Merge tag 'for-linus-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33         .fpfn = 0,
34         .lpfn = 0,
35         .mem_type = TTM_PL_VRAM,
36         .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40         .fpfn = 0,
41         .lpfn = 0,
42         .mem_type = TTM_PL_SYSTEM,
43         .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47         .fpfn = 0,
48         .lpfn = 0,
49         .mem_type = VMW_PL_GMR,
50         .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54         .fpfn = 0,
55         .lpfn = 0,
56         .mem_type = VMW_PL_MOB,
57         .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61         .num_placement = 1,
62         .placement = &vram_placement_flags,
63         .num_busy_placement = 1,
64         .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68         {
69                 .fpfn = 0,
70                 .lpfn = 0,
71                 .mem_type = TTM_PL_VRAM,
72                 .flags = 0
73         }, {
74                 .fpfn = 0,
75                 .lpfn = 0,
76                 .mem_type = VMW_PL_GMR,
77                 .flags = 0
78         }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82         {
83                 .fpfn = 0,
84                 .lpfn = 0,
85                 .mem_type = VMW_PL_GMR,
86                 .flags = 0
87         }, {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .mem_type = TTM_PL_VRAM,
91                 .flags = 0
92         }
93 };
94
95 struct ttm_placement vmw_vram_gmr_placement = {
96         .num_placement = 2,
97         .placement = vram_gmr_placement_flags,
98         .num_busy_placement = 1,
99         .busy_placement = &gmr_placement_flags
100 };
101
102 struct ttm_placement vmw_vram_sys_placement = {
103         .num_placement = 1,
104         .placement = &vram_placement_flags,
105         .num_busy_placement = 1,
106         .busy_placement = &sys_placement_flags
107 };
108
109 struct ttm_placement vmw_sys_placement = {
110         .num_placement = 1,
111         .placement = &sys_placement_flags,
112         .num_busy_placement = 1,
113         .busy_placement = &sys_placement_flags
114 };
115
116 static const struct ttm_place evictable_placement_flags[] = {
117         {
118                 .fpfn = 0,
119                 .lpfn = 0,
120                 .mem_type = TTM_PL_SYSTEM,
121                 .flags = 0
122         }, {
123                 .fpfn = 0,
124                 .lpfn = 0,
125                 .mem_type = TTM_PL_VRAM,
126                 .flags = 0
127         }, {
128                 .fpfn = 0,
129                 .lpfn = 0,
130                 .mem_type = VMW_PL_GMR,
131                 .flags = 0
132         }, {
133                 .fpfn = 0,
134                 .lpfn = 0,
135                 .mem_type = VMW_PL_MOB,
136                 .flags = 0
137         }
138 };
139
140 static const struct ttm_place nonfixed_placement_flags[] = {
141         {
142                 .fpfn = 0,
143                 .lpfn = 0,
144                 .mem_type = TTM_PL_SYSTEM,
145                 .flags = 0
146         }, {
147                 .fpfn = 0,
148                 .lpfn = 0,
149                 .mem_type = VMW_PL_GMR,
150                 .flags = 0
151         }, {
152                 .fpfn = 0,
153                 .lpfn = 0,
154                 .mem_type = VMW_PL_MOB,
155                 .flags = 0
156         }
157 };
158
159 struct ttm_placement vmw_evictable_placement = {
160         .num_placement = 4,
161         .placement = evictable_placement_flags,
162         .num_busy_placement = 1,
163         .busy_placement = &sys_placement_flags
164 };
165
166 struct ttm_placement vmw_srf_placement = {
167         .num_placement = 1,
168         .num_busy_placement = 2,
169         .placement = &gmr_placement_flags,
170         .busy_placement = gmr_vram_placement_flags
171 };
172
173 struct ttm_placement vmw_mob_placement = {
174         .num_placement = 1,
175         .num_busy_placement = 1,
176         .placement = &mob_placement_flags,
177         .busy_placement = &mob_placement_flags
178 };
179
180 struct ttm_placement vmw_nonfixed_placement = {
181         .num_placement = 3,
182         .placement = nonfixed_placement_flags,
183         .num_busy_placement = 1,
184         .busy_placement = &sys_placement_flags
185 };
186
187 struct vmw_ttm_tt {
188         struct ttm_tt dma_ttm;
189         struct vmw_private *dev_priv;
190         int gmr_id;
191         struct vmw_mob *mob;
192         int mem_type;
193         struct sg_table sgt;
194         struct vmw_sg_table vsgt;
195         uint64_t sg_alloc_size;
196         bool mapped;
197         bool bound;
198 };
199
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201
202 /**
203  * Helper functions to advance a struct vmw_piter iterator.
204  *
205  * @viter: Pointer to the iterator.
206  *
207  * These functions return false if past the end of the list,
208  * true otherwise. Functions are selected depending on the current
209  * DMA mapping mode.
210  */
211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
212 {
213         return ++(viter->i) < viter->num_pages;
214 }
215
216 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
217 {
218         bool ret = __vmw_piter_non_sg_next(viter);
219
220         return __sg_page_iter_dma_next(&viter->iter) && ret;
221 }
222
223
224 /**
225  * Helper functions to return a pointer to the current page.
226  *
227  * @viter: Pointer to the iterator
228  *
229  * These functions return a pointer to the page currently
230  * pointed to by @viter. Functions are selected depending on the
231  * current mapping mode.
232  */
233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
234 {
235         return viter->pages[viter->i];
236 }
237
238 /**
239  * Helper functions to return the DMA address of the current page.
240  *
241  * @viter: Pointer to the iterator
242  *
243  * These functions return the DMA address of the page currently
244  * pointed to by @viter. Functions are selected depending on the
245  * current mapping mode.
246  */
247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
248 {
249         return page_to_phys(viter->pages[viter->i]);
250 }
251
252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
253 {
254         return viter->addrs[viter->i];
255 }
256
257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
258 {
259         return sg_page_iter_dma_address(&viter->iter);
260 }
261
262
263 /**
264  * vmw_piter_start - Initialize a struct vmw_piter.
265  *
266  * @viter: Pointer to the iterator to initialize
267  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
268  *
269  * Note that we're following the convention of __sg_page_iter_start, so that
270  * the iterator doesn't point to a valid page after initialization; it has
271  * to be advanced one step first.
272  */
273 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
274                      unsigned long p_offset)
275 {
276         viter->i = p_offset - 1;
277         viter->num_pages = vsgt->num_pages;
278         viter->page = &__vmw_piter_non_sg_page;
279         viter->pages = vsgt->pages;
280         switch (vsgt->mode) {
281         case vmw_dma_phys:
282                 viter->next = &__vmw_piter_non_sg_next;
283                 viter->dma_address = &__vmw_piter_phys_addr;
284                 break;
285         case vmw_dma_alloc_coherent:
286                 viter->next = &__vmw_piter_non_sg_next;
287                 viter->dma_address = &__vmw_piter_dma_addr;
288                 viter->addrs = vsgt->addrs;
289                 break;
290         case vmw_dma_map_populate:
291         case vmw_dma_map_bind:
292                 viter->next = &__vmw_piter_sg_next;
293                 viter->dma_address = &__vmw_piter_sg_addr;
294                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
295                                      vsgt->sgt->orig_nents, p_offset);
296                 break;
297         default:
298                 BUG();
299         }
300 }
301
302 /**
303  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
304  * TTM pages
305  *
306  * @vmw_tt: Pointer to a struct vmw_ttm_backend
307  *
308  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
309  */
310 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
311 {
312         struct device *dev = vmw_tt->dev_priv->dev->dev;
313
314         dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
315         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
316 }
317
318 /**
319  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
320  *
321  * @vmw_tt: Pointer to a struct vmw_ttm_backend
322  *
323  * This function is used to get device addresses from the kernel DMA layer.
324  * However, it's violating the DMA API in that when this operation has been
325  * performed, it's illegal for the CPU to write to the pages without first
326  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
327  * therefore only legal to call this function if we know that the function
328  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
329  * a CPU write buffer flush.
330  */
331 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
332 {
333         struct device *dev = vmw_tt->dev_priv->dev->dev;
334
335         return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
336 }
337
338 /**
339  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
340  *
341  * @vmw_tt: Pointer to a struct vmw_ttm_tt
342  *
343  * Select the correct function for and make sure the TTM pages are
344  * visible to the device. Allocate storage for the device mappings.
345  * If a mapping has already been performed, indicated by the storage
346  * pointer being non NULL, the function returns success.
347  */
348 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
349 {
350         struct vmw_private *dev_priv = vmw_tt->dev_priv;
351         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
352         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
353         struct ttm_operation_ctx ctx = {
354                 .interruptible = true,
355                 .no_wait_gpu = false
356         };
357         struct vmw_piter iter;
358         dma_addr_t old;
359         int ret = 0;
360         static size_t sgl_size;
361         static size_t sgt_size;
362         struct scatterlist *sg;
363
364         if (vmw_tt->mapped)
365                 return 0;
366
367         vsgt->mode = dev_priv->map_mode;
368         vsgt->pages = vmw_tt->dma_ttm.pages;
369         vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
370         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
371         vsgt->sgt = &vmw_tt->sgt;
372
373         switch (dev_priv->map_mode) {
374         case vmw_dma_map_bind:
375         case vmw_dma_map_populate:
376                 if (unlikely(!sgl_size)) {
377                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
378                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
379                 }
380                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
381                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
382                 if (unlikely(ret != 0))
383                         return ret;
384
385                 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
386                                 vsgt->num_pages, 0,
387                                 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
388                                 dma_get_max_seg_size(dev_priv->dev->dev),
389                                 NULL, 0, GFP_KERNEL);
390                 if (IS_ERR(sg)) {
391                         ret = PTR_ERR(sg);
392                         goto out_sg_alloc_fail;
393                 }
394
395                 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
396                         uint64_t over_alloc =
397                                 sgl_size * (vsgt->num_pages -
398                                             vmw_tt->sgt.orig_nents);
399
400                         ttm_mem_global_free(glob, over_alloc);
401                         vmw_tt->sg_alloc_size -= over_alloc;
402                 }
403
404                 ret = vmw_ttm_map_for_dma(vmw_tt);
405                 if (unlikely(ret != 0))
406                         goto out_map_fail;
407
408                 break;
409         default:
410                 break;
411         }
412
413         old = ~((dma_addr_t) 0);
414         vmw_tt->vsgt.num_regions = 0;
415         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
416                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
417
418                 if (cur != old + PAGE_SIZE)
419                         vmw_tt->vsgt.num_regions++;
420                 old = cur;
421         }
422
423         vmw_tt->mapped = true;
424         return 0;
425
426 out_map_fail:
427         sg_free_table(vmw_tt->vsgt.sgt);
428         vmw_tt->vsgt.sgt = NULL;
429 out_sg_alloc_fail:
430         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
431         return ret;
432 }
433
434 /**
435  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
436  *
437  * @vmw_tt: Pointer to a struct vmw_ttm_tt
438  *
439  * Tear down any previously set up device DMA mappings and free
440  * any storage space allocated for them. If there are no mappings set up,
441  * this function is a NOP.
442  */
443 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
444 {
445         struct vmw_private *dev_priv = vmw_tt->dev_priv;
446
447         if (!vmw_tt->vsgt.sgt)
448                 return;
449
450         switch (dev_priv->map_mode) {
451         case vmw_dma_map_bind:
452         case vmw_dma_map_populate:
453                 vmw_ttm_unmap_from_dma(vmw_tt);
454                 sg_free_table(vmw_tt->vsgt.sgt);
455                 vmw_tt->vsgt.sgt = NULL;
456                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
457                                     vmw_tt->sg_alloc_size);
458                 break;
459         default:
460                 break;
461         }
462         vmw_tt->mapped = false;
463 }
464
465 /**
466  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
467  * TTM buffer object
468  *
469  * @bo: Pointer to a struct ttm_buffer_object
470  *
471  * Returns a pointer to a struct vmw_sg_table object. The object should
472  * not be freed after use.
473  * Note that for the device addresses to be valid, the buffer object must
474  * either be reserved or pinned.
475  */
476 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
477 {
478         struct vmw_ttm_tt *vmw_tt =
479                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
480
481         return &vmw_tt->vsgt;
482 }
483
484
485 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
486                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
487 {
488         struct vmw_ttm_tt *vmw_be =
489                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
490         int ret = 0;
491
492         if (!bo_mem)
493                 return -EINVAL;
494
495         if (vmw_be->bound)
496                 return 0;
497
498         ret = vmw_ttm_map_dma(vmw_be);
499         if (unlikely(ret != 0))
500                 return ret;
501
502         vmw_be->gmr_id = bo_mem->start;
503         vmw_be->mem_type = bo_mem->mem_type;
504
505         switch (bo_mem->mem_type) {
506         case VMW_PL_GMR:
507                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
508                                     ttm->num_pages, vmw_be->gmr_id);
509                 break;
510         case VMW_PL_MOB:
511                 if (unlikely(vmw_be->mob == NULL)) {
512                         vmw_be->mob =
513                                 vmw_mob_create(ttm->num_pages);
514                         if (unlikely(vmw_be->mob == NULL))
515                                 return -ENOMEM;
516                 }
517
518                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
519                                     &vmw_be->vsgt, ttm->num_pages,
520                                     vmw_be->gmr_id);
521                 break;
522         default:
523                 BUG();
524         }
525         vmw_be->bound = true;
526         return ret;
527 }
528
529 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
530                            struct ttm_tt *ttm)
531 {
532         struct vmw_ttm_tt *vmw_be =
533                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
534
535         if (!vmw_be->bound)
536                 return;
537
538         switch (vmw_be->mem_type) {
539         case VMW_PL_GMR:
540                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
541                 break;
542         case VMW_PL_MOB:
543                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
544                 break;
545         default:
546                 BUG();
547         }
548
549         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
550                 vmw_ttm_unmap_dma(vmw_be);
551         vmw_be->bound = false;
552 }
553
554
555 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
556 {
557         struct vmw_ttm_tt *vmw_be =
558                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
559
560         vmw_ttm_unbind(bdev, ttm);
561         ttm_tt_destroy_common(bdev, ttm);
562         vmw_ttm_unmap_dma(vmw_be);
563         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
564                 ttm_tt_fini(&vmw_be->dma_ttm);
565         else
566                 ttm_tt_fini(ttm);
567
568         if (vmw_be->mob)
569                 vmw_mob_destroy(vmw_be->mob);
570
571         kfree(vmw_be);
572 }
573
574
575 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
576                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
577 {
578         /* TODO: maybe completely drop this ? */
579         if (ttm_tt_is_populated(ttm))
580                 return 0;
581
582         return ttm_pool_alloc(&bdev->pool, ttm, ctx);
583 }
584
585 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
586                                struct ttm_tt *ttm)
587 {
588         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
589                                                  dma_ttm);
590
591         if (vmw_tt->mob) {
592                 vmw_mob_destroy(vmw_tt->mob);
593                 vmw_tt->mob = NULL;
594         }
595
596         vmw_ttm_unmap_dma(vmw_tt);
597         ttm_pool_free(&bdev->pool, ttm);
598 }
599
600 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
601                                         uint32_t page_flags)
602 {
603         struct vmw_ttm_tt *vmw_be;
604         int ret;
605
606         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
607         if (!vmw_be)
608                 return NULL;
609
610         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
611         vmw_be->mob = NULL;
612
613         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
614                 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags,
615                                       ttm_cached);
616         else
617                 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
618                                   ttm_cached);
619         if (unlikely(ret != 0))
620                 goto out_no_init;
621
622         return &vmw_be->dma_ttm;
623 out_no_init:
624         kfree(vmw_be);
625         return NULL;
626 }
627
628 static void vmw_evict_flags(struct ttm_buffer_object *bo,
629                      struct ttm_placement *placement)
630 {
631         *placement = vmw_sys_placement;
632 }
633
634 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
635 {
636         struct ttm_object_file *tfile =
637                 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
638
639         return vmw_user_bo_verify_access(bo, tfile);
640 }
641
642 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
643 {
644         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
645
646         switch (mem->mem_type) {
647         case TTM_PL_SYSTEM:
648         case VMW_PL_GMR:
649         case VMW_PL_MOB:
650                 return 0;
651         case TTM_PL_VRAM:
652                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
653                         dev_priv->vram_start;
654                 mem->bus.is_iomem = true;
655                 mem->bus.caching = ttm_cached;
656                 break;
657         default:
658                 return -EINVAL;
659         }
660         return 0;
661 }
662
663 /**
664  * vmw_move_notify - TTM move_notify_callback
665  *
666  * @bo: The TTM buffer object about to move.
667  * @mem: The struct ttm_resource indicating to what memory
668  *       region the move is taking place.
669  *
670  * Calls move_notify for all subsystems needing it.
671  * (currently only resources).
672  */
673 static void vmw_move_notify(struct ttm_buffer_object *bo,
674                             bool evict,
675                             struct ttm_resource *mem)
676 {
677         if (!mem)
678                 return;
679         vmw_bo_move_notify(bo, mem);
680         vmw_query_move_notify(bo, mem);
681 }
682
683
684 /**
685  * vmw_swap_notify - TTM move_notify_callback
686  *
687  * @bo: The TTM buffer object about to be swapped out.
688  */
689 static void vmw_swap_notify(struct ttm_buffer_object *bo)
690 {
691         vmw_bo_swap_notify(bo);
692         (void) ttm_bo_wait(bo, false, false);
693 }
694
695 static int vmw_move(struct ttm_buffer_object *bo,
696                     bool evict,
697                     struct ttm_operation_ctx *ctx,
698                     struct ttm_resource *new_mem,
699                     struct ttm_place *hop)
700 {
701         struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
702         struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
703         int ret;
704
705         if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
706                 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
707                 if (ret)
708                         return ret;
709         }
710
711         vmw_move_notify(bo, evict, new_mem);
712
713         if (old_man->use_tt && new_man->use_tt) {
714                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
715                         ttm_bo_assign_mem(bo, new_mem);
716                         return 0;
717                 }
718                 ret = ttm_bo_wait_ctx(bo, ctx);
719                 if (ret)
720                         goto fail;
721
722                 vmw_ttm_unbind(bo->bdev, bo->ttm);
723                 ttm_resource_free(bo, &bo->mem);
724                 ttm_bo_assign_mem(bo, new_mem);
725                 return 0;
726         } else {
727                 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
728                 if (ret)
729                         goto fail;
730         }
731         return 0;
732 fail:
733         swap(*new_mem, bo->mem);
734         vmw_move_notify(bo, false, new_mem);
735         swap(*new_mem, bo->mem);
736         return ret;
737 }
738
739 static void
740 vmw_delete_mem_notify(struct ttm_buffer_object *bo)
741 {
742         vmw_move_notify(bo, false, NULL);
743 }
744
745 struct ttm_bo_driver vmw_bo_driver = {
746         .ttm_tt_create = &vmw_ttm_tt_create,
747         .ttm_tt_populate = &vmw_ttm_populate,
748         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
749         .ttm_tt_destroy = &vmw_ttm_destroy,
750         .eviction_valuable = ttm_bo_eviction_valuable,
751         .evict_flags = vmw_evict_flags,
752         .move = vmw_move,
753         .verify_access = vmw_verify_access,
754         .delete_mem_notify = vmw_delete_mem_notify,
755         .swap_notify = vmw_swap_notify,
756         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
757 };
758
759 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
760                                unsigned long bo_size,
761                                struct ttm_buffer_object **bo_p)
762 {
763         struct ttm_operation_ctx ctx = {
764                 .interruptible = false,
765                 .no_wait_gpu = false
766         };
767         struct ttm_buffer_object *bo;
768         int ret;
769
770         ret = vmw_bo_create_kernel(dev_priv, bo_size,
771                                    &vmw_sys_placement,
772                                    &bo);
773         if (unlikely(ret != 0))
774                 return ret;
775
776         ret = ttm_bo_reserve(bo, false, true, NULL);
777         BUG_ON(ret != 0);
778         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
779         if (likely(ret == 0)) {
780                 struct vmw_ttm_tt *vmw_tt =
781                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
782                 ret = vmw_ttm_map_dma(vmw_tt);
783         }
784
785         ttm_bo_unreserve(bo);
786
787         if (likely(ret == 0))
788                 *bo_p = bo;
789         return ret;
790 }