7f0310441da1348f3b5325eb3924b9bc82f54251
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static const struct ttm_place vram_placement_flags = {
34         .fpfn = 0,
35         .lpfn = 0,
36         .mem_type = TTM_PL_VRAM,
37         .flags = TTM_PL_FLAG_CACHED
38 };
39
40 static const struct ttm_place vram_ne_placement_flags = {
41         .fpfn = 0,
42         .lpfn = 0,
43         .mem_type = TTM_PL_VRAM,
44         .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
45 };
46
47 static const struct ttm_place sys_placement_flags = {
48         .fpfn = 0,
49         .lpfn = 0,
50         .mem_type = TTM_PL_SYSTEM,
51         .flags = TTM_PL_FLAG_CACHED
52 };
53
54 static const struct ttm_place sys_ne_placement_flags = {
55         .fpfn = 0,
56         .lpfn = 0,
57         .mem_type = TTM_PL_SYSTEM,
58         .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
59 };
60
61 static const struct ttm_place gmr_placement_flags = {
62         .fpfn = 0,
63         .lpfn = 0,
64         .mem_type = VMW_PL_GMR,
65         .flags = TTM_PL_FLAG_CACHED
66 };
67
68 static const struct ttm_place gmr_ne_placement_flags = {
69         .fpfn = 0,
70         .lpfn = 0,
71         .mem_type = VMW_PL_GMR,
72         .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
73 };
74
75 static const struct ttm_place mob_placement_flags = {
76         .fpfn = 0,
77         .lpfn = 0,
78         .mem_type = VMW_PL_MOB,
79         .flags = TTM_PL_FLAG_CACHED
80 };
81
82 static const struct ttm_place mob_ne_placement_flags = {
83         .fpfn = 0,
84         .lpfn = 0,
85         .mem_type = VMW_PL_MOB,
86         .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
87 };
88
89 struct ttm_placement vmw_vram_placement = {
90         .num_placement = 1,
91         .placement = &vram_placement_flags,
92         .num_busy_placement = 1,
93         .busy_placement = &vram_placement_flags
94 };
95
96 static const struct ttm_place vram_gmr_placement_flags[] = {
97         {
98                 .fpfn = 0,
99                 .lpfn = 0,
100                 .mem_type = TTM_PL_VRAM,
101                 .flags = TTM_PL_FLAG_CACHED
102         }, {
103                 .fpfn = 0,
104                 .lpfn = 0,
105                 .mem_type = VMW_PL_GMR,
106                 .flags = TTM_PL_FLAG_CACHED
107         }
108 };
109
110 static const struct ttm_place gmr_vram_placement_flags[] = {
111         {
112                 .fpfn = 0,
113                 .lpfn = 0,
114                 .mem_type = VMW_PL_GMR,
115                 .flags = TTM_PL_FLAG_CACHED
116         }, {
117                 .fpfn = 0,
118                 .lpfn = 0,
119                 .mem_type = TTM_PL_VRAM,
120                 .flags = TTM_PL_FLAG_CACHED
121         }
122 };
123
124 struct ttm_placement vmw_vram_gmr_placement = {
125         .num_placement = 2,
126         .placement = vram_gmr_placement_flags,
127         .num_busy_placement = 1,
128         .busy_placement = &gmr_placement_flags
129 };
130
131 static const struct ttm_place vram_gmr_ne_placement_flags[] = {
132         {
133                 .fpfn = 0,
134                 .lpfn = 0,
135                 .mem_type = TTM_PL_VRAM,
136                 .flags = TTM_PL_FLAG_CACHED |
137                          TTM_PL_FLAG_NO_EVICT
138         }, {
139                 .fpfn = 0,
140                 .lpfn = 0,
141                 .mem_type = VMW_PL_GMR,
142                 .flags = TTM_PL_FLAG_CACHED |
143                          TTM_PL_FLAG_NO_EVICT
144         }
145 };
146
147 struct ttm_placement vmw_vram_gmr_ne_placement = {
148         .num_placement = 2,
149         .placement = vram_gmr_ne_placement_flags,
150         .num_busy_placement = 1,
151         .busy_placement = &gmr_ne_placement_flags
152 };
153
154 struct ttm_placement vmw_vram_sys_placement = {
155         .num_placement = 1,
156         .placement = &vram_placement_flags,
157         .num_busy_placement = 1,
158         .busy_placement = &sys_placement_flags
159 };
160
161 struct ttm_placement vmw_vram_ne_placement = {
162         .num_placement = 1,
163         .placement = &vram_ne_placement_flags,
164         .num_busy_placement = 1,
165         .busy_placement = &vram_ne_placement_flags
166 };
167
168 struct ttm_placement vmw_sys_placement = {
169         .num_placement = 1,
170         .placement = &sys_placement_flags,
171         .num_busy_placement = 1,
172         .busy_placement = &sys_placement_flags
173 };
174
175 struct ttm_placement vmw_sys_ne_placement = {
176         .num_placement = 1,
177         .placement = &sys_ne_placement_flags,
178         .num_busy_placement = 1,
179         .busy_placement = &sys_ne_placement_flags
180 };
181
182 static const struct ttm_place evictable_placement_flags[] = {
183         {
184                 .fpfn = 0,
185                 .lpfn = 0,
186                 .mem_type = TTM_PL_SYSTEM,
187                 .flags = TTM_PL_FLAG_CACHED
188         }, {
189                 .fpfn = 0,
190                 .lpfn = 0,
191                 .mem_type = TTM_PL_VRAM,
192                 .flags = TTM_PL_FLAG_CACHED
193         }, {
194                 .fpfn = 0,
195                 .lpfn = 0,
196                 .mem_type = VMW_PL_GMR,
197                 .flags = TTM_PL_FLAG_CACHED
198         }, {
199                 .fpfn = 0,
200                 .lpfn = 0,
201                 .mem_type = VMW_PL_MOB,
202                 .flags = TTM_PL_FLAG_CACHED
203         }
204 };
205
206 static const struct ttm_place nonfixed_placement_flags[] = {
207         {
208                 .fpfn = 0,
209                 .lpfn = 0,
210                 .mem_type = TTM_PL_SYSTEM,
211                 .flags = TTM_PL_FLAG_CACHED
212         }, {
213                 .fpfn = 0,
214                 .lpfn = 0,
215                 .mem_type = VMW_PL_GMR,
216                 .flags = TTM_PL_FLAG_CACHED
217         }, {
218                 .fpfn = 0,
219                 .lpfn = 0,
220                 .mem_type = VMW_PL_MOB,
221                 .flags = TTM_PL_FLAG_CACHED
222         }
223 };
224
225 struct ttm_placement vmw_evictable_placement = {
226         .num_placement = 4,
227         .placement = evictable_placement_flags,
228         .num_busy_placement = 1,
229         .busy_placement = &sys_placement_flags
230 };
231
232 struct ttm_placement vmw_srf_placement = {
233         .num_placement = 1,
234         .num_busy_placement = 2,
235         .placement = &gmr_placement_flags,
236         .busy_placement = gmr_vram_placement_flags
237 };
238
239 struct ttm_placement vmw_mob_placement = {
240         .num_placement = 1,
241         .num_busy_placement = 1,
242         .placement = &mob_placement_flags,
243         .busy_placement = &mob_placement_flags
244 };
245
246 struct ttm_placement vmw_mob_ne_placement = {
247         .num_placement = 1,
248         .num_busy_placement = 1,
249         .placement = &mob_ne_placement_flags,
250         .busy_placement = &mob_ne_placement_flags
251 };
252
253 struct ttm_placement vmw_nonfixed_placement = {
254         .num_placement = 3,
255         .placement = nonfixed_placement_flags,
256         .num_busy_placement = 1,
257         .busy_placement = &sys_placement_flags
258 };
259
260 struct vmw_ttm_tt {
261         struct ttm_dma_tt dma_ttm;
262         struct vmw_private *dev_priv;
263         int gmr_id;
264         struct vmw_mob *mob;
265         int mem_type;
266         struct sg_table sgt;
267         struct vmw_sg_table vsgt;
268         uint64_t sg_alloc_size;
269         bool mapped;
270         bool bound;
271 };
272
273 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
274
275 /**
276  * Helper functions to advance a struct vmw_piter iterator.
277  *
278  * @viter: Pointer to the iterator.
279  *
280  * These functions return false if past the end of the list,
281  * true otherwise. Functions are selected depending on the current
282  * DMA mapping mode.
283  */
284 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
285 {
286         return ++(viter->i) < viter->num_pages;
287 }
288
289 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
290 {
291         bool ret = __vmw_piter_non_sg_next(viter);
292
293         return __sg_page_iter_dma_next(&viter->iter) && ret;
294 }
295
296
297 /**
298  * Helper functions to return a pointer to the current page.
299  *
300  * @viter: Pointer to the iterator
301  *
302  * These functions return a pointer to the page currently
303  * pointed to by @viter. Functions are selected depending on the
304  * current mapping mode.
305  */
306 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
307 {
308         return viter->pages[viter->i];
309 }
310
311 /**
312  * Helper functions to return the DMA address of the current page.
313  *
314  * @viter: Pointer to the iterator
315  *
316  * These functions return the DMA address of the page currently
317  * pointed to by @viter. Functions are selected depending on the
318  * current mapping mode.
319  */
320 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
321 {
322         return page_to_phys(viter->pages[viter->i]);
323 }
324
325 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
326 {
327         return viter->addrs[viter->i];
328 }
329
330 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
331 {
332         return sg_page_iter_dma_address(&viter->iter);
333 }
334
335
336 /**
337  * vmw_piter_start - Initialize a struct vmw_piter.
338  *
339  * @viter: Pointer to the iterator to initialize
340  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
341  *
342  * Note that we're following the convention of __sg_page_iter_start, so that
343  * the iterator doesn't point to a valid page after initialization; it has
344  * to be advanced one step first.
345  */
346 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
347                      unsigned long p_offset)
348 {
349         viter->i = p_offset - 1;
350         viter->num_pages = vsgt->num_pages;
351         viter->page = &__vmw_piter_non_sg_page;
352         viter->pages = vsgt->pages;
353         switch (vsgt->mode) {
354         case vmw_dma_phys:
355                 viter->next = &__vmw_piter_non_sg_next;
356                 viter->dma_address = &__vmw_piter_phys_addr;
357                 break;
358         case vmw_dma_alloc_coherent:
359                 viter->next = &__vmw_piter_non_sg_next;
360                 viter->dma_address = &__vmw_piter_dma_addr;
361                 viter->addrs = vsgt->addrs;
362                 break;
363         case vmw_dma_map_populate:
364         case vmw_dma_map_bind:
365                 viter->next = &__vmw_piter_sg_next;
366                 viter->dma_address = &__vmw_piter_sg_addr;
367                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
368                                      vsgt->sgt->orig_nents, p_offset);
369                 break;
370         default:
371                 BUG();
372         }
373 }
374
375 /**
376  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
377  * TTM pages
378  *
379  * @vmw_tt: Pointer to a struct vmw_ttm_backend
380  *
381  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
382  */
383 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
384 {
385         struct device *dev = vmw_tt->dev_priv->dev->dev;
386
387         dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
388         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
389 }
390
391 /**
392  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
393  *
394  * @vmw_tt: Pointer to a struct vmw_ttm_backend
395  *
396  * This function is used to get device addresses from the kernel DMA layer.
397  * However, it's violating the DMA API in that when this operation has been
398  * performed, it's illegal for the CPU to write to the pages without first
399  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
400  * therefore only legal to call this function if we know that the function
401  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
402  * a CPU write buffer flush.
403  */
404 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
405 {
406         struct device *dev = vmw_tt->dev_priv->dev->dev;
407
408         return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
409 }
410
411 /**
412  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
413  *
414  * @vmw_tt: Pointer to a struct vmw_ttm_tt
415  *
416  * Select the correct function for and make sure the TTM pages are
417  * visible to the device. Allocate storage for the device mappings.
418  * If a mapping has already been performed, indicated by the storage
419  * pointer being non NULL, the function returns success.
420  */
421 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
422 {
423         struct vmw_private *dev_priv = vmw_tt->dev_priv;
424         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
425         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
426         struct ttm_operation_ctx ctx = {
427                 .interruptible = true,
428                 .no_wait_gpu = false
429         };
430         struct vmw_piter iter;
431         dma_addr_t old;
432         int ret = 0;
433         static size_t sgl_size;
434         static size_t sgt_size;
435
436         if (vmw_tt->mapped)
437                 return 0;
438
439         vsgt->mode = dev_priv->map_mode;
440         vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
441         vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
442         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
443         vsgt->sgt = &vmw_tt->sgt;
444
445         switch (dev_priv->map_mode) {
446         case vmw_dma_map_bind:
447         case vmw_dma_map_populate:
448                 if (unlikely(!sgl_size)) {
449                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
450                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
451                 }
452                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
453                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
454                 if (unlikely(ret != 0))
455                         return ret;
456
457                 ret = __sg_alloc_table_from_pages
458                         (&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
459                          (unsigned long) vsgt->num_pages << PAGE_SHIFT,
460                          dma_get_max_seg_size(dev_priv->dev->dev),
461                          GFP_KERNEL);
462                 if (unlikely(ret != 0))
463                         goto out_sg_alloc_fail;
464
465                 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
466                         uint64_t over_alloc =
467                                 sgl_size * (vsgt->num_pages -
468                                             vmw_tt->sgt.orig_nents);
469
470                         ttm_mem_global_free(glob, over_alloc);
471                         vmw_tt->sg_alloc_size -= over_alloc;
472                 }
473
474                 ret = vmw_ttm_map_for_dma(vmw_tt);
475                 if (unlikely(ret != 0))
476                         goto out_map_fail;
477
478                 break;
479         default:
480                 break;
481         }
482
483         old = ~((dma_addr_t) 0);
484         vmw_tt->vsgt.num_regions = 0;
485         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
486                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
487
488                 if (cur != old + PAGE_SIZE)
489                         vmw_tt->vsgt.num_regions++;
490                 old = cur;
491         }
492
493         vmw_tt->mapped = true;
494         return 0;
495
496 out_map_fail:
497         sg_free_table(vmw_tt->vsgt.sgt);
498         vmw_tt->vsgt.sgt = NULL;
499 out_sg_alloc_fail:
500         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
501         return ret;
502 }
503
504 /**
505  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
506  *
507  * @vmw_tt: Pointer to a struct vmw_ttm_tt
508  *
509  * Tear down any previously set up device DMA mappings and free
510  * any storage space allocated for them. If there are no mappings set up,
511  * this function is a NOP.
512  */
513 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
514 {
515         struct vmw_private *dev_priv = vmw_tt->dev_priv;
516
517         if (!vmw_tt->vsgt.sgt)
518                 return;
519
520         switch (dev_priv->map_mode) {
521         case vmw_dma_map_bind:
522         case vmw_dma_map_populate:
523                 vmw_ttm_unmap_from_dma(vmw_tt);
524                 sg_free_table(vmw_tt->vsgt.sgt);
525                 vmw_tt->vsgt.sgt = NULL;
526                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
527                                     vmw_tt->sg_alloc_size);
528                 break;
529         default:
530                 break;
531         }
532         vmw_tt->mapped = false;
533 }
534
535 /**
536  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
537  * TTM buffer object
538  *
539  * @bo: Pointer to a struct ttm_buffer_object
540  *
541  * Returns a pointer to a struct vmw_sg_table object. The object should
542  * not be freed after use.
543  * Note that for the device addresses to be valid, the buffer object must
544  * either be reserved or pinned.
545  */
546 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
547 {
548         struct vmw_ttm_tt *vmw_tt =
549                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
550
551         return &vmw_tt->vsgt;
552 }
553
554
555 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
556                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
557 {
558         struct vmw_ttm_tt *vmw_be =
559                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
560         int ret = 0;
561
562         if (!bo_mem)
563                 return -EINVAL;
564
565         if (vmw_be->bound)
566                 return 0;
567
568         ret = vmw_ttm_map_dma(vmw_be);
569         if (unlikely(ret != 0))
570                 return ret;
571
572         vmw_be->gmr_id = bo_mem->start;
573         vmw_be->mem_type = bo_mem->mem_type;
574
575         switch (bo_mem->mem_type) {
576         case VMW_PL_GMR:
577                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
578                                     ttm->num_pages, vmw_be->gmr_id);
579                 break;
580         case VMW_PL_MOB:
581                 if (unlikely(vmw_be->mob == NULL)) {
582                         vmw_be->mob =
583                                 vmw_mob_create(ttm->num_pages);
584                         if (unlikely(vmw_be->mob == NULL))
585                                 return -ENOMEM;
586                 }
587
588                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
589                                     &vmw_be->vsgt, ttm->num_pages,
590                                     vmw_be->gmr_id);
591                 break;
592         default:
593                 BUG();
594         }
595         vmw_be->bound = true;
596         return ret;
597 }
598
599 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
600                            struct ttm_tt *ttm)
601 {
602         struct vmw_ttm_tt *vmw_be =
603                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
604
605         if (!vmw_be->bound)
606                 return;
607
608         switch (vmw_be->mem_type) {
609         case VMW_PL_GMR:
610                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
611                 break;
612         case VMW_PL_MOB:
613                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
614                 break;
615         default:
616                 BUG();
617         }
618
619         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
620                 vmw_ttm_unmap_dma(vmw_be);
621         vmw_be->bound = false;
622 }
623
624
625 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
626 {
627         struct vmw_ttm_tt *vmw_be =
628                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
629
630         vmw_ttm_unbind(bdev, ttm);
631         ttm_tt_destroy_common(bdev, ttm);
632         vmw_ttm_unmap_dma(vmw_be);
633         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
634                 ttm_dma_tt_fini(&vmw_be->dma_ttm);
635         else
636                 ttm_tt_fini(ttm);
637
638         if (vmw_be->mob)
639                 vmw_mob_destroy(vmw_be->mob);
640
641         kfree(vmw_be);
642 }
643
644
645 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
646                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
647 {
648         struct vmw_ttm_tt *vmw_tt =
649                 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
650         struct vmw_private *dev_priv = vmw_tt->dev_priv;
651         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
652         int ret;
653
654         if (ttm_tt_is_populated(ttm))
655                 return 0;
656
657         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
658                 size_t size =
659                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
660                 ret = ttm_mem_global_alloc(glob, size, ctx);
661                 if (unlikely(ret != 0))
662                         return ret;
663
664                 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
665                                         ctx);
666                 if (unlikely(ret != 0))
667                         ttm_mem_global_free(glob, size);
668         } else
669                 ret = ttm_pool_populate(ttm, ctx);
670
671         return ret;
672 }
673
674 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
675                                struct ttm_tt *ttm)
676 {
677         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
678                                                  dma_ttm.ttm);
679         struct vmw_private *dev_priv = vmw_tt->dev_priv;
680         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
681
682
683         if (vmw_tt->mob) {
684                 vmw_mob_destroy(vmw_tt->mob);
685                 vmw_tt->mob = NULL;
686         }
687
688         vmw_ttm_unmap_dma(vmw_tt);
689         if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
690                 size_t size =
691                         ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
692
693                 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
694                 ttm_mem_global_free(glob, size);
695         } else
696                 ttm_pool_unpopulate(ttm);
697 }
698
699 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
700                                         uint32_t page_flags)
701 {
702         struct vmw_ttm_tt *vmw_be;
703         int ret;
704
705         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
706         if (!vmw_be)
707                 return NULL;
708
709         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
710         vmw_be->mob = NULL;
711
712         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
713                 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
714         else
715                 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
716         if (unlikely(ret != 0))
717                 goto out_no_init;
718
719         return &vmw_be->dma_ttm.ttm;
720 out_no_init:
721         kfree(vmw_be);
722         return NULL;
723 }
724
725 static void vmw_evict_flags(struct ttm_buffer_object *bo,
726                      struct ttm_placement *placement)
727 {
728         *placement = vmw_sys_placement;
729 }
730
731 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
732 {
733         struct ttm_object_file *tfile =
734                 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
735
736         return vmw_user_bo_verify_access(bo, tfile);
737 }
738
739 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
740 {
741         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
742
743         switch (mem->mem_type) {
744         case TTM_PL_SYSTEM:
745         case VMW_PL_GMR:
746         case VMW_PL_MOB:
747                 return 0;
748         case TTM_PL_VRAM:
749                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
750                         dev_priv->vram_start;
751                 mem->bus.is_iomem = true;
752                 break;
753         default:
754                 return -EINVAL;
755         }
756         return 0;
757 }
758
759 /**
760  * vmw_move_notify - TTM move_notify_callback
761  *
762  * @bo: The TTM buffer object about to move.
763  * @mem: The struct ttm_resource indicating to what memory
764  *       region the move is taking place.
765  *
766  * Calls move_notify for all subsystems needing it.
767  * (currently only resources).
768  */
769 static void vmw_move_notify(struct ttm_buffer_object *bo,
770                             bool evict,
771                             struct ttm_resource *mem)
772 {
773         vmw_bo_move_notify(bo, mem);
774         vmw_query_move_notify(bo, mem);
775 }
776
777
778 /**
779  * vmw_swap_notify - TTM move_notify_callback
780  *
781  * @bo: The TTM buffer object about to be swapped out.
782  */
783 static void vmw_swap_notify(struct ttm_buffer_object *bo)
784 {
785         vmw_bo_swap_notify(bo);
786         (void) ttm_bo_wait(bo, false, false);
787 }
788
789
790 struct ttm_bo_driver vmw_bo_driver = {
791         .ttm_tt_create = &vmw_ttm_tt_create,
792         .ttm_tt_populate = &vmw_ttm_populate,
793         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
794         .ttm_tt_bind = &vmw_ttm_bind,
795         .ttm_tt_unbind = &vmw_ttm_unbind,
796         .ttm_tt_destroy = &vmw_ttm_destroy,
797         .eviction_valuable = ttm_bo_eviction_valuable,
798         .evict_flags = vmw_evict_flags,
799         .move = NULL,
800         .verify_access = vmw_verify_access,
801         .move_notify = vmw_move_notify,
802         .swap_notify = vmw_swap_notify,
803         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
804 };
805
806 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
807                                unsigned long bo_size,
808                                struct ttm_buffer_object **bo_p)
809 {
810         struct ttm_operation_ctx ctx = {
811                 .interruptible = false,
812                 .no_wait_gpu = false
813         };
814         struct ttm_buffer_object *bo;
815         int ret;
816
817         ret = ttm_bo_create(&dev_priv->bdev, bo_size,
818                             ttm_bo_type_device,
819                             &vmw_sys_ne_placement,
820                             0, false, &bo);
821
822         if (unlikely(ret != 0))
823                 return ret;
824
825         ret = ttm_bo_reserve(bo, false, true, NULL);
826         BUG_ON(ret != 0);
827         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
828         if (likely(ret == 0)) {
829                 struct vmw_ttm_tt *vmw_tt =
830                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
831                 ret = vmw_ttm_map_dma(vmw_tt);
832         }
833
834         ttm_bo_unreserve(bo);
835
836         if (likely(ret == 0))
837                 *bo_p = bo;
838         return ret;
839 }