Merge tag 'drm/tegra/for-4.20-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39         drm_plane_cleanup(&du->primary);
40         drm_plane_cleanup(&du->cursor);
41
42         drm_connector_unregister(&du->connector);
43         drm_crtc_cleanup(&du->crtc);
44         drm_encoder_cleanup(&du->encoder);
45         drm_connector_cleanup(&du->connector);
46 }
47
48 /*
49  * Display Unit Cursor functions
50  */
51
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53                                    u32 *image, u32 width, u32 height,
54                                    u32 hotspotX, u32 hotspotY)
55 {
56         struct {
57                 u32 cmd;
58                 SVGAFifoCmdDefineAlphaCursor cursor;
59         } *cmd;
60         u32 image_size = width * height * 4;
61         u32 cmd_size = sizeof(*cmd) + image_size;
62
63         if (!image)
64                 return -EINVAL;
65
66         cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67         if (unlikely(cmd == NULL)) {
68                 DRM_ERROR("Fifo reserve failed.\n");
69                 return -ENOMEM;
70         }
71
72         memset(cmd, 0, sizeof(*cmd));
73
74         memcpy(&cmd[1], image, image_size);
75
76         cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77         cmd->cursor.id = 0;
78         cmd->cursor.width = width;
79         cmd->cursor.height = height;
80         cmd->cursor.hotspotX = hotspotX;
81         cmd->cursor.hotspotY = hotspotY;
82
83         vmw_fifo_commit_flush(dev_priv, cmd_size);
84
85         return 0;
86 }
87
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89                                 struct vmw_buffer_object *bo,
90                                 u32 width, u32 height,
91                                 u32 hotspotX, u32 hotspotY)
92 {
93         struct ttm_bo_kmap_obj map;
94         unsigned long kmap_offset;
95         unsigned long kmap_num;
96         void *virtual;
97         bool dummy;
98         int ret;
99
100         kmap_offset = 0;
101         kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102
103         ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104         if (unlikely(ret != 0)) {
105                 DRM_ERROR("reserve failed\n");
106                 return -EINVAL;
107         }
108
109         ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110         if (unlikely(ret != 0))
111                 goto err_unreserve;
112
113         virtual = ttm_kmap_obj_virtual(&map, &dummy);
114         ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115                                       hotspotX, hotspotY);
116
117         ttm_bo_kunmap(&map);
118 err_unreserve:
119         ttm_bo_unreserve(&bo->base);
120
121         return ret;
122 }
123
124
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126                                        bool show, int x, int y)
127 {
128         u32 *fifo_mem = dev_priv->mmio_virt;
129         uint32_t count;
130
131         spin_lock(&dev_priv->cursor_lock);
132         vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133         vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134         vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135         count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136         vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137         spin_unlock(&dev_priv->cursor_lock);
138 }
139
140
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142                           struct ttm_object_file *tfile,
143                           struct ttm_buffer_object *bo,
144                           SVGA3dCmdHeader *header)
145 {
146         struct ttm_bo_kmap_obj map;
147         unsigned long kmap_offset;
148         unsigned long kmap_num;
149         SVGA3dCopyBox *box;
150         unsigned box_count;
151         void *virtual;
152         bool dummy;
153         struct vmw_dma_cmd {
154                 SVGA3dCmdHeader header;
155                 SVGA3dCmdSurfaceDMA dma;
156         } *cmd;
157         int i, ret;
158
159         cmd = container_of(header, struct vmw_dma_cmd, header);
160
161         /* No snooper installed */
162         if (!srf->snooper.image)
163                 return;
164
165         if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166                 DRM_ERROR("face and mipmap for cursors should never != 0\n");
167                 return;
168         }
169
170         if (cmd->header.size < 64) {
171                 DRM_ERROR("at least one full copy box must be given\n");
172                 return;
173         }
174
175         box = (SVGA3dCopyBox *)&cmd[1];
176         box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177                         sizeof(SVGA3dCopyBox);
178
179         if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180             box->x != 0    || box->y != 0    || box->z != 0    ||
181             box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182             box->d != 1    || box_count != 1) {
183                 /* TODO handle none page aligned offsets */
184                 /* TODO handle more dst & src != 0 */
185                 /* TODO handle more then one copy */
186                 DRM_ERROR("Cant snoop dma request for cursor!\n");
187                 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188                           box->srcx, box->srcy, box->srcz,
189                           box->x, box->y, box->z,
190                           box->w, box->h, box->d, box_count,
191                           cmd->dma.guest.ptr.offset);
192                 return;
193         }
194
195         kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196         kmap_num = (64*64*4) >> PAGE_SHIFT;
197
198         ret = ttm_bo_reserve(bo, true, false, NULL);
199         if (unlikely(ret != 0)) {
200                 DRM_ERROR("reserve failed\n");
201                 return;
202         }
203
204         ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205         if (unlikely(ret != 0))
206                 goto err_unreserve;
207
208         virtual = ttm_kmap_obj_virtual(&map, &dummy);
209
210         if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211                 memcpy(srf->snooper.image, virtual, 64*64*4);
212         } else {
213                 /* Image is unsigned pointer. */
214                 for (i = 0; i < box->h; i++)
215                         memcpy(srf->snooper.image + i * 64,
216                                virtual + i * cmd->dma.guest.pitch,
217                                box->w * 4);
218         }
219
220         srf->snooper.age++;
221
222         ttm_bo_kunmap(&map);
223 err_unreserve:
224         ttm_bo_unreserve(bo);
225 }
226
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236         struct drm_device *dev = dev_priv->dev;
237         struct vmw_display_unit *du;
238         struct drm_crtc *crtc;
239
240         drm_modeset_lock_all(dev);
241         drm_for_each_crtc(crtc, dev) {
242                 du = vmw_crtc_to_du(crtc);
243
244                 du->hotspot_x = 0;
245                 du->hotspot_y = 0;
246         }
247         drm_modeset_unlock_all(dev);
248 }
249
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252         struct drm_device *dev = dev_priv->dev;
253         struct vmw_display_unit *du;
254         struct drm_crtc *crtc;
255
256         mutex_lock(&dev->mode_config.mutex);
257
258         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259                 du = vmw_crtc_to_du(crtc);
260                 if (!du->cursor_surface ||
261                     du->cursor_age == du->cursor_surface->snooper.age)
262                         continue;
263
264                 du->cursor_age = du->cursor_surface->snooper.age;
265                 vmw_cursor_update_image(dev_priv,
266                                         du->cursor_surface->snooper.image,
267                                         64, 64,
268                                         du->hotspot_x + du->core_hotspot_x,
269                                         du->hotspot_y + du->core_hotspot_y);
270         }
271
272         mutex_unlock(&dev->mode_config.mutex);
273 }
274
275
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278         vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279
280         drm_plane_cleanup(plane);
281 }
282
283
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286         drm_plane_cleanup(plane);
287
288         /* Planes are static in our case so we don't free it */
289 }
290
291
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299                              bool unreference)
300 {
301         if (vps->surf) {
302                 if (vps->pinned) {
303                         vmw_resource_unpin(&vps->surf->res);
304                         vps->pinned--;
305                 }
306
307                 if (unreference) {
308                         if (vps->pinned)
309                                 DRM_ERROR("Surface still pinned\n");
310                         vmw_surface_unreference(&vps->surf);
311                 }
312         }
313 }
314
315
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328                         struct drm_plane_state *old_state)
329 {
330         struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331
332         vmw_du_plane_unpin_surf(vps, false);
333 }
334
335
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346                                struct drm_plane_state *new_state)
347 {
348         struct drm_framebuffer *fb = new_state->fb;
349         struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350
351
352         if (vps->surf)
353                 vmw_surface_unreference(&vps->surf);
354
355         if (vps->bo)
356                 vmw_bo_unreference(&vps->bo);
357
358         if (fb) {
359                 if (vmw_framebuffer_to_vfb(fb)->bo) {
360                         vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361                         vmw_bo_reference(vps->bo);
362                 } else {
363                         vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364                         vmw_surface_reference(vps->surf);
365                 }
366         }
367
368         return 0;
369 }
370
371
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374                                   struct drm_plane_state *old_state)
375 {
376         struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379         struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380         s32 hotspot_x, hotspot_y;
381         int ret = 0;
382
383
384         hotspot_x = du->hotspot_x;
385         hotspot_y = du->hotspot_y;
386
387         if (plane->state->fb) {
388                 hotspot_x += plane->state->fb->hot_x;
389                 hotspot_y += plane->state->fb->hot_y;
390         }
391
392         du->cursor_surface = vps->surf;
393         du->cursor_bo = vps->bo;
394
395         if (vps->surf) {
396                 du->cursor_age = du->cursor_surface->snooper.age;
397
398                 ret = vmw_cursor_update_image(dev_priv,
399                                               vps->surf->snooper.image,
400                                               64, 64, hotspot_x,
401                                               hotspot_y);
402         } else if (vps->bo) {
403                 ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404                                            plane->state->crtc_w,
405                                            plane->state->crtc_h,
406                                            hotspot_x, hotspot_y);
407         } else {
408                 vmw_cursor_update_position(dev_priv, false, 0, 0);
409                 return;
410         }
411
412         if (!ret) {
413                 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414                 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415
416                 vmw_cursor_update_position(dev_priv, true,
417                                            du->cursor_x + hotspot_x,
418                                            du->cursor_y + hotspot_y);
419
420                 du->core_hotspot_x = hotspot_x - du->hotspot_x;
421                 du->core_hotspot_y = hotspot_y - du->hotspot_y;
422         } else {
423                 DRM_ERROR("Failed to update cursor image\n");
424         }
425 }
426
427
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441                                       struct drm_plane_state *state)
442 {
443         struct drm_crtc_state *crtc_state = NULL;
444         struct drm_framebuffer *new_fb = state->fb;
445         int ret;
446
447         if (state->crtc)
448                 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449
450         ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451                                                   DRM_PLANE_HELPER_NO_SCALING,
452                                                   DRM_PLANE_HELPER_NO_SCALING,
453                                                   false, true);
454
455         if (!ret && new_fb) {
456                 struct drm_crtc *crtc = state->crtc;
457                 struct vmw_connector_state *vcs;
458                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459                 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460                 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461
462                 vcs = vmw_connector_state_to_vcs(du->connector.state);
463
464                 /* Only one active implicit framebuffer at a time. */
465                 mutex_lock(&dev_priv->global_kms_state_mutex);
466                 if (vcs->is_implicit && dev_priv->implicit_fb &&
467                     !(dev_priv->num_implicit == 1 && du->active_implicit)
468                     && dev_priv->implicit_fb != vfb) {
469                         DRM_ERROR("Multiple implicit framebuffers "
470                                   "not supported.\n");
471                         ret = -EINVAL;
472                 }
473                 mutex_unlock(&dev_priv->global_kms_state_mutex);
474         }
475
476
477         return ret;
478 }
479
480
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493                                      struct drm_plane_state *new_state)
494 {
495         int ret = 0;
496         struct vmw_surface *surface = NULL;
497         struct drm_framebuffer *fb = new_state->fb;
498
499         struct drm_rect src = drm_plane_state_src(new_state);
500         struct drm_rect dest = drm_plane_state_dest(new_state);
501
502         /* Turning off */
503         if (!fb)
504                 return ret;
505
506         ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507                                             &src, &dest,
508                                             DRM_MODE_ROTATE_0,
509                                             DRM_PLANE_HELPER_NO_SCALING,
510                                             DRM_PLANE_HELPER_NO_SCALING,
511                                             true, true, &new_state->visible);
512         if (!ret)
513                 return ret;
514
515         /* A lot of the code assumes this */
516         if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517                 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518                           new_state->crtc_w, new_state->crtc_h);
519                 ret = -EINVAL;
520         }
521
522         if (!vmw_framebuffer_to_vfb(fb)->bo)
523                 surface = vmw_framebuffer_to_vfbs(fb)->surface;
524
525         if (surface && !surface->snooper.image) {
526                 DRM_ERROR("surface not suitable for cursor\n");
527                 ret = -EINVAL;
528         }
529
530         return ret;
531 }
532
533
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535                              struct drm_crtc_state *new_state)
536 {
537         struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538         int connector_mask = drm_connector_mask(&du->connector);
539         bool has_primary = new_state->plane_mask &
540                            drm_plane_mask(crtc->primary);
541
542         /* We always want to have an active plane with an active CRTC */
543         if (has_primary != new_state->enable)
544                 return -EINVAL;
545
546
547         if (new_state->connector_mask != connector_mask &&
548             new_state->connector_mask != 0) {
549                 DRM_ERROR("Invalid connectors configuration\n");
550                 return -EINVAL;
551         }
552
553         /*
554          * Our virtual device does not have a dot clock, so use the logical
555          * clock value as the dot clock.
556          */
557         if (new_state->mode.crtc_clock == 0)
558                 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559
560         return 0;
561 }
562
563
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565                               struct drm_crtc_state *old_crtc_state)
566 {
567 }
568
569
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571                               struct drm_crtc_state *old_crtc_state)
572 {
573         struct drm_pending_vblank_event *event = crtc->state->event;
574
575         if (event) {
576                 crtc->state->event = NULL;
577
578                 spin_lock_irq(&crtc->dev->event_lock);
579                 drm_crtc_send_vblank_event(crtc, event);
580                 spin_unlock_irq(&crtc->dev->event_lock);
581         }
582 }
583
584
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597         struct drm_crtc_state *state;
598         struct vmw_crtc_state *vcs;
599
600         if (WARN_ON(!crtc->state))
601                 return NULL;
602
603         vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605         if (!vcs)
606                 return NULL;
607
608         state = &vcs->base;
609
610         __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612         return state;
613 }
614
615
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626         struct vmw_crtc_state *vcs;
627
628
629         if (crtc->state) {
630                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632                 kfree(vmw_crtc_state_to_vcs(crtc->state));
633         }
634
635         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637         if (!vcs) {
638                 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639                 return;
640         }
641
642         crtc->state = &vcs->base;
643         crtc->state->crtc = crtc;
644 }
645
646
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657                           struct drm_crtc_state *state)
658 {
659         drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675         struct drm_plane_state *state;
676         struct vmw_plane_state *vps;
677
678         vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680         if (!vps)
681                 return NULL;
682
683         vps->pinned = 0;
684         vps->cpp = 0;
685
686         /* Each ref counted resource needs to be acquired again */
687         if (vps->surf)
688                 (void) vmw_surface_reference(vps->surf);
689
690         if (vps->bo)
691                 (void) vmw_bo_reference(vps->bo);
692
693         state = &vps->base;
694
695         __drm_atomic_helper_plane_duplicate_state(plane, state);
696
697         return state;
698 }
699
700
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710         struct vmw_plane_state *vps;
711
712
713         if (plane->state)
714                 vmw_du_plane_destroy_state(plane, plane->state);
715
716         vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717
718         if (!vps) {
719                 DRM_ERROR("Cannot allocate vmw_plane_state\n");
720                 return;
721         }
722
723         __drm_atomic_helper_plane_reset(plane, &vps->base);
724 }
725
726
727 /**
728  * vmw_du_plane_destroy_state - destroy plane state
729  * @plane: DRM plane
730  * @state: state object to destroy
731  *
732  * Destroys the plane state (both common and vmw-specific) for the
733  * specified plane.
734  */
735 void
736 vmw_du_plane_destroy_state(struct drm_plane *plane,
737                            struct drm_plane_state *state)
738 {
739         struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
740
741
742         /* Should have been freed by cleanup_fb */
743         if (vps->surf)
744                 vmw_surface_unreference(&vps->surf);
745
746         if (vps->bo)
747                 vmw_bo_unreference(&vps->bo);
748
749         drm_atomic_helper_plane_destroy_state(plane, state);
750 }
751
752
753 /**
754  * vmw_du_connector_duplicate_state - duplicate connector state
755  * @connector: DRM connector
756  *
757  * Allocates and returns a copy of the connector state (both common and
758  * vmw-specific) for the specified connector.
759  *
760  * Returns: The newly allocated connector state, or NULL on failure.
761  */
762 struct drm_connector_state *
763 vmw_du_connector_duplicate_state(struct drm_connector *connector)
764 {
765         struct drm_connector_state *state;
766         struct vmw_connector_state *vcs;
767
768         if (WARN_ON(!connector->state))
769                 return NULL;
770
771         vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
772
773         if (!vcs)
774                 return NULL;
775
776         state = &vcs->base;
777
778         __drm_atomic_helper_connector_duplicate_state(connector, state);
779
780         return state;
781 }
782
783
784 /**
785  * vmw_du_connector_reset - creates a blank vmw connector state
786  * @connector: DRM connector
787  *
788  * Resets the atomic state for @connector by freeing the state pointer (which
789  * might be NULL, e.g. at driver load time) and allocating a new empty state
790  * object.
791  */
792 void vmw_du_connector_reset(struct drm_connector *connector)
793 {
794         struct vmw_connector_state *vcs;
795
796
797         if (connector->state) {
798                 __drm_atomic_helper_connector_destroy_state(connector->state);
799
800                 kfree(vmw_connector_state_to_vcs(connector->state));
801         }
802
803         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
804
805         if (!vcs) {
806                 DRM_ERROR("Cannot allocate vmw_connector_state\n");
807                 return;
808         }
809
810         __drm_atomic_helper_connector_reset(connector, &vcs->base);
811 }
812
813
814 /**
815  * vmw_du_connector_destroy_state - destroy connector state
816  * @connector: DRM connector
817  * @state: state object to destroy
818  *
819  * Destroys the connector state (both common and vmw-specific) for the
820  * specified plane.
821  */
822 void
823 vmw_du_connector_destroy_state(struct drm_connector *connector,
824                           struct drm_connector_state *state)
825 {
826         drm_atomic_helper_connector_destroy_state(connector, state);
827 }
828 /*
829  * Generic framebuffer code
830  */
831
832 /*
833  * Surface framebuffer code
834  */
835
836 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
837 {
838         struct vmw_framebuffer_surface *vfbs =
839                 vmw_framebuffer_to_vfbs(framebuffer);
840
841         drm_framebuffer_cleanup(framebuffer);
842         vmw_surface_unreference(&vfbs->surface);
843         if (vfbs->base.user_obj)
844                 ttm_base_object_unref(&vfbs->base.user_obj);
845
846         kfree(vfbs);
847 }
848
849 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
850                                   struct drm_file *file_priv,
851                                   unsigned flags, unsigned color,
852                                   struct drm_clip_rect *clips,
853                                   unsigned num_clips)
854 {
855         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
856         struct vmw_framebuffer_surface *vfbs =
857                 vmw_framebuffer_to_vfbs(framebuffer);
858         struct drm_clip_rect norect;
859         int ret, inc = 1;
860
861         /* Legacy Display Unit does not support 3D */
862         if (dev_priv->active_display_unit == vmw_du_legacy)
863                 return -EINVAL;
864
865         drm_modeset_lock_all(dev_priv->dev);
866
867         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
868         if (unlikely(ret != 0)) {
869                 drm_modeset_unlock_all(dev_priv->dev);
870                 return ret;
871         }
872
873         if (!num_clips) {
874                 num_clips = 1;
875                 clips = &norect;
876                 norect.x1 = norect.y1 = 0;
877                 norect.x2 = framebuffer->width;
878                 norect.y2 = framebuffer->height;
879         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
880                 num_clips /= 2;
881                 inc = 2; /* skip source rects */
882         }
883
884         if (dev_priv->active_display_unit == vmw_du_screen_object)
885                 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
886                                                    clips, NULL, NULL, 0, 0,
887                                                    num_clips, inc, NULL, NULL);
888         else
889                 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
890                                                  clips, NULL, NULL, 0, 0,
891                                                  num_clips, inc, NULL, NULL);
892
893         vmw_fifo_flush(dev_priv, false);
894         ttm_read_unlock(&dev_priv->reservation_sem);
895
896         drm_modeset_unlock_all(dev_priv->dev);
897
898         return 0;
899 }
900
901 /**
902  * vmw_kms_readback - Perform a readback from the screen system to
903  * a buffer-object backed framebuffer.
904  *
905  * @dev_priv: Pointer to the device private structure.
906  * @file_priv: Pointer to a struct drm_file identifying the caller.
907  * Must be set to NULL if @user_fence_rep is NULL.
908  * @vfb: Pointer to the buffer-object backed framebuffer.
909  * @user_fence_rep: User-space provided structure for fence information.
910  * Must be set to non-NULL if @file_priv is non-NULL.
911  * @vclips: Array of clip rects.
912  * @num_clips: Number of clip rects in @vclips.
913  *
914  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
915  * interrupted.
916  */
917 int vmw_kms_readback(struct vmw_private *dev_priv,
918                      struct drm_file *file_priv,
919                      struct vmw_framebuffer *vfb,
920                      struct drm_vmw_fence_rep __user *user_fence_rep,
921                      struct drm_vmw_rect *vclips,
922                      uint32_t num_clips)
923 {
924         switch (dev_priv->active_display_unit) {
925         case vmw_du_screen_object:
926                 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
927                                             user_fence_rep, vclips, num_clips,
928                                             NULL);
929         case vmw_du_screen_target:
930                 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
931                                         user_fence_rep, NULL, vclips, num_clips,
932                                         1, false, true, NULL);
933         default:
934                 WARN_ONCE(true,
935                           "Readback called with invalid display system.\n");
936 }
937
938         return -ENOSYS;
939 }
940
941
942 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
943         .destroy = vmw_framebuffer_surface_destroy,
944         .dirty = vmw_framebuffer_surface_dirty,
945 };
946
947 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
948                                            struct vmw_surface *surface,
949                                            struct vmw_framebuffer **out,
950                                            const struct drm_mode_fb_cmd2
951                                            *mode_cmd,
952                                            bool is_bo_proxy)
953
954 {
955         struct drm_device *dev = dev_priv->dev;
956         struct vmw_framebuffer_surface *vfbs;
957         enum SVGA3dSurfaceFormat format;
958         int ret;
959         struct drm_format_name_buf format_name;
960
961         /* 3D is only supported on HWv8 and newer hosts */
962         if (dev_priv->active_display_unit == vmw_du_legacy)
963                 return -ENOSYS;
964
965         /*
966          * Sanity checks.
967          */
968
969         /* Surface must be marked as a scanout. */
970         if (unlikely(!surface->scanout))
971                 return -EINVAL;
972
973         if (unlikely(surface->mip_levels[0] != 1 ||
974                      surface->num_sizes != 1 ||
975                      surface->base_size.width < mode_cmd->width ||
976                      surface->base_size.height < mode_cmd->height ||
977                      surface->base_size.depth != 1)) {
978                 DRM_ERROR("Incompatible surface dimensions "
979                           "for requested mode.\n");
980                 return -EINVAL;
981         }
982
983         switch (mode_cmd->pixel_format) {
984         case DRM_FORMAT_ARGB8888:
985                 format = SVGA3D_A8R8G8B8;
986                 break;
987         case DRM_FORMAT_XRGB8888:
988                 format = SVGA3D_X8R8G8B8;
989                 break;
990         case DRM_FORMAT_RGB565:
991                 format = SVGA3D_R5G6B5;
992                 break;
993         case DRM_FORMAT_XRGB1555:
994                 format = SVGA3D_A1R5G5B5;
995                 break;
996         default:
997                 DRM_ERROR("Invalid pixel format: %s\n",
998                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
999                 return -EINVAL;
1000         }
1001
1002         /*
1003          * For DX, surface format validation is done when surface->scanout
1004          * is set.
1005          */
1006         if (!dev_priv->has_dx && format != surface->format) {
1007                 DRM_ERROR("Invalid surface format for requested mode.\n");
1008                 return -EINVAL;
1009         }
1010
1011         vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1012         if (!vfbs) {
1013                 ret = -ENOMEM;
1014                 goto out_err1;
1015         }
1016
1017         drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1018         vfbs->surface = vmw_surface_reference(surface);
1019         vfbs->base.user_handle = mode_cmd->handles[0];
1020         vfbs->is_bo_proxy = is_bo_proxy;
1021
1022         *out = &vfbs->base;
1023
1024         ret = drm_framebuffer_init(dev, &vfbs->base.base,
1025                                    &vmw_framebuffer_surface_funcs);
1026         if (ret)
1027                 goto out_err2;
1028
1029         return 0;
1030
1031 out_err2:
1032         vmw_surface_unreference(&surface);
1033         kfree(vfbs);
1034 out_err1:
1035         return ret;
1036 }
1037
1038 /*
1039  * Buffer-object framebuffer code
1040  */
1041
1042 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1043 {
1044         struct vmw_framebuffer_bo *vfbd =
1045                 vmw_framebuffer_to_vfbd(framebuffer);
1046
1047         drm_framebuffer_cleanup(framebuffer);
1048         vmw_bo_unreference(&vfbd->buffer);
1049         if (vfbd->base.user_obj)
1050                 ttm_base_object_unref(&vfbd->base.user_obj);
1051
1052         kfree(vfbd);
1053 }
1054
1055 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1056                                     struct drm_file *file_priv,
1057                                     unsigned int flags, unsigned int color,
1058                                     struct drm_clip_rect *clips,
1059                                     unsigned int num_clips)
1060 {
1061         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1062         struct vmw_framebuffer_bo *vfbd =
1063                 vmw_framebuffer_to_vfbd(framebuffer);
1064         struct drm_clip_rect norect;
1065         int ret, increment = 1;
1066
1067         drm_modeset_lock_all(dev_priv->dev);
1068
1069         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1070         if (unlikely(ret != 0)) {
1071                 drm_modeset_unlock_all(dev_priv->dev);
1072                 return ret;
1073         }
1074
1075         if (!num_clips) {
1076                 num_clips = 1;
1077                 clips = &norect;
1078                 norect.x1 = norect.y1 = 0;
1079                 norect.x2 = framebuffer->width;
1080                 norect.y2 = framebuffer->height;
1081         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1082                 num_clips /= 2;
1083                 increment = 2;
1084         }
1085
1086         switch (dev_priv->active_display_unit) {
1087         case vmw_du_screen_target:
1088                 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1089                                        clips, NULL, num_clips, increment,
1090                                        true, true, NULL);
1091                 break;
1092         case vmw_du_screen_object:
1093                 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1094                                               clips, NULL, num_clips,
1095                                               increment, true, NULL, NULL);
1096                 break;
1097         case vmw_du_legacy:
1098                 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1099                                               clips, num_clips, increment);
1100                 break;
1101         default:
1102                 ret = -EINVAL;
1103                 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1104                 break;
1105         }
1106
1107         vmw_fifo_flush(dev_priv, false);
1108         ttm_read_unlock(&dev_priv->reservation_sem);
1109
1110         drm_modeset_unlock_all(dev_priv->dev);
1111
1112         return ret;
1113 }
1114
1115 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1116         .destroy = vmw_framebuffer_bo_destroy,
1117         .dirty = vmw_framebuffer_bo_dirty,
1118 };
1119
1120 /**
1121  * Pin the bofer in a location suitable for access by the
1122  * display system.
1123  */
1124 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1125 {
1126         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1127         struct vmw_buffer_object *buf;
1128         struct ttm_placement *placement;
1129         int ret;
1130
1131         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1132                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1133
1134         if (!buf)
1135                 return 0;
1136
1137         switch (dev_priv->active_display_unit) {
1138         case vmw_du_legacy:
1139                 vmw_overlay_pause_all(dev_priv);
1140                 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1141                 vmw_overlay_resume_all(dev_priv);
1142                 break;
1143         case vmw_du_screen_object:
1144         case vmw_du_screen_target:
1145                 if (vfb->bo) {
1146                         if (dev_priv->capabilities & SVGA_CAP_3D) {
1147                                 /*
1148                                  * Use surface DMA to get content to
1149                                  * sreen target surface.
1150                                  */
1151                                 placement = &vmw_vram_gmr_placement;
1152                         } else {
1153                                 /* Use CPU blit. */
1154                                 placement = &vmw_sys_placement;
1155                         }
1156                 } else {
1157                         /* Use surface / image update */
1158                         placement = &vmw_mob_placement;
1159                 }
1160
1161                 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1162         default:
1163                 return -EINVAL;
1164         }
1165
1166         return ret;
1167 }
1168
1169 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1170 {
1171         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1172         struct vmw_buffer_object *buf;
1173
1174         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1175                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1176
1177         if (WARN_ON(!buf))
1178                 return 0;
1179
1180         return vmw_bo_unpin(dev_priv, buf, false);
1181 }
1182
1183 /**
1184  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1185  *
1186  * @dev: DRM device
1187  * @mode_cmd: parameters for the new surface
1188  * @bo_mob: MOB backing the buffer object
1189  * @srf_out: newly created surface
1190  *
1191  * When the content FB is a buffer object, we create a surface as a proxy to the
1192  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1193  * This is a more efficient approach
1194  *
1195  * RETURNS:
1196  * 0 on success, error code otherwise
1197  */
1198 static int vmw_create_bo_proxy(struct drm_device *dev,
1199                                const struct drm_mode_fb_cmd2 *mode_cmd,
1200                                struct vmw_buffer_object *bo_mob,
1201                                struct vmw_surface **srf_out)
1202 {
1203         uint32_t format;
1204         struct drm_vmw_size content_base_size = {0};
1205         struct vmw_resource *res;
1206         unsigned int bytes_pp;
1207         struct drm_format_name_buf format_name;
1208         int ret;
1209
1210         switch (mode_cmd->pixel_format) {
1211         case DRM_FORMAT_ARGB8888:
1212         case DRM_FORMAT_XRGB8888:
1213                 format = SVGA3D_X8R8G8B8;
1214                 bytes_pp = 4;
1215                 break;
1216
1217         case DRM_FORMAT_RGB565:
1218         case DRM_FORMAT_XRGB1555:
1219                 format = SVGA3D_R5G6B5;
1220                 bytes_pp = 2;
1221                 break;
1222
1223         case 8:
1224                 format = SVGA3D_P8;
1225                 bytes_pp = 1;
1226                 break;
1227
1228         default:
1229                 DRM_ERROR("Invalid framebuffer format %s\n",
1230                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1231                 return -EINVAL;
1232         }
1233
1234         content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1235         content_base_size.height = mode_cmd->height;
1236         content_base_size.depth  = 1;
1237
1238         ret = vmw_surface_gb_priv_define(dev,
1239                                          0, /* kernel visible only */
1240                                          0, /* flags */
1241                                          format,
1242                                          true, /* can be a scanout buffer */
1243                                          1, /* num of mip levels */
1244                                          0,
1245                                          0,
1246                                          content_base_size,
1247                                          SVGA3D_MS_PATTERN_NONE,
1248                                          SVGA3D_MS_QUALITY_NONE,
1249                                          srf_out);
1250         if (ret) {
1251                 DRM_ERROR("Failed to allocate proxy content buffer\n");
1252                 return ret;
1253         }
1254
1255         res = &(*srf_out)->res;
1256
1257         /* Reserve and switch the backing mob. */
1258         mutex_lock(&res->dev_priv->cmdbuf_mutex);
1259         (void) vmw_resource_reserve(res, false, true);
1260         vmw_bo_unreference(&res->backup);
1261         res->backup = vmw_bo_reference(bo_mob);
1262         res->backup_offset = 0;
1263         vmw_resource_unreserve(res, false, NULL, 0);
1264         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1265
1266         return 0;
1267 }
1268
1269
1270
1271 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1272                                       struct vmw_buffer_object *bo,
1273                                       struct vmw_framebuffer **out,
1274                                       const struct drm_mode_fb_cmd2
1275                                       *mode_cmd)
1276
1277 {
1278         struct drm_device *dev = dev_priv->dev;
1279         struct vmw_framebuffer_bo *vfbd;
1280         unsigned int requested_size;
1281         struct drm_format_name_buf format_name;
1282         int ret;
1283
1284         requested_size = mode_cmd->height * mode_cmd->pitches[0];
1285         if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1286                 DRM_ERROR("Screen buffer object size is too small "
1287                           "for requested mode.\n");
1288                 return -EINVAL;
1289         }
1290
1291         /* Limited framebuffer color depth support for screen objects */
1292         if (dev_priv->active_display_unit == vmw_du_screen_object) {
1293                 switch (mode_cmd->pixel_format) {
1294                 case DRM_FORMAT_XRGB8888:
1295                 case DRM_FORMAT_ARGB8888:
1296                         break;
1297                 case DRM_FORMAT_XRGB1555:
1298                 case DRM_FORMAT_RGB565:
1299                         break;
1300                 default:
1301                         DRM_ERROR("Invalid pixel format: %s\n",
1302                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
1303                         return -EINVAL;
1304                 }
1305         }
1306
1307         vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1308         if (!vfbd) {
1309                 ret = -ENOMEM;
1310                 goto out_err1;
1311         }
1312
1313         drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1314         vfbd->base.bo = true;
1315         vfbd->buffer = vmw_bo_reference(bo);
1316         vfbd->base.user_handle = mode_cmd->handles[0];
1317         *out = &vfbd->base;
1318
1319         ret = drm_framebuffer_init(dev, &vfbd->base.base,
1320                                    &vmw_framebuffer_bo_funcs);
1321         if (ret)
1322                 goto out_err2;
1323
1324         return 0;
1325
1326 out_err2:
1327         vmw_bo_unreference(&bo);
1328         kfree(vfbd);
1329 out_err1:
1330         return ret;
1331 }
1332
1333
1334 /**
1335  * vmw_kms_srf_ok - check if a surface can be created
1336  *
1337  * @width: requested width
1338  * @height: requested height
1339  *
1340  * Surfaces need to be less than texture size
1341  */
1342 static bool
1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1344 {
1345         if (width  > dev_priv->texture_max_width ||
1346             height > dev_priv->texture_max_height)
1347                 return false;
1348
1349         return true;
1350 }
1351
1352 /**
1353  * vmw_kms_new_framebuffer - Create a new framebuffer.
1354  *
1355  * @dev_priv: Pointer to device private struct.
1356  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1357  * Either @bo or @surface must be NULL.
1358  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1359  * Either @bo or @surface must be NULL.
1360  * @only_2d: No presents will occur to this buffer object based framebuffer.
1361  * This helps the code to do some important optimizations.
1362  * @mode_cmd: Frame-buffer metadata.
1363  */
1364 struct vmw_framebuffer *
1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1366                         struct vmw_buffer_object *bo,
1367                         struct vmw_surface *surface,
1368                         bool only_2d,
1369                         const struct drm_mode_fb_cmd2 *mode_cmd)
1370 {
1371         struct vmw_framebuffer *vfb = NULL;
1372         bool is_bo_proxy = false;
1373         int ret;
1374
1375         /*
1376          * We cannot use the SurfaceDMA command in an non-accelerated VM,
1377          * therefore, wrap the buffer object in a surface so we can use the
1378          * SurfaceCopy command.
1379          */
1380         if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1381             bo && only_2d &&
1382             mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1383             dev_priv->active_display_unit == vmw_du_screen_target) {
1384                 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1385                                           bo, &surface);
1386                 if (ret)
1387                         return ERR_PTR(ret);
1388
1389                 is_bo_proxy = true;
1390         }
1391
1392         /* Create the new framebuffer depending one what we have */
1393         if (surface) {
1394                 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1395                                                       mode_cmd,
1396                                                       is_bo_proxy);
1397
1398                 /*
1399                  * vmw_create_bo_proxy() adds a reference that is no longer
1400                  * needed
1401                  */
1402                 if (is_bo_proxy)
1403                         vmw_surface_unreference(&surface);
1404         } else if (bo) {
1405                 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1406                                                  mode_cmd);
1407         } else {
1408                 BUG();
1409         }
1410
1411         if (ret)
1412                 return ERR_PTR(ret);
1413
1414         vfb->pin = vmw_framebuffer_pin;
1415         vfb->unpin = vmw_framebuffer_unpin;
1416
1417         return vfb;
1418 }
1419
1420 /*
1421  * Generic Kernel modesetting functions
1422  */
1423
1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1425                                                  struct drm_file *file_priv,
1426                                                  const struct drm_mode_fb_cmd2 *mode_cmd)
1427 {
1428         struct vmw_private *dev_priv = vmw_priv(dev);
1429         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1430         struct vmw_framebuffer *vfb = NULL;
1431         struct vmw_surface *surface = NULL;
1432         struct vmw_buffer_object *bo = NULL;
1433         struct ttm_base_object *user_obj;
1434         int ret;
1435
1436         /*
1437          * Take a reference on the user object of the resource
1438          * backing the kms fb. This ensures that user-space handle
1439          * lookups on that resource will always work as long as
1440          * it's registered with a kms framebuffer. This is important,
1441          * since vmw_execbuf_process identifies resources in the
1442          * command stream using user-space handles.
1443          */
1444
1445         user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1446         if (unlikely(user_obj == NULL)) {
1447                 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1448                 return ERR_PTR(-ENOENT);
1449         }
1450
1451         /**
1452          * End conditioned code.
1453          */
1454
1455         /* returns either a bo or surface */
1456         ret = vmw_user_lookup_handle(dev_priv, tfile,
1457                                      mode_cmd->handles[0],
1458                                      &surface, &bo);
1459         if (ret)
1460                 goto err_out;
1461
1462
1463         if (!bo &&
1464             !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1465                 DRM_ERROR("Surface size cannot exceed %dx%d",
1466                         dev_priv->texture_max_width,
1467                         dev_priv->texture_max_height);
1468                 goto err_out;
1469         }
1470
1471
1472         vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1473                                       !(dev_priv->capabilities & SVGA_CAP_3D),
1474                                       mode_cmd);
1475         if (IS_ERR(vfb)) {
1476                 ret = PTR_ERR(vfb);
1477                 goto err_out;
1478         }
1479
1480 err_out:
1481         /* vmw_user_lookup_handle takes one ref so does new_fb */
1482         if (bo)
1483                 vmw_bo_unreference(&bo);
1484         if (surface)
1485                 vmw_surface_unreference(&surface);
1486
1487         if (ret) {
1488                 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1489                 ttm_base_object_unref(&user_obj);
1490                 return ERR_PTR(ret);
1491         } else
1492                 vfb->user_obj = user_obj;
1493
1494         return &vfb->base;
1495 }
1496
1497 /**
1498  * vmw_kms_check_display_memory - Validates display memory required for a
1499  * topology
1500  * @dev: DRM device
1501  * @num_rects: number of drm_rect in rects
1502  * @rects: array of drm_rect representing the topology to validate indexed by
1503  * crtc index.
1504  *
1505  * Returns:
1506  * 0 on success otherwise negative error code
1507  */
1508 static int vmw_kms_check_display_memory(struct drm_device *dev,
1509                                         uint32_t num_rects,
1510                                         struct drm_rect *rects)
1511 {
1512         struct vmw_private *dev_priv = vmw_priv(dev);
1513         struct drm_rect bounding_box = {0};
1514         u64 total_pixels = 0, pixel_mem, bb_mem;
1515         int i;
1516
1517         for (i = 0; i < num_rects; i++) {
1518                 /*
1519                  * For STDU only individual screen (screen target) is limited by
1520                  * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1521                  */
1522                 if (dev_priv->active_display_unit == vmw_du_screen_target &&
1523                     (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1524                      drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1525                         DRM_ERROR("Screen size not supported.\n");
1526                         return -EINVAL;
1527                 }
1528
1529                 /* Bounding box upper left is at (0,0). */
1530                 if (rects[i].x2 > bounding_box.x2)
1531                         bounding_box.x2 = rects[i].x2;
1532
1533                 if (rects[i].y2 > bounding_box.y2)
1534                         bounding_box.y2 = rects[i].y2;
1535
1536                 total_pixels += (u64) drm_rect_width(&rects[i]) *
1537                         (u64) drm_rect_height(&rects[i]);
1538         }
1539
1540         /* Virtual svga device primary limits are always in 32-bpp. */
1541         pixel_mem = total_pixels * 4;
1542
1543         /*
1544          * For HV10 and below prim_bb_mem is vram size. When
1545          * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1546          * limit on primary bounding box
1547          */
1548         if (pixel_mem > dev_priv->prim_bb_mem) {
1549                 DRM_ERROR("Combined output size too large.\n");
1550                 return -EINVAL;
1551         }
1552
1553         /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1554         if (dev_priv->active_display_unit != vmw_du_screen_target ||
1555             !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1556                 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1557
1558                 if (bb_mem > dev_priv->prim_bb_mem) {
1559                         DRM_ERROR("Topology is beyond supported limits.\n");
1560                         return -EINVAL;
1561                 }
1562         }
1563
1564         return 0;
1565 }
1566
1567 /**
1568  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1569  * @dev: DRM device
1570  * @state: the driver state object
1571  *
1572  * Returns:
1573  * 0 on success otherwise negative error code
1574  */
1575 static int vmw_kms_check_topology(struct drm_device *dev,
1576                                   struct drm_atomic_state *state)
1577 {
1578         struct vmw_private *dev_priv = vmw_priv(dev);
1579         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1580         struct drm_rect *rects;
1581         struct drm_crtc *crtc;
1582         uint32_t i;
1583         int ret = 0;
1584
1585         rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1586                         GFP_KERNEL);
1587         if (!rects)
1588                 return -ENOMEM;
1589
1590         mutex_lock(&dev_priv->requested_layout_mutex);
1591
1592         drm_for_each_crtc(crtc, dev) {
1593                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1594                 struct drm_crtc_state *crtc_state = crtc->state;
1595
1596                 i = drm_crtc_index(crtc);
1597
1598                 if (crtc_state && crtc_state->enable) {
1599                         rects[i].x1 = du->gui_x;
1600                         rects[i].y1 = du->gui_y;
1601                         rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1602                         rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1603                 }
1604         }
1605
1606         /* Determine change to topology due to new atomic state */
1607         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1608                                       new_crtc_state, i) {
1609                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1610                 struct drm_connector *connector;
1611                 struct drm_connector_state *conn_state;
1612                 struct vmw_connector_state *vmw_conn_state;
1613
1614                 if (!new_crtc_state->enable) {
1615                         rects[i].x1 = 0;
1616                         rects[i].y1 = 0;
1617                         rects[i].x2 = 0;
1618                         rects[i].y2 = 0;
1619                         continue;
1620                 }
1621
1622                 if (!du->pref_active) {
1623                         ret = -EINVAL;
1624                         goto clean;
1625                 }
1626
1627                 /*
1628                  * For vmwgfx each crtc has only one connector attached and it
1629                  * is not changed so don't really need to check the
1630                  * crtc->connector_mask and iterate over it.
1631                  */
1632                 connector = &du->connector;
1633                 conn_state = drm_atomic_get_connector_state(state, connector);
1634                 if (IS_ERR(conn_state)) {
1635                         ret = PTR_ERR(conn_state);
1636                         goto clean;
1637                 }
1638
1639                 vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1640                 vmw_conn_state->gui_x = du->gui_x;
1641                 vmw_conn_state->gui_y = du->gui_y;
1642
1643                 rects[i].x1 = du->gui_x;
1644                 rects[i].y1 = du->gui_y;
1645                 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1646                 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1647         }
1648
1649         ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1650                                            rects);
1651
1652 clean:
1653         mutex_unlock(&dev_priv->requested_layout_mutex);
1654         kfree(rects);
1655         return ret;
1656 }
1657
1658 /**
1659  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1660  *
1661  * @dev: DRM device
1662  * @state: the driver state object
1663  *
1664  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1665  * us to assign a value to mode->crtc_clock so that
1666  * drm_calc_timestamping_constants() won't throw an error message
1667  *
1668  * Returns:
1669  * Zero for success or -errno
1670  */
1671 static int
1672 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1673                              struct drm_atomic_state *state)
1674 {
1675         struct drm_crtc *crtc;
1676         struct drm_crtc_state *crtc_state;
1677         bool need_modeset = false;
1678         int i, ret;
1679
1680         ret = drm_atomic_helper_check(dev, state);
1681         if (ret)
1682                 return ret;
1683
1684         if (!state->allow_modeset)
1685                 return ret;
1686
1687         /*
1688          * Legacy path do not set allow_modeset properly like
1689          * @drm_atomic_helper_update_plane, This will result in unnecessary call
1690          * to vmw_kms_check_topology. So extra set of check.
1691          */
1692         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1693                 if (drm_atomic_crtc_needs_modeset(crtc_state))
1694                         need_modeset = true;
1695         }
1696
1697         if (need_modeset)
1698                 return vmw_kms_check_topology(dev, state);
1699
1700         return ret;
1701 }
1702
1703 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1704         .fb_create = vmw_kms_fb_create,
1705         .atomic_check = vmw_kms_atomic_check_modeset,
1706         .atomic_commit = drm_atomic_helper_commit,
1707 };
1708
1709 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1710                                    struct drm_file *file_priv,
1711                                    struct vmw_framebuffer *vfb,
1712                                    struct vmw_surface *surface,
1713                                    uint32_t sid,
1714                                    int32_t destX, int32_t destY,
1715                                    struct drm_vmw_rect *clips,
1716                                    uint32_t num_clips)
1717 {
1718         return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1719                                             &surface->res, destX, destY,
1720                                             num_clips, 1, NULL, NULL);
1721 }
1722
1723
1724 int vmw_kms_present(struct vmw_private *dev_priv,
1725                     struct drm_file *file_priv,
1726                     struct vmw_framebuffer *vfb,
1727                     struct vmw_surface *surface,
1728                     uint32_t sid,
1729                     int32_t destX, int32_t destY,
1730                     struct drm_vmw_rect *clips,
1731                     uint32_t num_clips)
1732 {
1733         int ret;
1734
1735         switch (dev_priv->active_display_unit) {
1736         case vmw_du_screen_target:
1737                 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1738                                                  &surface->res, destX, destY,
1739                                                  num_clips, 1, NULL, NULL);
1740                 break;
1741         case vmw_du_screen_object:
1742                 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1743                                               sid, destX, destY, clips,
1744                                               num_clips);
1745                 break;
1746         default:
1747                 WARN_ONCE(true,
1748                           "Present called with invalid display system.\n");
1749                 ret = -ENOSYS;
1750                 break;
1751         }
1752         if (ret)
1753                 return ret;
1754
1755         vmw_fifo_flush(dev_priv, false);
1756
1757         return 0;
1758 }
1759
1760 static void
1761 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1762 {
1763         if (dev_priv->hotplug_mode_update_property)
1764                 return;
1765
1766         dev_priv->hotplug_mode_update_property =
1767                 drm_property_create_range(dev_priv->dev,
1768                                           DRM_MODE_PROP_IMMUTABLE,
1769                                           "hotplug_mode_update", 0, 1);
1770
1771         if (!dev_priv->hotplug_mode_update_property)
1772                 return;
1773
1774 }
1775
1776 int vmw_kms_init(struct vmw_private *dev_priv)
1777 {
1778         struct drm_device *dev = dev_priv->dev;
1779         int ret;
1780
1781         drm_mode_config_init(dev);
1782         dev->mode_config.funcs = &vmw_kms_funcs;
1783         dev->mode_config.min_width = 1;
1784         dev->mode_config.min_height = 1;
1785         dev->mode_config.max_width = dev_priv->texture_max_width;
1786         dev->mode_config.max_height = dev_priv->texture_max_height;
1787
1788         drm_mode_create_suggested_offset_properties(dev);
1789         vmw_kms_create_hotplug_mode_update_property(dev_priv);
1790
1791         ret = vmw_kms_stdu_init_display(dev_priv);
1792         if (ret) {
1793                 ret = vmw_kms_sou_init_display(dev_priv);
1794                 if (ret) /* Fallback */
1795                         ret = vmw_kms_ldu_init_display(dev_priv);
1796         }
1797
1798         return ret;
1799 }
1800
1801 int vmw_kms_close(struct vmw_private *dev_priv)
1802 {
1803         int ret = 0;
1804
1805         /*
1806          * Docs says we should take the lock before calling this function
1807          * but since it destroys encoders and our destructor calls
1808          * drm_encoder_cleanup which takes the lock we deadlock.
1809          */
1810         drm_mode_config_cleanup(dev_priv->dev);
1811         if (dev_priv->active_display_unit == vmw_du_legacy)
1812                 ret = vmw_kms_ldu_close_display(dev_priv);
1813
1814         return ret;
1815 }
1816
1817 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1818                                 struct drm_file *file_priv)
1819 {
1820         struct drm_vmw_cursor_bypass_arg *arg = data;
1821         struct vmw_display_unit *du;
1822         struct drm_crtc *crtc;
1823         int ret = 0;
1824
1825
1826         mutex_lock(&dev->mode_config.mutex);
1827         if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1828
1829                 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1830                         du = vmw_crtc_to_du(crtc);
1831                         du->hotspot_x = arg->xhot;
1832                         du->hotspot_y = arg->yhot;
1833                 }
1834
1835                 mutex_unlock(&dev->mode_config.mutex);
1836                 return 0;
1837         }
1838
1839         crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1840         if (!crtc) {
1841                 ret = -ENOENT;
1842                 goto out;
1843         }
1844
1845         du = vmw_crtc_to_du(crtc);
1846
1847         du->hotspot_x = arg->xhot;
1848         du->hotspot_y = arg->yhot;
1849
1850 out:
1851         mutex_unlock(&dev->mode_config.mutex);
1852
1853         return ret;
1854 }
1855
1856 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1857                         unsigned width, unsigned height, unsigned pitch,
1858                         unsigned bpp, unsigned depth)
1859 {
1860         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1861                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1862         else if (vmw_fifo_have_pitchlock(vmw_priv))
1863                 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1864                                SVGA_FIFO_PITCHLOCK);
1865         vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1866         vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1867         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1868
1869         if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1870                 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1871                           depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1872                 return -EINVAL;
1873         }
1874
1875         return 0;
1876 }
1877
1878 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1879 {
1880         struct vmw_vga_topology_state *save;
1881         uint32_t i;
1882
1883         vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1884         vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1885         vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1886         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1887                 vmw_priv->vga_pitchlock =
1888                   vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1889         else if (vmw_fifo_have_pitchlock(vmw_priv))
1890                 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1891                                                         SVGA_FIFO_PITCHLOCK);
1892
1893         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1894                 return 0;
1895
1896         vmw_priv->num_displays = vmw_read(vmw_priv,
1897                                           SVGA_REG_NUM_GUEST_DISPLAYS);
1898
1899         if (vmw_priv->num_displays == 0)
1900                 vmw_priv->num_displays = 1;
1901
1902         for (i = 0; i < vmw_priv->num_displays; ++i) {
1903                 save = &vmw_priv->vga_save[i];
1904                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1905                 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1906                 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1907                 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1908                 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1909                 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1910                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1911                 if (i == 0 && vmw_priv->num_displays == 1 &&
1912                     save->width == 0 && save->height == 0) {
1913
1914                         /*
1915                          * It should be fairly safe to assume that these
1916                          * values are uninitialized.
1917                          */
1918
1919                         save->width = vmw_priv->vga_width - save->pos_x;
1920                         save->height = vmw_priv->vga_height - save->pos_y;
1921                 }
1922         }
1923
1924         return 0;
1925 }
1926
1927 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1928 {
1929         struct vmw_vga_topology_state *save;
1930         uint32_t i;
1931
1932         vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1933         vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1934         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1935         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1936                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1937                           vmw_priv->vga_pitchlock);
1938         else if (vmw_fifo_have_pitchlock(vmw_priv))
1939                 vmw_mmio_write(vmw_priv->vga_pitchlock,
1940                                vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1941
1942         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1943                 return 0;
1944
1945         for (i = 0; i < vmw_priv->num_displays; ++i) {
1946                 save = &vmw_priv->vga_save[i];
1947                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1948                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1949                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1950                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1951                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1952                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1953                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1954         }
1955
1956         return 0;
1957 }
1958
1959 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1960                                 uint32_t pitch,
1961                                 uint32_t height)
1962 {
1963         return ((u64) pitch * (u64) height) < (u64)
1964                 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1965                  dev_priv->prim_bb_mem : dev_priv->vram_size);
1966 }
1967
1968
1969 /**
1970  * Function called by DRM code called with vbl_lock held.
1971  */
1972 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1973 {
1974         return 0;
1975 }
1976
1977 /**
1978  * Function called by DRM code called with vbl_lock held.
1979  */
1980 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1981 {
1982         return -EINVAL;
1983 }
1984
1985 /**
1986  * Function called by DRM code called with vbl_lock held.
1987  */
1988 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1989 {
1990 }
1991
1992 /**
1993  * vmw_du_update_layout - Update the display unit with topology from resolution
1994  * plugin and generate DRM uevent
1995  * @dev_priv: device private
1996  * @num_rects: number of drm_rect in rects
1997  * @rects: toplogy to update
1998  */
1999 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2000                                 unsigned int num_rects, struct drm_rect *rects)
2001 {
2002         struct drm_device *dev = dev_priv->dev;
2003         struct vmw_display_unit *du;
2004         struct drm_connector *con;
2005         struct drm_connector_list_iter conn_iter;
2006
2007         /*
2008          * Currently only gui_x/y is protected with requested_layout_mutex.
2009          */
2010         mutex_lock(&dev_priv->requested_layout_mutex);
2011         drm_connector_list_iter_begin(dev, &conn_iter);
2012         drm_for_each_connector_iter(con, &conn_iter) {
2013                 du = vmw_connector_to_du(con);
2014                 if (num_rects > du->unit) {
2015                         du->pref_width = drm_rect_width(&rects[du->unit]);
2016                         du->pref_height = drm_rect_height(&rects[du->unit]);
2017                         du->pref_active = true;
2018                         du->gui_x = rects[du->unit].x1;
2019                         du->gui_y = rects[du->unit].y1;
2020                 } else {
2021                         du->pref_width = 800;
2022                         du->pref_height = 600;
2023                         du->pref_active = false;
2024                         du->gui_x = 0;
2025                         du->gui_y = 0;
2026                 }
2027         }
2028         drm_connector_list_iter_end(&conn_iter);
2029         mutex_unlock(&dev_priv->requested_layout_mutex);
2030
2031         mutex_lock(&dev->mode_config.mutex);
2032         list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2033                 du = vmw_connector_to_du(con);
2034                 if (num_rects > du->unit) {
2035                         drm_object_property_set_value
2036                           (&con->base, dev->mode_config.suggested_x_property,
2037                            du->gui_x);
2038                         drm_object_property_set_value
2039                           (&con->base, dev->mode_config.suggested_y_property,
2040                            du->gui_y);
2041                 } else {
2042                         drm_object_property_set_value
2043                           (&con->base, dev->mode_config.suggested_x_property,
2044                            0);
2045                         drm_object_property_set_value
2046                           (&con->base, dev->mode_config.suggested_y_property,
2047                            0);
2048                 }
2049                 con->status = vmw_du_connector_detect(con, true);
2050         }
2051         mutex_unlock(&dev->mode_config.mutex);
2052
2053         drm_sysfs_hotplug_event(dev);
2054
2055         return 0;
2056 }
2057
2058 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2059                           u16 *r, u16 *g, u16 *b,
2060                           uint32_t size,
2061                           struct drm_modeset_acquire_ctx *ctx)
2062 {
2063         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2064         int i;
2065
2066         for (i = 0; i < size; i++) {
2067                 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2068                           r[i], g[i], b[i]);
2069                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2070                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2071                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2072         }
2073
2074         return 0;
2075 }
2076
2077 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2078 {
2079         return 0;
2080 }
2081
2082 enum drm_connector_status
2083 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2084 {
2085         uint32_t num_displays;
2086         struct drm_device *dev = connector->dev;
2087         struct vmw_private *dev_priv = vmw_priv(dev);
2088         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2089
2090         num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2091
2092         return ((vmw_connector_to_du(connector)->unit < num_displays &&
2093                  du->pref_active) ?
2094                 connector_status_connected : connector_status_disconnected);
2095 }
2096
2097 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2098         /* 640x480@60Hz */
2099         { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2100                    752, 800, 0, 480, 489, 492, 525, 0,
2101                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2102         /* 800x600@60Hz */
2103         { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2104                    968, 1056, 0, 600, 601, 605, 628, 0,
2105                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2106         /* 1024x768@60Hz */
2107         { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2108                    1184, 1344, 0, 768, 771, 777, 806, 0,
2109                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2110         /* 1152x864@75Hz */
2111         { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2112                    1344, 1600, 0, 864, 865, 868, 900, 0,
2113                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2114         /* 1280x768@60Hz */
2115         { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2116                    1472, 1664, 0, 768, 771, 778, 798, 0,
2117                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118         /* 1280x800@60Hz */
2119         { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2120                    1480, 1680, 0, 800, 803, 809, 831, 0,
2121                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2122         /* 1280x960@60Hz */
2123         { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2124                    1488, 1800, 0, 960, 961, 964, 1000, 0,
2125                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2126         /* 1280x1024@60Hz */
2127         { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2128                    1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2129                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130         /* 1360x768@60Hz */
2131         { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2132                    1536, 1792, 0, 768, 771, 777, 795, 0,
2133                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134         /* 1440x1050@60Hz */
2135         { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2136                    1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2137                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138         /* 1440x900@60Hz */
2139         { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2140                    1672, 1904, 0, 900, 903, 909, 934, 0,
2141                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2142         /* 1600x1200@60Hz */
2143         { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2144                    1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2145                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146         /* 1680x1050@60Hz */
2147         { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2148                    1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2149                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2150         /* 1792x1344@60Hz */
2151         { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2152                    2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2153                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154         /* 1853x1392@60Hz */
2155         { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2156                    2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2157                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158         /* 1920x1200@60Hz */
2159         { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2160                    2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2161                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2162         /* 1920x1440@60Hz */
2163         { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2164                    2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2165                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166         /* 2560x1600@60Hz */
2167         { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2168                    3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2169                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170         /* Terminate */
2171         { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2172 };
2173
2174 /**
2175  * vmw_guess_mode_timing - Provide fake timings for a
2176  * 60Hz vrefresh mode.
2177  *
2178  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2179  * members filled in.
2180  */
2181 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2182 {
2183         mode->hsync_start = mode->hdisplay + 50;
2184         mode->hsync_end = mode->hsync_start + 50;
2185         mode->htotal = mode->hsync_end + 50;
2186
2187         mode->vsync_start = mode->vdisplay + 50;
2188         mode->vsync_end = mode->vsync_start + 50;
2189         mode->vtotal = mode->vsync_end + 50;
2190
2191         mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2192         mode->vrefresh = drm_mode_vrefresh(mode);
2193 }
2194
2195
2196 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2197                                 uint32_t max_width, uint32_t max_height)
2198 {
2199         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2200         struct drm_device *dev = connector->dev;
2201         struct vmw_private *dev_priv = vmw_priv(dev);
2202         struct drm_display_mode *mode = NULL;
2203         struct drm_display_mode *bmode;
2204         struct drm_display_mode prefmode = { DRM_MODE("preferred",
2205                 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2206                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2207                 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2208         };
2209         int i;
2210         u32 assumed_bpp = 4;
2211
2212         if (dev_priv->assume_16bpp)
2213                 assumed_bpp = 2;
2214
2215         max_width  = min(max_width,  dev_priv->texture_max_width);
2216         max_height = min(max_height, dev_priv->texture_max_height);
2217
2218         /*
2219          * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2220          * HEIGHT registers.
2221          */
2222         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2223                 max_width  = min(max_width,  dev_priv->stdu_max_width);
2224                 max_height = min(max_height, dev_priv->stdu_max_height);
2225         }
2226
2227         /* Add preferred mode */
2228         mode = drm_mode_duplicate(dev, &prefmode);
2229         if (!mode)
2230                 return 0;
2231         mode->hdisplay = du->pref_width;
2232         mode->vdisplay = du->pref_height;
2233         vmw_guess_mode_timing(mode);
2234
2235         if (vmw_kms_validate_mode_vram(dev_priv,
2236                                         mode->hdisplay * assumed_bpp,
2237                                         mode->vdisplay)) {
2238                 drm_mode_probed_add(connector, mode);
2239         } else {
2240                 drm_mode_destroy(dev, mode);
2241                 mode = NULL;
2242         }
2243
2244         if (du->pref_mode) {
2245                 list_del_init(&du->pref_mode->head);
2246                 drm_mode_destroy(dev, du->pref_mode);
2247         }
2248
2249         /* mode might be null here, this is intended */
2250         du->pref_mode = mode;
2251
2252         for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2253                 bmode = &vmw_kms_connector_builtin[i];
2254                 if (bmode->hdisplay > max_width ||
2255                     bmode->vdisplay > max_height)
2256                         continue;
2257
2258                 if (!vmw_kms_validate_mode_vram(dev_priv,
2259                                                 bmode->hdisplay * assumed_bpp,
2260                                                 bmode->vdisplay))
2261                         continue;
2262
2263                 mode = drm_mode_duplicate(dev, bmode);
2264                 if (!mode)
2265                         return 0;
2266                 mode->vrefresh = drm_mode_vrefresh(mode);
2267
2268                 drm_mode_probed_add(connector, mode);
2269         }
2270
2271         drm_connector_list_update(connector);
2272         /* Move the prefered mode first, help apps pick the right mode. */
2273         drm_mode_sort(&connector->modes);
2274
2275         return 1;
2276 }
2277
2278 int vmw_du_connector_set_property(struct drm_connector *connector,
2279                                   struct drm_property *property,
2280                                   uint64_t val)
2281 {
2282         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2283         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2284
2285         if (property == dev_priv->implicit_placement_property)
2286                 du->is_implicit = val;
2287
2288         return 0;
2289 }
2290
2291
2292
2293 /**
2294  * vmw_du_connector_atomic_set_property - Atomic version of get property
2295  *
2296  * @crtc - crtc the property is associated with
2297  *
2298  * Returns:
2299  * Zero on success, negative errno on failure.
2300  */
2301 int
2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2303                                      struct drm_connector_state *state,
2304                                      struct drm_property *property,
2305                                      uint64_t val)
2306 {
2307         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2310
2311
2312         if (property == dev_priv->implicit_placement_property) {
2313                 vcs->is_implicit = val;
2314
2315                 /*
2316                  * We should really be doing a drm_atomic_commit() to
2317                  * commit the new state, but since this doesn't cause
2318                  * an immedate state change, this is probably ok
2319                  */
2320                 du->is_implicit = vcs->is_implicit;
2321         } else {
2322                 return -EINVAL;
2323         }
2324
2325         return 0;
2326 }
2327
2328
2329 /**
2330  * vmw_du_connector_atomic_get_property - Atomic version of get property
2331  *
2332  * @connector - connector the property is associated with
2333  *
2334  * Returns:
2335  * Zero on success, negative errno on failure.
2336  */
2337 int
2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2339                                      const struct drm_connector_state *state,
2340                                      struct drm_property *property,
2341                                      uint64_t *val)
2342 {
2343         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2344         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2345
2346         if (property == dev_priv->implicit_placement_property)
2347                 *val = vcs->is_implicit;
2348         else {
2349                 DRM_ERROR("Invalid Property %s\n", property->name);
2350                 return -EINVAL;
2351         }
2352
2353         return 0;
2354 }
2355
2356 /**
2357  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2358  * @dev: drm device for the ioctl
2359  * @data: data pointer for the ioctl
2360  * @file_priv: drm file for the ioctl call
2361  *
2362  * Update preferred topology of display unit as per ioctl request. The topology
2363  * is expressed as array of drm_vmw_rect.
2364  * e.g.
2365  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2366  *
2367  * NOTE:
2368  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2369  * device limit on topology, x + w and y + h (lower right) cannot be greater
2370  * than INT_MAX. So topology beyond these limits will return with error.
2371  *
2372  * Returns:
2373  * Zero on success, negative errno on failure.
2374  */
2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2376                                 struct drm_file *file_priv)
2377 {
2378         struct vmw_private *dev_priv = vmw_priv(dev);
2379         struct drm_mode_config *mode_config = &dev->mode_config;
2380         struct drm_vmw_update_layout_arg *arg =
2381                 (struct drm_vmw_update_layout_arg *)data;
2382         void __user *user_rects;
2383         struct drm_vmw_rect *rects;
2384         struct drm_rect *drm_rects;
2385         unsigned rects_size;
2386         int ret, i;
2387
2388         if (!arg->num_outputs) {
2389                 struct drm_rect def_rect = {0, 0, 800, 600};
2390                 vmw_du_update_layout(dev_priv, 1, &def_rect);
2391                 return 0;
2392         }
2393
2394         rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2395         rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2396                         GFP_KERNEL);
2397         if (unlikely(!rects))
2398                 return -ENOMEM;
2399
2400         user_rects = (void __user *)(unsigned long)arg->rects;
2401         ret = copy_from_user(rects, user_rects, rects_size);
2402         if (unlikely(ret != 0)) {
2403                 DRM_ERROR("Failed to get rects.\n");
2404                 ret = -EFAULT;
2405                 goto out_free;
2406         }
2407
2408         drm_rects = (struct drm_rect *)rects;
2409
2410         for (i = 0; i < arg->num_outputs; i++) {
2411                 struct drm_vmw_rect curr_rect;
2412
2413                 /* Verify user-space for overflow as kernel use drm_rect */
2414                 if ((rects[i].x + rects[i].w > INT_MAX) ||
2415                     (rects[i].y + rects[i].h > INT_MAX)) {
2416                         ret = -ERANGE;
2417                         goto out_free;
2418                 }
2419
2420                 curr_rect = rects[i];
2421                 drm_rects[i].x1 = curr_rect.x;
2422                 drm_rects[i].y1 = curr_rect.y;
2423                 drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2424                 drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2425
2426                 /*
2427                  * Currently this check is limiting the topology within
2428                  * mode_config->max (which actually is max texture size
2429                  * supported by virtual device). This limit is here to address
2430                  * window managers that create a big framebuffer for whole
2431                  * topology.
2432                  */
2433                 if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2434                     drm_rects[i].x2 > mode_config->max_width ||
2435                     drm_rects[i].y2 > mode_config->max_height) {
2436                         DRM_ERROR("Invalid GUI layout.\n");
2437                         ret = -EINVAL;
2438                         goto out_free;
2439                 }
2440         }
2441
2442         ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2443
2444         if (ret == 0)
2445                 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2446
2447 out_free:
2448         kfree(rects);
2449         return ret;
2450 }
2451
2452 /**
2453  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2454  * on a set of cliprects and a set of display units.
2455  *
2456  * @dev_priv: Pointer to a device private structure.
2457  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2458  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2459  * Cliprects are given in framebuffer coordinates.
2460  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2461  * be NULL. Cliprects are given in source coordinates.
2462  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2463  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2464  * @num_clips: Number of cliprects in the @clips or @vclips array.
2465  * @increment: Integer with which to increment the clip counter when looping.
2466  * Used to skip a predetermined number of clip rects.
2467  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2468  */
2469 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2470                          struct vmw_framebuffer *framebuffer,
2471                          const struct drm_clip_rect *clips,
2472                          const struct drm_vmw_rect *vclips,
2473                          s32 dest_x, s32 dest_y,
2474                          int num_clips,
2475                          int increment,
2476                          struct vmw_kms_dirty *dirty)
2477 {
2478         struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2479         struct drm_crtc *crtc;
2480         u32 num_units = 0;
2481         u32 i, k;
2482
2483         dirty->dev_priv = dev_priv;
2484
2485         /* If crtc is passed, no need to iterate over other display units */
2486         if (dirty->crtc) {
2487                 units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2488         } else {
2489                 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2490                                     head) {
2491                         struct drm_plane *plane = crtc->primary;
2492
2493                         if (plane->state->fb == &framebuffer->base)
2494                                 units[num_units++] = vmw_crtc_to_du(crtc);
2495                 }
2496         }
2497
2498         for (k = 0; k < num_units; k++) {
2499                 struct vmw_display_unit *unit = units[k];
2500                 s32 crtc_x = unit->crtc.x;
2501                 s32 crtc_y = unit->crtc.y;
2502                 s32 crtc_width = unit->crtc.mode.hdisplay;
2503                 s32 crtc_height = unit->crtc.mode.vdisplay;
2504                 const struct drm_clip_rect *clips_ptr = clips;
2505                 const struct drm_vmw_rect *vclips_ptr = vclips;
2506
2507                 dirty->unit = unit;
2508                 if (dirty->fifo_reserve_size > 0) {
2509                         dirty->cmd = vmw_fifo_reserve(dev_priv,
2510                                                       dirty->fifo_reserve_size);
2511                         if (!dirty->cmd) {
2512                                 DRM_ERROR("Couldn't reserve fifo space "
2513                                           "for dirty blits.\n");
2514                                 return -ENOMEM;
2515                         }
2516                         memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2517                 }
2518                 dirty->num_hits = 0;
2519                 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2520                        vclips_ptr += increment) {
2521                         s32 clip_left;
2522                         s32 clip_top;
2523
2524                         /*
2525                          * Select clip array type. Note that integer type
2526                          * in @clips is unsigned short, whereas in @vclips
2527                          * it's 32-bit.
2528                          */
2529                         if (clips) {
2530                                 dirty->fb_x = (s32) clips_ptr->x1;
2531                                 dirty->fb_y = (s32) clips_ptr->y1;
2532                                 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2533                                         crtc_x;
2534                                 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2535                                         crtc_y;
2536                         } else {
2537                                 dirty->fb_x = vclips_ptr->x;
2538                                 dirty->fb_y = vclips_ptr->y;
2539                                 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2540                                         dest_x - crtc_x;
2541                                 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2542                                         dest_y - crtc_y;
2543                         }
2544
2545                         dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2546                         dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2547
2548                         /* Skip this clip if it's outside the crtc region */
2549                         if (dirty->unit_x1 >= crtc_width ||
2550                             dirty->unit_y1 >= crtc_height ||
2551                             dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2552                                 continue;
2553
2554                         /* Clip right and bottom to crtc limits */
2555                         dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2556                                                crtc_width);
2557                         dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2558                                                crtc_height);
2559
2560                         /* Clip left and top to crtc limits */
2561                         clip_left = min_t(s32, dirty->unit_x1, 0);
2562                         clip_top = min_t(s32, dirty->unit_y1, 0);
2563                         dirty->unit_x1 -= clip_left;
2564                         dirty->unit_y1 -= clip_top;
2565                         dirty->fb_x -= clip_left;
2566                         dirty->fb_y -= clip_top;
2567
2568                         dirty->clip(dirty);
2569                 }
2570
2571                 dirty->fifo_commit(dirty);
2572         }
2573
2574         return 0;
2575 }
2576
2577 /**
2578  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2579  * command submission.
2580  *
2581  * @dev_priv. Pointer to a device private structure.
2582  * @buf: The buffer object
2583  * @interruptible: Whether to perform waits as interruptible.
2584  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2585  * The buffer will be validated as a GMR. Already pinned buffers will not be
2586  * validated.
2587  *
2588  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2589  * interrupted by a signal.
2590  */
2591 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2592                                   struct vmw_buffer_object *buf,
2593                                   bool interruptible,
2594                                   bool validate_as_mob,
2595                                   bool for_cpu_blit)
2596 {
2597         struct ttm_operation_ctx ctx = {
2598                 .interruptible = interruptible,
2599                 .no_wait_gpu = false};
2600         struct ttm_buffer_object *bo = &buf->base;
2601         int ret;
2602
2603         ttm_bo_reserve(bo, false, false, NULL);
2604         if (for_cpu_blit)
2605                 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2606         else
2607                 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2608                                                  validate_as_mob);
2609         if (ret)
2610                 ttm_bo_unreserve(bo);
2611
2612         return ret;
2613 }
2614
2615 /**
2616  * vmw_kms_helper_buffer_revert - Undo the actions of
2617  * vmw_kms_helper_buffer_prepare.
2618  *
2619  * @res: Pointer to the buffer object.
2620  *
2621  * Helper to be used if an error forces the caller to undo the actions of
2622  * vmw_kms_helper_buffer_prepare.
2623  */
2624 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2625 {
2626         if (buf)
2627                 ttm_bo_unreserve(&buf->base);
2628 }
2629
2630 /**
2631  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2632  * kms command submission.
2633  *
2634  * @dev_priv: Pointer to a device private structure.
2635  * @file_priv: Pointer to a struct drm_file representing the caller's
2636  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2637  * if non-NULL, @user_fence_rep must be non-NULL.
2638  * @buf: The buffer object.
2639  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2640  * ref-counted fence pointer is returned here.
2641  * @user_fence_rep: Optional pointer to a user-space provided struct
2642  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2643  * function copies fence data to user-space in a fail-safe manner.
2644  */
2645 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2646                                   struct drm_file *file_priv,
2647                                   struct vmw_buffer_object *buf,
2648                                   struct vmw_fence_obj **out_fence,
2649                                   struct drm_vmw_fence_rep __user *
2650                                   user_fence_rep)
2651 {
2652         struct vmw_fence_obj *fence;
2653         uint32_t handle;
2654         int ret;
2655
2656         ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2657                                          file_priv ? &handle : NULL);
2658         if (buf)
2659                 vmw_bo_fence_single(&buf->base, fence);
2660         if (file_priv)
2661                 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2662                                             ret, user_fence_rep, fence,
2663                                             handle, -1, NULL);
2664         if (out_fence)
2665                 *out_fence = fence;
2666         else
2667                 vmw_fence_obj_unreference(&fence);
2668
2669         vmw_kms_helper_buffer_revert(buf);
2670 }
2671
2672
2673 /**
2674  * vmw_kms_helper_resource_revert - Undo the actions of
2675  * vmw_kms_helper_resource_prepare.
2676  *
2677  * @res: Pointer to the resource. Typically a surface.
2678  *
2679  * Helper to be used if an error forces the caller to undo the actions of
2680  * vmw_kms_helper_resource_prepare.
2681  */
2682 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2683 {
2684         struct vmw_resource *res = ctx->res;
2685
2686         vmw_kms_helper_buffer_revert(ctx->buf);
2687         vmw_bo_unreference(&ctx->buf);
2688         vmw_resource_unreserve(res, false, NULL, 0);
2689         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2690 }
2691
2692 /**
2693  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2694  * command submission.
2695  *
2696  * @res: Pointer to the resource. Typically a surface.
2697  * @interruptible: Whether to perform waits as interruptible.
2698  *
2699  * Reserves and validates also the backup buffer if a guest-backed resource.
2700  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2701  * interrupted by a signal.
2702  */
2703 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2704                                     bool interruptible,
2705                                     struct vmw_validation_ctx *ctx)
2706 {
2707         int ret = 0;
2708
2709         ctx->buf = NULL;
2710         ctx->res = res;
2711
2712         if (interruptible)
2713                 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2714         else
2715                 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2716
2717         if (unlikely(ret != 0))
2718                 return -ERESTARTSYS;
2719
2720         ret = vmw_resource_reserve(res, interruptible, false);
2721         if (ret)
2722                 goto out_unlock;
2723
2724         if (res->backup) {
2725                 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2726                                                     interruptible,
2727                                                     res->dev_priv->has_mob,
2728                                                     false);
2729                 if (ret)
2730                         goto out_unreserve;
2731
2732                 ctx->buf = vmw_bo_reference(res->backup);
2733         }
2734         ret = vmw_resource_validate(res);
2735         if (ret)
2736                 goto out_revert;
2737         return 0;
2738
2739 out_revert:
2740         vmw_kms_helper_buffer_revert(ctx->buf);
2741 out_unreserve:
2742         vmw_resource_unreserve(res, false, NULL, 0);
2743 out_unlock:
2744         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2745         return ret;
2746 }
2747
2748 /**
2749  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2750  * kms command submission.
2751  *
2752  * @res: Pointer to the resource. Typically a surface.
2753  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2754  * ref-counted fence pointer is returned here.
2755  */
2756 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2757                                     struct vmw_fence_obj **out_fence)
2758 {
2759         struct vmw_resource *res = ctx->res;
2760
2761         if (ctx->buf || out_fence)
2762                 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2763                                              out_fence, NULL);
2764
2765         vmw_bo_unreference(&ctx->buf);
2766         vmw_resource_unreserve(res, false, NULL, 0);
2767         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2768 }
2769
2770 /**
2771  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2772  * its backing MOB.
2773  *
2774  * @res: Pointer to the surface resource
2775  * @clips: Clip rects in framebuffer (surface) space.
2776  * @num_clips: Number of clips in @clips.
2777  * @increment: Integer with which to increment the clip counter when looping.
2778  * Used to skip a predetermined number of clip rects.
2779  *
2780  * This function makes sure the proxy surface is updated from its backing MOB
2781  * using the region given by @clips. The surface resource @res and its backing
2782  * MOB needs to be reserved and validated on call.
2783  */
2784 int vmw_kms_update_proxy(struct vmw_resource *res,
2785                          const struct drm_clip_rect *clips,
2786                          unsigned num_clips,
2787                          int increment)
2788 {
2789         struct vmw_private *dev_priv = res->dev_priv;
2790         struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2791         struct {
2792                 SVGA3dCmdHeader header;
2793                 SVGA3dCmdUpdateGBImage body;
2794         } *cmd;
2795         SVGA3dBox *box;
2796         size_t copy_size = 0;
2797         int i;
2798
2799         if (!clips)
2800                 return 0;
2801
2802         cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2803         if (!cmd) {
2804                 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2805                           "update.\n");
2806                 return -ENOMEM;
2807         }
2808
2809         for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2810                 box = &cmd->body.box;
2811
2812                 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2813                 cmd->header.size = sizeof(cmd->body);
2814                 cmd->body.image.sid = res->id;
2815                 cmd->body.image.face = 0;
2816                 cmd->body.image.mipmap = 0;
2817
2818                 if (clips->x1 > size->width || clips->x2 > size->width ||
2819                     clips->y1 > size->height || clips->y2 > size->height) {
2820                         DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2821                         return -EINVAL;
2822                 }
2823
2824                 box->x = clips->x1;
2825                 box->y = clips->y1;
2826                 box->z = 0;
2827                 box->w = clips->x2 - clips->x1;
2828                 box->h = clips->y2 - clips->y1;
2829                 box->d = 1;
2830
2831                 copy_size += sizeof(*cmd);
2832         }
2833
2834         vmw_fifo_commit(dev_priv, copy_size);
2835
2836         return 0;
2837 }
2838
2839 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2840                             unsigned unit,
2841                             u32 max_width,
2842                             u32 max_height,
2843                             struct drm_connector **p_con,
2844                             struct drm_crtc **p_crtc,
2845                             struct drm_display_mode **p_mode)
2846 {
2847         struct drm_connector *con;
2848         struct vmw_display_unit *du;
2849         struct drm_display_mode *mode;
2850         int i = 0;
2851         int ret = 0;
2852
2853         mutex_lock(&dev_priv->dev->mode_config.mutex);
2854         list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2855                             head) {
2856                 if (i == unit)
2857                         break;
2858
2859                 ++i;
2860         }
2861
2862         if (i != unit) {
2863                 DRM_ERROR("Could not find initial display unit.\n");
2864                 ret = -EINVAL;
2865                 goto out_unlock;
2866         }
2867
2868         if (list_empty(&con->modes))
2869                 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2870
2871         if (list_empty(&con->modes)) {
2872                 DRM_ERROR("Could not find initial display mode.\n");
2873                 ret = -EINVAL;
2874                 goto out_unlock;
2875         }
2876
2877         du = vmw_connector_to_du(con);
2878         *p_con = con;
2879         *p_crtc = &du->crtc;
2880
2881         list_for_each_entry(mode, &con->modes, head) {
2882                 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2883                         break;
2884         }
2885
2886         if (mode->type & DRM_MODE_TYPE_PREFERRED)
2887                 *p_mode = mode;
2888         else {
2889                 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2890                 *p_mode = list_first_entry(&con->modes,
2891                                            struct drm_display_mode,
2892                                            head);
2893         }
2894
2895  out_unlock:
2896         mutex_unlock(&dev_priv->dev->mode_config.mutex);
2897
2898         return ret;
2899 }
2900
2901 /**
2902  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2903  *
2904  * @dev_priv: Pointer to a device private struct.
2905  * @du: The display unit of the crtc.
2906  */
2907 void vmw_kms_del_active(struct vmw_private *dev_priv,
2908                         struct vmw_display_unit *du)
2909 {
2910         mutex_lock(&dev_priv->global_kms_state_mutex);
2911         if (du->active_implicit) {
2912                 if (--(dev_priv->num_implicit) == 0)
2913                         dev_priv->implicit_fb = NULL;
2914                 du->active_implicit = false;
2915         }
2916         mutex_unlock(&dev_priv->global_kms_state_mutex);
2917 }
2918
2919 /**
2920  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2921  *
2922  * @vmw_priv: Pointer to a device private struct.
2923  * @du: The display unit of the crtc.
2924  * @vfb: The implicit framebuffer
2925  *
2926  * Registers a binding to an implicit framebuffer.
2927  */
2928 void vmw_kms_add_active(struct vmw_private *dev_priv,
2929                         struct vmw_display_unit *du,
2930                         struct vmw_framebuffer *vfb)
2931 {
2932         mutex_lock(&dev_priv->global_kms_state_mutex);
2933         WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2934
2935         if (!du->active_implicit && du->is_implicit) {
2936                 dev_priv->implicit_fb = vfb;
2937                 du->active_implicit = true;
2938                 dev_priv->num_implicit++;
2939         }
2940         mutex_unlock(&dev_priv->global_kms_state_mutex);
2941 }
2942
2943 /**
2944  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2945  *
2946  * @dev_priv: Pointer to device-private struct.
2947  * @crtc: The crtc we want to flip.
2948  *
2949  * Returns true or false depending whether it's OK to flip this crtc
2950  * based on the criterion that we must not have more than one implicit
2951  * frame-buffer at any one time.
2952  */
2953 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2954                             struct drm_crtc *crtc)
2955 {
2956         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2957         bool ret;
2958
2959         mutex_lock(&dev_priv->global_kms_state_mutex);
2960         ret = !du->is_implicit || dev_priv->num_implicit == 1;
2961         mutex_unlock(&dev_priv->global_kms_state_mutex);
2962
2963         return ret;
2964 }
2965
2966 /**
2967  * vmw_kms_update_implicit_fb - Update the implicit fb.
2968  *
2969  * @dev_priv: Pointer to device-private struct.
2970  * @crtc: The crtc the new implicit frame-buffer is bound to.
2971  */
2972 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2973                                 struct drm_crtc *crtc)
2974 {
2975         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2976         struct drm_plane *plane = crtc->primary;
2977         struct vmw_framebuffer *vfb;
2978
2979         mutex_lock(&dev_priv->global_kms_state_mutex);
2980
2981         if (!du->is_implicit)
2982                 goto out_unlock;
2983
2984         vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2985         WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2986                      dev_priv->implicit_fb != vfb);
2987
2988         dev_priv->implicit_fb = vfb;
2989 out_unlock:
2990         mutex_unlock(&dev_priv->global_kms_state_mutex);
2991 }
2992
2993 /**
2994  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2995  * property.
2996  *
2997  * @dev_priv: Pointer to a device private struct.
2998  * @immutable: Whether the property is immutable.
2999  *
3000  * Sets up the implicit placement property unless it's already set up.
3001  */
3002 void
3003 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
3004                                            bool immutable)
3005 {
3006         if (dev_priv->implicit_placement_property)
3007                 return;
3008
3009         dev_priv->implicit_placement_property =
3010                 drm_property_create_range(dev_priv->dev,
3011                                           immutable ?
3012                                           DRM_MODE_PROP_IMMUTABLE : 0,
3013                                           "implicit_placement", 0, 1);
3014
3015 }
3016
3017
3018 /**
3019  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3020  *
3021  * @set: The configuration to set.
3022  *
3023  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3024  * when drm_mode_set_crtcinfo is called as part of the configuration setting
3025  * causes it to return incorrect crtc dimensions causing severe problems in
3026  * the vmwgfx modesetting. So explicitly clear that member before calling
3027  * into drm_atomic_helper_set_config.
3028  */
3029 int vmw_kms_set_config(struct drm_mode_set *set,
3030                        struct drm_modeset_acquire_ctx *ctx)
3031 {
3032         if (set && set->mode)
3033                 set->mode->type = 0;
3034
3035         return drm_atomic_helper_set_config(set, ctx);
3036 }
3037
3038
3039 /**
3040  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3041  *
3042  * @dev: Pointer to the drm device
3043  * Return: 0 on success. Negative error code on failure.
3044  */
3045 int vmw_kms_suspend(struct drm_device *dev)
3046 {
3047         struct vmw_private *dev_priv = vmw_priv(dev);
3048
3049         dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3050         if (IS_ERR(dev_priv->suspend_state)) {
3051                 int ret = PTR_ERR(dev_priv->suspend_state);
3052
3053                 DRM_ERROR("Failed kms suspend: %d\n", ret);
3054                 dev_priv->suspend_state = NULL;
3055
3056                 return ret;
3057         }
3058
3059         return 0;
3060 }
3061
3062
3063 /**
3064  * vmw_kms_resume - Re-enable modesetting and restore state
3065  *
3066  * @dev: Pointer to the drm device
3067  * Return: 0 on success. Negative error code on failure.
3068  *
3069  * State is resumed from a previous vmw_kms_suspend(). It's illegal
3070  * to call this function without a previous vmw_kms_suspend().
3071  */
3072 int vmw_kms_resume(struct drm_device *dev)
3073 {
3074         struct vmw_private *dev_priv = vmw_priv(dev);
3075         int ret;
3076
3077         if (WARN_ON(!dev_priv->suspend_state))
3078                 return 0;
3079
3080         ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3081         dev_priv->suspend_state = NULL;
3082
3083         return ret;
3084 }
3085
3086 /**
3087  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3088  *
3089  * @dev: Pointer to the drm device
3090  */
3091 void vmw_kms_lost_device(struct drm_device *dev)
3092 {
3093         drm_atomic_helper_shutdown(dev);
3094 }