Merge tag 'fs_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack...
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33         .fpfn = 0,
34         .lpfn = 0,
35         .mem_type = TTM_PL_VRAM,
36         .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40         .fpfn = 0,
41         .lpfn = 0,
42         .mem_type = TTM_PL_SYSTEM,
43         .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47         .fpfn = 0,
48         .lpfn = 0,
49         .mem_type = VMW_PL_GMR,
50         .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54         .fpfn = 0,
55         .lpfn = 0,
56         .mem_type = VMW_PL_MOB,
57         .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61         .num_placement = 1,
62         .placement = &vram_placement_flags,
63         .num_busy_placement = 1,
64         .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68         {
69                 .fpfn = 0,
70                 .lpfn = 0,
71                 .mem_type = TTM_PL_VRAM,
72                 .flags = 0
73         }, {
74                 .fpfn = 0,
75                 .lpfn = 0,
76                 .mem_type = VMW_PL_GMR,
77                 .flags = 0
78         }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82         {
83                 .fpfn = 0,
84                 .lpfn = 0,
85                 .mem_type = VMW_PL_GMR,
86                 .flags = 0
87         }, {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .mem_type = TTM_PL_VRAM,
91                 .flags = 0
92         }
93 };
94
95 struct ttm_placement vmw_vram_gmr_placement = {
96         .num_placement = 2,
97         .placement = vram_gmr_placement_flags,
98         .num_busy_placement = 1,
99         .busy_placement = &gmr_placement_flags
100 };
101
102 struct ttm_placement vmw_vram_sys_placement = {
103         .num_placement = 1,
104         .placement = &vram_placement_flags,
105         .num_busy_placement = 1,
106         .busy_placement = &sys_placement_flags
107 };
108
109 struct ttm_placement vmw_sys_placement = {
110         .num_placement = 1,
111         .placement = &sys_placement_flags,
112         .num_busy_placement = 1,
113         .busy_placement = &sys_placement_flags
114 };
115
116 static const struct ttm_place evictable_placement_flags[] = {
117         {
118                 .fpfn = 0,
119                 .lpfn = 0,
120                 .mem_type = TTM_PL_SYSTEM,
121                 .flags = 0
122         }, {
123                 .fpfn = 0,
124                 .lpfn = 0,
125                 .mem_type = TTM_PL_VRAM,
126                 .flags = 0
127         }, {
128                 .fpfn = 0,
129                 .lpfn = 0,
130                 .mem_type = VMW_PL_GMR,
131                 .flags = 0
132         }, {
133                 .fpfn = 0,
134                 .lpfn = 0,
135                 .mem_type = VMW_PL_MOB,
136                 .flags = 0
137         }
138 };
139
140 static const struct ttm_place nonfixed_placement_flags[] = {
141         {
142                 .fpfn = 0,
143                 .lpfn = 0,
144                 .mem_type = TTM_PL_SYSTEM,
145                 .flags = 0
146         }, {
147                 .fpfn = 0,
148                 .lpfn = 0,
149                 .mem_type = VMW_PL_GMR,
150                 .flags = 0
151         }, {
152                 .fpfn = 0,
153                 .lpfn = 0,
154                 .mem_type = VMW_PL_MOB,
155                 .flags = 0
156         }
157 };
158
159 struct ttm_placement vmw_evictable_placement = {
160         .num_placement = 4,
161         .placement = evictable_placement_flags,
162         .num_busy_placement = 1,
163         .busy_placement = &sys_placement_flags
164 };
165
166 struct ttm_placement vmw_srf_placement = {
167         .num_placement = 1,
168         .num_busy_placement = 2,
169         .placement = &gmr_placement_flags,
170         .busy_placement = gmr_vram_placement_flags
171 };
172
173 struct ttm_placement vmw_mob_placement = {
174         .num_placement = 1,
175         .num_busy_placement = 1,
176         .placement = &mob_placement_flags,
177         .busy_placement = &mob_placement_flags
178 };
179
180 struct ttm_placement vmw_nonfixed_placement = {
181         .num_placement = 3,
182         .placement = nonfixed_placement_flags,
183         .num_busy_placement = 1,
184         .busy_placement = &sys_placement_flags
185 };
186
187 struct vmw_ttm_tt {
188         struct ttm_tt dma_ttm;
189         struct vmw_private *dev_priv;
190         int gmr_id;
191         struct vmw_mob *mob;
192         int mem_type;
193         struct sg_table sgt;
194         struct vmw_sg_table vsgt;
195         uint64_t sg_alloc_size;
196         bool mapped;
197         bool bound;
198 };
199
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201
202 /**
203  * __vmw_piter_non_sg_next: Helper functions to advance
204  * a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214         return ++(viter->i) < viter->num_pages;
215 }
216
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219         bool ret = __vmw_piter_non_sg_next(viter);
220
221         return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223
224
225 /**
226  * __vmw_piter_non_sg_page: Helper functions to return a pointer
227  * to the current page.
228  *
229  * @viter: Pointer to the iterator
230  *
231  * These functions return a pointer to the page currently
232  * pointed to by @viter. Functions are selected depending on the
233  * current mapping mode.
234  */
235 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
236 {
237         return viter->pages[viter->i];
238 }
239
240 /**
241  * __vmw_piter_phys_addr: Helper functions to return the DMA
242  * address of the current page.
243  *
244  * @viter: Pointer to the iterator
245  *
246  * These functions return the DMA address of the page currently
247  * pointed to by @viter. Functions are selected depending on the
248  * current mapping mode.
249  */
250 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
251 {
252         return page_to_phys(viter->pages[viter->i]);
253 }
254
255 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
256 {
257         return viter->addrs[viter->i];
258 }
259
260 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
261 {
262         return sg_page_iter_dma_address(&viter->iter);
263 }
264
265
266 /**
267  * vmw_piter_start - Initialize a struct vmw_piter.
268  *
269  * @viter: Pointer to the iterator to initialize
270  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
271  * @p_offset: Pointer offset used to update current array position
272  *
273  * Note that we're following the convention of __sg_page_iter_start, so that
274  * the iterator doesn't point to a valid page after initialization; it has
275  * to be advanced one step first.
276  */
277 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
278                      unsigned long p_offset)
279 {
280         viter->i = p_offset - 1;
281         viter->num_pages = vsgt->num_pages;
282         viter->page = &__vmw_piter_non_sg_page;
283         viter->pages = vsgt->pages;
284         switch (vsgt->mode) {
285         case vmw_dma_phys:
286                 viter->next = &__vmw_piter_non_sg_next;
287                 viter->dma_address = &__vmw_piter_phys_addr;
288                 break;
289         case vmw_dma_alloc_coherent:
290                 viter->next = &__vmw_piter_non_sg_next;
291                 viter->dma_address = &__vmw_piter_dma_addr;
292                 viter->addrs = vsgt->addrs;
293                 break;
294         case vmw_dma_map_populate:
295         case vmw_dma_map_bind:
296                 viter->next = &__vmw_piter_sg_next;
297                 viter->dma_address = &__vmw_piter_sg_addr;
298                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
299                                      vsgt->sgt->orig_nents, p_offset);
300                 break;
301         default:
302                 BUG();
303         }
304 }
305
306 /**
307  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
308  * TTM pages
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_backend
311  *
312  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
313  */
314 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
315 {
316         struct device *dev = vmw_tt->dev_priv->drm.dev;
317
318         dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
319         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
320 }
321
322 /**
323  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
324  *
325  * @vmw_tt: Pointer to a struct vmw_ttm_backend
326  *
327  * This function is used to get device addresses from the kernel DMA layer.
328  * However, it's violating the DMA API in that when this operation has been
329  * performed, it's illegal for the CPU to write to the pages without first
330  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
331  * therefore only legal to call this function if we know that the function
332  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
333  * a CPU write buffer flush.
334  */
335 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
336 {
337         struct device *dev = vmw_tt->dev_priv->drm.dev;
338
339         return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
340 }
341
342 /**
343  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
344  *
345  * @vmw_tt: Pointer to a struct vmw_ttm_tt
346  *
347  * Select the correct function for and make sure the TTM pages are
348  * visible to the device. Allocate storage for the device mappings.
349  * If a mapping has already been performed, indicated by the storage
350  * pointer being non NULL, the function returns success.
351  */
352 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
353 {
354         struct vmw_private *dev_priv = vmw_tt->dev_priv;
355         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
356         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
357         struct ttm_operation_ctx ctx = {
358                 .interruptible = true,
359                 .no_wait_gpu = false
360         };
361         struct vmw_piter iter;
362         dma_addr_t old;
363         int ret = 0;
364         static size_t sgl_size;
365         static size_t sgt_size;
366         struct scatterlist *sg;
367
368         if (vmw_tt->mapped)
369                 return 0;
370
371         vsgt->mode = dev_priv->map_mode;
372         vsgt->pages = vmw_tt->dma_ttm.pages;
373         vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
374         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
375         vsgt->sgt = &vmw_tt->sgt;
376
377         switch (dev_priv->map_mode) {
378         case vmw_dma_map_bind:
379         case vmw_dma_map_populate:
380                 if (unlikely(!sgl_size)) {
381                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
382                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
383                 }
384                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
385                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
386                 if (unlikely(ret != 0))
387                         return ret;
388
389                 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
390                                 vsgt->num_pages, 0,
391                                 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
392                                 dma_get_max_seg_size(dev_priv->drm.dev),
393                                 NULL, 0, GFP_KERNEL);
394                 if (IS_ERR(sg)) {
395                         ret = PTR_ERR(sg);
396                         goto out_sg_alloc_fail;
397                 }
398
399                 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
400                         uint64_t over_alloc =
401                                 sgl_size * (vsgt->num_pages -
402                                             vmw_tt->sgt.orig_nents);
403
404                         ttm_mem_global_free(glob, over_alloc);
405                         vmw_tt->sg_alloc_size -= over_alloc;
406                 }
407
408                 ret = vmw_ttm_map_for_dma(vmw_tt);
409                 if (unlikely(ret != 0))
410                         goto out_map_fail;
411
412                 break;
413         default:
414                 break;
415         }
416
417         old = ~((dma_addr_t) 0);
418         vmw_tt->vsgt.num_regions = 0;
419         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
420                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
421
422                 if (cur != old + PAGE_SIZE)
423                         vmw_tt->vsgt.num_regions++;
424                 old = cur;
425         }
426
427         vmw_tt->mapped = true;
428         return 0;
429
430 out_map_fail:
431         sg_free_table(vmw_tt->vsgt.sgt);
432         vmw_tt->vsgt.sgt = NULL;
433 out_sg_alloc_fail:
434         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
435         return ret;
436 }
437
438 /**
439  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
440  *
441  * @vmw_tt: Pointer to a struct vmw_ttm_tt
442  *
443  * Tear down any previously set up device DMA mappings and free
444  * any storage space allocated for them. If there are no mappings set up,
445  * this function is a NOP.
446  */
447 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
448 {
449         struct vmw_private *dev_priv = vmw_tt->dev_priv;
450
451         if (!vmw_tt->vsgt.sgt)
452                 return;
453
454         switch (dev_priv->map_mode) {
455         case vmw_dma_map_bind:
456         case vmw_dma_map_populate:
457                 vmw_ttm_unmap_from_dma(vmw_tt);
458                 sg_free_table(vmw_tt->vsgt.sgt);
459                 vmw_tt->vsgt.sgt = NULL;
460                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
461                                     vmw_tt->sg_alloc_size);
462                 break;
463         default:
464                 break;
465         }
466         vmw_tt->mapped = false;
467 }
468
469 /**
470  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
471  * TTM buffer object
472  *
473  * @bo: Pointer to a struct ttm_buffer_object
474  *
475  * Returns a pointer to a struct vmw_sg_table object. The object should
476  * not be freed after use.
477  * Note that for the device addresses to be valid, the buffer object must
478  * either be reserved or pinned.
479  */
480 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
481 {
482         struct vmw_ttm_tt *vmw_tt =
483                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
484
485         return &vmw_tt->vsgt;
486 }
487
488
489 static int vmw_ttm_bind(struct ttm_device *bdev,
490                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
491 {
492         struct vmw_ttm_tt *vmw_be =
493                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
494         int ret = 0;
495
496         if (!bo_mem)
497                 return -EINVAL;
498
499         if (vmw_be->bound)
500                 return 0;
501
502         ret = vmw_ttm_map_dma(vmw_be);
503         if (unlikely(ret != 0))
504                 return ret;
505
506         vmw_be->gmr_id = bo_mem->start;
507         vmw_be->mem_type = bo_mem->mem_type;
508
509         switch (bo_mem->mem_type) {
510         case VMW_PL_GMR:
511                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
512                                     ttm->num_pages, vmw_be->gmr_id);
513                 break;
514         case VMW_PL_MOB:
515                 if (unlikely(vmw_be->mob == NULL)) {
516                         vmw_be->mob =
517                                 vmw_mob_create(ttm->num_pages);
518                         if (unlikely(vmw_be->mob == NULL))
519                                 return -ENOMEM;
520                 }
521
522                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
523                                     &vmw_be->vsgt, ttm->num_pages,
524                                     vmw_be->gmr_id);
525                 break;
526         default:
527                 BUG();
528         }
529         vmw_be->bound = true;
530         return ret;
531 }
532
533 static void vmw_ttm_unbind(struct ttm_device *bdev,
534                            struct ttm_tt *ttm)
535 {
536         struct vmw_ttm_tt *vmw_be =
537                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
538
539         if (!vmw_be->bound)
540                 return;
541
542         switch (vmw_be->mem_type) {
543         case VMW_PL_GMR:
544                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
545                 break;
546         case VMW_PL_MOB:
547                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
548                 break;
549         default:
550                 BUG();
551         }
552
553         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
554                 vmw_ttm_unmap_dma(vmw_be);
555         vmw_be->bound = false;
556 }
557
558
559 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
560 {
561         struct vmw_ttm_tt *vmw_be =
562                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
563
564         vmw_ttm_unbind(bdev, ttm);
565         ttm_tt_destroy_common(bdev, ttm);
566         vmw_ttm_unmap_dma(vmw_be);
567         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
568                 ttm_tt_fini(&vmw_be->dma_ttm);
569         else
570                 ttm_tt_fini(ttm);
571
572         if (vmw_be->mob)
573                 vmw_mob_destroy(vmw_be->mob);
574
575         kfree(vmw_be);
576 }
577
578
579 static int vmw_ttm_populate(struct ttm_device *bdev,
580                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
581 {
582         unsigned int i;
583         int ret;
584
585         /* TODO: maybe completely drop this ? */
586         if (ttm_tt_is_populated(ttm))
587                 return 0;
588
589         ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
590         if (ret)
591                 return ret;
592
593         for (i = 0; i < ttm->num_pages; ++i) {
594                 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
595                                                 PAGE_SIZE, ctx);
596                 if (ret)
597                         goto error;
598         }
599         return 0;
600
601 error:
602         while (i--)
603                 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
604                                          PAGE_SIZE);
605         ttm_pool_free(&bdev->pool, ttm);
606         return ret;
607 }
608
609 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
610                                struct ttm_tt *ttm)
611 {
612         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
613                                                  dma_ttm);
614         unsigned int i;
615
616         if (vmw_tt->mob) {
617                 vmw_mob_destroy(vmw_tt->mob);
618                 vmw_tt->mob = NULL;
619         }
620
621         vmw_ttm_unmap_dma(vmw_tt);
622
623         for (i = 0; i < ttm->num_pages; ++i)
624                 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
625                                          PAGE_SIZE);
626
627         ttm_pool_free(&bdev->pool, ttm);
628 }
629
630 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
631                                         uint32_t page_flags)
632 {
633         struct vmw_ttm_tt *vmw_be;
634         int ret;
635
636         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
637         if (!vmw_be)
638                 return NULL;
639
640         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
641         vmw_be->mob = NULL;
642
643         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
644                 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
645                                      ttm_cached);
646         else
647                 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
648                                   ttm_cached);
649         if (unlikely(ret != 0))
650                 goto out_no_init;
651
652         return &vmw_be->dma_ttm;
653 out_no_init:
654         kfree(vmw_be);
655         return NULL;
656 }
657
658 static void vmw_evict_flags(struct ttm_buffer_object *bo,
659                      struct ttm_placement *placement)
660 {
661         *placement = vmw_sys_placement;
662 }
663
664 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
665 {
666         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
667
668         switch (mem->mem_type) {
669         case TTM_PL_SYSTEM:
670         case VMW_PL_GMR:
671         case VMW_PL_MOB:
672                 return 0;
673         case TTM_PL_VRAM:
674                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
675                         dev_priv->vram_start;
676                 mem->bus.is_iomem = true;
677                 mem->bus.caching = ttm_cached;
678                 break;
679         default:
680                 return -EINVAL;
681         }
682         return 0;
683 }
684
685 /**
686  * vmw_move_notify - TTM move_notify_callback
687  *
688  * @bo: The TTM buffer object about to move.
689  * @old_mem: The old memory where we move from
690  * @new_mem: The struct ttm_resource indicating to what memory
691  *       region the move is taking place.
692  *
693  * Calls move_notify for all subsystems needing it.
694  * (currently only resources).
695  */
696 static void vmw_move_notify(struct ttm_buffer_object *bo,
697                             struct ttm_resource *old_mem,
698                             struct ttm_resource *new_mem)
699 {
700         vmw_bo_move_notify(bo, new_mem);
701         vmw_query_move_notify(bo, old_mem, new_mem);
702 }
703
704
705 /**
706  * vmw_swap_notify - TTM move_notify_callback
707  *
708  * @bo: The TTM buffer object about to be swapped out.
709  */
710 static void vmw_swap_notify(struct ttm_buffer_object *bo)
711 {
712         vmw_bo_swap_notify(bo);
713         (void) ttm_bo_wait(bo, false, false);
714 }
715
716 static int vmw_move(struct ttm_buffer_object *bo,
717                     bool evict,
718                     struct ttm_operation_ctx *ctx,
719                     struct ttm_resource *new_mem,
720                     struct ttm_place *hop)
721 {
722         struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
723         struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
724         int ret;
725
726         if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
727                 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
728                 if (ret)
729                         return ret;
730         }
731
732         vmw_move_notify(bo, bo->resource, new_mem);
733
734         if (old_man->use_tt && new_man->use_tt) {
735                 if (bo->resource->mem_type == TTM_PL_SYSTEM) {
736                         ttm_bo_move_null(bo, new_mem);
737                         return 0;
738                 }
739                 ret = ttm_bo_wait_ctx(bo, ctx);
740                 if (ret)
741                         goto fail;
742
743                 vmw_ttm_unbind(bo->bdev, bo->ttm);
744                 ttm_resource_free(bo, &bo->resource);
745                 ttm_bo_assign_mem(bo, new_mem);
746                 return 0;
747         } else {
748                 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
749                 if (ret)
750                         goto fail;
751         }
752         return 0;
753 fail:
754         vmw_move_notify(bo, new_mem, bo->resource);
755         return ret;
756 }
757
758 struct ttm_device_funcs vmw_bo_driver = {
759         .ttm_tt_create = &vmw_ttm_tt_create,
760         .ttm_tt_populate = &vmw_ttm_populate,
761         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
762         .ttm_tt_destroy = &vmw_ttm_destroy,
763         .eviction_valuable = ttm_bo_eviction_valuable,
764         .evict_flags = vmw_evict_flags,
765         .move = vmw_move,
766         .swap_notify = vmw_swap_notify,
767         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
768 };
769
770 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
771                                unsigned long bo_size,
772                                struct ttm_buffer_object **bo_p)
773 {
774         struct ttm_operation_ctx ctx = {
775                 .interruptible = false,
776                 .no_wait_gpu = false
777         };
778         struct ttm_buffer_object *bo;
779         int ret;
780
781         ret = vmw_bo_create_kernel(dev_priv, bo_size,
782                                    &vmw_sys_placement,
783                                    &bo);
784         if (unlikely(ret != 0))
785                 return ret;
786
787         ret = ttm_bo_reserve(bo, false, true, NULL);
788         BUG_ON(ret != 0);
789         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
790         if (likely(ret == 0)) {
791                 struct vmw_ttm_tt *vmw_tt =
792                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
793                 ret = vmw_ttm_map_dma(vmw_tt);
794         }
795
796         ttm_bo_unreserve(bo);
797
798         if (likely(ret == 0))
799                 *bo_p = bo;
800         return ret;
801 }