Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33         .fpfn = 0,
34         .lpfn = 0,
35         .mem_type = TTM_PL_VRAM,
36         .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40         .fpfn = 0,
41         .lpfn = 0,
42         .mem_type = TTM_PL_SYSTEM,
43         .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47         .fpfn = 0,
48         .lpfn = 0,
49         .mem_type = VMW_PL_GMR,
50         .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54         .fpfn = 0,
55         .lpfn = 0,
56         .mem_type = VMW_PL_MOB,
57         .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61         .num_placement = 1,
62         .placement = &vram_placement_flags,
63         .num_busy_placement = 1,
64         .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68         {
69                 .fpfn = 0,
70                 .lpfn = 0,
71                 .mem_type = TTM_PL_VRAM,
72                 .flags = 0
73         }, {
74                 .fpfn = 0,
75                 .lpfn = 0,
76                 .mem_type = VMW_PL_GMR,
77                 .flags = 0
78         }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82         {
83                 .fpfn = 0,
84                 .lpfn = 0,
85                 .mem_type = VMW_PL_GMR,
86                 .flags = 0
87         }, {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .mem_type = TTM_PL_VRAM,
91                 .flags = 0
92         }
93 };
94
95 struct ttm_placement vmw_vram_gmr_placement = {
96         .num_placement = 2,
97         .placement = vram_gmr_placement_flags,
98         .num_busy_placement = 1,
99         .busy_placement = &gmr_placement_flags
100 };
101
102 struct ttm_placement vmw_vram_sys_placement = {
103         .num_placement = 1,
104         .placement = &vram_placement_flags,
105         .num_busy_placement = 1,
106         .busy_placement = &sys_placement_flags
107 };
108
109 struct ttm_placement vmw_sys_placement = {
110         .num_placement = 1,
111         .placement = &sys_placement_flags,
112         .num_busy_placement = 1,
113         .busy_placement = &sys_placement_flags
114 };
115
116 static const struct ttm_place evictable_placement_flags[] = {
117         {
118                 .fpfn = 0,
119                 .lpfn = 0,
120                 .mem_type = TTM_PL_SYSTEM,
121                 .flags = 0
122         }, {
123                 .fpfn = 0,
124                 .lpfn = 0,
125                 .mem_type = TTM_PL_VRAM,
126                 .flags = 0
127         }, {
128                 .fpfn = 0,
129                 .lpfn = 0,
130                 .mem_type = VMW_PL_GMR,
131                 .flags = 0
132         }, {
133                 .fpfn = 0,
134                 .lpfn = 0,
135                 .mem_type = VMW_PL_MOB,
136                 .flags = 0
137         }
138 };
139
140 static const struct ttm_place nonfixed_placement_flags[] = {
141         {
142                 .fpfn = 0,
143                 .lpfn = 0,
144                 .mem_type = TTM_PL_SYSTEM,
145                 .flags = 0
146         }, {
147                 .fpfn = 0,
148                 .lpfn = 0,
149                 .mem_type = VMW_PL_GMR,
150                 .flags = 0
151         }, {
152                 .fpfn = 0,
153                 .lpfn = 0,
154                 .mem_type = VMW_PL_MOB,
155                 .flags = 0
156         }
157 };
158
159 struct ttm_placement vmw_evictable_placement = {
160         .num_placement = 4,
161         .placement = evictable_placement_flags,
162         .num_busy_placement = 1,
163         .busy_placement = &sys_placement_flags
164 };
165
166 struct ttm_placement vmw_srf_placement = {
167         .num_placement = 1,
168         .num_busy_placement = 2,
169         .placement = &gmr_placement_flags,
170         .busy_placement = gmr_vram_placement_flags
171 };
172
173 struct ttm_placement vmw_mob_placement = {
174         .num_placement = 1,
175         .num_busy_placement = 1,
176         .placement = &mob_placement_flags,
177         .busy_placement = &mob_placement_flags
178 };
179
180 struct ttm_placement vmw_nonfixed_placement = {
181         .num_placement = 3,
182         .placement = nonfixed_placement_flags,
183         .num_busy_placement = 1,
184         .busy_placement = &sys_placement_flags
185 };
186
187 struct vmw_ttm_tt {
188         struct ttm_tt dma_ttm;
189         struct vmw_private *dev_priv;
190         int gmr_id;
191         struct vmw_mob *mob;
192         int mem_type;
193         struct sg_table sgt;
194         struct vmw_sg_table vsgt;
195         uint64_t sg_alloc_size;
196         bool mapped;
197         bool bound;
198 };
199
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201
202 /**
203  * __vmw_piter_non_sg_next: Helper functions to advance
204  * a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214         return ++(viter->i) < viter->num_pages;
215 }
216
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219         bool ret = __vmw_piter_non_sg_next(viter);
220
221         return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223
224
225 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
226 {
227         return viter->addrs[viter->i];
228 }
229
230 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
231 {
232         return sg_page_iter_dma_address(&viter->iter);
233 }
234
235
236 /**
237  * vmw_piter_start - Initialize a struct vmw_piter.
238  *
239  * @viter: Pointer to the iterator to initialize
240  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
241  * @p_offset: Pointer offset used to update current array position
242  *
243  * Note that we're following the convention of __sg_page_iter_start, so that
244  * the iterator doesn't point to a valid page after initialization; it has
245  * to be advanced one step first.
246  */
247 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
248                      unsigned long p_offset)
249 {
250         viter->i = p_offset - 1;
251         viter->num_pages = vsgt->num_pages;
252         viter->pages = vsgt->pages;
253         switch (vsgt->mode) {
254         case vmw_dma_alloc_coherent:
255                 viter->next = &__vmw_piter_non_sg_next;
256                 viter->dma_address = &__vmw_piter_dma_addr;
257                 viter->addrs = vsgt->addrs;
258                 break;
259         case vmw_dma_map_populate:
260         case vmw_dma_map_bind:
261                 viter->next = &__vmw_piter_sg_next;
262                 viter->dma_address = &__vmw_piter_sg_addr;
263                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
264                                      vsgt->sgt->orig_nents, p_offset);
265                 break;
266         default:
267                 BUG();
268         }
269 }
270
271 /**
272  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
273  * TTM pages
274  *
275  * @vmw_tt: Pointer to a struct vmw_ttm_backend
276  *
277  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
278  */
279 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
280 {
281         struct device *dev = vmw_tt->dev_priv->drm.dev;
282
283         dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
284         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
285 }
286
287 /**
288  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
289  *
290  * @vmw_tt: Pointer to a struct vmw_ttm_backend
291  *
292  * This function is used to get device addresses from the kernel DMA layer.
293  * However, it's violating the DMA API in that when this operation has been
294  * performed, it's illegal for the CPU to write to the pages without first
295  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
296  * therefore only legal to call this function if we know that the function
297  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
298  * a CPU write buffer flush.
299  */
300 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302         struct device *dev = vmw_tt->dev_priv->drm.dev;
303
304         return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
305 }
306
307 /**
308  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_tt
311  *
312  * Select the correct function for and make sure the TTM pages are
313  * visible to the device. Allocate storage for the device mappings.
314  * If a mapping has already been performed, indicated by the storage
315  * pointer being non NULL, the function returns success.
316  */
317 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
318 {
319         struct vmw_private *dev_priv = vmw_tt->dev_priv;
320         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
321         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
322         struct ttm_operation_ctx ctx = {
323                 .interruptible = true,
324                 .no_wait_gpu = false
325         };
326         struct vmw_piter iter;
327         dma_addr_t old;
328         int ret = 0;
329         static size_t sgl_size;
330         static size_t sgt_size;
331
332         if (vmw_tt->mapped)
333                 return 0;
334
335         vsgt->mode = dev_priv->map_mode;
336         vsgt->pages = vmw_tt->dma_ttm.pages;
337         vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
338         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
339         vsgt->sgt = &vmw_tt->sgt;
340
341         switch (dev_priv->map_mode) {
342         case vmw_dma_map_bind:
343         case vmw_dma_map_populate:
344                 if (unlikely(!sgl_size)) {
345                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
346                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
347                 }
348                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
349                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
350                 if (unlikely(ret != 0))
351                         return ret;
352
353                 ret = sg_alloc_table_from_pages_segment(
354                         &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
355                         (unsigned long)vsgt->num_pages << PAGE_SHIFT,
356                         dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
357                 if (ret)
358                         goto out_sg_alloc_fail;
359
360                 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
361                         uint64_t over_alloc =
362                                 sgl_size * (vsgt->num_pages -
363                                             vmw_tt->sgt.orig_nents);
364
365                         ttm_mem_global_free(glob, over_alloc);
366                         vmw_tt->sg_alloc_size -= over_alloc;
367                 }
368
369                 ret = vmw_ttm_map_for_dma(vmw_tt);
370                 if (unlikely(ret != 0))
371                         goto out_map_fail;
372
373                 break;
374         default:
375                 break;
376         }
377
378         old = ~((dma_addr_t) 0);
379         vmw_tt->vsgt.num_regions = 0;
380         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
381                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
382
383                 if (cur != old + PAGE_SIZE)
384                         vmw_tt->vsgt.num_regions++;
385                 old = cur;
386         }
387
388         vmw_tt->mapped = true;
389         return 0;
390
391 out_map_fail:
392         sg_free_table(vmw_tt->vsgt.sgt);
393         vmw_tt->vsgt.sgt = NULL;
394 out_sg_alloc_fail:
395         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
396         return ret;
397 }
398
399 /**
400  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
401  *
402  * @vmw_tt: Pointer to a struct vmw_ttm_tt
403  *
404  * Tear down any previously set up device DMA mappings and free
405  * any storage space allocated for them. If there are no mappings set up,
406  * this function is a NOP.
407  */
408 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
409 {
410         struct vmw_private *dev_priv = vmw_tt->dev_priv;
411
412         if (!vmw_tt->vsgt.sgt)
413                 return;
414
415         switch (dev_priv->map_mode) {
416         case vmw_dma_map_bind:
417         case vmw_dma_map_populate:
418                 vmw_ttm_unmap_from_dma(vmw_tt);
419                 sg_free_table(vmw_tt->vsgt.sgt);
420                 vmw_tt->vsgt.sgt = NULL;
421                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
422                                     vmw_tt->sg_alloc_size);
423                 break;
424         default:
425                 break;
426         }
427         vmw_tt->mapped = false;
428 }
429
430 /**
431  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
432  * TTM buffer object
433  *
434  * @bo: Pointer to a struct ttm_buffer_object
435  *
436  * Returns a pointer to a struct vmw_sg_table object. The object should
437  * not be freed after use.
438  * Note that for the device addresses to be valid, the buffer object must
439  * either be reserved or pinned.
440  */
441 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
442 {
443         struct vmw_ttm_tt *vmw_tt =
444                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
445
446         return &vmw_tt->vsgt;
447 }
448
449
450 static int vmw_ttm_bind(struct ttm_device *bdev,
451                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
452 {
453         struct vmw_ttm_tt *vmw_be =
454                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
455         int ret = 0;
456
457         if (!bo_mem)
458                 return -EINVAL;
459
460         if (vmw_be->bound)
461                 return 0;
462
463         ret = vmw_ttm_map_dma(vmw_be);
464         if (unlikely(ret != 0))
465                 return ret;
466
467         vmw_be->gmr_id = bo_mem->start;
468         vmw_be->mem_type = bo_mem->mem_type;
469
470         switch (bo_mem->mem_type) {
471         case VMW_PL_GMR:
472                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
473                                     ttm->num_pages, vmw_be->gmr_id);
474                 break;
475         case VMW_PL_MOB:
476                 if (unlikely(vmw_be->mob == NULL)) {
477                         vmw_be->mob =
478                                 vmw_mob_create(ttm->num_pages);
479                         if (unlikely(vmw_be->mob == NULL))
480                                 return -ENOMEM;
481                 }
482
483                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
484                                     &vmw_be->vsgt, ttm->num_pages,
485                                     vmw_be->gmr_id);
486                 break;
487         default:
488                 BUG();
489         }
490         vmw_be->bound = true;
491         return ret;
492 }
493
494 static void vmw_ttm_unbind(struct ttm_device *bdev,
495                            struct ttm_tt *ttm)
496 {
497         struct vmw_ttm_tt *vmw_be =
498                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
499
500         if (!vmw_be->bound)
501                 return;
502
503         switch (vmw_be->mem_type) {
504         case VMW_PL_GMR:
505                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
506                 break;
507         case VMW_PL_MOB:
508                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
509                 break;
510         default:
511                 BUG();
512         }
513
514         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
515                 vmw_ttm_unmap_dma(vmw_be);
516         vmw_be->bound = false;
517 }
518
519
520 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
521 {
522         struct vmw_ttm_tt *vmw_be =
523                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
524
525         vmw_ttm_unbind(bdev, ttm);
526         ttm_tt_destroy_common(bdev, ttm);
527         vmw_ttm_unmap_dma(vmw_be);
528         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
529                 ttm_tt_fini(&vmw_be->dma_ttm);
530         else
531                 ttm_tt_fini(ttm);
532
533         if (vmw_be->mob)
534                 vmw_mob_destroy(vmw_be->mob);
535
536         kfree(vmw_be);
537 }
538
539
540 static int vmw_ttm_populate(struct ttm_device *bdev,
541                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
542 {
543         unsigned int i;
544         int ret;
545
546         /* TODO: maybe completely drop this ? */
547         if (ttm_tt_is_populated(ttm))
548                 return 0;
549
550         ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
551         if (ret)
552                 return ret;
553
554         for (i = 0; i < ttm->num_pages; ++i) {
555                 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
556                                                 PAGE_SIZE, ctx);
557                 if (ret)
558                         goto error;
559         }
560         return 0;
561
562 error:
563         while (i--)
564                 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
565                                          PAGE_SIZE);
566         ttm_pool_free(&bdev->pool, ttm);
567         return ret;
568 }
569
570 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
571                                struct ttm_tt *ttm)
572 {
573         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
574                                                  dma_ttm);
575         unsigned int i;
576
577         if (vmw_tt->mob) {
578                 vmw_mob_destroy(vmw_tt->mob);
579                 vmw_tt->mob = NULL;
580         }
581
582         vmw_ttm_unmap_dma(vmw_tt);
583
584         for (i = 0; i < ttm->num_pages; ++i)
585                 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
586                                          PAGE_SIZE);
587
588         ttm_pool_free(&bdev->pool, ttm);
589 }
590
591 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
592                                         uint32_t page_flags)
593 {
594         struct vmw_ttm_tt *vmw_be;
595         int ret;
596
597         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
598         if (!vmw_be)
599                 return NULL;
600
601         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
602         vmw_be->mob = NULL;
603
604         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
605                 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
606                                      ttm_cached);
607         else
608                 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
609                                   ttm_cached);
610         if (unlikely(ret != 0))
611                 goto out_no_init;
612
613         return &vmw_be->dma_ttm;
614 out_no_init:
615         kfree(vmw_be);
616         return NULL;
617 }
618
619 static void vmw_evict_flags(struct ttm_buffer_object *bo,
620                      struct ttm_placement *placement)
621 {
622         *placement = vmw_sys_placement;
623 }
624
625 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
626 {
627         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
628
629         switch (mem->mem_type) {
630         case TTM_PL_SYSTEM:
631         case VMW_PL_GMR:
632         case VMW_PL_MOB:
633                 return 0;
634         case TTM_PL_VRAM:
635                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
636                         dev_priv->vram_start;
637                 mem->bus.is_iomem = true;
638                 mem->bus.caching = ttm_cached;
639                 break;
640         default:
641                 return -EINVAL;
642         }
643         return 0;
644 }
645
646 /**
647  * vmw_move_notify - TTM move_notify_callback
648  *
649  * @bo: The TTM buffer object about to move.
650  * @old_mem: The old memory where we move from
651  * @new_mem: The struct ttm_resource indicating to what memory
652  *       region the move is taking place.
653  *
654  * Calls move_notify for all subsystems needing it.
655  * (currently only resources).
656  */
657 static void vmw_move_notify(struct ttm_buffer_object *bo,
658                             struct ttm_resource *old_mem,
659                             struct ttm_resource *new_mem)
660 {
661         vmw_bo_move_notify(bo, new_mem);
662         vmw_query_move_notify(bo, old_mem, new_mem);
663 }
664
665
666 /**
667  * vmw_swap_notify - TTM move_notify_callback
668  *
669  * @bo: The TTM buffer object about to be swapped out.
670  */
671 static void vmw_swap_notify(struct ttm_buffer_object *bo)
672 {
673         vmw_bo_swap_notify(bo);
674         (void) ttm_bo_wait(bo, false, false);
675 }
676
677 static int vmw_move(struct ttm_buffer_object *bo,
678                     bool evict,
679                     struct ttm_operation_ctx *ctx,
680                     struct ttm_resource *new_mem,
681                     struct ttm_place *hop)
682 {
683         struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
684         struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
685         int ret;
686
687         if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
688                 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
689                 if (ret)
690                         return ret;
691         }
692
693         vmw_move_notify(bo, bo->resource, new_mem);
694
695         if (old_man->use_tt && new_man->use_tt) {
696                 if (bo->resource->mem_type == TTM_PL_SYSTEM) {
697                         ttm_bo_move_null(bo, new_mem);
698                         return 0;
699                 }
700                 ret = ttm_bo_wait_ctx(bo, ctx);
701                 if (ret)
702                         goto fail;
703
704                 vmw_ttm_unbind(bo->bdev, bo->ttm);
705                 ttm_resource_free(bo, &bo->resource);
706                 ttm_bo_assign_mem(bo, new_mem);
707                 return 0;
708         } else {
709                 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
710                 if (ret)
711                         goto fail;
712         }
713         return 0;
714 fail:
715         vmw_move_notify(bo, new_mem, bo->resource);
716         return ret;
717 }
718
719 struct ttm_device_funcs vmw_bo_driver = {
720         .ttm_tt_create = &vmw_ttm_tt_create,
721         .ttm_tt_populate = &vmw_ttm_populate,
722         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
723         .ttm_tt_destroy = &vmw_ttm_destroy,
724         .eviction_valuable = ttm_bo_eviction_valuable,
725         .evict_flags = vmw_evict_flags,
726         .move = vmw_move,
727         .swap_notify = vmw_swap_notify,
728         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
729 };
730
731 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
732                                unsigned long bo_size,
733                                struct ttm_buffer_object **bo_p)
734 {
735         struct ttm_operation_ctx ctx = {
736                 .interruptible = false,
737                 .no_wait_gpu = false
738         };
739         struct ttm_buffer_object *bo;
740         int ret;
741
742         ret = vmw_bo_create_kernel(dev_priv, bo_size,
743                                    &vmw_sys_placement,
744                                    &bo);
745         if (unlikely(ret != 0))
746                 return ret;
747
748         ret = ttm_bo_reserve(bo, false, true, NULL);
749         BUG_ON(ret != 0);
750         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
751         if (likely(ret == 0)) {
752                 struct vmw_ttm_tt *vmw_tt =
753                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
754                 ret = vmw_ttm_map_dma(vmw_tt);
755         }
756
757         ttm_bo_unreserve(bo);
758
759         if (likely(ret == 0))
760                 *bo_p = bo;
761         return ret;
762 }