Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / gpu / drm / xe / xe_guc_submit.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5
6 #include "xe_guc_submit.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13
14 #include <drm/drm_managed.h>
15
16 #include "abi/guc_actions_abi.h"
17 #include "abi/guc_klvs_abi.h"
18 #include "regs/xe_lrc_layout.h"
19 #include "xe_assert.h"
20 #include "xe_devcoredump.h"
21 #include "xe_device.h"
22 #include "xe_exec_queue.h"
23 #include "xe_force_wake.h"
24 #include "xe_gpu_scheduler.h"
25 #include "xe_gt.h"
26 #include "xe_gt_printk.h"
27 #include "xe_guc.h"
28 #include "xe_guc_ct.h"
29 #include "xe_guc_exec_queue_types.h"
30 #include "xe_guc_submit_types.h"
31 #include "xe_hw_engine.h"
32 #include "xe_hw_fence.h"
33 #include "xe_lrc.h"
34 #include "xe_macros.h"
35 #include "xe_map.h"
36 #include "xe_mocs.h"
37 #include "xe_ring_ops_types.h"
38 #include "xe_sched_job.h"
39 #include "xe_trace.h"
40 #include "xe_vm.h"
41
42 static struct xe_guc *
43 exec_queue_to_guc(struct xe_exec_queue *q)
44 {
45         return &q->gt->uc.guc;
46 }
47
48 /*
49  * Helpers for engine state, using an atomic as some of the bits can transition
50  * as the same time (e.g. a suspend can be happning at the same time as schedule
51  * engine done being processed).
52  */
53 #define EXEC_QUEUE_STATE_REGISTERED             (1 << 0)
54 #define ENGINE_STATE_ENABLED            (1 << 1)
55 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2)
56 #define EXEC_QUEUE_STATE_PENDING_DISABLE        (1 << 3)
57 #define EXEC_QUEUE_STATE_DESTROYED              (1 << 4)
58 #define ENGINE_STATE_SUSPENDED          (1 << 5)
59 #define EXEC_QUEUE_STATE_RESET          (1 << 6)
60 #define ENGINE_STATE_KILLED             (1 << 7)
61
62 static bool exec_queue_registered(struct xe_exec_queue *q)
63 {
64         return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
65 }
66
67 static void set_exec_queue_registered(struct xe_exec_queue *q)
68 {
69         atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
70 }
71
72 static void clear_exec_queue_registered(struct xe_exec_queue *q)
73 {
74         atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
75 }
76
77 static bool exec_queue_enabled(struct xe_exec_queue *q)
78 {
79         return atomic_read(&q->guc->state) & ENGINE_STATE_ENABLED;
80 }
81
82 static void set_exec_queue_enabled(struct xe_exec_queue *q)
83 {
84         atomic_or(ENGINE_STATE_ENABLED, &q->guc->state);
85 }
86
87 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
88 {
89         atomic_and(~ENGINE_STATE_ENABLED, &q->guc->state);
90 }
91
92 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
93 {
94         return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
95 }
96
97 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
98 {
99         atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
100 }
101
102 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
103 {
104         atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
105 }
106
107 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
108 {
109         return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
110 }
111
112 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
113 {
114         atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
115 }
116
117 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
118 {
119         atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
120 }
121
122 static bool exec_queue_destroyed(struct xe_exec_queue *q)
123 {
124         return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
125 }
126
127 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
128 {
129         atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
130 }
131
132 static bool exec_queue_banned(struct xe_exec_queue *q)
133 {
134         return (q->flags & EXEC_QUEUE_FLAG_BANNED);
135 }
136
137 static void set_exec_queue_banned(struct xe_exec_queue *q)
138 {
139         q->flags |= EXEC_QUEUE_FLAG_BANNED;
140 }
141
142 static bool exec_queue_suspended(struct xe_exec_queue *q)
143 {
144         return atomic_read(&q->guc->state) & ENGINE_STATE_SUSPENDED;
145 }
146
147 static void set_exec_queue_suspended(struct xe_exec_queue *q)
148 {
149         atomic_or(ENGINE_STATE_SUSPENDED, &q->guc->state);
150 }
151
152 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
153 {
154         atomic_and(~ENGINE_STATE_SUSPENDED, &q->guc->state);
155 }
156
157 static bool exec_queue_reset(struct xe_exec_queue *q)
158 {
159         return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
160 }
161
162 static void set_exec_queue_reset(struct xe_exec_queue *q)
163 {
164         atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
165 }
166
167 static bool exec_queue_killed(struct xe_exec_queue *q)
168 {
169         return atomic_read(&q->guc->state) & ENGINE_STATE_KILLED;
170 }
171
172 static void set_exec_queue_killed(struct xe_exec_queue *q)
173 {
174         atomic_or(ENGINE_STATE_KILLED, &q->guc->state);
175 }
176
177 static bool exec_queue_killed_or_banned(struct xe_exec_queue *q)
178 {
179         return exec_queue_killed(q) || exec_queue_banned(q);
180 }
181
182 #ifdef CONFIG_PROVE_LOCKING
183 static int alloc_submit_wq(struct xe_guc *guc)
184 {
185         int i;
186
187         for (i = 0; i < NUM_SUBMIT_WQ; ++i) {
188                 guc->submission_state.submit_wq_pool[i] =
189                         alloc_ordered_workqueue("submit_wq", 0);
190                 if (!guc->submission_state.submit_wq_pool[i])
191                         goto err_free;
192         }
193
194         return 0;
195
196 err_free:
197         while (i)
198                 destroy_workqueue(guc->submission_state.submit_wq_pool[--i]);
199
200         return -ENOMEM;
201 }
202
203 static void free_submit_wq(struct xe_guc *guc)
204 {
205         int i;
206
207         for (i = 0; i < NUM_SUBMIT_WQ; ++i)
208                 destroy_workqueue(guc->submission_state.submit_wq_pool[i]);
209 }
210
211 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
212 {
213         int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ;
214
215         return guc->submission_state.submit_wq_pool[idx];
216 }
217 #else
218 static int alloc_submit_wq(struct xe_guc *guc)
219 {
220         return 0;
221 }
222
223 static void free_submit_wq(struct xe_guc *guc)
224 {
225
226 }
227
228 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc)
229 {
230         return NULL;
231 }
232 #endif
233
234 static void guc_submit_fini(struct drm_device *drm, void *arg)
235 {
236         struct xe_guc *guc = arg;
237
238         xa_destroy(&guc->submission_state.exec_queue_lookup);
239         ida_destroy(&guc->submission_state.guc_ids);
240         bitmap_free(guc->submission_state.guc_ids_bitmap);
241         free_submit_wq(guc);
242         mutex_destroy(&guc->submission_state.lock);
243 }
244
245 #define GUC_ID_MAX              65535
246 #define GUC_ID_NUMBER_MLRC      4096
247 #define GUC_ID_NUMBER_SLRC      (GUC_ID_MAX - GUC_ID_NUMBER_MLRC)
248 #define GUC_ID_START_MLRC       GUC_ID_NUMBER_SLRC
249
250 static const struct xe_exec_queue_ops guc_exec_queue_ops;
251
252 static void primelockdep(struct xe_guc *guc)
253 {
254         if (!IS_ENABLED(CONFIG_LOCKDEP))
255                 return;
256
257         fs_reclaim_acquire(GFP_KERNEL);
258
259         mutex_lock(&guc->submission_state.lock);
260         might_lock(&guc->submission_state.suspend.lock);
261         mutex_unlock(&guc->submission_state.lock);
262
263         fs_reclaim_release(GFP_KERNEL);
264 }
265
266 int xe_guc_submit_init(struct xe_guc *guc)
267 {
268         struct xe_device *xe = guc_to_xe(guc);
269         struct xe_gt *gt = guc_to_gt(guc);
270         int err;
271
272         guc->submission_state.guc_ids_bitmap =
273                 bitmap_zalloc(GUC_ID_NUMBER_MLRC, GFP_KERNEL);
274         if (!guc->submission_state.guc_ids_bitmap)
275                 return -ENOMEM;
276
277         err = alloc_submit_wq(guc);
278         if (err) {
279                 bitmap_free(guc->submission_state.guc_ids_bitmap);
280                 return err;
281         }
282
283         gt->exec_queue_ops = &guc_exec_queue_ops;
284
285         mutex_init(&guc->submission_state.lock);
286         xa_init(&guc->submission_state.exec_queue_lookup);
287         ida_init(&guc->submission_state.guc_ids);
288
289         spin_lock_init(&guc->submission_state.suspend.lock);
290         guc->submission_state.suspend.context = dma_fence_context_alloc(1);
291
292         primelockdep(guc);
293
294         err = drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
295         if (err)
296                 return err;
297
298         return 0;
299 }
300
301 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
302 {
303         int i;
304
305         lockdep_assert_held(&guc->submission_state.lock);
306
307         for (i = 0; i < xa_count; ++i)
308                 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
309
310         if (xe_exec_queue_is_parallel(q))
311                 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
312                                       q->guc->id - GUC_ID_START_MLRC,
313                                       order_base_2(q->width));
314         else
315                 ida_free(&guc->submission_state.guc_ids, q->guc->id);
316 }
317
318 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
319 {
320         int ret;
321         void *ptr;
322         int i;
323
324         /*
325          * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
326          * worse case user gets -ENOMEM on engine create and has to try again.
327          *
328          * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
329          * failure.
330          */
331         lockdep_assert_held(&guc->submission_state.lock);
332
333         if (xe_exec_queue_is_parallel(q)) {
334                 void *bitmap = guc->submission_state.guc_ids_bitmap;
335
336                 ret = bitmap_find_free_region(bitmap, GUC_ID_NUMBER_MLRC,
337                                               order_base_2(q->width));
338         } else {
339                 ret = ida_alloc_max(&guc->submission_state.guc_ids,
340                                     GUC_ID_NUMBER_SLRC - 1, GFP_NOWAIT);
341         }
342         if (ret < 0)
343                 return ret;
344
345         q->guc->id = ret;
346         if (xe_exec_queue_is_parallel(q))
347                 q->guc->id += GUC_ID_START_MLRC;
348
349         for (i = 0; i < q->width; ++i) {
350                 ptr = xa_store(&guc->submission_state.exec_queue_lookup,
351                                q->guc->id + i, q, GFP_NOWAIT);
352                 if (IS_ERR(ptr)) {
353                         ret = PTR_ERR(ptr);
354                         goto err_release;
355                 }
356         }
357
358         return 0;
359
360 err_release:
361         __release_guc_id(guc, q, i);
362
363         return ret;
364 }
365
366 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
367 {
368         mutex_lock(&guc->submission_state.lock);
369         __release_guc_id(guc, q, q->width);
370         mutex_unlock(&guc->submission_state.lock);
371 }
372
373 struct exec_queue_policy {
374         u32 count;
375         struct guc_update_exec_queue_policy h2g;
376 };
377
378 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
379 {
380         size_t bytes = sizeof(policy->h2g.header) +
381                        (sizeof(policy->h2g.klv[0]) * policy->count);
382
383         return bytes / sizeof(u32);
384 }
385
386 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
387                                               u16 guc_id)
388 {
389         policy->h2g.header.action =
390                 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
391         policy->h2g.header.guc_id = guc_id;
392         policy->count = 0;
393 }
394
395 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
396 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
397                                            u32 data) \
398 { \
399         XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
400 \
401         policy->h2g.klv[policy->count].kl = \
402                 FIELD_PREP(GUC_KLV_0_KEY, \
403                            GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
404                 FIELD_PREP(GUC_KLV_0_LEN, 1); \
405         policy->h2g.klv[policy->count].value = data; \
406         policy->count++; \
407 }
408
409 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
410 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
411 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
412 #undef MAKE_EXEC_QUEUE_POLICY_ADD
413
414 static const int xe_exec_queue_prio_to_guc[] = {
415         [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
416         [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
417         [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
418         [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
419 };
420
421 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
422 {
423         struct exec_queue_policy policy;
424         struct xe_device *xe = guc_to_xe(guc);
425         enum xe_exec_queue_priority prio = q->sched_props.priority;
426         u32 timeslice_us = q->sched_props.timeslice_us;
427         u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
428
429         xe_assert(xe, exec_queue_registered(q));
430
431         __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
432         __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
433         __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
434         __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
435
436         xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
437                        __guc_exec_queue_policy_action_size(&policy), 0, 0);
438 }
439
440 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
441 {
442         struct exec_queue_policy policy;
443
444         __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
445         __guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
446
447         xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
448                        __guc_exec_queue_policy_action_size(&policy), 0, 0);
449 }
450
451 #define parallel_read(xe_, map_, field_) \
452         xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
453                         field_)
454 #define parallel_write(xe_, map_, field_, val_) \
455         xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
456                         field_, val_)
457
458 static void __register_mlrc_engine(struct xe_guc *guc,
459                                    struct xe_exec_queue *q,
460                                    struct guc_ctxt_registration_info *info)
461 {
462 #define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
463         struct xe_device *xe = guc_to_xe(guc);
464         u32 action[MAX_MLRC_REG_SIZE];
465         int len = 0;
466         int i;
467
468         xe_assert(xe, xe_exec_queue_is_parallel(q));
469
470         action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
471         action[len++] = info->flags;
472         action[len++] = info->context_idx;
473         action[len++] = info->engine_class;
474         action[len++] = info->engine_submit_mask;
475         action[len++] = info->wq_desc_lo;
476         action[len++] = info->wq_desc_hi;
477         action[len++] = info->wq_base_lo;
478         action[len++] = info->wq_base_hi;
479         action[len++] = info->wq_size;
480         action[len++] = q->width;
481         action[len++] = info->hwlrca_lo;
482         action[len++] = info->hwlrca_hi;
483
484         for (i = 1; i < q->width; ++i) {
485                 struct xe_lrc *lrc = q->lrc + i;
486
487                 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
488                 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
489         }
490
491         xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
492 #undef MAX_MLRC_REG_SIZE
493
494         xe_guc_ct_send(&guc->ct, action, len, 0, 0);
495 }
496
497 static void __register_engine(struct xe_guc *guc,
498                               struct guc_ctxt_registration_info *info)
499 {
500         u32 action[] = {
501                 XE_GUC_ACTION_REGISTER_CONTEXT,
502                 info->flags,
503                 info->context_idx,
504                 info->engine_class,
505                 info->engine_submit_mask,
506                 info->wq_desc_lo,
507                 info->wq_desc_hi,
508                 info->wq_base_lo,
509                 info->wq_base_hi,
510                 info->wq_size,
511                 info->hwlrca_lo,
512                 info->hwlrca_hi,
513         };
514
515         xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
516 }
517
518 static void register_engine(struct xe_exec_queue *q)
519 {
520         struct xe_guc *guc = exec_queue_to_guc(q);
521         struct xe_device *xe = guc_to_xe(guc);
522         struct xe_lrc *lrc = q->lrc;
523         struct guc_ctxt_registration_info info;
524
525         xe_assert(xe, !exec_queue_registered(q));
526
527         memset(&info, 0, sizeof(info));
528         info.context_idx = q->guc->id;
529         info.engine_class = xe_engine_class_to_guc_class(q->class);
530         info.engine_submit_mask = q->logical_mask;
531         info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
532         info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
533         info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
534
535         if (xe_exec_queue_is_parallel(q)) {
536                 u32 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
537                 struct iosys_map map = xe_lrc_parallel_map(lrc);
538
539                 info.wq_desc_lo = lower_32_bits(ggtt_addr +
540                         offsetof(struct guc_submit_parallel_scratch, wq_desc));
541                 info.wq_desc_hi = upper_32_bits(ggtt_addr +
542                         offsetof(struct guc_submit_parallel_scratch, wq_desc));
543                 info.wq_base_lo = lower_32_bits(ggtt_addr +
544                         offsetof(struct guc_submit_parallel_scratch, wq[0]));
545                 info.wq_base_hi = upper_32_bits(ggtt_addr +
546                         offsetof(struct guc_submit_parallel_scratch, wq[0]));
547                 info.wq_size = WQ_SIZE;
548
549                 q->guc->wqi_head = 0;
550                 q->guc->wqi_tail = 0;
551                 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
552                 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
553         }
554
555         /*
556          * We must keep a reference for LR engines if engine is registered with
557          * the GuC as jobs signal immediately and can't destroy an engine if the
558          * GuC has a reference to it.
559          */
560         if (xe_exec_queue_is_lr(q))
561                 xe_exec_queue_get(q);
562
563         set_exec_queue_registered(q);
564         trace_xe_exec_queue_register(q);
565         if (xe_exec_queue_is_parallel(q))
566                 __register_mlrc_engine(guc, q, &info);
567         else
568                 __register_engine(guc, &info);
569         init_policies(guc, q);
570 }
571
572 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
573 {
574         return (WQ_SIZE - q->guc->wqi_tail);
575 }
576
577 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
578 {
579         struct xe_guc *guc = exec_queue_to_guc(q);
580         struct xe_device *xe = guc_to_xe(guc);
581         struct iosys_map map = xe_lrc_parallel_map(q->lrc);
582         unsigned int sleep_period_ms = 1;
583
584 #define AVAILABLE_SPACE \
585         CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
586         if (wqi_size > AVAILABLE_SPACE) {
587 try_again:
588                 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
589                 if (wqi_size > AVAILABLE_SPACE) {
590                         if (sleep_period_ms == 1024) {
591                                 xe_gt_reset_async(q->gt);
592                                 return -ENODEV;
593                         }
594
595                         msleep(sleep_period_ms);
596                         sleep_period_ms <<= 1;
597                         goto try_again;
598                 }
599         }
600 #undef AVAILABLE_SPACE
601
602         return 0;
603 }
604
605 static int wq_noop_append(struct xe_exec_queue *q)
606 {
607         struct xe_guc *guc = exec_queue_to_guc(q);
608         struct xe_device *xe = guc_to_xe(guc);
609         struct iosys_map map = xe_lrc_parallel_map(q->lrc);
610         u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
611
612         if (wq_wait_for_space(q, wq_space_until_wrap(q)))
613                 return -ENODEV;
614
615         xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
616
617         parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
618                        FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
619                        FIELD_PREP(WQ_LEN_MASK, len_dw));
620         q->guc->wqi_tail = 0;
621
622         return 0;
623 }
624
625 static void wq_item_append(struct xe_exec_queue *q)
626 {
627         struct xe_guc *guc = exec_queue_to_guc(q);
628         struct xe_device *xe = guc_to_xe(guc);
629         struct iosys_map map = xe_lrc_parallel_map(q->lrc);
630 #define WQ_HEADER_SIZE  4       /* Includes 1 LRC address too */
631         u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
632         u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
633         u32 len_dw = (wqi_size / sizeof(u32)) - 1;
634         int i = 0, j;
635
636         if (wqi_size > wq_space_until_wrap(q)) {
637                 if (wq_noop_append(q))
638                         return;
639         }
640         if (wq_wait_for_space(q, wqi_size))
641                 return;
642
643         wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
644                 FIELD_PREP(WQ_LEN_MASK, len_dw);
645         wqi[i++] = xe_lrc_descriptor(q->lrc);
646         wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
647                 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc->ring.tail / sizeof(u64));
648         wqi[i++] = 0;
649         for (j = 1; j < q->width; ++j) {
650                 struct xe_lrc *lrc = q->lrc + j;
651
652                 wqi[i++] = lrc->ring.tail / sizeof(u64);
653         }
654
655         xe_assert(xe, i == wqi_size / sizeof(u32));
656
657         iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
658                                       wq[q->guc->wqi_tail / sizeof(u32)]));
659         xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
660         q->guc->wqi_tail += wqi_size;
661         xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
662
663         xe_device_wmb(xe);
664
665         map = xe_lrc_parallel_map(q->lrc);
666         parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
667 }
668
669 #define RESUME_PENDING  ~0x0ull
670 static void submit_exec_queue(struct xe_exec_queue *q)
671 {
672         struct xe_guc *guc = exec_queue_to_guc(q);
673         struct xe_device *xe = guc_to_xe(guc);
674         struct xe_lrc *lrc = q->lrc;
675         u32 action[3];
676         u32 g2h_len = 0;
677         u32 num_g2h = 0;
678         int len = 0;
679         bool extra_submit = false;
680
681         xe_assert(xe, exec_queue_registered(q));
682
683         if (xe_exec_queue_is_parallel(q))
684                 wq_item_append(q);
685         else
686                 xe_lrc_write_ctx_reg(lrc, CTX_RING_TAIL, lrc->ring.tail);
687
688         if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
689                 return;
690
691         if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
692                 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
693                 action[len++] = q->guc->id;
694                 action[len++] = GUC_CONTEXT_ENABLE;
695                 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
696                 num_g2h = 1;
697                 if (xe_exec_queue_is_parallel(q))
698                         extra_submit = true;
699
700                 q->guc->resume_time = RESUME_PENDING;
701                 set_exec_queue_pending_enable(q);
702                 set_exec_queue_enabled(q);
703                 trace_xe_exec_queue_scheduling_enable(q);
704         } else {
705                 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
706                 action[len++] = q->guc->id;
707                 trace_xe_exec_queue_submit(q);
708         }
709
710         xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
711
712         if (extra_submit) {
713                 len = 0;
714                 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
715                 action[len++] = q->guc->id;
716                 trace_xe_exec_queue_submit(q);
717
718                 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
719         }
720 }
721
722 static struct dma_fence *
723 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
724 {
725         struct xe_sched_job *job = to_xe_sched_job(drm_job);
726         struct xe_exec_queue *q = job->q;
727         struct xe_guc *guc = exec_queue_to_guc(q);
728         struct xe_device *xe = guc_to_xe(guc);
729         bool lr = xe_exec_queue_is_lr(q);
730
731         xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
732                   exec_queue_banned(q) || exec_queue_suspended(q));
733
734         trace_xe_sched_job_run(job);
735
736         if (!exec_queue_killed_or_banned(q) && !xe_sched_job_is_error(job)) {
737                 if (!exec_queue_registered(q))
738                         register_engine(q);
739                 if (!lr)        /* LR jobs are emitted in the exec IOCTL */
740                         q->ring_ops->emit_job(job);
741                 submit_exec_queue(q);
742         }
743
744         if (lr) {
745                 xe_sched_job_set_error(job, -EOPNOTSUPP);
746                 return NULL;
747         } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) {
748                 return job->fence;
749         } else {
750                 return dma_fence_get(job->fence);
751         }
752 }
753
754 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
755 {
756         struct xe_sched_job *job = to_xe_sched_job(drm_job);
757
758         trace_xe_sched_job_free(job);
759         xe_sched_job_put(job);
760 }
761
762 static int guc_read_stopped(struct xe_guc *guc)
763 {
764         return atomic_read(&guc->submission_state.stopped);
765 }
766
767 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)                    \
768         u32 action[] = {                                                \
769                 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,                   \
770                 q->guc->id,                                             \
771                 GUC_CONTEXT_##enable_disable,                           \
772         }
773
774 static void disable_scheduling_deregister(struct xe_guc *guc,
775                                           struct xe_exec_queue *q)
776 {
777         MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
778         struct xe_device *xe = guc_to_xe(guc);
779         int ret;
780
781         set_min_preemption_timeout(guc, q);
782         smp_rmb();
783         ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) ||
784                                  guc_read_stopped(guc), HZ * 5);
785         if (!ret) {
786                 struct xe_gpu_scheduler *sched = &q->guc->sched;
787
788                 drm_warn(&xe->drm, "Pending enable failed to respond");
789                 xe_sched_submission_start(sched);
790                 xe_gt_reset_async(q->gt);
791                 xe_sched_tdr_queue_imm(sched);
792                 return;
793         }
794
795         clear_exec_queue_enabled(q);
796         set_exec_queue_pending_disable(q);
797         set_exec_queue_destroyed(q);
798         trace_xe_exec_queue_scheduling_disable(q);
799
800         /*
801          * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
802          * handler and we are not allowed to reserved G2H space in handlers.
803          */
804         xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
805                        G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
806                        G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
807 }
808
809 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p);
810
811 #if IS_ENABLED(CONFIG_DRM_XE_SIMPLE_ERROR_CAPTURE)
812 static void simple_error_capture(struct xe_exec_queue *q)
813 {
814         struct xe_guc *guc = exec_queue_to_guc(q);
815         struct xe_device *xe = guc_to_xe(guc);
816         struct drm_printer p = drm_err_printer(&xe->drm, NULL);
817         struct xe_hw_engine *hwe;
818         enum xe_hw_engine_id id;
819         u32 adj_logical_mask = q->logical_mask;
820         u32 width_mask = (0x1 << q->width) - 1;
821         int i;
822         bool cookie;
823
824         if (q->vm && !q->vm->error_capture.capture_once) {
825                 q->vm->error_capture.capture_once = true;
826                 cookie = dma_fence_begin_signalling();
827                 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
828                         if (adj_logical_mask & BIT(i)) {
829                                 adj_logical_mask |= width_mask << i;
830                                 i += q->width;
831                         } else {
832                                 ++i;
833                         }
834                 }
835
836                 xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
837                 xe_guc_ct_print(&guc->ct, &p, true);
838                 guc_exec_queue_print(q, &p);
839                 for_each_hw_engine(hwe, guc_to_gt(guc), id) {
840                         if (hwe->class != q->hwe->class ||
841                             !(BIT(hwe->logical_instance) & adj_logical_mask))
842                                 continue;
843                         xe_hw_engine_print(hwe, &p);
844                 }
845                 xe_analyze_vm(&p, q->vm, q->gt->info.id);
846                 xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
847                 dma_fence_end_signalling(cookie);
848         }
849 }
850 #else
851 static void simple_error_capture(struct xe_exec_queue *q)
852 {
853 }
854 #endif
855
856 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
857 {
858         struct xe_guc *guc = exec_queue_to_guc(q);
859         struct xe_device *xe = guc_to_xe(guc);
860
861         /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
862         wake_up_all(&xe->ufence_wq);
863
864         if (xe_exec_queue_is_lr(q))
865                 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
866         else
867                 xe_sched_tdr_queue_imm(&q->guc->sched);
868 }
869
870 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
871 {
872         struct xe_guc_exec_queue *ge =
873                 container_of(w, struct xe_guc_exec_queue, lr_tdr);
874         struct xe_exec_queue *q = ge->q;
875         struct xe_guc *guc = exec_queue_to_guc(q);
876         struct xe_device *xe = guc_to_xe(guc);
877         struct xe_gpu_scheduler *sched = &ge->sched;
878
879         xe_assert(xe, xe_exec_queue_is_lr(q));
880         trace_xe_exec_queue_lr_cleanup(q);
881
882         /* Kill the run_job / process_msg entry points */
883         xe_sched_submission_stop(sched);
884
885         /*
886          * Engine state now mostly stable, disable scheduling / deregister if
887          * needed. This cleanup routine might be called multiple times, where
888          * the actual async engine deregister drops the final engine ref.
889          * Calling disable_scheduling_deregister will mark the engine as
890          * destroyed and fire off the CT requests to disable scheduling /
891          * deregister, which we only want to do once. We also don't want to mark
892          * the engine as pending_disable again as this may race with the
893          * xe_guc_deregister_done_handler() which treats it as an unexpected
894          * state.
895          */
896         if (exec_queue_registered(q) && !exec_queue_destroyed(q)) {
897                 struct xe_guc *guc = exec_queue_to_guc(q);
898                 int ret;
899
900                 set_exec_queue_banned(q);
901                 disable_scheduling_deregister(guc, q);
902
903                 /*
904                  * Must wait for scheduling to be disabled before signalling
905                  * any fences, if GT broken the GT reset code should signal us.
906                  */
907                 ret = wait_event_timeout(guc->ct.wq,
908                                          !exec_queue_pending_disable(q) ||
909                                          guc_read_stopped(guc), HZ * 5);
910                 if (!ret) {
911                         drm_warn(&xe->drm, "Schedule disable failed to respond");
912                         xe_sched_submission_start(sched);
913                         xe_gt_reset_async(q->gt);
914                         return;
915                 }
916         }
917
918         xe_sched_submission_start(sched);
919 }
920
921 static enum drm_gpu_sched_stat
922 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
923 {
924         struct xe_sched_job *job = to_xe_sched_job(drm_job);
925         struct xe_sched_job *tmp_job;
926         struct xe_exec_queue *q = job->q;
927         struct xe_gpu_scheduler *sched = &q->guc->sched;
928         struct xe_device *xe = guc_to_xe(exec_queue_to_guc(q));
929         int err = -ETIME;
930         int i = 0;
931
932         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
933                 drm_notice(&xe->drm, "Timedout job: seqno=%u, guc_id=%d, flags=0x%lx",
934                            xe_sched_job_seqno(job), q->guc->id, q->flags);
935                 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
936                            "Kernel-submitted job timed out\n");
937                 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
938                            "VM job timed out on non-killed execqueue\n");
939
940                 simple_error_capture(q);
941                 xe_devcoredump(job);
942         } else {
943                 drm_dbg(&xe->drm, "Timedout signaled job: seqno=%u, guc_id=%d, flags=0x%lx",
944                          xe_sched_job_seqno(job), q->guc->id, q->flags);
945         }
946         trace_xe_sched_job_timedout(job);
947
948         /* Kill the run_job entry point */
949         xe_sched_submission_stop(sched);
950
951         /*
952          * Kernel jobs should never fail, nor should VM jobs if they do
953          * somethings has gone wrong and the GT needs a reset
954          */
955         if (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
956             (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q))) {
957                 if (!xe_sched_invalidate_job(job, 2)) {
958                         xe_sched_add_pending_job(sched, job);
959                         xe_sched_submission_start(sched);
960                         xe_gt_reset_async(q->gt);
961                         goto out;
962                 }
963         }
964
965         /* Engine state now stable, disable scheduling if needed */
966         if (exec_queue_registered(q)) {
967                 struct xe_guc *guc = exec_queue_to_guc(q);
968                 int ret;
969
970                 if (exec_queue_reset(q))
971                         err = -EIO;
972                 set_exec_queue_banned(q);
973                 if (!exec_queue_destroyed(q)) {
974                         xe_exec_queue_get(q);
975                         disable_scheduling_deregister(guc, q);
976                 }
977
978                 /*
979                  * Must wait for scheduling to be disabled before signalling
980                  * any fences, if GT broken the GT reset code should signal us.
981                  *
982                  * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
983                  * error) messages which can cause the schedule disable to get
984                  * lost. If this occurs, trigger a GT reset to recover.
985                  */
986                 smp_rmb();
987                 ret = wait_event_timeout(guc->ct.wq,
988                                          !exec_queue_pending_disable(q) ||
989                                          guc_read_stopped(guc), HZ * 5);
990                 if (!ret || guc_read_stopped(guc)) {
991                         drm_warn(&xe->drm, "Schedule disable failed to respond");
992                         xe_sched_add_pending_job(sched, job);
993                         xe_sched_submission_start(sched);
994                         xe_gt_reset_async(q->gt);
995                         xe_sched_tdr_queue_imm(sched);
996                         goto out;
997                 }
998         }
999
1000         /* Stop fence signaling */
1001         xe_hw_fence_irq_stop(q->fence_irq);
1002
1003         /*
1004          * Fence state now stable, stop / start scheduler which cleans up any
1005          * fences that are complete
1006          */
1007         xe_sched_add_pending_job(sched, job);
1008         xe_sched_submission_start(sched);
1009         xe_guc_exec_queue_trigger_cleanup(q);
1010
1011         /* Mark all outstanding jobs as bad, thus completing them */
1012         spin_lock(&sched->base.job_list_lock);
1013         list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1014                 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1015         spin_unlock(&sched->base.job_list_lock);
1016
1017         /* Start fence signaling */
1018         xe_hw_fence_irq_start(q->fence_irq);
1019
1020 out:
1021         return DRM_GPU_SCHED_STAT_NOMINAL;
1022 }
1023
1024 static void __guc_exec_queue_fini_async(struct work_struct *w)
1025 {
1026         struct xe_guc_exec_queue *ge =
1027                 container_of(w, struct xe_guc_exec_queue, fini_async);
1028         struct xe_exec_queue *q = ge->q;
1029         struct xe_guc *guc = exec_queue_to_guc(q);
1030
1031         trace_xe_exec_queue_destroy(q);
1032
1033         if (xe_exec_queue_is_lr(q))
1034                 cancel_work_sync(&ge->lr_tdr);
1035         release_guc_id(guc, q);
1036         xe_sched_entity_fini(&ge->entity);
1037         xe_sched_fini(&ge->sched);
1038
1039         kfree(ge);
1040         xe_exec_queue_fini(q);
1041 }
1042
1043 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1044 {
1045         INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1046
1047         /* We must block on kernel engines so slabs are empty on driver unload */
1048         if (q->flags & EXEC_QUEUE_FLAG_PERMANENT)
1049                 __guc_exec_queue_fini_async(&q->guc->fini_async);
1050         else
1051                 queue_work(system_wq, &q->guc->fini_async);
1052 }
1053
1054 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1055 {
1056         /*
1057          * Might be done from within the GPU scheduler, need to do async as we
1058          * fini the scheduler when the engine is fini'd, the scheduler can't
1059          * complete fini within itself (circular dependency). Async resolves
1060          * this we and don't really care when everything is fini'd, just that it
1061          * is.
1062          */
1063         guc_exec_queue_fini_async(q);
1064 }
1065
1066 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1067 {
1068         struct xe_exec_queue *q = msg->private_data;
1069         struct xe_guc *guc = exec_queue_to_guc(q);
1070         struct xe_device *xe = guc_to_xe(guc);
1071
1072         xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1073         trace_xe_exec_queue_cleanup_entity(q);
1074
1075         if (exec_queue_registered(q))
1076                 disable_scheduling_deregister(guc, q);
1077         else
1078                 __guc_exec_queue_fini(guc, q);
1079 }
1080
1081 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1082 {
1083         return !exec_queue_killed_or_banned(q) && exec_queue_registered(q);
1084 }
1085
1086 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1087 {
1088         struct xe_exec_queue *q = msg->private_data;
1089         struct xe_guc *guc = exec_queue_to_guc(q);
1090
1091         if (guc_exec_queue_allowed_to_change_state(q))
1092                 init_policies(guc, q);
1093         kfree(msg);
1094 }
1095
1096 static void suspend_fence_signal(struct xe_exec_queue *q)
1097 {
1098         struct xe_guc *guc = exec_queue_to_guc(q);
1099         struct xe_device *xe = guc_to_xe(guc);
1100
1101         xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1102                   guc_read_stopped(guc));
1103         xe_assert(xe, q->guc->suspend_pending);
1104
1105         q->guc->suspend_pending = false;
1106         smp_wmb();
1107         wake_up(&q->guc->suspend_wait);
1108 }
1109
1110 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1111 {
1112         struct xe_exec_queue *q = msg->private_data;
1113         struct xe_guc *guc = exec_queue_to_guc(q);
1114
1115         if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1116             exec_queue_enabled(q)) {
1117                 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING ||
1118                            guc_read_stopped(guc));
1119
1120                 if (!guc_read_stopped(guc)) {
1121                         MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1122                         s64 since_resume_ms =
1123                                 ktime_ms_delta(ktime_get(),
1124                                                q->guc->resume_time);
1125                         s64 wait_ms = q->vm->preempt.min_run_period_ms -
1126                                 since_resume_ms;
1127
1128                         if (wait_ms > 0 && q->guc->resume_time)
1129                                 msleep(wait_ms);
1130
1131                         set_exec_queue_suspended(q);
1132                         clear_exec_queue_enabled(q);
1133                         set_exec_queue_pending_disable(q);
1134                         trace_xe_exec_queue_scheduling_disable(q);
1135
1136                         xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1137                                        G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1138                 }
1139         } else if (q->guc->suspend_pending) {
1140                 set_exec_queue_suspended(q);
1141                 suspend_fence_signal(q);
1142         }
1143 }
1144
1145 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1146 {
1147         struct xe_exec_queue *q = msg->private_data;
1148         struct xe_guc *guc = exec_queue_to_guc(q);
1149
1150         if (guc_exec_queue_allowed_to_change_state(q)) {
1151                 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
1152
1153                 q->guc->resume_time = RESUME_PENDING;
1154                 clear_exec_queue_suspended(q);
1155                 set_exec_queue_pending_enable(q);
1156                 set_exec_queue_enabled(q);
1157                 trace_xe_exec_queue_scheduling_enable(q);
1158
1159                 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1160                                G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1161         } else {
1162                 clear_exec_queue_suspended(q);
1163         }
1164 }
1165
1166 #define CLEANUP         1       /* Non-zero values to catch uninitialized msg */
1167 #define SET_SCHED_PROPS 2
1168 #define SUSPEND         3
1169 #define RESUME          4
1170
1171 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1172 {
1173         trace_xe_sched_msg_recv(msg);
1174
1175         switch (msg->opcode) {
1176         case CLEANUP:
1177                 __guc_exec_queue_process_msg_cleanup(msg);
1178                 break;
1179         case SET_SCHED_PROPS:
1180                 __guc_exec_queue_process_msg_set_sched_props(msg);
1181                 break;
1182         case SUSPEND:
1183                 __guc_exec_queue_process_msg_suspend(msg);
1184                 break;
1185         case RESUME:
1186                 __guc_exec_queue_process_msg_resume(msg);
1187                 break;
1188         default:
1189                 XE_WARN_ON("Unknown message type");
1190         }
1191 }
1192
1193 static const struct drm_sched_backend_ops drm_sched_ops = {
1194         .run_job = guc_exec_queue_run_job,
1195         .free_job = guc_exec_queue_free_job,
1196         .timedout_job = guc_exec_queue_timedout_job,
1197 };
1198
1199 static const struct xe_sched_backend_ops xe_sched_ops = {
1200         .process_msg = guc_exec_queue_process_msg,
1201 };
1202
1203 static int guc_exec_queue_init(struct xe_exec_queue *q)
1204 {
1205         struct xe_gpu_scheduler *sched;
1206         struct xe_guc *guc = exec_queue_to_guc(q);
1207         struct xe_device *xe = guc_to_xe(guc);
1208         struct xe_guc_exec_queue *ge;
1209         long timeout;
1210         int err;
1211
1212         xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1213
1214         ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1215         if (!ge)
1216                 return -ENOMEM;
1217
1218         q->guc = ge;
1219         ge->q = q;
1220         init_waitqueue_head(&ge->suspend_wait);
1221
1222         timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1223                   q->sched_props.job_timeout_ms;
1224         err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1225                             get_submit_wq(guc),
1226                             q->lrc[0].ring.size / MAX_JOB_SIZE_BYTES, 64,
1227                             timeout, guc_to_gt(guc)->ordered_wq, NULL,
1228                             q->name, gt_to_xe(q->gt)->drm.dev);
1229         if (err)
1230                 goto err_free;
1231
1232         sched = &ge->sched;
1233         err = xe_sched_entity_init(&ge->entity, sched);
1234         if (err)
1235                 goto err_sched;
1236
1237         if (xe_exec_queue_is_lr(q))
1238                 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1239
1240         mutex_lock(&guc->submission_state.lock);
1241
1242         err = alloc_guc_id(guc, q);
1243         if (err)
1244                 goto err_entity;
1245
1246         q->entity = &ge->entity;
1247
1248         if (guc_read_stopped(guc))
1249                 xe_sched_stop(sched);
1250
1251         mutex_unlock(&guc->submission_state.lock);
1252
1253         xe_exec_queue_assign_name(q, q->guc->id);
1254
1255         trace_xe_exec_queue_create(q);
1256
1257         return 0;
1258
1259 err_entity:
1260         xe_sched_entity_fini(&ge->entity);
1261 err_sched:
1262         xe_sched_fini(&ge->sched);
1263 err_free:
1264         kfree(ge);
1265
1266         return err;
1267 }
1268
1269 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1270 {
1271         trace_xe_exec_queue_kill(q);
1272         set_exec_queue_killed(q);
1273         xe_guc_exec_queue_trigger_cleanup(q);
1274 }
1275
1276 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1277                                    u32 opcode)
1278 {
1279         INIT_LIST_HEAD(&msg->link);
1280         msg->opcode = opcode;
1281         msg->private_data = q;
1282
1283         trace_xe_sched_msg_add(msg);
1284         xe_sched_add_msg(&q->guc->sched, msg);
1285 }
1286
1287 #define STATIC_MSG_CLEANUP      0
1288 #define STATIC_MSG_SUSPEND      1
1289 #define STATIC_MSG_RESUME       2
1290 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1291 {
1292         struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1293
1294         if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT))
1295                 guc_exec_queue_add_msg(q, msg, CLEANUP);
1296         else
1297                 __guc_exec_queue_fini(exec_queue_to_guc(q), q);
1298 }
1299
1300 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1301                                        enum xe_exec_queue_priority priority)
1302 {
1303         struct xe_sched_msg *msg;
1304
1305         if (q->sched_props.priority == priority || exec_queue_killed_or_banned(q))
1306                 return 0;
1307
1308         msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1309         if (!msg)
1310                 return -ENOMEM;
1311
1312         q->sched_props.priority = priority;
1313         guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1314
1315         return 0;
1316 }
1317
1318 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1319 {
1320         struct xe_sched_msg *msg;
1321
1322         if (q->sched_props.timeslice_us == timeslice_us ||
1323             exec_queue_killed_or_banned(q))
1324                 return 0;
1325
1326         msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1327         if (!msg)
1328                 return -ENOMEM;
1329
1330         q->sched_props.timeslice_us = timeslice_us;
1331         guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1332
1333         return 0;
1334 }
1335
1336 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1337                                               u32 preempt_timeout_us)
1338 {
1339         struct xe_sched_msg *msg;
1340
1341         if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1342             exec_queue_killed_or_banned(q))
1343                 return 0;
1344
1345         msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1346         if (!msg)
1347                 return -ENOMEM;
1348
1349         q->sched_props.preempt_timeout_us = preempt_timeout_us;
1350         guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1351
1352         return 0;
1353 }
1354
1355 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1356 {
1357         struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1358
1359         if (exec_queue_killed_or_banned(q) || q->guc->suspend_pending)
1360                 return -EINVAL;
1361
1362         q->guc->suspend_pending = true;
1363         guc_exec_queue_add_msg(q, msg, SUSPEND);
1364
1365         return 0;
1366 }
1367
1368 static void guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1369 {
1370         struct xe_guc *guc = exec_queue_to_guc(q);
1371
1372         wait_event(q->guc->suspend_wait, !q->guc->suspend_pending ||
1373                    guc_read_stopped(guc));
1374 }
1375
1376 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1377 {
1378         struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1379         struct xe_guc *guc = exec_queue_to_guc(q);
1380         struct xe_device *xe = guc_to_xe(guc);
1381
1382         xe_assert(xe, !q->guc->suspend_pending);
1383
1384         guc_exec_queue_add_msg(q, msg, RESUME);
1385 }
1386
1387 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1388 {
1389         return exec_queue_reset(q);
1390 }
1391
1392 /*
1393  * All of these functions are an abstraction layer which other parts of XE can
1394  * use to trap into the GuC backend. All of these functions, aside from init,
1395  * really shouldn't do much other than trap into the DRM scheduler which
1396  * synchronizes these operations.
1397  */
1398 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1399         .init = guc_exec_queue_init,
1400         .kill = guc_exec_queue_kill,
1401         .fini = guc_exec_queue_fini,
1402         .set_priority = guc_exec_queue_set_priority,
1403         .set_timeslice = guc_exec_queue_set_timeslice,
1404         .set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1405         .suspend = guc_exec_queue_suspend,
1406         .suspend_wait = guc_exec_queue_suspend_wait,
1407         .resume = guc_exec_queue_resume,
1408         .reset_status = guc_exec_queue_reset_status,
1409 };
1410
1411 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1412 {
1413         struct xe_gpu_scheduler *sched = &q->guc->sched;
1414
1415         /* Stop scheduling + flush any DRM scheduler operations */
1416         xe_sched_submission_stop(sched);
1417
1418         /* Clean up lost G2H + reset engine state */
1419         if (exec_queue_registered(q)) {
1420                 if ((exec_queue_banned(q) && exec_queue_destroyed(q)) ||
1421                     xe_exec_queue_is_lr(q))
1422                         xe_exec_queue_put(q);
1423                 else if (exec_queue_destroyed(q))
1424                         __guc_exec_queue_fini(guc, q);
1425         }
1426         if (q->guc->suspend_pending) {
1427                 set_exec_queue_suspended(q);
1428                 suspend_fence_signal(q);
1429         }
1430         atomic_and(EXEC_QUEUE_STATE_DESTROYED | ENGINE_STATE_SUSPENDED,
1431                    &q->guc->state);
1432         q->guc->resume_time = 0;
1433         trace_xe_exec_queue_stop(q);
1434
1435         /*
1436          * Ban any engine (aside from kernel and engines used for VM ops) with a
1437          * started but not complete job or if a job has gone through a GT reset
1438          * more than twice.
1439          */
1440         if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1441                 struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1442
1443                 if (job) {
1444                         if ((xe_sched_job_started(job) &&
1445                             !xe_sched_job_completed(job)) ||
1446                             xe_sched_invalidate_job(job, 2)) {
1447                                 trace_xe_sched_job_ban(job);
1448                                 xe_sched_tdr_queue_imm(&q->guc->sched);
1449                                 set_exec_queue_banned(q);
1450                         }
1451                 }
1452         }
1453 }
1454
1455 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1456 {
1457         int ret;
1458
1459         /*
1460          * Using an atomic here rather than submission_state.lock as this
1461          * function can be called while holding the CT lock (engine reset
1462          * failure). submission_state.lock needs the CT lock to resubmit jobs.
1463          * Atomic is not ideal, but it works to prevent against concurrent reset
1464          * and releasing any TDRs waiting on guc->submission_state.stopped.
1465          */
1466         ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1467         smp_wmb();
1468         wake_up_all(&guc->ct.wq);
1469
1470         return ret;
1471 }
1472
1473 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1474 {
1475         wait_event(guc->ct.wq, !guc_read_stopped(guc));
1476 }
1477
1478 int xe_guc_submit_stop(struct xe_guc *guc)
1479 {
1480         struct xe_exec_queue *q;
1481         unsigned long index;
1482         struct xe_device *xe = guc_to_xe(guc);
1483
1484         xe_assert(xe, guc_read_stopped(guc) == 1);
1485
1486         mutex_lock(&guc->submission_state.lock);
1487
1488         xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1489                 guc_exec_queue_stop(guc, q);
1490
1491         mutex_unlock(&guc->submission_state.lock);
1492
1493         /*
1494          * No one can enter the backend at this point, aside from new engine
1495          * creation which is protected by guc->submission_state.lock.
1496          */
1497
1498         return 0;
1499 }
1500
1501 static void guc_exec_queue_start(struct xe_exec_queue *q)
1502 {
1503         struct xe_gpu_scheduler *sched = &q->guc->sched;
1504
1505         if (!exec_queue_killed_or_banned(q)) {
1506                 int i;
1507
1508                 trace_xe_exec_queue_resubmit(q);
1509                 for (i = 0; i < q->width; ++i)
1510                         xe_lrc_set_ring_head(q->lrc + i, q->lrc[i].ring.tail);
1511                 xe_sched_resubmit_jobs(sched);
1512         }
1513
1514         xe_sched_submission_start(sched);
1515 }
1516
1517 int xe_guc_submit_start(struct xe_guc *guc)
1518 {
1519         struct xe_exec_queue *q;
1520         unsigned long index;
1521         struct xe_device *xe = guc_to_xe(guc);
1522
1523         xe_assert(xe, guc_read_stopped(guc) == 1);
1524
1525         mutex_lock(&guc->submission_state.lock);
1526         atomic_dec(&guc->submission_state.stopped);
1527         xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1528                 guc_exec_queue_start(q);
1529         mutex_unlock(&guc->submission_state.lock);
1530
1531         wake_up_all(&guc->ct.wq);
1532
1533         return 0;
1534 }
1535
1536 static struct xe_exec_queue *
1537 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1538 {
1539         struct xe_device *xe = guc_to_xe(guc);
1540         struct xe_exec_queue *q;
1541
1542         if (unlikely(guc_id >= GUC_ID_MAX)) {
1543                 drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1544                 return NULL;
1545         }
1546
1547         q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1548         if (unlikely(!q)) {
1549                 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1550                 return NULL;
1551         }
1552
1553         xe_assert(xe, guc_id >= q->guc->id);
1554         xe_assert(xe, guc_id < (q->guc->id + q->width));
1555
1556         return q;
1557 }
1558
1559 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1560 {
1561         u32 action[] = {
1562                 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1563                 q->guc->id,
1564         };
1565
1566         trace_xe_exec_queue_deregister(q);
1567
1568         xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1569 }
1570
1571 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1572 {
1573         struct xe_device *xe = guc_to_xe(guc);
1574         struct xe_exec_queue *q;
1575         u32 guc_id = msg[0];
1576
1577         if (unlikely(len < 2)) {
1578                 drm_err(&xe->drm, "Invalid length %u", len);
1579                 return -EPROTO;
1580         }
1581
1582         q = g2h_exec_queue_lookup(guc, guc_id);
1583         if (unlikely(!q))
1584                 return -EPROTO;
1585
1586         if (unlikely(!exec_queue_pending_enable(q) &&
1587                      !exec_queue_pending_disable(q))) {
1588                 drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1589                         atomic_read(&q->guc->state));
1590                 return -EPROTO;
1591         }
1592
1593         trace_xe_exec_queue_scheduling_done(q);
1594
1595         if (exec_queue_pending_enable(q)) {
1596                 q->guc->resume_time = ktime_get();
1597                 clear_exec_queue_pending_enable(q);
1598                 smp_wmb();
1599                 wake_up_all(&guc->ct.wq);
1600         } else {
1601                 clear_exec_queue_pending_disable(q);
1602                 if (q->guc->suspend_pending) {
1603                         suspend_fence_signal(q);
1604                 } else {
1605                         if (exec_queue_banned(q)) {
1606                                 smp_wmb();
1607                                 wake_up_all(&guc->ct.wq);
1608                         }
1609                         deregister_exec_queue(guc, q);
1610                 }
1611         }
1612
1613         return 0;
1614 }
1615
1616 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1617 {
1618         struct xe_device *xe = guc_to_xe(guc);
1619         struct xe_exec_queue *q;
1620         u32 guc_id = msg[0];
1621
1622         if (unlikely(len < 1)) {
1623                 drm_err(&xe->drm, "Invalid length %u", len);
1624                 return -EPROTO;
1625         }
1626
1627         q = g2h_exec_queue_lookup(guc, guc_id);
1628         if (unlikely(!q))
1629                 return -EPROTO;
1630
1631         if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1632             exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1633                 drm_err(&xe->drm, "Unexpected engine state 0x%04x",
1634                         atomic_read(&q->guc->state));
1635                 return -EPROTO;
1636         }
1637
1638         trace_xe_exec_queue_deregister_done(q);
1639
1640         clear_exec_queue_registered(q);
1641
1642         if (exec_queue_banned(q) || xe_exec_queue_is_lr(q))
1643                 xe_exec_queue_put(q);
1644         else
1645                 __guc_exec_queue_fini(guc, q);
1646
1647         return 0;
1648 }
1649
1650 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1651 {
1652         struct xe_device *xe = guc_to_xe(guc);
1653         struct xe_exec_queue *q;
1654         u32 guc_id = msg[0];
1655
1656         if (unlikely(len < 1)) {
1657                 drm_err(&xe->drm, "Invalid length %u", len);
1658                 return -EPROTO;
1659         }
1660
1661         q = g2h_exec_queue_lookup(guc, guc_id);
1662         if (unlikely(!q))
1663                 return -EPROTO;
1664
1665         drm_info(&xe->drm, "Engine reset: guc_id=%d", guc_id);
1666
1667         /* FIXME: Do error capture, most likely async */
1668
1669         trace_xe_exec_queue_reset(q);
1670
1671         /*
1672          * A banned engine is a NOP at this point (came from
1673          * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1674          * jobs by setting timeout of the job to the minimum value kicking
1675          * guc_exec_queue_timedout_job.
1676          */
1677         set_exec_queue_reset(q);
1678         if (!exec_queue_banned(q))
1679                 xe_guc_exec_queue_trigger_cleanup(q);
1680
1681         return 0;
1682 }
1683
1684 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
1685                                                u32 len)
1686 {
1687         struct xe_device *xe = guc_to_xe(guc);
1688         struct xe_exec_queue *q;
1689         u32 guc_id = msg[0];
1690
1691         if (unlikely(len < 1)) {
1692                 drm_err(&xe->drm, "Invalid length %u", len);
1693                 return -EPROTO;
1694         }
1695
1696         q = g2h_exec_queue_lookup(guc, guc_id);
1697         if (unlikely(!q))
1698                 return -EPROTO;
1699
1700         drm_dbg(&xe->drm, "Engine memory cat error: guc_id=%d", guc_id);
1701         trace_xe_exec_queue_memory_cat_error(q);
1702
1703         /* Treat the same as engine reset */
1704         set_exec_queue_reset(q);
1705         if (!exec_queue_banned(q))
1706                 xe_guc_exec_queue_trigger_cleanup(q);
1707
1708         return 0;
1709 }
1710
1711 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
1712 {
1713         struct xe_device *xe = guc_to_xe(guc);
1714         u8 guc_class, instance;
1715         u32 reason;
1716
1717         if (unlikely(len != 3)) {
1718                 drm_err(&xe->drm, "Invalid length %u", len);
1719                 return -EPROTO;
1720         }
1721
1722         guc_class = msg[0];
1723         instance = msg[1];
1724         reason = msg[2];
1725
1726         /* Unexpected failure of a hardware feature, log an actual error */
1727         drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
1728                 guc_class, instance, reason);
1729
1730         xe_gt_reset_async(guc_to_gt(guc));
1731
1732         return 0;
1733 }
1734
1735 static void
1736 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
1737                                    struct xe_guc_submit_exec_queue_snapshot *snapshot)
1738 {
1739         struct xe_guc *guc = exec_queue_to_guc(q);
1740         struct xe_device *xe = guc_to_xe(guc);
1741         struct iosys_map map = xe_lrc_parallel_map(q->lrc);
1742         int i;
1743
1744         snapshot->guc.wqi_head = q->guc->wqi_head;
1745         snapshot->guc.wqi_tail = q->guc->wqi_tail;
1746         snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
1747         snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
1748         snapshot->parallel.wq_desc.status = parallel_read(xe, map,
1749                                                           wq_desc.wq_status);
1750
1751         if (snapshot->parallel.wq_desc.head !=
1752             snapshot->parallel.wq_desc.tail) {
1753                 for (i = snapshot->parallel.wq_desc.head;
1754                      i != snapshot->parallel.wq_desc.tail;
1755                      i = (i + sizeof(u32)) % WQ_SIZE)
1756                         snapshot->parallel.wq[i / sizeof(u32)] =
1757                                 parallel_read(xe, map, wq[i / sizeof(u32)]);
1758         }
1759 }
1760
1761 static void
1762 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
1763                                  struct drm_printer *p)
1764 {
1765         int i;
1766
1767         drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
1768                    snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
1769         drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
1770                    snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
1771         drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
1772
1773         if (snapshot->parallel.wq_desc.head !=
1774             snapshot->parallel.wq_desc.tail) {
1775                 for (i = snapshot->parallel.wq_desc.head;
1776                      i != snapshot->parallel.wq_desc.tail;
1777                      i = (i + sizeof(u32)) % WQ_SIZE)
1778                         drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
1779                                    snapshot->parallel.wq[i / sizeof(u32)]);
1780         }
1781 }
1782
1783 /**
1784  * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
1785  * @job: faulty Xe scheduled job.
1786  *
1787  * This can be printed out in a later stage like during dev_coredump
1788  * analysis.
1789  *
1790  * Returns: a GuC Submit Engine snapshot object that must be freed by the
1791  * caller, using `xe_guc_exec_queue_snapshot_free`.
1792  */
1793 struct xe_guc_submit_exec_queue_snapshot *
1794 xe_guc_exec_queue_snapshot_capture(struct xe_sched_job *job)
1795 {
1796         struct xe_exec_queue *q = job->q;
1797         struct xe_gpu_scheduler *sched = &q->guc->sched;
1798         struct xe_guc_submit_exec_queue_snapshot *snapshot;
1799         int i;
1800
1801         snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
1802
1803         if (!snapshot)
1804                 return NULL;
1805
1806         snapshot->guc.id = q->guc->id;
1807         memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
1808         snapshot->class = q->class;
1809         snapshot->logical_mask = q->logical_mask;
1810         snapshot->width = q->width;
1811         snapshot->refcount = kref_read(&q->refcount);
1812         snapshot->sched_timeout = sched->base.timeout;
1813         snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
1814         snapshot->sched_props.preempt_timeout_us =
1815                 q->sched_props.preempt_timeout_us;
1816
1817         snapshot->lrc = kmalloc_array(q->width, sizeof(struct lrc_snapshot),
1818                                       GFP_ATOMIC);
1819
1820         if (snapshot->lrc) {
1821                 for (i = 0; i < q->width; ++i) {
1822                         struct xe_lrc *lrc = q->lrc + i;
1823
1824                         snapshot->lrc[i].context_desc =
1825                                 lower_32_bits(xe_lrc_ggtt_addr(lrc));
1826                         snapshot->lrc[i].head = xe_lrc_ring_head(lrc);
1827                         snapshot->lrc[i].tail.internal = lrc->ring.tail;
1828                         snapshot->lrc[i].tail.memory =
1829                                 xe_lrc_read_ctx_reg(lrc, CTX_RING_TAIL);
1830                         snapshot->lrc[i].start_seqno = xe_lrc_start_seqno(lrc);
1831                         snapshot->lrc[i].seqno = xe_lrc_seqno(lrc);
1832                 }
1833         }
1834
1835         snapshot->schedule_state = atomic_read(&q->guc->state);
1836         snapshot->exec_queue_flags = q->flags;
1837
1838         snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
1839         if (snapshot->parallel_execution)
1840                 guc_exec_queue_wq_snapshot_capture(q, snapshot);
1841
1842         spin_lock(&sched->base.job_list_lock);
1843         snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
1844         snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
1845                                                sizeof(struct pending_list_snapshot),
1846                                                GFP_ATOMIC);
1847
1848         if (snapshot->pending_list) {
1849                 struct xe_sched_job *job_iter;
1850
1851                 i = 0;
1852                 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
1853                         snapshot->pending_list[i].seqno =
1854                                 xe_sched_job_seqno(job_iter);
1855                         snapshot->pending_list[i].fence =
1856                                 dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
1857                         snapshot->pending_list[i].finished =
1858                                 dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
1859                                 ? 1 : 0;
1860                         i++;
1861                 }
1862         }
1863
1864         spin_unlock(&sched->base.job_list_lock);
1865
1866         return snapshot;
1867 }
1868
1869 /**
1870  * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
1871  * @snapshot: GuC Submit Engine snapshot object.
1872  * @p: drm_printer where it will be printed out.
1873  *
1874  * This function prints out a given GuC Submit Engine snapshot object.
1875  */
1876 void
1877 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
1878                                  struct drm_printer *p)
1879 {
1880         int i;
1881
1882         if (!snapshot)
1883                 return;
1884
1885         drm_printf(p, "\nGuC ID: %d\n", snapshot->guc.id);
1886         drm_printf(p, "\tName: %s\n", snapshot->name);
1887         drm_printf(p, "\tClass: %d\n", snapshot->class);
1888         drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
1889         drm_printf(p, "\tWidth: %d\n", snapshot->width);
1890         drm_printf(p, "\tRef: %d\n", snapshot->refcount);
1891         drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
1892         drm_printf(p, "\tTimeslice: %u (us)\n",
1893                    snapshot->sched_props.timeslice_us);
1894         drm_printf(p, "\tPreempt timeout: %u (us)\n",
1895                    snapshot->sched_props.preempt_timeout_us);
1896
1897         for (i = 0; snapshot->lrc && i < snapshot->width; ++i) {
1898                 drm_printf(p, "\tHW Context Desc: 0x%08x\n",
1899                            snapshot->lrc[i].context_desc);
1900                 drm_printf(p, "\tLRC Head: (memory) %u\n",
1901                            snapshot->lrc[i].head);
1902                 drm_printf(p, "\tLRC Tail: (internal) %u, (memory) %u\n",
1903                            snapshot->lrc[i].tail.internal,
1904                            snapshot->lrc[i].tail.memory);
1905                 drm_printf(p, "\tStart seqno: (memory) %d\n",
1906                            snapshot->lrc[i].start_seqno);
1907                 drm_printf(p, "\tSeqno: (memory) %d\n", snapshot->lrc[i].seqno);
1908         }
1909         drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
1910         drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
1911
1912         if (snapshot->parallel_execution)
1913                 guc_exec_queue_wq_snapshot_print(snapshot, p);
1914
1915         for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
1916              i++)
1917                 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
1918                            snapshot->pending_list[i].seqno,
1919                            snapshot->pending_list[i].fence,
1920                            snapshot->pending_list[i].finished);
1921 }
1922
1923 /**
1924  * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
1925  * snapshot.
1926  * @snapshot: GuC Submit Engine snapshot object.
1927  *
1928  * This function free all the memory that needed to be allocated at capture
1929  * time.
1930  */
1931 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
1932 {
1933         if (!snapshot)
1934                 return;
1935
1936         kfree(snapshot->lrc);
1937         kfree(snapshot->pending_list);
1938         kfree(snapshot);
1939 }
1940
1941 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
1942 {
1943         struct xe_guc_submit_exec_queue_snapshot *snapshot;
1944         struct xe_gpu_scheduler *sched = &q->guc->sched;
1945         struct xe_sched_job *job;
1946         bool found = false;
1947
1948         spin_lock(&sched->base.job_list_lock);
1949         list_for_each_entry(job, &sched->base.pending_list, drm.list) {
1950                 if (job->q == q) {
1951                         xe_sched_job_get(job);
1952                         found = true;
1953                         break;
1954                 }
1955         }
1956         spin_unlock(&sched->base.job_list_lock);
1957
1958         if (!found)
1959                 return;
1960
1961         snapshot = xe_guc_exec_queue_snapshot_capture(job);
1962         xe_guc_exec_queue_snapshot_print(snapshot, p);
1963         xe_guc_exec_queue_snapshot_free(snapshot);
1964
1965         xe_sched_job_put(job);
1966 }
1967
1968 /**
1969  * xe_guc_submit_print - GuC Submit Print.
1970  * @guc: GuC.
1971  * @p: drm_printer where it will be printed out.
1972  *
1973  * This function capture and prints snapshots of **all** GuC Engines.
1974  */
1975 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
1976 {
1977         struct xe_exec_queue *q;
1978         unsigned long index;
1979
1980         if (!xe_device_uc_enabled(guc_to_xe(guc)))
1981                 return;
1982
1983         mutex_lock(&guc->submission_state.lock);
1984         xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
1985                 guc_exec_queue_print(q, p);
1986         mutex_unlock(&guc->submission_state.lock);
1987 }