Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[linux-2.6-microblaze.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71
72 enum ipu_image_convert_type {
73         IMAGE_CONVERT_IN = 0,
74         IMAGE_CONVERT_OUT,
75 };
76
77 struct ipu_image_convert_dma_buf {
78         void          *virt;
79         dma_addr_t    phys;
80         unsigned long len;
81 };
82
83 struct ipu_image_convert_dma_chan {
84         int in;
85         int out;
86         int rot_in;
87         int rot_out;
88         int vdi_in_p;
89         int vdi_in;
90         int vdi_in_n;
91 };
92
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95         u32 width;
96         u32 height;
97         u32 left;
98         u32 top;
99         /* size and strides are in bytes */
100         u32 size;
101         u32 stride;
102         u32 rot_stride;
103         /* start Y or packed offset of this tile */
104         u32 offset;
105         /* offset from start to tile in U plane, for planar formats */
106         u32 u_off;
107         /* offset from start to tile in V plane, for planar formats */
108         u32 v_off;
109 };
110
111 struct ipu_image_convert_image {
112         struct ipu_image base;
113         enum ipu_image_convert_type type;
114
115         const struct ipu_image_pixfmt *fmt;
116         unsigned int stride;
117
118         /* # of rows (horizontal stripes) if dest height is > 1024 */
119         unsigned int num_rows;
120         /* # of columns (vertical stripes) if dest width is > 1024 */
121         unsigned int num_cols;
122
123         struct ipu_image_tile tile[MAX_TILES];
124 };
125
126 struct ipu_image_pixfmt {
127         u32     fourcc;        /* V4L2 fourcc */
128         int     bpp;           /* total bpp */
129         int     uv_width_dec;  /* decimation in width for U/V planes */
130         int     uv_height_dec; /* decimation in height for U/V planes */
131         bool    planar;        /* planar format */
132         bool    uv_swapped;    /* U and V planes are swapped */
133         bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139
140 enum eof_irq_mask {
141         EOF_IRQ_IN      = BIT(0),
142         EOF_IRQ_ROT_IN  = BIT(1),
143         EOF_IRQ_OUT     = BIT(2),
144         EOF_IRQ_ROT_OUT = BIT(3),
145 };
146
147 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |        \
149                               EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
150
151 struct ipu_image_convert_ctx {
152         struct ipu_image_convert_chan *chan;
153
154         ipu_image_convert_cb_t complete;
155         void *complete_context;
156
157         /* Source/destination image data and rotation mode */
158         struct ipu_image_convert_image in;
159         struct ipu_image_convert_image out;
160         struct ipu_ic_csc csc;
161         enum ipu_rotate_mode rot_mode;
162         u32 downsize_coeff_h;
163         u32 downsize_coeff_v;
164         u32 image_resize_coeff_h;
165         u32 image_resize_coeff_v;
166         u32 resize_coeffs_h[MAX_STRIPES_W];
167         u32 resize_coeffs_v[MAX_STRIPES_H];
168
169         /* intermediate buffer for rotation */
170         struct ipu_image_convert_dma_buf rot_intermediate[2];
171
172         /* current buffer number for double buffering */
173         int cur_buf_num;
174
175         bool aborting;
176         struct completion aborted;
177
178         /* can we use double-buffering for this conversion operation? */
179         bool double_buffering;
180         /* num_rows * num_cols */
181         unsigned int num_tiles;
182         /* next tile to process */
183         unsigned int next_tile;
184         /* where to place converted tile in dest image */
185         unsigned int out_tile_map[MAX_TILES];
186
187         /* mask of completed EOF irqs at every tile conversion */
188         enum eof_irq_mask eof_mask;
189
190         struct list_head list;
191 };
192
193 struct ipu_image_convert_chan {
194         struct ipu_image_convert_priv *priv;
195
196         enum ipu_ic_task ic_task;
197         const struct ipu_image_convert_dma_chan *dma_ch;
198
199         struct ipu_ic *ic;
200         struct ipuv3_channel *in_chan;
201         struct ipuv3_channel *out_chan;
202         struct ipuv3_channel *rotation_in_chan;
203         struct ipuv3_channel *rotation_out_chan;
204
205         /* the IPU end-of-frame irqs */
206         int in_eof_irq;
207         int rot_in_eof_irq;
208         int out_eof_irq;
209         int rot_out_eof_irq;
210
211         spinlock_t irqlock;
212
213         /* list of convert contexts */
214         struct list_head ctx_list;
215         /* queue of conversion runs */
216         struct list_head pending_q;
217         /* queue of completed runs */
218         struct list_head done_q;
219
220         /* the current conversion run */
221         struct ipu_image_convert_run *current_run;
222 };
223
224 struct ipu_image_convert_priv {
225         struct ipu_image_convert_chan chan[IC_NUM_TASKS];
226         struct ipu_soc *ipu;
227 };
228
229 static const struct ipu_image_convert_dma_chan
230 image_convert_dma_chan[IC_NUM_TASKS] = {
231         [IC_TASK_VIEWFINDER] = {
232                 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233                 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234                 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235                 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236                 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237                 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238                 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
239         },
240         [IC_TASK_POST_PROCESSOR] = {
241                 .in = IPUV3_CHANNEL_MEM_IC_PP,
242                 .out = IPUV3_CHANNEL_IC_PP_MEM,
243                 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244                 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
245         },
246 };
247
248 static const struct ipu_image_pixfmt image_convert_formats[] = {
249         {
250                 .fourcc = V4L2_PIX_FMT_RGB565,
251                 .bpp    = 16,
252         }, {
253                 .fourcc = V4L2_PIX_FMT_RGB24,
254                 .bpp    = 24,
255         }, {
256                 .fourcc = V4L2_PIX_FMT_BGR24,
257                 .bpp    = 24,
258         }, {
259                 .fourcc = V4L2_PIX_FMT_RGB32,
260                 .bpp    = 32,
261         }, {
262                 .fourcc = V4L2_PIX_FMT_BGR32,
263                 .bpp    = 32,
264         }, {
265                 .fourcc = V4L2_PIX_FMT_XRGB32,
266                 .bpp    = 32,
267         }, {
268                 .fourcc = V4L2_PIX_FMT_XBGR32,
269                 .bpp    = 32,
270         }, {
271                 .fourcc = V4L2_PIX_FMT_BGRX32,
272                 .bpp    = 32,
273         }, {
274                 .fourcc = V4L2_PIX_FMT_RGBX32,
275                 .bpp    = 32,
276         }, {
277                 .fourcc = V4L2_PIX_FMT_YUYV,
278                 .bpp    = 16,
279                 .uv_width_dec = 2,
280                 .uv_height_dec = 1,
281         }, {
282                 .fourcc = V4L2_PIX_FMT_UYVY,
283                 .bpp    = 16,
284                 .uv_width_dec = 2,
285                 .uv_height_dec = 1,
286         }, {
287                 .fourcc = V4L2_PIX_FMT_YUV420,
288                 .bpp    = 12,
289                 .planar = true,
290                 .uv_width_dec = 2,
291                 .uv_height_dec = 2,
292         }, {
293                 .fourcc = V4L2_PIX_FMT_YVU420,
294                 .bpp    = 12,
295                 .planar = true,
296                 .uv_width_dec = 2,
297                 .uv_height_dec = 2,
298                 .uv_swapped = true,
299         }, {
300                 .fourcc = V4L2_PIX_FMT_NV12,
301                 .bpp    = 12,
302                 .planar = true,
303                 .uv_width_dec = 2,
304                 .uv_height_dec = 2,
305                 .uv_packed = true,
306         }, {
307                 .fourcc = V4L2_PIX_FMT_YUV422P,
308                 .bpp    = 16,
309                 .planar = true,
310                 .uv_width_dec = 2,
311                 .uv_height_dec = 1,
312         }, {
313                 .fourcc = V4L2_PIX_FMT_NV16,
314                 .bpp    = 16,
315                 .planar = true,
316                 .uv_width_dec = 2,
317                 .uv_height_dec = 1,
318                 .uv_packed = true,
319         },
320 };
321
322 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
323 {
324         const struct ipu_image_pixfmt *ret = NULL;
325         unsigned int i;
326
327         for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328                 if (image_convert_formats[i].fourcc == fourcc) {
329                         ret = &image_convert_formats[i];
330                         break;
331                 }
332         }
333
334         return ret;
335 }
336
337 static void dump_format(struct ipu_image_convert_ctx *ctx,
338                         struct ipu_image_convert_image *ic_image)
339 {
340         struct ipu_image_convert_chan *chan = ctx->chan;
341         struct ipu_image_convert_priv *priv = chan->priv;
342
343         dev_dbg(priv->ipu->dev,
344                 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
345                 chan->ic_task, ctx,
346                 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347                 ic_image->base.pix.width, ic_image->base.pix.height,
348                 ic_image->num_cols, ic_image->num_rows,
349                 ic_image->fmt->fourcc & 0xff,
350                 (ic_image->fmt->fourcc >> 8) & 0xff,
351                 (ic_image->fmt->fourcc >> 16) & 0xff,
352                 (ic_image->fmt->fourcc >> 24) & 0xff);
353 }
354
355 int ipu_image_convert_enum_format(int index, u32 *fourcc)
356 {
357         const struct ipu_image_pixfmt *fmt;
358
359         if (index >= (int)ARRAY_SIZE(image_convert_formats))
360                 return -EINVAL;
361
362         /* Format found */
363         fmt = &image_convert_formats[index];
364         *fourcc = fmt->fourcc;
365         return 0;
366 }
367 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
368
369 static void free_dma_buf(struct ipu_image_convert_priv *priv,
370                          struct ipu_image_convert_dma_buf *buf)
371 {
372         if (buf->virt)
373                 dma_free_coherent(priv->ipu->dev,
374                                   buf->len, buf->virt, buf->phys);
375         buf->virt = NULL;
376         buf->phys = 0;
377 }
378
379 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380                          struct ipu_image_convert_dma_buf *buf,
381                          int size)
382 {
383         buf->len = PAGE_ALIGN(size);
384         buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385                                        GFP_DMA | GFP_KERNEL);
386         if (!buf->virt) {
387                 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
388                 return -ENOMEM;
389         }
390
391         return 0;
392 }
393
394 static inline int num_stripes(int dim)
395 {
396         return (dim - 1) / 1024 + 1;
397 }
398
399 /*
400  * Calculate downsizing coefficients, which are the same for all tiles,
401  * and initial bilinear resizing coefficients, which are used to find the
402  * best seam positions.
403  * Also determine the number of tiles necessary to guarantee that no tile
404  * is larger than 1024 pixels in either dimension at the output and between
405  * IC downsizing and main processing sections.
406  */
407 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408                                           struct ipu_image *in,
409                                           struct ipu_image *out)
410 {
411         u32 downsized_width = in->rect.width;
412         u32 downsized_height = in->rect.height;
413         u32 downsize_coeff_v = 0;
414         u32 downsize_coeff_h = 0;
415         u32 resized_width = out->rect.width;
416         u32 resized_height = out->rect.height;
417         u32 resize_coeff_h;
418         u32 resize_coeff_v;
419         u32 cols;
420         u32 rows;
421
422         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423                 resized_width = out->rect.height;
424                 resized_height = out->rect.width;
425         }
426
427         /* Do not let invalid input lead to an endless loop below */
428         if (WARN_ON(resized_width == 0 || resized_height == 0))
429                 return -EINVAL;
430
431         while (downsized_width >= resized_width * 2) {
432                 downsized_width >>= 1;
433                 downsize_coeff_h++;
434         }
435
436         while (downsized_height >= resized_height * 2) {
437                 downsized_height >>= 1;
438                 downsize_coeff_v++;
439         }
440
441         /*
442          * Calculate the bilinear resizing coefficients that could be used if
443          * we were converting with a single tile. The bottom right output pixel
444          * should sample as close as possible to the bottom right input pixel
445          * out of the decimator, but not overshoot it:
446          */
447         resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448         resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
449
450         /*
451          * Both the output of the IC downsizing section before being passed to
452          * the IC main processing section and the final output of the IC main
453          * processing section must be <= 1024 pixels in both dimensions.
454          */
455         cols = num_stripes(max_t(u32, downsized_width, resized_width));
456         rows = num_stripes(max_t(u32, downsized_height, resized_height));
457
458         dev_dbg(ctx->chan->priv->ipu->dev,
459                 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460                 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461                 resize_coeff_v, cols, rows);
462
463         if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
464             resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
465                 return -EINVAL;
466
467         ctx->downsize_coeff_h = downsize_coeff_h;
468         ctx->downsize_coeff_v = downsize_coeff_v;
469         ctx->image_resize_coeff_h = resize_coeff_h;
470         ctx->image_resize_coeff_v = resize_coeff_v;
471         ctx->in.num_cols = cols;
472         ctx->in.num_rows = rows;
473
474         return 0;
475 }
476
477 #define round_closest(x, y) round_down((x) + (y)/2, (y))
478
479 /*
480  * Find the best aligned seam position for the given column / row index.
481  * Rotation and image offsets are out of scope.
482  *
483  * @index: column / row index, used to calculate valid interval
484  * @in_edge: input right / bottom edge
485  * @out_edge: output right / bottom edge
486  * @in_align: input alignment, either horizontal 8-byte line start address
487  *            alignment, or pixel alignment due to image format
488  * @out_align: output alignment, either horizontal 8-byte line start address
489  *             alignment, or pixel alignment due to image format or rotator
490  *             block size
491  * @in_burst: horizontal input burst size in case of horizontal flip
492  * @out_burst: horizontal output burst size or rotator block size
493  * @downsize_coeff: downsizing section coefficient
494  * @resize_coeff: main processing section resizing coefficient
495  * @_in_seam: aligned input seam position return value
496  * @_out_seam: aligned output seam position return value
497  */
498 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
499                            unsigned int index,
500                            unsigned int in_edge,
501                            unsigned int out_edge,
502                            unsigned int in_align,
503                            unsigned int out_align,
504                            unsigned int in_burst,
505                            unsigned int out_burst,
506                            unsigned int downsize_coeff,
507                            unsigned int resize_coeff,
508                            u32 *_in_seam,
509                            u32 *_out_seam)
510 {
511         struct device *dev = ctx->chan->priv->ipu->dev;
512         unsigned int out_pos;
513         /* Input / output seam position candidates */
514         unsigned int out_seam = 0;
515         unsigned int in_seam = 0;
516         unsigned int min_diff = UINT_MAX;
517         unsigned int out_start;
518         unsigned int out_end;
519         unsigned int in_start;
520         unsigned int in_end;
521
522         /* Start within 1024 pixels of the right / bottom edge */
523         out_start = max_t(int, index * out_align, out_edge - 1024);
524         /* End before having to add more columns to the left / rows above */
525         out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
526
527         /*
528          * Limit input seam position to make sure that the downsized input tile
529          * to the right or bottom does not exceed 1024 pixels.
530          */
531         in_start = max_t(int, index * in_align,
532                          in_edge - (1024 << downsize_coeff));
533         in_end = min_t(unsigned int, in_edge,
534                        index * (1024 << downsize_coeff) + 1);
535
536         /*
537          * Output tiles must start at a multiple of 8 bytes horizontally and
538          * possibly at an even line horizontally depending on the pixel format.
539          * Only consider output aligned positions for the seam.
540          */
541         out_start = round_up(out_start, out_align);
542         for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
543                 unsigned int in_pos;
544                 unsigned int in_pos_aligned;
545                 unsigned int in_pos_rounded;
546                 unsigned int abs_diff;
547
548                 /*
549                  * Tiles in the right row / bottom column may not be allowed to
550                  * overshoot horizontally / vertically. out_burst may be the
551                  * actual DMA burst size, or the rotator block size.
552                  */
553                 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
554                         continue;
555
556                 /*
557                  * Input sample position, corresponding to out_pos, 19.13 fixed
558                  * point.
559                  */
560                 in_pos = (out_pos * resize_coeff) << downsize_coeff;
561                 /*
562                  * The closest input sample position that we could actually
563                  * start the input tile at, 19.13 fixed point.
564                  */
565                 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566                 /* Convert 19.13 fixed point to integer */
567                 in_pos_rounded = in_pos_aligned / 8192U;
568
569                 if (in_pos_rounded < in_start)
570                         continue;
571                 if (in_pos_rounded >= in_end)
572                         break;
573
574                 if ((in_burst > 1) &&
575                     (in_edge - in_pos_rounded) % in_burst)
576                         continue;
577
578                 if (in_pos < in_pos_aligned)
579                         abs_diff = in_pos_aligned - in_pos;
580                 else
581                         abs_diff = in_pos - in_pos_aligned;
582
583                 if (abs_diff < min_diff) {
584                         in_seam = in_pos_rounded;
585                         out_seam = out_pos;
586                         min_diff = abs_diff;
587                 }
588         }
589
590         *_out_seam = out_seam;
591         *_in_seam = in_seam;
592
593         dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594                 __func__, out_seam, out_align, out_start, out_end,
595                 in_seam, in_align, in_start, in_end, min_diff / 8192,
596                 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
597 }
598
599 /*
600  * Tile left edges are required to be aligned to multiples of 8 bytes
601  * by the IDMAC.
602  */
603 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
604 {
605         if (fmt->planar)
606                 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
607         else
608                 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
609 }
610
611 /*
612  * Tile top edge alignment is only limited by chroma subsampling.
613  */
614 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
615 {
616         return fmt->uv_height_dec > 1 ? 2 : 1;
617 }
618
619 static inline u32 tile_width_align(enum ipu_image_convert_type type,
620                                    const struct ipu_image_pixfmt *fmt,
621                                    enum ipu_rotate_mode rot_mode)
622 {
623         if (type == IMAGE_CONVERT_IN) {
624                 /*
625                  * The IC burst reads 8 pixels at a time. Reading beyond the
626                  * end of the line is usually acceptable. Those pixels are
627                  * ignored, unless the IC has to write the scaled line in
628                  * reverse.
629                  */
630                 return (!ipu_rot_mode_is_irt(rot_mode) &&
631                         (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
632         }
633
634         /*
635          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636          * formats to guarantee 8-byte aligned line start addresses in the
637          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638          * for all other formats.
639          */
640         return (ipu_rot_mode_is_irt(rot_mode) &&
641                 fmt->planar && !fmt->uv_packed) ?
642                 8 * fmt->uv_width_dec : 8;
643 }
644
645 static inline u32 tile_height_align(enum ipu_image_convert_type type,
646                                     const struct ipu_image_pixfmt *fmt,
647                                     enum ipu_rotate_mode rot_mode)
648 {
649         if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
650                 return 2;
651
652         /*
653          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654          * formats to guarantee 8-byte aligned line start addresses in the
655          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656          * for all other formats.
657          */
658         return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
659 }
660
661 /*
662  * Fill in left position and width and for all tiles in an input column, and
663  * for all corresponding output tiles. If the 90° rotator is used, the output
664  * tiles are in a row, and output tile top position and height are set.
665  */
666 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
667                              unsigned int col,
668                              struct ipu_image_convert_image *in,
669                              unsigned int in_left, unsigned int in_width,
670                              struct ipu_image_convert_image *out,
671                              unsigned int out_left, unsigned int out_width)
672 {
673         unsigned int row, tile_idx;
674         struct ipu_image_tile *in_tile, *out_tile;
675
676         for (row = 0; row < in->num_rows; row++) {
677                 tile_idx = in->num_cols * row + col;
678                 in_tile = &in->tile[tile_idx];
679                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
680
681                 in_tile->left = in_left;
682                 in_tile->width = in_width;
683
684                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685                         out_tile->top = out_left;
686                         out_tile->height = out_width;
687                 } else {
688                         out_tile->left = out_left;
689                         out_tile->width = out_width;
690                 }
691         }
692 }
693
694 /*
695  * Fill in top position and height and for all tiles in an input row, and
696  * for all corresponding output tiles. If the 90° rotator is used, the output
697  * tiles are in a column, and output tile left position and width are set.
698  */
699 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700                           struct ipu_image_convert_image *in,
701                           unsigned int in_top, unsigned int in_height,
702                           struct ipu_image_convert_image *out,
703                           unsigned int out_top, unsigned int out_height)
704 {
705         unsigned int col, tile_idx;
706         struct ipu_image_tile *in_tile, *out_tile;
707
708         for (col = 0; col < in->num_cols; col++) {
709                 tile_idx = in->num_cols * row + col;
710                 in_tile = &in->tile[tile_idx];
711                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
712
713                 in_tile->top = in_top;
714                 in_tile->height = in_height;
715
716                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717                         out_tile->left = out_top;
718                         out_tile->width = out_height;
719                 } else {
720                         out_tile->top = out_top;
721                         out_tile->height = out_height;
722                 }
723         }
724 }
725
726 /*
727  * Find the best horizontal and vertical seam positions to split into tiles.
728  * Minimize the fractional part of the input sampling position for the
729  * top / left pixels of each tile.
730  */
731 static void find_seams(struct ipu_image_convert_ctx *ctx,
732                        struct ipu_image_convert_image *in,
733                        struct ipu_image_convert_image *out)
734 {
735         struct device *dev = ctx->chan->priv->ipu->dev;
736         unsigned int resized_width = out->base.rect.width;
737         unsigned int resized_height = out->base.rect.height;
738         unsigned int col;
739         unsigned int row;
740         unsigned int in_left_align = tile_left_align(in->fmt);
741         unsigned int in_top_align = tile_top_align(in->fmt);
742         unsigned int out_left_align = tile_left_align(out->fmt);
743         unsigned int out_top_align = tile_top_align(out->fmt);
744         unsigned int out_width_align = tile_width_align(out->type, out->fmt,
745                                                         ctx->rot_mode);
746         unsigned int out_height_align = tile_height_align(out->type, out->fmt,
747                                                           ctx->rot_mode);
748         unsigned int in_right = in->base.rect.width;
749         unsigned int in_bottom = in->base.rect.height;
750         unsigned int out_right = out->base.rect.width;
751         unsigned int out_bottom = out->base.rect.height;
752         unsigned int flipped_out_left;
753         unsigned int flipped_out_top;
754
755         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756                 /* Switch width/height and align top left to IRT block size */
757                 resized_width = out->base.rect.height;
758                 resized_height = out->base.rect.width;
759                 out_left_align = out_height_align;
760                 out_top_align = out_width_align;
761                 out_width_align = out_left_align;
762                 out_height_align = out_top_align;
763                 out_right = out->base.rect.height;
764                 out_bottom = out->base.rect.width;
765         }
766
767         for (col = in->num_cols - 1; col > 0; col--) {
768                 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769                                           !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770                 bool allow_out_overshoot = (col < in->num_cols - 1) &&
771                                            !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772                 unsigned int in_left;
773                 unsigned int out_left;
774
775                 /*
776                  * Align input width to burst length if the scaling step flips
777                  * horizontally.
778                  */
779
780                 find_best_seam(ctx, col,
781                                in_right, out_right,
782                                in_left_align, out_left_align,
783                                allow_in_overshoot ? 1 : 8 /* burst length */,
784                                allow_out_overshoot ? 1 : out_width_align,
785                                ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786                                &in_left, &out_left);
787
788                 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789                         flipped_out_left = resized_width - out_right;
790                 else
791                         flipped_out_left = out_left;
792
793                 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794                                  out, flipped_out_left, out_right - out_left);
795
796                 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797                         in_left, in_right - in_left,
798                         flipped_out_left, out_right - out_left);
799
800                 in_right = in_left;
801                 out_right = out_left;
802         }
803
804         flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805                            resized_width - out_right : 0;
806
807         fill_tile_column(ctx, 0, in, 0, in_right,
808                          out, flipped_out_left, out_right);
809
810         dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811                 in_right, flipped_out_left, out_right);
812
813         for (row = in->num_rows - 1; row > 0; row--) {
814                 bool allow_overshoot = row < in->num_rows - 1;
815                 unsigned int in_top;
816                 unsigned int out_top;
817
818                 find_best_seam(ctx, row,
819                                in_bottom, out_bottom,
820                                in_top_align, out_top_align,
821                                1, allow_overshoot ? 1 : out_height_align,
822                                ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
823                                &in_top, &out_top);
824
825                 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826                     ipu_rot_mode_is_irt(ctx->rot_mode))
827                         flipped_out_top = resized_height - out_bottom;
828                 else
829                         flipped_out_top = out_top;
830
831                 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832                               out, flipped_out_top, out_bottom - out_top);
833
834                 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835                         in_top, in_bottom - in_top,
836                         flipped_out_top, out_bottom - out_top);
837
838                 in_bottom = in_top;
839                 out_bottom = out_top;
840         }
841
842         if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843             ipu_rot_mode_is_irt(ctx->rot_mode))
844                 flipped_out_top = resized_height - out_bottom;
845         else
846                 flipped_out_top = 0;
847
848         fill_tile_row(ctx, 0, in, 0, in_bottom,
849                       out, flipped_out_top, out_bottom);
850
851         dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852                 in_bottom, flipped_out_top, out_bottom);
853 }
854
855 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856                                 struct ipu_image_convert_image *image)
857 {
858         struct ipu_image_convert_chan *chan = ctx->chan;
859         struct ipu_image_convert_priv *priv = chan->priv;
860         unsigned int max_width = 1024;
861         unsigned int max_height = 1024;
862         unsigned int i;
863
864         if (image->type == IMAGE_CONVERT_IN) {
865                 /* Up to 4096x4096 input tile size */
866                 max_width <<= ctx->downsize_coeff_h;
867                 max_height <<= ctx->downsize_coeff_v;
868         }
869
870         for (i = 0; i < ctx->num_tiles; i++) {
871                 struct ipu_image_tile *tile;
872                 const unsigned int row = i / image->num_cols;
873                 const unsigned int col = i % image->num_cols;
874
875                 if (image->type == IMAGE_CONVERT_OUT)
876                         tile = &image->tile[ctx->out_tile_map[i]];
877                 else
878                         tile = &image->tile[i];
879
880                 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
881                         tile->width;
882
883                 if (image->fmt->planar) {
884                         tile->stride = tile->width;
885                         tile->rot_stride = tile->height;
886                 } else {
887                         tile->stride =
888                                 (image->fmt->bpp * tile->width) >> 3;
889                         tile->rot_stride =
890                                 (image->fmt->bpp * tile->height) >> 3;
891                 }
892
893                 dev_dbg(priv->ipu->dev,
894                         "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895                         chan->ic_task, ctx,
896                         image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
897                         row, col,
898                         tile->width, tile->height, tile->left, tile->top);
899
900                 if (!tile->width || tile->width > max_width ||
901                     !tile->height || tile->height > max_height) {
902                         dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903                                 image->type == IMAGE_CONVERT_IN ? "input" :
904                                 "output", tile->width, tile->height);
905                         return -EINVAL;
906                 }
907         }
908
909         return 0;
910 }
911
912 /*
913  * Use the rotation transformation to find the tile coordinates
914  * (row, col) of a tile in the destination frame that corresponds
915  * to the given tile coordinates of a source frame. The destination
916  * coordinate is then converted to a tile index.
917  */
918 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919                                 int src_row, int src_col)
920 {
921         struct ipu_image_convert_chan *chan = ctx->chan;
922         struct ipu_image_convert_priv *priv = chan->priv;
923         struct ipu_image_convert_image *s_image = &ctx->in;
924         struct ipu_image_convert_image *d_image = &ctx->out;
925         int dst_row, dst_col;
926
927         /* with no rotation it's a 1:1 mapping */
928         if (ctx->rot_mode == IPU_ROTATE_NONE)
929                 return src_row * s_image->num_cols + src_col;
930
931         /*
932          * before doing the transform, first we have to translate
933          * source row,col for an origin in the center of s_image
934          */
935         src_row = src_row * 2 - (s_image->num_rows - 1);
936         src_col = src_col * 2 - (s_image->num_cols - 1);
937
938         /* do the rotation transform */
939         if (ctx->rot_mode & IPU_ROT_BIT_90) {
940                 dst_col = -src_row;
941                 dst_row = src_col;
942         } else {
943                 dst_col = src_col;
944                 dst_row = src_row;
945         }
946
947         /* apply flip */
948         if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
949                 dst_col = -dst_col;
950         if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
951                 dst_row = -dst_row;
952
953         dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954                 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
955
956         /*
957          * finally translate dest row,col using an origin in upper
958          * left of d_image
959          */
960         dst_row += d_image->num_rows - 1;
961         dst_col += d_image->num_cols - 1;
962         dst_row /= 2;
963         dst_col /= 2;
964
965         return dst_row * d_image->num_cols + dst_col;
966 }
967
968 /*
969  * Fill the out_tile_map[] with transformed destination tile indeces.
970  */
971 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
972 {
973         struct ipu_image_convert_image *s_image = &ctx->in;
974         unsigned int row, col, tile = 0;
975
976         for (row = 0; row < s_image->num_rows; row++) {
977                 for (col = 0; col < s_image->num_cols; col++) {
978                         ctx->out_tile_map[tile] =
979                                 transform_tile_index(ctx, row, col);
980                         tile++;
981                 }
982         }
983 }
984
985 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986                                     struct ipu_image_convert_image *image)
987 {
988         struct ipu_image_convert_chan *chan = ctx->chan;
989         struct ipu_image_convert_priv *priv = chan->priv;
990         const struct ipu_image_pixfmt *fmt = image->fmt;
991         unsigned int row, col, tile = 0;
992         u32 H, top, y_stride, uv_stride;
993         u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
994         u32 y_row_off, y_col_off, y_off;
995         u32 y_size, uv_size;
996
997         /* setup some convenience vars */
998         H = image->base.pix.height;
999
1000         y_stride = image->stride;
1001         uv_stride = y_stride / fmt->uv_width_dec;
1002         if (fmt->uv_packed)
1003                 uv_stride *= 2;
1004
1005         y_size = H * y_stride;
1006         uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1007
1008         for (row = 0; row < image->num_rows; row++) {
1009                 top = image->tile[tile].top;
1010                 y_row_off = top * y_stride;
1011                 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1012
1013                 for (col = 0; col < image->num_cols; col++) {
1014                         y_col_off = image->tile[tile].left;
1015                         uv_col_off = y_col_off / fmt->uv_width_dec;
1016                         if (fmt->uv_packed)
1017                                 uv_col_off *= 2;
1018
1019                         y_off = y_row_off + y_col_off;
1020                         uv_off = uv_row_off + uv_col_off;
1021
1022                         u_off = y_size - y_off + uv_off;
1023                         v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024                         if (fmt->uv_swapped) {
1025                                 tmp = u_off;
1026                                 u_off = v_off;
1027                                 v_off = tmp;
1028                         }
1029
1030                         image->tile[tile].offset = y_off;
1031                         image->tile[tile].u_off = u_off;
1032                         image->tile[tile++].v_off = v_off;
1033
1034                         if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1035                                 dev_err(priv->ipu->dev,
1036                                         "task %u: ctx %p: %s@[%d,%d]: "
1037                                         "y_off %08x, u_off %08x, v_off %08x\n",
1038                                         chan->ic_task, ctx,
1039                                         image->type == IMAGE_CONVERT_IN ?
1040                                         "Input" : "Output", row, col,
1041                                         y_off, u_off, v_off);
1042                                 return -EINVAL;
1043                         }
1044                 }
1045         }
1046
1047         return 0;
1048 }
1049
1050 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1051                                     struct ipu_image_convert_image *image)
1052 {
1053         struct ipu_image_convert_chan *chan = ctx->chan;
1054         struct ipu_image_convert_priv *priv = chan->priv;
1055         const struct ipu_image_pixfmt *fmt = image->fmt;
1056         unsigned int row, col, tile = 0;
1057         u32 bpp, stride, offset;
1058         u32 row_off, col_off;
1059
1060         /* setup some convenience vars */
1061         stride = image->stride;
1062         bpp = fmt->bpp;
1063
1064         for (row = 0; row < image->num_rows; row++) {
1065                 row_off = image->tile[tile].top * stride;
1066
1067                 for (col = 0; col < image->num_cols; col++) {
1068                         col_off = (image->tile[tile].left * bpp) >> 3;
1069
1070                         offset = row_off + col_off;
1071
1072                         image->tile[tile].offset = offset;
1073                         image->tile[tile].u_off = 0;
1074                         image->tile[tile++].v_off = 0;
1075
1076                         if (offset & 0x7) {
1077                                 dev_err(priv->ipu->dev,
1078                                         "task %u: ctx %p: %s@[%d,%d]: "
1079                                         "phys %08x\n",
1080                                         chan->ic_task, ctx,
1081                                         image->type == IMAGE_CONVERT_IN ?
1082                                         "Input" : "Output", row, col,
1083                                         row_off + col_off);
1084                                 return -EINVAL;
1085                         }
1086                 }
1087         }
1088
1089         return 0;
1090 }
1091
1092 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1093                               struct ipu_image_convert_image *image)
1094 {
1095         if (image->fmt->planar)
1096                 return calc_tile_offsets_planar(ctx, image);
1097
1098         return calc_tile_offsets_packed(ctx, image);
1099 }
1100
1101 /*
1102  * Calculate the resizing ratio for the IC main processing section given input
1103  * size, fixed downsizing coefficient, and output size.
1104  * Either round to closest for the next tile's first pixel to minimize seams
1105  * and distortion (for all but right column / bottom row), or round down to
1106  * avoid sampling beyond the edges of the input image for this tile's last
1107  * pixel.
1108  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1109  */
1110 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1111                              u32 output_size, bool allow_overshoot)
1112 {
1113         u32 downsized = input_size >> downsize_coeff;
1114
1115         if (allow_overshoot)
1116                 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1117         else
1118                 return 8192 * (downsized - 1) / (output_size - 1);
1119 }
1120
1121 /*
1122  * Slightly modify resize coefficients per tile to hide the bilinear
1123  * interpolator reset at tile borders, shifting the right / bottom edge
1124  * by up to a half input pixel. This removes noticeable seams between
1125  * tiles at higher upscaling factors.
1126  */
1127 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1128 {
1129         struct ipu_image_convert_chan *chan = ctx->chan;
1130         struct ipu_image_convert_priv *priv = chan->priv;
1131         struct ipu_image_tile *in_tile, *out_tile;
1132         unsigned int col, row, tile_idx;
1133         unsigned int last_output;
1134
1135         for (col = 0; col < ctx->in.num_cols; col++) {
1136                 bool closest = (col < ctx->in.num_cols - 1) &&
1137                                !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1138                 u32 resized_width;
1139                 u32 resize_coeff_h;
1140                 u32 in_width;
1141
1142                 tile_idx = col;
1143                 in_tile = &ctx->in.tile[tile_idx];
1144                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1145
1146                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1147                         resized_width = out_tile->height;
1148                 else
1149                         resized_width = out_tile->width;
1150
1151                 resize_coeff_h = calc_resize_coeff(in_tile->width,
1152                                                    ctx->downsize_coeff_h,
1153                                                    resized_width, closest);
1154
1155                 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1156                         __func__, col, resize_coeff_h);
1157
1158                 /*
1159                  * With the horizontal scaling factor known, round up resized
1160                  * width (output width or height) to burst size.
1161                  */
1162                 resized_width = round_up(resized_width, 8);
1163
1164                 /*
1165                  * Calculate input width from the last accessed input pixel
1166                  * given resized width and scaling coefficients. Round up to
1167                  * burst size.
1168                  */
1169                 last_output = resized_width - 1;
1170                 if (closest && ((last_output * resize_coeff_h) % 8192))
1171                         last_output++;
1172                 in_width = round_up(
1173                         (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1174                         << ctx->downsize_coeff_h, 8);
1175
1176                 for (row = 0; row < ctx->in.num_rows; row++) {
1177                         tile_idx = row * ctx->in.num_cols + col;
1178                         in_tile = &ctx->in.tile[tile_idx];
1179                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1180
1181                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1182                                 out_tile->height = resized_width;
1183                         else
1184                                 out_tile->width = resized_width;
1185
1186                         in_tile->width = in_width;
1187                 }
1188
1189                 ctx->resize_coeffs_h[col] = resize_coeff_h;
1190         }
1191
1192         for (row = 0; row < ctx->in.num_rows; row++) {
1193                 bool closest = (row < ctx->in.num_rows - 1) &&
1194                                !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1195                 u32 resized_height;
1196                 u32 resize_coeff_v;
1197                 u32 in_height;
1198
1199                 tile_idx = row * ctx->in.num_cols;
1200                 in_tile = &ctx->in.tile[tile_idx];
1201                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1202
1203                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1204                         resized_height = out_tile->width;
1205                 else
1206                         resized_height = out_tile->height;
1207
1208                 resize_coeff_v = calc_resize_coeff(in_tile->height,
1209                                                    ctx->downsize_coeff_v,
1210                                                    resized_height, closest);
1211
1212                 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1213                         __func__, row, resize_coeff_v);
1214
1215                 /*
1216                  * With the vertical scaling factor known, round up resized
1217                  * height (output width or height) to IDMAC limitations.
1218                  */
1219                 resized_height = round_up(resized_height, 2);
1220
1221                 /*
1222                  * Calculate input width from the last accessed input pixel
1223                  * given resized height and scaling coefficients. Align to
1224                  * IDMAC restrictions.
1225                  */
1226                 last_output = resized_height - 1;
1227                 if (closest && ((last_output * resize_coeff_v) % 8192))
1228                         last_output++;
1229                 in_height = round_up(
1230                         (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1231                         << ctx->downsize_coeff_v, 2);
1232
1233                 for (col = 0; col < ctx->in.num_cols; col++) {
1234                         tile_idx = row * ctx->in.num_cols + col;
1235                         in_tile = &ctx->in.tile[tile_idx];
1236                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1237
1238                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1239                                 out_tile->width = resized_height;
1240                         else
1241                                 out_tile->height = resized_height;
1242
1243                         in_tile->height = in_height;
1244                 }
1245
1246                 ctx->resize_coeffs_v[row] = resize_coeff_v;
1247         }
1248 }
1249
1250 /*
1251  * return the number of runs in given queue (pending_q or done_q)
1252  * for this context. hold irqlock when calling.
1253  */
1254 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1255                          struct list_head *q)
1256 {
1257         struct ipu_image_convert_run *run;
1258         int count = 0;
1259
1260         lockdep_assert_held(&ctx->chan->irqlock);
1261
1262         list_for_each_entry(run, q, list) {
1263                 if (run->ctx == ctx)
1264                         count++;
1265         }
1266
1267         return count;
1268 }
1269
1270 static void convert_stop(struct ipu_image_convert_run *run)
1271 {
1272         struct ipu_image_convert_ctx *ctx = run->ctx;
1273         struct ipu_image_convert_chan *chan = ctx->chan;
1274         struct ipu_image_convert_priv *priv = chan->priv;
1275
1276         dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1277                 __func__, chan->ic_task, ctx, run);
1278
1279         /* disable IC tasks and the channels */
1280         ipu_ic_task_disable(chan->ic);
1281         ipu_idmac_disable_channel(chan->in_chan);
1282         ipu_idmac_disable_channel(chan->out_chan);
1283
1284         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1285                 ipu_idmac_disable_channel(chan->rotation_in_chan);
1286                 ipu_idmac_disable_channel(chan->rotation_out_chan);
1287                 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1288         }
1289
1290         ipu_ic_disable(chan->ic);
1291 }
1292
1293 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1294                                struct ipuv3_channel *channel,
1295                                struct ipu_image_convert_image *image,
1296                                enum ipu_rotate_mode rot_mode,
1297                                bool rot_swap_width_height,
1298                                unsigned int tile)
1299 {
1300         struct ipu_image_convert_chan *chan = ctx->chan;
1301         unsigned int burst_size;
1302         u32 width, height, stride;
1303         dma_addr_t addr0, addr1 = 0;
1304         struct ipu_image tile_image;
1305         unsigned int tile_idx[2];
1306
1307         if (image->type == IMAGE_CONVERT_OUT) {
1308                 tile_idx[0] = ctx->out_tile_map[tile];
1309                 tile_idx[1] = ctx->out_tile_map[1];
1310         } else {
1311                 tile_idx[0] = tile;
1312                 tile_idx[1] = 1;
1313         }
1314
1315         if (rot_swap_width_height) {
1316                 width = image->tile[tile_idx[0]].height;
1317                 height = image->tile[tile_idx[0]].width;
1318                 stride = image->tile[tile_idx[0]].rot_stride;
1319                 addr0 = ctx->rot_intermediate[0].phys;
1320                 if (ctx->double_buffering)
1321                         addr1 = ctx->rot_intermediate[1].phys;
1322         } else {
1323                 width = image->tile[tile_idx[0]].width;
1324                 height = image->tile[tile_idx[0]].height;
1325                 stride = image->stride;
1326                 addr0 = image->base.phys0 +
1327                         image->tile[tile_idx[0]].offset;
1328                 if (ctx->double_buffering)
1329                         addr1 = image->base.phys0 +
1330                                 image->tile[tile_idx[1]].offset;
1331         }
1332
1333         ipu_cpmem_zero(channel);
1334
1335         memset(&tile_image, 0, sizeof(tile_image));
1336         tile_image.pix.width = tile_image.rect.width = width;
1337         tile_image.pix.height = tile_image.rect.height = height;
1338         tile_image.pix.bytesperline = stride;
1339         tile_image.pix.pixelformat =  image->fmt->fourcc;
1340         tile_image.phys0 = addr0;
1341         tile_image.phys1 = addr1;
1342         if (image->fmt->planar && !rot_swap_width_height) {
1343                 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1344                 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1345         }
1346
1347         ipu_cpmem_set_image(channel, &tile_image);
1348
1349         if (rot_mode)
1350                 ipu_cpmem_set_rotation(channel, rot_mode);
1351
1352         /*
1353          * Skip writing U and V components to odd rows in the output
1354          * channels for planar 4:2:0.
1355          */
1356         if ((channel == chan->out_chan ||
1357              channel == chan->rotation_out_chan) &&
1358             image->fmt->planar && image->fmt->uv_height_dec == 2)
1359                 ipu_cpmem_skip_odd_chroma_rows(channel);
1360
1361         if (channel == chan->rotation_in_chan ||
1362             channel == chan->rotation_out_chan) {
1363                 burst_size = 8;
1364                 ipu_cpmem_set_block_mode(channel);
1365         } else
1366                 burst_size = (width % 16) ? 8 : 16;
1367
1368         ipu_cpmem_set_burstsize(channel, burst_size);
1369
1370         ipu_ic_task_idma_init(chan->ic, channel, width, height,
1371                               burst_size, rot_mode);
1372
1373         /*
1374          * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1375          * only do this when there is no PRG present.
1376          */
1377         if (!channel->ipu->prg_priv)
1378                 ipu_cpmem_set_axi_id(channel, 1);
1379
1380         ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1381 }
1382
1383 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1384 {
1385         struct ipu_image_convert_ctx *ctx = run->ctx;
1386         struct ipu_image_convert_chan *chan = ctx->chan;
1387         struct ipu_image_convert_priv *priv = chan->priv;
1388         struct ipu_image_convert_image *s_image = &ctx->in;
1389         struct ipu_image_convert_image *d_image = &ctx->out;
1390         unsigned int dst_tile = ctx->out_tile_map[tile];
1391         unsigned int dest_width, dest_height;
1392         unsigned int col, row;
1393         u32 rsc;
1394         int ret;
1395
1396         dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1397                 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1398
1399         /* clear EOF irq mask */
1400         ctx->eof_mask = 0;
1401
1402         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1403                 /* swap width/height for resizer */
1404                 dest_width = d_image->tile[dst_tile].height;
1405                 dest_height = d_image->tile[dst_tile].width;
1406         } else {
1407                 dest_width = d_image->tile[dst_tile].width;
1408                 dest_height = d_image->tile[dst_tile].height;
1409         }
1410
1411         row = tile / s_image->num_cols;
1412         col = tile % s_image->num_cols;
1413
1414         rsc =  (ctx->downsize_coeff_v << 30) |
1415                (ctx->resize_coeffs_v[row] << 16) |
1416                (ctx->downsize_coeff_h << 14) |
1417                (ctx->resize_coeffs_h[col]);
1418
1419         dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1420                 __func__, s_image->tile[tile].width,
1421                 s_image->tile[tile].height, dest_width, dest_height, rsc);
1422
1423         /* setup the IC resizer and CSC */
1424         ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1425                                    s_image->tile[tile].width,
1426                                    s_image->tile[tile].height,
1427                                    dest_width,
1428                                    dest_height,
1429                                    rsc);
1430         if (ret) {
1431                 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1432                 return ret;
1433         }
1434
1435         /* init the source MEM-->IC PP IDMAC channel */
1436         init_idmac_channel(ctx, chan->in_chan, s_image,
1437                            IPU_ROTATE_NONE, false, tile);
1438
1439         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1440                 /* init the IC PP-->MEM IDMAC channel */
1441                 init_idmac_channel(ctx, chan->out_chan, d_image,
1442                                    IPU_ROTATE_NONE, true, tile);
1443
1444                 /* init the MEM-->IC PP ROT IDMAC channel */
1445                 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1446                                    ctx->rot_mode, true, tile);
1447
1448                 /* init the destination IC PP ROT-->MEM IDMAC channel */
1449                 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1450                                    IPU_ROTATE_NONE, false, tile);
1451
1452                 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1453                 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1454         } else {
1455                 /* init the destination IC PP-->MEM IDMAC channel */
1456                 init_idmac_channel(ctx, chan->out_chan, d_image,
1457                                    ctx->rot_mode, false, tile);
1458         }
1459
1460         /* enable the IC */
1461         ipu_ic_enable(chan->ic);
1462
1463         /* set buffers ready */
1464         ipu_idmac_select_buffer(chan->in_chan, 0);
1465         ipu_idmac_select_buffer(chan->out_chan, 0);
1466         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1467                 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1468         if (ctx->double_buffering) {
1469                 ipu_idmac_select_buffer(chan->in_chan, 1);
1470                 ipu_idmac_select_buffer(chan->out_chan, 1);
1471                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1472                         ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1473         }
1474
1475         /* enable the channels! */
1476         ipu_idmac_enable_channel(chan->in_chan);
1477         ipu_idmac_enable_channel(chan->out_chan);
1478         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1479                 ipu_idmac_enable_channel(chan->rotation_in_chan);
1480                 ipu_idmac_enable_channel(chan->rotation_out_chan);
1481         }
1482
1483         ipu_ic_task_enable(chan->ic);
1484
1485         ipu_cpmem_dump(chan->in_chan);
1486         ipu_cpmem_dump(chan->out_chan);
1487         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1488                 ipu_cpmem_dump(chan->rotation_in_chan);
1489                 ipu_cpmem_dump(chan->rotation_out_chan);
1490         }
1491
1492         ipu_dump(priv->ipu);
1493
1494         return 0;
1495 }
1496
1497 /* hold irqlock when calling */
1498 static int do_run(struct ipu_image_convert_run *run)
1499 {
1500         struct ipu_image_convert_ctx *ctx = run->ctx;
1501         struct ipu_image_convert_chan *chan = ctx->chan;
1502
1503         lockdep_assert_held(&chan->irqlock);
1504
1505         ctx->in.base.phys0 = run->in_phys;
1506         ctx->out.base.phys0 = run->out_phys;
1507
1508         ctx->cur_buf_num = 0;
1509         ctx->next_tile = 1;
1510
1511         /* remove run from pending_q and set as current */
1512         list_del(&run->list);
1513         chan->current_run = run;
1514
1515         return convert_start(run, 0);
1516 }
1517
1518 /* hold irqlock when calling */
1519 static void run_next(struct ipu_image_convert_chan *chan)
1520 {
1521         struct ipu_image_convert_priv *priv = chan->priv;
1522         struct ipu_image_convert_run *run, *tmp;
1523         int ret;
1524
1525         lockdep_assert_held(&chan->irqlock);
1526
1527         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1528                 /* skip contexts that are aborting */
1529                 if (run->ctx->aborting) {
1530                         dev_dbg(priv->ipu->dev,
1531                                 "%s: task %u: skipping aborting ctx %p run %p\n",
1532                                 __func__, chan->ic_task, run->ctx, run);
1533                         continue;
1534                 }
1535
1536                 ret = do_run(run);
1537                 if (!ret)
1538                         break;
1539
1540                 /*
1541                  * something went wrong with start, add the run
1542                  * to done q and continue to the next run in the
1543                  * pending q.
1544                  */
1545                 run->status = ret;
1546                 list_add_tail(&run->list, &chan->done_q);
1547                 chan->current_run = NULL;
1548         }
1549 }
1550
1551 static void empty_done_q(struct ipu_image_convert_chan *chan)
1552 {
1553         struct ipu_image_convert_priv *priv = chan->priv;
1554         struct ipu_image_convert_run *run;
1555         unsigned long flags;
1556
1557         spin_lock_irqsave(&chan->irqlock, flags);
1558
1559         while (!list_empty(&chan->done_q)) {
1560                 run = list_entry(chan->done_q.next,
1561                                  struct ipu_image_convert_run,
1562                                  list);
1563
1564                 list_del(&run->list);
1565
1566                 dev_dbg(priv->ipu->dev,
1567                         "%s: task %u: completing ctx %p run %p with %d\n",
1568                         __func__, chan->ic_task, run->ctx, run, run->status);
1569
1570                 /* call the completion callback and free the run */
1571                 spin_unlock_irqrestore(&chan->irqlock, flags);
1572                 run->ctx->complete(run, run->ctx->complete_context);
1573                 spin_lock_irqsave(&chan->irqlock, flags);
1574         }
1575
1576         spin_unlock_irqrestore(&chan->irqlock, flags);
1577 }
1578
1579 /*
1580  * the bottom half thread clears out the done_q, calling the
1581  * completion handler for each.
1582  */
1583 static irqreturn_t do_bh(int irq, void *dev_id)
1584 {
1585         struct ipu_image_convert_chan *chan = dev_id;
1586         struct ipu_image_convert_priv *priv = chan->priv;
1587         struct ipu_image_convert_ctx *ctx;
1588         unsigned long flags;
1589
1590         dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1591                 chan->ic_task);
1592
1593         empty_done_q(chan);
1594
1595         spin_lock_irqsave(&chan->irqlock, flags);
1596
1597         /*
1598          * the done_q is cleared out, signal any contexts
1599          * that are aborting that abort can complete.
1600          */
1601         list_for_each_entry(ctx, &chan->ctx_list, list) {
1602                 if (ctx->aborting) {
1603                         dev_dbg(priv->ipu->dev,
1604                                 "%s: task %u: signaling abort for ctx %p\n",
1605                                 __func__, chan->ic_task, ctx);
1606                         complete_all(&ctx->aborted);
1607                 }
1608         }
1609
1610         spin_unlock_irqrestore(&chan->irqlock, flags);
1611
1612         dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1613                 chan->ic_task);
1614
1615         return IRQ_HANDLED;
1616 }
1617
1618 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1619 {
1620         unsigned int cur_tile = ctx->next_tile - 1;
1621         unsigned int next_tile = ctx->next_tile;
1622
1623         if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1624             ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1625             ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1626             ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1627             ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1628             ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1629             ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1630             ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1631                 return true;
1632
1633         return false;
1634 }
1635
1636 /* hold irqlock when calling */
1637 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1638 {
1639         struct ipu_image_convert_ctx *ctx = run->ctx;
1640         struct ipu_image_convert_chan *chan = ctx->chan;
1641         struct ipu_image_tile *src_tile, *dst_tile;
1642         struct ipu_image_convert_image *s_image = &ctx->in;
1643         struct ipu_image_convert_image *d_image = &ctx->out;
1644         struct ipuv3_channel *outch;
1645         unsigned int dst_idx;
1646
1647         lockdep_assert_held(&chan->irqlock);
1648
1649         outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1650                 chan->rotation_out_chan : chan->out_chan;
1651
1652         /*
1653          * It is difficult to stop the channel DMA before the channels
1654          * enter the paused state. Without double-buffering the channels
1655          * are always in a paused state when the EOF irq occurs, so it
1656          * is safe to stop the channels now. For double-buffering we
1657          * just ignore the abort until the operation completes, when it
1658          * is safe to shut down.
1659          */
1660         if (ctx->aborting && !ctx->double_buffering) {
1661                 convert_stop(run);
1662                 run->status = -EIO;
1663                 goto done;
1664         }
1665
1666         if (ctx->next_tile == ctx->num_tiles) {
1667                 /*
1668                  * the conversion is complete
1669                  */
1670                 convert_stop(run);
1671                 run->status = 0;
1672                 goto done;
1673         }
1674
1675         /*
1676          * not done, place the next tile buffers.
1677          */
1678         if (!ctx->double_buffering) {
1679                 if (ic_settings_changed(ctx)) {
1680                         convert_stop(run);
1681                         convert_start(run, ctx->next_tile);
1682                 } else {
1683                         src_tile = &s_image->tile[ctx->next_tile];
1684                         dst_idx = ctx->out_tile_map[ctx->next_tile];
1685                         dst_tile = &d_image->tile[dst_idx];
1686
1687                         ipu_cpmem_set_buffer(chan->in_chan, 0,
1688                                              s_image->base.phys0 +
1689                                              src_tile->offset);
1690                         ipu_cpmem_set_buffer(outch, 0,
1691                                              d_image->base.phys0 +
1692                                              dst_tile->offset);
1693                         if (s_image->fmt->planar)
1694                                 ipu_cpmem_set_uv_offset(chan->in_chan,
1695                                                         src_tile->u_off,
1696                                                         src_tile->v_off);
1697                         if (d_image->fmt->planar)
1698                                 ipu_cpmem_set_uv_offset(outch,
1699                                                         dst_tile->u_off,
1700                                                         dst_tile->v_off);
1701
1702                         ipu_idmac_select_buffer(chan->in_chan, 0);
1703                         ipu_idmac_select_buffer(outch, 0);
1704                 }
1705         } else if (ctx->next_tile < ctx->num_tiles - 1) {
1706
1707                 src_tile = &s_image->tile[ctx->next_tile + 1];
1708                 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1709                 dst_tile = &d_image->tile[dst_idx];
1710
1711                 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1712                                      s_image->base.phys0 + src_tile->offset);
1713                 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1714                                      d_image->base.phys0 + dst_tile->offset);
1715
1716                 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1717                 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1718
1719                 ctx->cur_buf_num ^= 1;
1720         }
1721
1722         ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1723         ctx->next_tile++;
1724         return IRQ_HANDLED;
1725 done:
1726         list_add_tail(&run->list, &chan->done_q);
1727         chan->current_run = NULL;
1728         run_next(chan);
1729         return IRQ_WAKE_THREAD;
1730 }
1731
1732 static irqreturn_t eof_irq(int irq, void *data)
1733 {
1734         struct ipu_image_convert_chan *chan = data;
1735         struct ipu_image_convert_priv *priv = chan->priv;
1736         struct ipu_image_convert_ctx *ctx;
1737         struct ipu_image_convert_run *run;
1738         irqreturn_t ret = IRQ_HANDLED;
1739         bool tile_complete = false;
1740         unsigned long flags;
1741
1742         spin_lock_irqsave(&chan->irqlock, flags);
1743
1744         /* get current run and its context */
1745         run = chan->current_run;
1746         if (!run) {
1747                 ret = IRQ_NONE;
1748                 goto out;
1749         }
1750
1751         ctx = run->ctx;
1752
1753         if (irq == chan->in_eof_irq) {
1754                 ctx->eof_mask |= EOF_IRQ_IN;
1755         } else if (irq == chan->out_eof_irq) {
1756                 ctx->eof_mask |= EOF_IRQ_OUT;
1757         } else if (irq == chan->rot_in_eof_irq ||
1758                    irq == chan->rot_out_eof_irq) {
1759                 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1760                         /* this was NOT a rotation op, shouldn't happen */
1761                         dev_err(priv->ipu->dev,
1762                                 "Unexpected rotation interrupt\n");
1763                         goto out;
1764                 }
1765                 ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1766                         EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1767         } else {
1768                 dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1769                 ret = IRQ_NONE;
1770                 goto out;
1771         }
1772
1773         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1774                 tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1775         else
1776                 tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1777
1778         if (tile_complete)
1779                 ret = do_tile_complete(run);
1780 out:
1781         spin_unlock_irqrestore(&chan->irqlock, flags);
1782         return ret;
1783 }
1784
1785 /*
1786  * try to force the completion of runs for this ctx. Called when
1787  * abort wait times out in ipu_image_convert_abort().
1788  */
1789 static void force_abort(struct ipu_image_convert_ctx *ctx)
1790 {
1791         struct ipu_image_convert_chan *chan = ctx->chan;
1792         struct ipu_image_convert_run *run;
1793         unsigned long flags;
1794
1795         spin_lock_irqsave(&chan->irqlock, flags);
1796
1797         run = chan->current_run;
1798         if (run && run->ctx == ctx) {
1799                 convert_stop(run);
1800                 run->status = -EIO;
1801                 list_add_tail(&run->list, &chan->done_q);
1802                 chan->current_run = NULL;
1803                 run_next(chan);
1804         }
1805
1806         spin_unlock_irqrestore(&chan->irqlock, flags);
1807
1808         empty_done_q(chan);
1809 }
1810
1811 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1812 {
1813         if (chan->in_eof_irq >= 0)
1814                 free_irq(chan->in_eof_irq, chan);
1815         if (chan->rot_in_eof_irq >= 0)
1816                 free_irq(chan->rot_in_eof_irq, chan);
1817         if (chan->out_eof_irq >= 0)
1818                 free_irq(chan->out_eof_irq, chan);
1819         if (chan->rot_out_eof_irq >= 0)
1820                 free_irq(chan->rot_out_eof_irq, chan);
1821
1822         if (!IS_ERR_OR_NULL(chan->in_chan))
1823                 ipu_idmac_put(chan->in_chan);
1824         if (!IS_ERR_OR_NULL(chan->out_chan))
1825                 ipu_idmac_put(chan->out_chan);
1826         if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1827                 ipu_idmac_put(chan->rotation_in_chan);
1828         if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1829                 ipu_idmac_put(chan->rotation_out_chan);
1830         if (!IS_ERR_OR_NULL(chan->ic))
1831                 ipu_ic_put(chan->ic);
1832
1833         chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1834                 chan->rotation_out_chan = NULL;
1835         chan->in_eof_irq = -1;
1836         chan->rot_in_eof_irq = -1;
1837         chan->out_eof_irq = -1;
1838         chan->rot_out_eof_irq = -1;
1839 }
1840
1841 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1842                        struct ipuv3_channel *channel)
1843 {
1844         struct ipu_image_convert_priv *priv = chan->priv;
1845         int ret, irq;
1846
1847         irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1848
1849         ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1850         if (ret < 0) {
1851                 dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1852                 return ret;
1853         }
1854
1855         return irq;
1856 }
1857
1858 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1859 {
1860         const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1861         struct ipu_image_convert_priv *priv = chan->priv;
1862         int ret;
1863
1864         /* get IC */
1865         chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1866         if (IS_ERR(chan->ic)) {
1867                 dev_err(priv->ipu->dev, "could not acquire IC\n");
1868                 ret = PTR_ERR(chan->ic);
1869                 goto err;
1870         }
1871
1872         /* get IDMAC channels */
1873         chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1874         chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1875         if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1876                 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1877                 ret = -EBUSY;
1878                 goto err;
1879         }
1880
1881         chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1882         chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1883         if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1884                 dev_err(priv->ipu->dev,
1885                         "could not acquire idmac rotation channels\n");
1886                 ret = -EBUSY;
1887                 goto err;
1888         }
1889
1890         /* acquire the EOF interrupts */
1891         ret = get_eof_irq(chan, chan->in_chan);
1892         if (ret < 0) {
1893                 chan->in_eof_irq = -1;
1894                 goto err;
1895         }
1896         chan->in_eof_irq = ret;
1897
1898         ret = get_eof_irq(chan, chan->rotation_in_chan);
1899         if (ret < 0) {
1900                 chan->rot_in_eof_irq = -1;
1901                 goto err;
1902         }
1903         chan->rot_in_eof_irq = ret;
1904
1905         ret = get_eof_irq(chan, chan->out_chan);
1906         if (ret < 0) {
1907                 chan->out_eof_irq = -1;
1908                 goto err;
1909         }
1910         chan->out_eof_irq = ret;
1911
1912         ret = get_eof_irq(chan, chan->rotation_out_chan);
1913         if (ret < 0) {
1914                 chan->rot_out_eof_irq = -1;
1915                 goto err;
1916         }
1917         chan->rot_out_eof_irq = ret;
1918
1919         return 0;
1920 err:
1921         release_ipu_resources(chan);
1922         return ret;
1923 }
1924
1925 static int fill_image(struct ipu_image_convert_ctx *ctx,
1926                       struct ipu_image_convert_image *ic_image,
1927                       struct ipu_image *image,
1928                       enum ipu_image_convert_type type)
1929 {
1930         struct ipu_image_convert_priv *priv = ctx->chan->priv;
1931
1932         ic_image->base = *image;
1933         ic_image->type = type;
1934
1935         ic_image->fmt = get_format(image->pix.pixelformat);
1936         if (!ic_image->fmt) {
1937                 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1938                         type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1939                 return -EINVAL;
1940         }
1941
1942         if (ic_image->fmt->planar)
1943                 ic_image->stride = ic_image->base.pix.width;
1944         else
1945                 ic_image->stride  = ic_image->base.pix.bytesperline;
1946
1947         return 0;
1948 }
1949
1950 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1951 static unsigned int clamp_align(unsigned int x, unsigned int min,
1952                                 unsigned int max, unsigned int align)
1953 {
1954         /* Bits that must be zero to be aligned */
1955         unsigned int mask = ~((1 << align) - 1);
1956
1957         /* Clamp to aligned min and max */
1958         x = clamp(x, (min + ~mask) & mask, max & mask);
1959
1960         /* Round to nearest aligned value */
1961         if (align)
1962                 x = (x + (1 << (align - 1))) & mask;
1963
1964         return x;
1965 }
1966
1967 /* Adjusts input/output images to IPU restrictions */
1968 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1969                               enum ipu_rotate_mode rot_mode)
1970 {
1971         const struct ipu_image_pixfmt *infmt, *outfmt;
1972         u32 w_align_out, h_align_out;
1973         u32 w_align_in, h_align_in;
1974
1975         infmt = get_format(in->pix.pixelformat);
1976         outfmt = get_format(out->pix.pixelformat);
1977
1978         /* set some default pixel formats if needed */
1979         if (!infmt) {
1980                 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981                 infmt = get_format(V4L2_PIX_FMT_RGB24);
1982         }
1983         if (!outfmt) {
1984                 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1985                 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1986         }
1987
1988         /* image converter does not handle fields */
1989         in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1990
1991         /* resizer cannot downsize more than 4:1 */
1992         if (ipu_rot_mode_is_irt(rot_mode)) {
1993                 out->pix.height = max_t(__u32, out->pix.height,
1994                                         in->pix.width / 4);
1995                 out->pix.width = max_t(__u32, out->pix.width,
1996                                        in->pix.height / 4);
1997         } else {
1998                 out->pix.width = max_t(__u32, out->pix.width,
1999                                        in->pix.width / 4);
2000                 out->pix.height = max_t(__u32, out->pix.height,
2001                                         in->pix.height / 4);
2002         }
2003
2004         /* align input width/height */
2005         w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2006                                             rot_mode));
2007         h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2008                                              rot_mode));
2009         in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2010                                     w_align_in);
2011         in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2012                                      h_align_in);
2013
2014         /* align output width/height */
2015         w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2016                                              rot_mode));
2017         h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2018                                               rot_mode));
2019         out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2020                                      w_align_out);
2021         out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2022                                       h_align_out);
2023
2024         /* set input/output strides and image sizes */
2025         in->pix.bytesperline = infmt->planar ?
2026                 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2027                             w_align_in) :
2028                 clamp_align((in->pix.width * infmt->bpp) >> 3,
2029                             ((2 << w_align_in) * infmt->bpp) >> 3,
2030                             (MAX_W * infmt->bpp) >> 3,
2031                             w_align_in);
2032         in->pix.sizeimage = infmt->planar ?
2033                 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2034                 in->pix.height * in->pix.bytesperline;
2035         out->pix.bytesperline = outfmt->planar ? out->pix.width :
2036                 (out->pix.width * outfmt->bpp) >> 3;
2037         out->pix.sizeimage = outfmt->planar ?
2038                 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2039                 out->pix.height * out->pix.bytesperline;
2040 }
2041 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2042
2043 /*
2044  * this is used by ipu_image_convert_prepare() to verify set input and
2045  * output images are valid before starting the conversion. Clients can
2046  * also call it before calling ipu_image_convert_prepare().
2047  */
2048 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2049                              enum ipu_rotate_mode rot_mode)
2050 {
2051         struct ipu_image testin, testout;
2052
2053         testin = *in;
2054         testout = *out;
2055
2056         ipu_image_convert_adjust(&testin, &testout, rot_mode);
2057
2058         if (testin.pix.width != in->pix.width ||
2059             testin.pix.height != in->pix.height ||
2060             testout.pix.width != out->pix.width ||
2061             testout.pix.height != out->pix.height)
2062                 return -EINVAL;
2063
2064         return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2067
2068 /*
2069  * Call ipu_image_convert_prepare() to prepare for the conversion of
2070  * given images and rotation mode. Returns a new conversion context.
2071  */
2072 struct ipu_image_convert_ctx *
2073 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2074                           struct ipu_image *in, struct ipu_image *out,
2075                           enum ipu_rotate_mode rot_mode,
2076                           ipu_image_convert_cb_t complete,
2077                           void *complete_context)
2078 {
2079         struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2080         struct ipu_image_convert_image *s_image, *d_image;
2081         struct ipu_image_convert_chan *chan;
2082         struct ipu_image_convert_ctx *ctx;
2083         unsigned long flags;
2084         unsigned int i;
2085         bool get_res;
2086         int ret;
2087
2088         if (!in || !out || !complete ||
2089             (ic_task != IC_TASK_VIEWFINDER &&
2090              ic_task != IC_TASK_POST_PROCESSOR))
2091                 return ERR_PTR(-EINVAL);
2092
2093         /* verify the in/out images before continuing */
2094         ret = ipu_image_convert_verify(in, out, rot_mode);
2095         if (ret) {
2096                 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2097                         __func__);
2098                 return ERR_PTR(ret);
2099         }
2100
2101         chan = &priv->chan[ic_task];
2102
2103         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2104         if (!ctx)
2105                 return ERR_PTR(-ENOMEM);
2106
2107         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2108                 chan->ic_task, ctx);
2109
2110         ctx->chan = chan;
2111         init_completion(&ctx->aborted);
2112
2113         ctx->rot_mode = rot_mode;
2114
2115         /* Sets ctx->in.num_rows/cols as well */
2116         ret = calc_image_resize_coefficients(ctx, in, out);
2117         if (ret)
2118                 goto out_free;
2119
2120         s_image = &ctx->in;
2121         d_image = &ctx->out;
2122
2123         /* set tiling and rotation */
2124         if (ipu_rot_mode_is_irt(rot_mode)) {
2125                 d_image->num_rows = s_image->num_cols;
2126                 d_image->num_cols = s_image->num_rows;
2127         } else {
2128                 d_image->num_rows = s_image->num_rows;
2129                 d_image->num_cols = s_image->num_cols;
2130         }
2131
2132         ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2133
2134         ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2135         if (ret)
2136                 goto out_free;
2137         ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2138         if (ret)
2139                 goto out_free;
2140
2141         calc_out_tile_map(ctx);
2142
2143         find_seams(ctx, s_image, d_image);
2144
2145         ret = calc_tile_dimensions(ctx, s_image);
2146         if (ret)
2147                 goto out_free;
2148
2149         ret = calc_tile_offsets(ctx, s_image);
2150         if (ret)
2151                 goto out_free;
2152
2153         calc_tile_dimensions(ctx, d_image);
2154         ret = calc_tile_offsets(ctx, d_image);
2155         if (ret)
2156                 goto out_free;
2157
2158         calc_tile_resize_coefficients(ctx);
2159
2160         ret = ipu_ic_calc_csc(&ctx->csc,
2161                         s_image->base.pix.ycbcr_enc,
2162                         s_image->base.pix.quantization,
2163                         ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2164                         d_image->base.pix.ycbcr_enc,
2165                         d_image->base.pix.quantization,
2166                         ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2167         if (ret)
2168                 goto out_free;
2169
2170         dump_format(ctx, s_image);
2171         dump_format(ctx, d_image);
2172
2173         ctx->complete = complete;
2174         ctx->complete_context = complete_context;
2175
2176         /*
2177          * Can we use double-buffering for this operation? If there is
2178          * only one tile (the whole image can be converted in a single
2179          * operation) there's no point in using double-buffering. Also,
2180          * the IPU's IDMAC channels allow only a single U and V plane
2181          * offset shared between both buffers, but these offsets change
2182          * for every tile, and therefore would have to be updated for
2183          * each buffer which is not possible. So double-buffering is
2184          * impossible when either the source or destination images are
2185          * a planar format (YUV420, YUV422P, etc.). Further, differently
2186          * sized tiles or different resizing coefficients per tile
2187          * prevent double-buffering as well.
2188          */
2189         ctx->double_buffering = (ctx->num_tiles > 1 &&
2190                                  !s_image->fmt->planar &&
2191                                  !d_image->fmt->planar);
2192         for (i = 1; i < ctx->num_tiles; i++) {
2193                 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2194                     ctx->in.tile[i].height != ctx->in.tile[0].height ||
2195                     ctx->out.tile[i].width != ctx->out.tile[0].width ||
2196                     ctx->out.tile[i].height != ctx->out.tile[0].height) {
2197                         ctx->double_buffering = false;
2198                         break;
2199                 }
2200         }
2201         for (i = 1; i < ctx->in.num_cols; i++) {
2202                 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2203                         ctx->double_buffering = false;
2204                         break;
2205                 }
2206         }
2207         for (i = 1; i < ctx->in.num_rows; i++) {
2208                 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2209                         ctx->double_buffering = false;
2210                         break;
2211                 }
2212         }
2213
2214         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2215                 unsigned long intermediate_size = d_image->tile[0].size;
2216
2217                 for (i = 1; i < ctx->num_tiles; i++) {
2218                         if (d_image->tile[i].size > intermediate_size)
2219                                 intermediate_size = d_image->tile[i].size;
2220                 }
2221
2222                 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2223                                     intermediate_size);
2224                 if (ret)
2225                         goto out_free;
2226                 if (ctx->double_buffering) {
2227                         ret = alloc_dma_buf(priv,
2228                                             &ctx->rot_intermediate[1],
2229                                             intermediate_size);
2230                         if (ret)
2231                                 goto out_free_dmabuf0;
2232                 }
2233         }
2234
2235         spin_lock_irqsave(&chan->irqlock, flags);
2236
2237         get_res = list_empty(&chan->ctx_list);
2238
2239         list_add_tail(&ctx->list, &chan->ctx_list);
2240
2241         spin_unlock_irqrestore(&chan->irqlock, flags);
2242
2243         if (get_res) {
2244                 ret = get_ipu_resources(chan);
2245                 if (ret)
2246                         goto out_free_dmabuf1;
2247         }
2248
2249         return ctx;
2250
2251 out_free_dmabuf1:
2252         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2253         spin_lock_irqsave(&chan->irqlock, flags);
2254         list_del(&ctx->list);
2255         spin_unlock_irqrestore(&chan->irqlock, flags);
2256 out_free_dmabuf0:
2257         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2258 out_free:
2259         kfree(ctx);
2260         return ERR_PTR(ret);
2261 }
2262 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2263
2264 /*
2265  * Carry out a single image conversion run. Only the physaddr's of the input
2266  * and output image buffers are needed. The conversion context must have
2267  * been created previously with ipu_image_convert_prepare().
2268  */
2269 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2270 {
2271         struct ipu_image_convert_chan *chan;
2272         struct ipu_image_convert_priv *priv;
2273         struct ipu_image_convert_ctx *ctx;
2274         unsigned long flags;
2275         int ret = 0;
2276
2277         if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2278                 return -EINVAL;
2279
2280         ctx = run->ctx;
2281         chan = ctx->chan;
2282         priv = chan->priv;
2283
2284         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2285                 chan->ic_task, ctx, run);
2286
2287         INIT_LIST_HEAD(&run->list);
2288
2289         spin_lock_irqsave(&chan->irqlock, flags);
2290
2291         if (ctx->aborting) {
2292                 ret = -EIO;
2293                 goto unlock;
2294         }
2295
2296         list_add_tail(&run->list, &chan->pending_q);
2297
2298         if (!chan->current_run) {
2299                 ret = do_run(run);
2300                 if (ret)
2301                         chan->current_run = NULL;
2302         }
2303 unlock:
2304         spin_unlock_irqrestore(&chan->irqlock, flags);
2305         return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2308
2309 /* Abort any active or pending conversions for this context */
2310 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2311 {
2312         struct ipu_image_convert_chan *chan = ctx->chan;
2313         struct ipu_image_convert_priv *priv = chan->priv;
2314         struct ipu_image_convert_run *run, *active_run, *tmp;
2315         unsigned long flags;
2316         int run_count, ret;
2317
2318         spin_lock_irqsave(&chan->irqlock, flags);
2319
2320         /* move all remaining pending runs in this context to done_q */
2321         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2322                 if (run->ctx != ctx)
2323                         continue;
2324                 run->status = -EIO;
2325                 list_move_tail(&run->list, &chan->done_q);
2326         }
2327
2328         run_count = get_run_count(ctx, &chan->done_q);
2329         active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2330                 chan->current_run : NULL;
2331
2332         if (active_run)
2333                 reinit_completion(&ctx->aborted);
2334
2335         ctx->aborting = true;
2336
2337         spin_unlock_irqrestore(&chan->irqlock, flags);
2338
2339         if (!run_count && !active_run) {
2340                 dev_dbg(priv->ipu->dev,
2341                         "%s: task %u: no abort needed for ctx %p\n",
2342                         __func__, chan->ic_task, ctx);
2343                 return;
2344         }
2345
2346         if (!active_run) {
2347                 empty_done_q(chan);
2348                 return;
2349         }
2350
2351         dev_dbg(priv->ipu->dev,
2352                 "%s: task %u: wait for completion: %d runs\n",
2353                 __func__, chan->ic_task, run_count);
2354
2355         ret = wait_for_completion_timeout(&ctx->aborted,
2356                                           msecs_to_jiffies(10000));
2357         if (ret == 0) {
2358                 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2359                 force_abort(ctx);
2360         }
2361 }
2362
2363 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2364 {
2365         __ipu_image_convert_abort(ctx);
2366         ctx->aborting = false;
2367 }
2368 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2369
2370 /* Unprepare image conversion context */
2371 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2372 {
2373         struct ipu_image_convert_chan *chan = ctx->chan;
2374         struct ipu_image_convert_priv *priv = chan->priv;
2375         unsigned long flags;
2376         bool put_res;
2377
2378         /* make sure no runs are hanging around */
2379         __ipu_image_convert_abort(ctx);
2380
2381         dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2382                 chan->ic_task, ctx);
2383
2384         spin_lock_irqsave(&chan->irqlock, flags);
2385
2386         list_del(&ctx->list);
2387
2388         put_res = list_empty(&chan->ctx_list);
2389
2390         spin_unlock_irqrestore(&chan->irqlock, flags);
2391
2392         if (put_res)
2393                 release_ipu_resources(chan);
2394
2395         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2396         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2397
2398         kfree(ctx);
2399 }
2400 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2401
2402 /*
2403  * "Canned" asynchronous single image conversion. Allocates and returns
2404  * a new conversion run.  On successful return the caller must free the
2405  * run and call ipu_image_convert_unprepare() after conversion completes.
2406  */
2407 struct ipu_image_convert_run *
2408 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2409                   struct ipu_image *in, struct ipu_image *out,
2410                   enum ipu_rotate_mode rot_mode,
2411                   ipu_image_convert_cb_t complete,
2412                   void *complete_context)
2413 {
2414         struct ipu_image_convert_ctx *ctx;
2415         struct ipu_image_convert_run *run;
2416         int ret;
2417
2418         ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2419                                         complete, complete_context);
2420         if (IS_ERR(ctx))
2421                 return ERR_CAST(ctx);
2422
2423         run = kzalloc(sizeof(*run), GFP_KERNEL);
2424         if (!run) {
2425                 ipu_image_convert_unprepare(ctx);
2426                 return ERR_PTR(-ENOMEM);
2427         }
2428
2429         run->ctx = ctx;
2430         run->in_phys = in->phys0;
2431         run->out_phys = out->phys0;
2432
2433         ret = ipu_image_convert_queue(run);
2434         if (ret) {
2435                 ipu_image_convert_unprepare(ctx);
2436                 kfree(run);
2437                 return ERR_PTR(ret);
2438         }
2439
2440         return run;
2441 }
2442 EXPORT_SYMBOL_GPL(ipu_image_convert);
2443
2444 /* "Canned" synchronous single image conversion */
2445 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2446                                         void *data)
2447 {
2448         struct completion *comp = data;
2449
2450         complete(comp);
2451 }
2452
2453 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2454                            struct ipu_image *in, struct ipu_image *out,
2455                            enum ipu_rotate_mode rot_mode)
2456 {
2457         struct ipu_image_convert_run *run;
2458         struct completion comp;
2459         int ret;
2460
2461         init_completion(&comp);
2462
2463         run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2464                                 image_convert_sync_complete, &comp);
2465         if (IS_ERR(run))
2466                 return PTR_ERR(run);
2467
2468         ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2469         ret = (ret == 0) ? -ETIMEDOUT : 0;
2470
2471         ipu_image_convert_unprepare(run->ctx);
2472         kfree(run);
2473
2474         return ret;
2475 }
2476 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2477
2478 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2479 {
2480         struct ipu_image_convert_priv *priv;
2481         int i;
2482
2483         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2484         if (!priv)
2485                 return -ENOMEM;
2486
2487         ipu->image_convert_priv = priv;
2488         priv->ipu = ipu;
2489
2490         for (i = 0; i < IC_NUM_TASKS; i++) {
2491                 struct ipu_image_convert_chan *chan = &priv->chan[i];
2492
2493                 chan->ic_task = i;
2494                 chan->priv = priv;
2495                 chan->dma_ch = &image_convert_dma_chan[i];
2496                 chan->in_eof_irq = -1;
2497                 chan->rot_in_eof_irq = -1;
2498                 chan->out_eof_irq = -1;
2499                 chan->rot_out_eof_irq = -1;
2500
2501                 spin_lock_init(&chan->irqlock);
2502                 INIT_LIST_HEAD(&chan->ctx_list);
2503                 INIT_LIST_HEAD(&chan->pending_q);
2504                 INIT_LIST_HEAD(&chan->done_q);
2505         }
2506
2507         return 0;
2508 }
2509
2510 void ipu_image_convert_exit(struct ipu_soc *ipu)
2511 {
2512 }