx[0]].height;
1313                 height = image->tile[tile_idx[0]].width;
1314                 stride = image->tile[tile_idx[0]].rot_stride;
1315                 addr0 = ctx->rot_intermediate[0].phys;
1316                 if (ctx->double_buffering)
1317                         addr1 = ctx->rot_intermediate[1].phys;
1318         } else {
1319                 width = image->tile[tile_idx[0]].width;
1320                 height = image->tile[tile_idx[0]].height;
1321                 stride = image->stride;
1322                 addr0 = image->base.phys0 +
1323                         image->tile[tile_idx[0]].offset;
1324                 if (ctx->double_buffering)
1325                         addr1 = image->base.phys0 +
1326                                 image->tile[tile_idx[1]].offset;
1327         }
1328
1329         ipu_cpmem_zero(channel);
1330
1331         memset(&tile_image, 0, sizeof(tile_image));
1332         tile_image.pix.width = tile_image.rect.width = width;
1333         tile_image.pix.height = tile_image.rect.height = height;
1334         tile_image.pix.bytesperline = stride;
1335         tile_image.pix.pixelformat =  image->fmt->fourcc;
1336         tile_image.phys0 = addr0;
1337         tile_image.phys1 = addr1;
1338         if (image->fmt->planar && !rot_swap_width_height) {
1339                 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1340                 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1341         }
1342
1343         ipu_cpmem_set_image(channel, &tile_image);
1344
1345         if (rot_mode)
1346                 ipu_cpmem_set_rotation(channel, rot_mode);
1347
1348         /*
1349          * Skip writing U and V components to odd rows in the output
1350          * channels for planar 4:2:0.
1351          */
1352         if ((channel == chan->out_chan ||
1353              channel == chan->rotation_out_chan) &&
1354             image->fmt->planar && image->fmt->uv_height_dec == 2)
1355                 ipu_cpmem_skip_odd_chroma_rows(channel);
1356
1357         if (channel == chan->rotation_in_chan ||
1358             channel == chan->rotation_out_chan) {
1359                 burst_size = 8;
1360                 ipu_cpmem_set_block_mode(channel);
1361         } else
1362                 burst_size = (width % 16) ? 8 : 16;
1363
1364         ipu_cpmem_set_burstsize(channel, burst_size);
1365
1366         ipu_ic_task_idma_init(chan->ic, channel, width, height,
1367                               burst_size, rot_mode);
1368
1369         /*
1370          * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1371          * only do this when there is no PRG present.
1372          */
1373         if (!channel->ipu->prg_priv)
1374                 ipu_cpmem_set_axi_id(channel, 1);
1375
1376         ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1377 }
1378
1379 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1380 {
1381         struct ipu_image_convert_ctx *ctx = run->ctx;
1382         struct ipu_image_convert_chan *chan = ctx->chan;
1383         struct ipu_image_convert_priv *priv = chan->priv;
1384         struct ipu_image_convert_image *s_image = &ctx->in;
1385         struct ipu_image_convert_image *d_image = &ctx->out;
1386         unsigned int dst_tile = ctx->out_tile_map[tile];
1387         unsigned int dest_width, dest_height;
1388         unsigned int col, row;
1389         u32 rsc;
1390         int ret;
1391
1392         dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1393                 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1394
1395         /* clear EOF irq mask */
1396         ctx->eof_mask = 0;
1397
1398         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1399                 /* swap width/height for resizer */
1400                 dest_width = d_image->tile[dst_tile].height;
1401                 dest_height = d_image->tile[dst_tile].width;
1402         } else {
1403                 dest_width = d_image->tile[dst_tile].width;
1404                 dest_height = d_image->tile[dst_tile].height;
1405         }
1406
1407         row = tile / s_image->num_cols;
1408         col = tile % s_image->num_cols;
1409
1410         rsc =  (ctx->downsize_coeff_v << 30) |
1411                (ctx->resize_coeffs_v[row] << 16) |
1412                (ctx->downsize_coeff_h << 14) |
1413                (ctx->resize_coeffs_h[col]);
1414
1415         dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1416                 __func__, s_image->tile[tile].width,
1417                 s_image->tile[tile].height, dest_width, dest_height, rsc);
1418
1419         /* setup the IC resizer and CSC */
1420         ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1421                                    s_image->tile[tile].width,
1422                                    s_image->tile[tile].height,
1423                                    dest_width,
1424                                    dest_height,
1425                                    rsc);
1426         if (ret) {
1427                 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1428                 return ret;
1429         }
1430
1431         /* init the source MEM-->IC PP IDMAC channel */
1432         init_idmac_channel(ctx, chan->in_chan, s_image,
1433                            IPU_ROTATE_NONE, false, tile);
1434
1435         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1436                 /* init the IC PP-->MEM IDMAC channel */
1437                 init_idmac_channel(ctx, chan->out_chan, d_image,
1438                                    IPU_ROTATE_NONE, true, tile);
1439
1440                 /* init the MEM-->IC PP ROT IDMAC channel */
1441                 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1442                                    ctx->rot_mode, true, tile);
1443
1444                 /* init the destination IC PP ROT-->MEM IDMAC channel */
1445                 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1446                                    IPU_ROTATE_NONE, false, tile);
1447
1448                 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1449                 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1450         } else {
1451                 /* init the destination IC PP-->MEM IDMAC channel */
1452                 init_idmac_channel(ctx, chan->out_chan, d_image,
1453                                    ctx->rot_mode, false, tile);
1454         }
1455
1456         /* enable the IC */
1457         ipu_ic_enable(chan->ic);
1458
1459         /* set buffers ready */
1460         ipu_idmac_select_buffer(chan->in_chan, 0);
1461         ipu_idmac_select_buffer(chan->out_chan, 0);
1462         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1463                 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1464         if (ctx->double_buffering) {
1465                 ipu_idmac_select_buffer(chan->in_chan, 1);
1466                 ipu_idmac_select_buffer(chan->out_chan, 1);
1467                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1468                         ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1469         }
1470
1471         /* enable the channels! */
1472         ipu_idmac_enable_channel(chan->in_chan);
1473         ipu_idmac_enable_channel(chan->out_chan);
1474         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1475                 ipu_idmac_enable_channel(chan->rotation_in_chan);
1476                 ipu_idmac_enable_channel(chan->rotation_out_chan);
1477         }
1478
1479         ipu_ic_task_enable(chan->ic);
1480
1481         ipu_cpmem_dump(chan->in_chan);
1482         ipu_cpmem_dump(chan->out_chan);
1483         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1484                 ipu_cpmem_dump(chan->rotation_in_chan);
1485                 ipu_cpmem_dump(chan->rotation_out_chan);
1486         }
1487
1488         ipu_dump(priv->ipu);
1489
1490         return 0;
1491 }
1492
1493 /* hold irqlock when calling */
1494 static int do_run(struct ipu_image_convert_run *run)
1495 {
1496         struct ipu_image_convert_ctx *ctx = run->ctx;
1497         struct ipu_image_convert_chan *chan = ctx->chan;
1498
1499         lockdep_assert_held(&chan->irqlock);
1500
1501         ctx->in.base.phys0 = run->in_phys;
1502         ctx->out.base.phys0 = run->out_phys;
1503
1504         ctx->cur_buf_num = 0;
1505         ctx->next_tile = 1;
1506
1507         /* remove run from pending_q and set as current */
1508         list_del(&run->list);
1509         chan->current_run = run;
1510
1511         return convert_start(run, 0);
1512 }
1513
1514 /* hold irqlock when calling */
1515 static void run_next(struct ipu_image_convert_chan *chan)
1516 {
1517         struct ipu_image_convert_priv *priv = chan->priv;
1518         struct ipu_image_convert_run *run, *tmp;
1519         int ret;
1520
1521         lockdep_assert_held(&chan->irqlock);
1522
1523         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1524                 /* skip contexts that are aborting */
1525                 if (run->ctx->aborting) {
1526                         dev_dbg(priv->ipu->dev,
1527                                 "%s: task %u: skipping aborting ctx %p run %p\n",
1528                                 __func__, chan->ic_task, run->ctx, run);
1529                         continue;
1530                 }
1531
1532                 ret = do_run(run);
1533                 if (!ret)
1534                         break;
1535
1536                 /*
1537                  * something went wrong with start, add the run
1538                  * to done q and continue to the next run in the
1539                  * pending q.
1540                  */
1541                 run->status = ret;
1542                 list_add_tail(&run->list, &chan->done_q);
1543                 chan->current_run = NULL;
1544         }
1545 }
1546
1547 static void empty_done_q(struct ipu_image_convert_chan *chan)
1548 {
1549         struct ipu_image_convert_priv *priv = chan->priv;
1550         struct ipu_image_convert_run *run;
1551         unsigned long flags;
1552
1553         spin_lock_irqsave(&chan->irqlock, flags);
1554
1555         while (!list_empty(&chan->done_q)) {
1556                 run = list_entry(chan->done_q.next,
1557                                  struct ipu_image_convert_run,
1558                                  list);
1559
1560                 list_del(&run->list);
1561
1562                 dev_dbg(priv->ipu->dev,
1563                         "%s: task %u: completing ctx %p run %p with %d\n",
1564                         __func__, chan->ic_task, run->ctx, run, run->status);
1565
1566                 /* call the completion callback and free the run */
1567                 spin_unlock_irqrestore(&chan->irqlock, flags);
1568                 run->ctx->complete(run, run->ctx->complete_context);
1569                 spin_lock_irqsave(&chan->irqlock, flags);
1570         }
1571
1572         spin_unlock_irqrestore(&chan->irqlock, flags);
1573 }
1574
1575 /*
1576  * the bottom half thread clears out the done_q, calling the
1577  * completion handler for each.
1578  */
1579 static irqreturn_t do_bh(int irq, void *dev_id)
1580 {
1581         struct ipu_image_convert_chan *chan = dev_id;
1582         struct ipu_image_convert_priv *priv = chan->priv;
1583         struct ipu_image_convert_ctx *ctx;
1584         unsigned long flags;
1585
1586         dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1587                 chan->ic_task);
1588
1589         empty_done_q(chan);
1590
1591         spin_lock_irqsave(&chan->irqlock, flags);
1592
1593         /*
1594          * the done_q is cleared out, signal any contexts
1595          * that are aborting that abort can complete.
1596          */
1597         list_for_each_entry(ctx, &chan->ctx_list, list) {
1598                 if (ctx->aborting) {
1599                         dev_dbg(priv->ipu->dev,
1600                                 "%s: task %u: signaling abort for ctx %p\n",
1601                                 __func__, chan->ic_task, ctx);
1602                         complete_all(&ctx->aborted);
1603                 }
1604         }
1605
1606         spin_unlock_irqrestore(&chan->irqlock, flags);
1607
1608         dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1609                 chan->ic_task);
1610
1611         return IRQ_HANDLED;
1612 }
1613
1614 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1615 {
1616         unsigned int cur_tile = ctx->next_tile - 1;
1617         unsigned int next_tile = ctx->next_tile;
1618
1619         if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1620             ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1621             ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1622             ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1623             ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1624             ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1625             ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1626             ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1627                 return true;
1628
1629         return false;
1630 }
1631
1632 /* hold irqlock when calling */
1633 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1634 {
1635         struct ipu_image_convert_ctx *ctx = run->ctx;
1636         struct ipu_image_convert_chan *chan = ctx->chan;
1637         struct ipu_image_tile *src_tile, *dst_tile;
1638         struct ipu_image_convert_image *s_image = &ctx->in;
1639         struct ipu_image_convert_image *d_image = &ctx->out;
1640         struct ipuv3_channel *outch;
1641         unsigned int dst_idx;
1642
1643         lockdep_assert_held(&chan->irqlock);
1644
1645         outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1646                 chan->rotation_out_chan : chan->out_chan;
1647
1648         /*
1649          * It is difficult to stop the channel DMA before the channels
1650          * enter the paused state. Without double-buffering the channels
1651          * are always in a paused state when the EOF irq occurs, so it
1652          * is safe to stop the channels now. For double-buffering we
1653          * just ignore the abort until the operation completes, when it
1654          * is safe to shut down.
1655          */
1656         if (ctx->aborting && !ctx->double_buffering) {
1657                 convert_stop(run);
1658                 run->status = -EIO;
1659                 goto done;
1660         }
1661
1662         if (ctx->next_tile == ctx->num_tiles) {
1663                 /*
1664                  * the conversion is complete
1665                  */
1666                 convert_stop(run);
1667                 run->status = 0;
1668                 goto done;
1669         }
1670
1671         /*
1672          * not done, place the next tile buffers.
1673          */
1674         if (!ctx->double_buffering) {
1675                 if (ic_settings_changed(ctx)) {
1676                         convert_stop(run);
1677                         convert_start(run, ctx->next_tile);
1678                 } else {
1679                         src_tile = &s_image->tile[ctx->next_tile];
1680                         dst_idx = ctx->out_tile_map[ctx->next_tile];
1681                         dst_tile = &d_image->tile[dst_idx];
1682
1683                         ipu_cpmem_set_buffer(chan->in_chan, 0,
1684                                              s_image->base.phys0 +
1685                                              src_tile->offset);
1686                         ipu_cpmem_set_buffer(outch, 0,
1687                                              d_image->base.phys0 +
1688                                              dst_tile->offset);
1689                         if (s_image->fmt->planar)
1690                                 ipu_cpmem_set_uv_offset(chan->in_chan,
1691                                                         src_tile->u_off,
1692                                                         src_tile->v_off);
1693                         if (d_image->fmt->planar)
1694                                 ipu_cpmem_set_uv_offset(outch,
1695                                                         dst_tile->u_off,
1696                                                         dst_tile->v_off);
1697
1698                         ipu_idmac_select_buffer(chan->in_chan, 0);
1699                         ipu_idmac_select_buffer(outch, 0);
1700                 }
1701         } else if (ctx->next_tile < ctx->num_tiles - 1) {
1702
1703                 src_tile = &s_image->tile[ctx->next_tile + 1];
1704                 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1705                 dst_tile = &d_image->tile[dst_idx];
1706
1707                 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1708                                      s_image->base.phys0 + src_tile->offset);
1709                 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1710                                      d_image->base.phys0 + dst_tile->offset);
1711
1712                 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1713                 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1714
1715                 ctx->cur_buf_num ^= 1;
1716         }
1717
1718         ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1719         ctx->next_tile++;
1720         return IRQ_HANDLED;
1721 done:
1722         list_add_tail(&run->list, &chan->done_q);
1723         chan->current_run = NULL;
1724         run_next(chan);
1725         return IRQ_WAKE_THREAD;
1726 }
1727
1728 static irqreturn_t eof_irq(int irq, void *data)
1729 {
1730         struct ipu_image_convert_chan *chan = data;
1731         struct ipu_image_convert_priv *priv = chan->priv;
1732         struct ipu_image_convert_ctx *ctx;
1733         struct ipu_image_convert_run *run;
1734         irqreturn_t ret = IRQ_HANDLED;
1735         bool tile_complete = false;
1736         unsigned long flags;
1737
1738         spin_lock_irqsave(&chan->irqlock, flags);
1739
1740         /* get current run and its context */
1741         run = chan->current_run;
1742         if (!run) {
1743                 ret = IRQ_NONE;
1744                 goto out;
1745         }
1746
1747         ctx = run->ctx;
1748
1749         if (irq == chan->in_eof_irq) {
1750                 ctx->eof_mask |= EOF_IRQ_IN;
1751         } else if (irq == chan->out_eof_irq) {
1752                 ctx->eof_mask |= EOF_IRQ_OUT;
1753         } else if (irq == chan->rot_in_eof_irq ||
1754                    irq == chan->rot_out_eof_irq) {
1755                 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1756                         /* this was NOT a rotation op, shouldn't happen */
1757                         dev_err(priv->ipu->dev,
1758                                 "Unexpected rotation interrupt\n");
1759                         goto out;
1760                 }
1761                 ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1762                         EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1763         } else {
1764                 dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1765                 ret = IRQ_NONE;
1766                 goto out;
1767         }
1768
1769         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1770                 tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1771         else
1772                 tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1773
1774         if (tile_complete)
1775                 ret = do_tile_complete(run);
1776 out:
1777         spin_unlock_irqrestore(&chan->irqlock, flags);
1778         return ret;
1779 }
1780
1781 /*
1782  * try to force the completion of runs for this ctx. Called when
1783  * abort wait times out in ipu_image_convert_abort().
1784  */
1785 static void force_abort(struct ipu_image_convert_ctx *ctx)
1786 {
1787         struct ipu_image_convert_chan *chan = ctx->chan;
1788         struct ipu_image_convert_run *run;
1789         unsigned long flags;
1790
1791         spin_lock_irqsave(&chan->irqlock, flags);
1792
1793         run = chan->current_run;
1794         if (run && run->ctx == ctx) {
1795                 convert_stop(run);
1796                 run->status = -EIO;
1797                 list_add_tail(&run->list, &chan->done_q);
1798                 chan->current_run = NULL;
1799                 run_next(chan);
1800         }
1801
1802         spin_unlock_irqrestore(&chan->irqlock, flags);
1803
1804         empty_done_q(chan);
1805 }
1806
1807 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1808 {
1809         if (chan->in_eof_irq >= 0)
1810                 free_irq(chan->in_eof_irq, chan);
1811         if (chan->rot_in_eof_irq >= 0)
1812                 free_irq(chan->rot_in_eof_irq, chan);
1813         if (chan->out_eof_irq >= 0)
1814                 free_irq(chan->out_eof_irq, chan);
1815         if (chan->rot_out_eof_irq >= 0)
1816                 free_irq(chan->rot_out_eof_irq, chan);
1817
1818         if (!IS_ERR_OR_NULL(chan->in_chan))
1819                 ipu_idmac_put(chan->in_chan);
1820         if (!IS_ERR_OR_NULL(chan->out_chan))
1821                 ipu_idmac_put(chan->out_chan);
1822         if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1823                 ipu_idmac_put(chan->rotation_in_chan);
1824         if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1825                 ipu_idmac_put(chan->rotation_out_chan);
1826         if (!IS_ERR_OR_NULL(chan->ic))
1827                 ipu_ic_put(chan->ic);
1828
1829         chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1830                 chan->rotation_out_chan = NULL;
1831         chan->in_eof_irq = -1;
1832         chan->rot_in_eof_irq = -1;
1833         chan->out_eof_irq = -1;
1834         chan->rot_out_eof_irq = -1;
1835 }
1836
1837 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1838                        struct ipuv3_channel *channel)
1839 {
1840         struct ipu_image_convert_priv *priv = chan->priv;
1841         int ret, irq;
1842
1843         irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1844
1845         ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1846         if (ret < 0) {
1847                 dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1848                 return ret;
1849         }
1850
1851         return irq;
1852 }
1853
1854 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1855 {
1856         const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1857         struct ipu_image_convert_priv *priv = chan->priv;
1858         int ret;
1859
1860         /* get IC */
1861         chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1862         if (IS_ERR(chan->ic)) {
1863                 dev_err(priv->ipu->dev, "could not acquire IC\n");
1864                 ret = PTR_ERR(chan->ic);
1865                 goto err;
1866         }
1867
1868         /* get IDMAC channels */
1869         chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1870         chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1871         if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1872                 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1873                 ret = -EBUSY;
1874                 goto err;
1875         }
1876
1877         chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1878         chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1879         if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1880                 dev_err(priv->ipu->dev,
1881                         "could not acquire idmac rotation channels\n");
1882                 ret = -EBUSY;
1883                 goto err;
1884         }
1885
1886         /* acquire the EOF interrupts */
1887         ret = get_eof_irq(chan, chan->in_chan);
1888         if (ret < 0) {
1889                 chan->in_eof_irq = -1;
1890                 goto err;
1891         }
1892         chan->in_eof_irq = ret;
1893
1894         ret = get_eof_irq(chan, chan->rotation_in_chan);
1895         if (ret < 0) {
1896                 chan->rot_in_eof_irq = -1;
1897                 goto err;
1898         }
1899         chan->rot_in_eof_irq = ret;
1900
1901         ret = get_eof_irq(chan, chan->out_chan);
1902         if (ret < 0) {
1903                 chan->out_eof_irq = -1;
1904                 goto err;
1905         }
1906         chan->out_eof_irq = ret;
1907
1908         ret = get_eof_irq(chan, chan->rotation_out_chan);
1909         if (ret < 0) {
1910                 chan->rot_out_eof_irq = -1;
1911                 goto err;
1912         }
1913         chan->rot_out_eof_irq = ret;
1914
1915         return 0;
1916 err:
1917         release_ipu_resources(chan);
1918         return ret;
1919 }
1920
1921 static int fill_image(struct ipu_image_convert_ctx *ctx,
1922                       struct ipu_image_convert_image *ic_image,
1923                       struct ipu_image *image,
1924                       enum ipu_image_convert_type type)
1925 {
1926         struct ipu_image_convert_priv *priv = ctx->chan->priv;
1927
1928         ic_image->base = *image;
1929         ic_image->type = type;
1930
1931         ic_image->fmt = get_format(image->pix.pixelformat);
1932         if (!ic_image->fmt) {
1933                 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1934                         type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1935                 return -EINVAL;
1936         }
1937
1938         if (ic_image->fmt->planar)
1939                 ic_image->stride = ic_image->base.pix.width;
1940         else
1941                 ic_image->stride  = ic_image->base.pix.bytesperline;
1942
1943         return 0;
1944 }
1945
1946 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1947 static unsigned int clamp_align(unsigned int x, unsigned int min,
1948                                 unsigned int max, unsigned int align)
1949 {
1950         /* Bits that must be zero to be aligned */
1951         unsigned int mask = ~((1 << align) - 1);
1952
1953         /* Clamp to aligned min and max */
1954         x = clamp(x, (min + ~mask) & mask, max & mask);
1955
1956         /* Round to nearest aligned value */
1957         if (align)
1958                 x = (x + (1 << (align - 1))) & mask;
1959
1960         return x;
1961 }
1962
1963 /* Adjusts input/output images to IPU restrictions */
1964 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1965                               enum ipu_rotate_mode rot_mode)
1966 {
1967         const struct ipu_image_pixfmt *infmt, *outfmt;
1968         u32 w_align_out, h_align_out;
1969         u32 w_align_in, h_align_in;
1970
1971         infmt = get_format(in->pix.pixelformat);
1972         outfmt = get_format(out->pix.pixelformat);
1973
1974         /* set some default pixel formats if needed */
1975         if (!infmt) {
1976                 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1977                 infmt = get_format(V4L2_PIX_FMT_RGB24);
1978         }
1979         if (!outfmt) {
1980                 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981                 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1982         }
1983
1984         /* image converter does not handle fields */
1985         in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1986
1987         /* resizer cannot downsize more than 4:1 */
1988         if (ipu_rot_mode_is_irt(rot_mode)) {
1989                 out->pix.height = max_t(__u32, out->pix.height,
1990                                         in->pix.width / 4);
1991                 out->pix.width = max_t(__u32, out->pix.width,
1992                                        in->pix.height / 4);
1993         } else {
1994                 out->pix.width = max_t(__u32, out->pix.width,
1995                                        in->pix.width / 4);
1996                 out->pix.height = max_t(__u32, out->pix.height,
1997                                         in->pix.height / 4);
1998         }
1999
2000         /* align input width/height */
2001         w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2002                                             rot_mode));
2003         h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2004                                              rot_mode));
2005         in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2006                                     w_align_in);
2007         in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2008                                      h_align_in);
2009
2010         /* align output width/height */
2011         w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2012                                              rot_mode));
2013         h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2014                                               rot_mode));
2015         out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2016                                      w_align_out);
2017         out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2018                                       h_align_out);
2019
2020         /* set input/output strides and image sizes */
2021         in->pix.bytesperline = infmt->planar ?
2022                 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2023                             w_align_in) :
2024                 clamp_align((in->pix.width * infmt->bpp) >> 3,
2025                             ((2 << w_align_in) * infmt->bpp) >> 3,
2026                             (MAX_W * infmt->bpp) >> 3,
2027                             w_align_in);
2028         in->pix.sizeimage = infmt->planar ?
2029                 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2030                 in->pix.height * in->pix.bytesperline;
2031         out->pix.bytesperline = outfmt->planar ? out->pix.width :
2032                 (out->pix.width * outfmt->bpp) >> 3;
2033         out->pix.sizeimage = outfmt->planar ?
2034                 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2035                 out->pix.height * out->pix.bytesperline;
2036 }
2037 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2038
2039 /*
2040  * this is used by ipu_image_convert_prepare() to verify set input and
2041  * output images are valid before starting the conversion. Clients can
2042  * also call it before calling ipu_image_convert_prepare().
2043  */
2044 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2045                              enum ipu_rotate_mode rot_mode)
2046 {
2047         struct ipu_image testin, testout;
2048
2049         testin = *in;
2050         testout = *out;
2051
2052         ipu_image_convert_adjust(&testin, &testout, rot_mode);
2053
2054         if (testin.pix.width != in->pix.width ||
2055             testin.pix.height != in->pix.height ||
2056             testout.pix.width != out->pix.width ||
2057             testout.pix.height != out->pix.height)
2058                 return -EINVAL;
2059
2060         return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2063
2064 /*
2065  * Call ipu_image_convert_prepare() to prepare for the conversion of
2066  * given images and rotation mode. Returns a new conversion context.
2067  */
2068 struct ipu_image_convert_ctx *
2069 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2070                           struct ipu_image *in, struct ipu_image *out,
2071                           enum ipu_rotate_mode rot_mode,
2072                           ipu_image_convert_cb_t complete,
2073                           void *complete_context)
2074 {
2075         struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2076         struct ipu_image_convert_image *s_image, *d_image;
2077         struct ipu_image_convert_chan *chan;
2078         struct ipu_image_convert_ctx *ctx;
2079         unsigned long flags;
2080         unsigned int i;
2081         bool get_res;
2082         int ret;
2083
2084         if (!in || !out || !complete ||
2085             (ic_task != IC_TASK_VIEWFINDER &&
2086              ic_task != IC_TASK_POST_PROCESSOR))
2087                 return ERR_PTR(-EINVAL);
2088
2089         /* verify the in/out images before continuing */
2090         ret = ipu_image_convert_verify(in, out, rot_mode);
2091         if (ret) {
2092                 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2093                         __func__);
2094                 return ERR_PTR(ret);
2095         }
2096
2097         chan = &priv->chan[ic_task];
2098
2099         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2100         if (!ctx)
2101                 return ERR_PTR(-ENOMEM);
2102
2103         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2104                 chan->ic_task, ctx);
2105
2106         ctx->chan = chan;
2107         init_completion(&ctx->aborted);
2108
2109         ctx->rot_mode = rot_mode;
2110
2111         /* Sets ctx->in.num_rows/cols as well */
2112         ret = calc_image_resize_coefficients(ctx, in, out);
2113         if (ret)
2114                 goto out_free;
2115
2116         s_image = &ctx->in;
2117         d_image = &ctx->out;
2118
2119         /* set tiling and rotation */
2120         if (ipu_rot_mode_is_irt(rot_mode)) {
2121                 d_image->num_rows = s_image->num_cols;
2122                 d_image->num_cols = s_image->num_rows;
2123         } else {
2124                 d_image->num_rows = s_image->num_rows;
2125                 d_image->num_cols = s_image->num_cols;
2126         }
2127
2128         ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2129
2130         ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2131         if (ret)
2132                 goto out_free;
2133         ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2134         if (ret)
2135                 goto out_free;
2136
2137         calc_out_tile_map(ctx);
2138
2139         find_seams(ctx, s_image, d_image);
2140
2141         ret = calc_tile_dimensions(ctx, s_image);
2142         if (ret)
2143                 goto out_free;
2144
2145         ret = calc_tile_offsets(ctx, s_image);
2146         if (ret)
2147                 goto out_free;
2148
2149         calc_tile_dimensions(ctx, d_image);
2150         ret = calc_tile_offsets(ctx, d_image);
2151         if (ret)
2152                 goto out_free;
2153
2154         calc_tile_resize_coefficients(ctx);
2155
2156         ret = ipu_ic_calc_csc(&ctx->csc,
2157                         s_image->base.pix.ycbcr_enc,
2158                         s_image->base.pix.quantization,
2159                         ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2160                         d_image->base.pix.ycbcr_enc,
2161                         d_image->base.pix.quantization,
2162                         ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2163         if (ret)
2164                 goto out_free;
2165
2166         dump_format(ctx, s_image);
2167         dump_format(ctx, d_image);
2168
2169         ctx->complete = complete;
2170         ctx->complete_context = complete_context;
2171
2172         /*
2173          * Can we use double-buffering for this operation? If there is
2174          * only one tile (the whole image can be converted in a single
2175          * operation) there's no point in using double-buffering. Also,
2176          * the IPU's IDMAC channels allow only a single U and V plane
2177          * offset shared between both buffers, but these offsets change
2178          * for every tile, and therefore would have to be updated for
2179          * each buffer which is not possible. So double-buffering is
2180          * impossible when either the source or destination images are
2181          * a planar format (YUV420, YUV422P, etc.). Further, differently
2182          * sized tiles or different resizing coefficients per tile
2183          * prevent double-buffering as well.
2184          */
2185         ctx->double_buffering = (ctx->num_tiles > 1 &&
2186                                  !s_image->fmt->planar &&
2187                                  !d_image->fmt->planar);
2188         for (i = 1; i < ctx->num_tiles; i++) {
2189                 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2190                     ctx->in.tile[i].height != ctx->in.tile[0].height ||
2191                     ctx->out.tile[i].width != ctx->out.tile[0].width ||
2192                     ctx->out.tile[i].height != ctx->out.tile[0].height) {
2193                         ctx->double_buffering = false;
2194                         break;
2195                 }
2196         }
2197         for (i = 1; i < ctx->in.num_cols; i++) {
2198                 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2199                         ctx->double_buffering = false;
2200                         break;
2201                 }
2202         }
2203         for (i = 1; i < ctx->in.num_rows; i++) {
2204                 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2205                         ctx->double_buffering = false;
2206                         break;
2207                 }
2208         }
2209
2210         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2211                 unsigned long intermediate_size = d_image->tile[0].size;
2212
2213                 for (i = 1; i < ctx->num_tiles; i++) {
2214                         if (d_image->tile[i].size > intermediate_size)
2215                                 intermediate_size = d_image->tile[i].size;
2216                 }
2217
2218                 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2219                                     intermediate_size);
2220                 if (ret)
2221                         goto out_free;
2222                 if (ctx->double_buffering) {
2223                         ret = alloc_dma_buf(priv,
2224                                             &ctx->rot_intermediate[1],
2225                                             intermediate_size);
2226                         if (ret)
2227                                 goto out_free_dmabuf0;
2228                 }
2229         }
2230
2231         spin_lock_irqsave(&chan->irqlock, flags);
2232
2233         get_res = list_empty(&chan->ctx_list);
2234
2235         list_add_tail(&ctx->list, &chan->ctx_list);
2236
2237         spin_unlock_irqrestore(&chan->irqlock, flags);
2238
2239         if (get_res) {
2240                 ret = get_ipu_resources(chan);
2241                 if (ret)
2242                         goto out_free_dmabuf1;
2243         }
2244
2245         return ctx;
2246
2247 out_free_dmabuf1:
2248         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2249         spin_lock_irqsave(&chan->irqlock, flags);
2250         list_del(&ctx->list);
2251         spin_unlock_irqrestore(&chan->irqlock, flags);
2252 out_free_dmabuf0:
2253         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2254 out_free:
2255         kfree(ctx);
2256         return ERR_PTR(ret);
2257 }
2258 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2259
2260 /*
2261  * Carry out a single image conversion run. Only the physaddr's of the input
2262  * and output image buffers are needed. The conversion context must have
2263  * been created previously with ipu_image_convert_prepare().
2264  */
2265 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2266 {
2267         struct ipu_image_convert_chan *chan;
2268         struct ipu_image_convert_priv *priv;
2269         struct ipu_image_convert_ctx *ctx;
2270         unsigned long flags;
2271         int ret = 0;
2272
2273         if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2274                 return -EINVAL;
2275
2276         ctx = run->ctx;
2277         chan = ctx->chan;
2278         priv = chan->priv;
2279
2280         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2281                 chan->ic_task, ctx, run);
2282
2283         INIT_LIST_HEAD(&run->list);
2284
2285         spin_lock_irqsave(&chan->irqlock, flags);
2286
2287         if (ctx->aborting) {
2288                 ret = -EIO;
2289                 goto unlock;
2290         }
2291
2292         list_add_tail(&run->list, &chan->pending_q);
2293
2294         if (!chan->current_run) {
2295                 ret = do_run(run);
2296                 if (ret)
2297                         chan->current_run = NULL;
2298         }
2299 unlock:
2300         spin_unlock_irqrestore(&chan->irqlock, flags);
2301         return ret;
2302 }
2303 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2304
2305 /* Abort any active or pending conversions for this context */
2306 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2307 {
2308         struct ipu_image_convert_chan *chan = ctx->chan;
2309         struct ipu_image_convert_priv *priv = chan->priv;
2310         struct ipu_image_convert_run *run, *active_run, *tmp;
2311         unsigned long flags;
2312         int run_count, ret;
2313
2314         spin_lock_irqsave(&chan->irqlock, flags);
2315
2316         /* move all remaining pending runs in this context to done_q */
2317         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2318                 if (run->ctx != ctx)
2319                         continue;
2320                 run->status = -EIO;
2321                 list_move_tail(&run->list, &chan->done_q);
2322         }
2323
2324         run_count = get_run_count(ctx, &chan->done_q);
2325         active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2326                 chan->current_run : NULL;
2327
2328         if (active_run)
2329                 reinit_completion(&ctx->aborted);
2330
2331         ctx->aborting = true;
2332
2333         spin_unlock_irqrestore(&chan->irqlock, flags);
2334
2335         if (!run_count && !active_run) {
2336                 dev_dbg(priv->ipu->dev,
2337                         "%s: task %u: no abort needed for ctx %p\n",
2338                         __func__, chan->ic_task, ctx);
2339                 return;
2340         }
2341
2342         if (!active_run) {
2343                 empty_done_q(chan);
2344                 return;
2345         }
2346
2347         dev_dbg(priv->ipu->dev,
2348                 "%s: task %u: wait for completion: %d runs\n",
2349                 __func__, chan->ic_task, run_count);
2350
2351         ret = wait_for_completion_timeout(&ctx->aborted,
2352                                           msecs_to_jiffies(10000));
2353         if (ret == 0) {
2354                 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2355                 force_abort(ctx);
2356         }
2357 }
2358
2359 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2360 {
2361         __ipu_image_convert_abort(ctx);
2362         ctx->aborting = false;
2363 }
2364 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2365
2366 /* Unprepare image conversion context */
2367 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2368 {
2369         struct ipu_image_convert_chan *chan = ctx->chan;
2370         struct ipu_image_convert_priv *priv = chan->priv;
2371         unsigned long flags;
2372         bool put_res;
2373
2374         /* make sure no runs are hanging around */
2375         __ipu_image_convert_abort(ctx);
2376
2377         dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2378                 chan->ic_task, ctx);
2379
2380         spin_lock_irqsave(&chan->irqlock, flags);
2381
2382         list_del(&ctx->list);
2383
2384         put_res = list_empty(&chan->ctx_list);
2385
2386         spin_unlock_irqrestore(&chan->irqlock, flags);
2387
2388         if (put_res)
2389                 release_ipu_resources(chan);
2390
2391         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2392         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2393
2394         kfree(ctx);
2395 }
2396 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2397
2398 /*
2399  * "Canned" asynchronous single image conversion. Allocates and returns
2400  * a new conversion run.  On successful return the caller must free the
2401  * run and call ipu_image_convert_unprepare() after conversion completes.
2402  */
2403 struct ipu_image_convert_run *
2404 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2405                   struct ipu_image *in, struct ipu_image *out,
2406                   enum ipu_rotate_mode rot_mode,
2407                   ipu_image_convert_cb_t complete,
2408                   void *complete_context)
2409 {
2410         struct ipu_image_convert_ctx *ctx;
2411         struct ipu_image_convert_run *run;
2412         int ret;
2413
2414         ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2415                                         complete, complete_context);
2416         if (IS_ERR(ctx))
2417                 return ERR_CAST(ctx);
2418
2419         run = kzalloc(sizeof(*run), GFP_KERNEL);
2420         if (!run) {
2421                 ipu_image_convert_unprepare(ctx);
2422                 return ERR_PTR(-ENOMEM);
2423         }
2424
2425         run->ctx = ctx;
2426         run->in_phys = in->phys0;
2427         run->out_phys = out->phys0;
2428
2429         ret = ipu_image_convert_queue(run);
2430         if (ret) {
2431                 ipu_image_convert_unprepare(ctx);
2432                 kfree(run);
2433                 return ERR_PTR(ret);
2434         }
2435
2436         return run;
2437 }
2438 EXPORT_SYMBOL_GPL(ipu_image_convert);
2439
2440 /* "Canned" synchronous single image conversion */
2441 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2442                                         void *data)
2443 {
2444         struct completion *comp = data;
2445
2446         complete(comp);
2447 }
2448
2449 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2450                            struct ipu_image *in, struct ipu_image *out,
2451                            enum ipu_rotate_mode rot_mode)
2452 {
2453         struct ipu_image_convert_run *run;
2454         struct completion comp;
2455         int ret;
2456
2457         init_completion(&comp);
2458
2459         run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2460                                 image_convert_sync_complete, &comp);
2461         if (IS_ERR(run))
2462                 return PTR_ERR(run);
2463
2464         ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2465         ret = (ret == 0) ? -ETIMEDOUT : 0;
2466
2467         ipu_image_convert_unprepare(run->ctx);
2468         kfree(run);
2469
2470         return ret;
2471 }
2472 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2473
2474 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2475 {
2476         struct ipu_image_convert_priv *priv;
2477         int i;
2478
2479         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2480         if (!priv)
2481                 return -ENOMEM;
2482
2483         ipu->image_convert_priv = priv;
2484         priv->ipu = ipu;
2485
2486         for (i = 0; i < IC_NUM_TASKS; i++) {
2487                 struct ipu_image_convert_chan *chan = &priv->chan[i];
2488
2489                 chan->ic_task = i;
2490                 chan->priv = priv;
2491                 chan->dma_ch = &image_convert_dma_chan[i];
2492                 chan->in_eof_irq = -1;
2493                 chan->rot_in_eof_irq = -1;
2494                 chan->out_eof_irq = -1;
2495                 chan->rot_out_eof_irq = -1;
2496
2497                 spin_lock_init(&chan->irqlock);
2498                 INIT_LIST_HEAD(&chan->ctx_list);
2499                 INIT_LIST_HEAD(&chan->pending_q);
2500                 INIT_LIST_HEAD(&chan->done_q);
2501         }
2502
2503         return 0;
2504 }
2505
2506 void ipu_image_convert_exit(struct ipu_soc *ipu)
2507 {
2508 }