drm/vmwgfx: Make check_modeset() use the new atomic iterator macros.
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40         drm_plane_cleanup(&du->primary);
41         drm_plane_cleanup(&du->cursor);
42
43         drm_connector_unregister(&du->connector);
44         drm_crtc_cleanup(&du->crtc);
45         drm_encoder_cleanup(&du->encoder);
46         drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50  * Display Unit Cursor functions
51  */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54                                    u32 *image, u32 width, u32 height,
55                                    u32 hotspotX, u32 hotspotY)
56 {
57         struct {
58                 u32 cmd;
59                 SVGAFifoCmdDefineAlphaCursor cursor;
60         } *cmd;
61         u32 image_size = width * height * 4;
62         u32 cmd_size = sizeof(*cmd) + image_size;
63
64         if (!image)
65                 return -EINVAL;
66
67         cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68         if (unlikely(cmd == NULL)) {
69                 DRM_ERROR("Fifo reserve failed.\n");
70                 return -ENOMEM;
71         }
72
73         memset(cmd, 0, sizeof(*cmd));
74
75         memcpy(&cmd[1], image, image_size);
76
77         cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78         cmd->cursor.id = 0;
79         cmd->cursor.width = width;
80         cmd->cursor.height = height;
81         cmd->cursor.hotspotX = hotspotX;
82         cmd->cursor.hotspotY = hotspotY;
83
84         vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86         return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90                                     struct vmw_dma_buffer *dmabuf,
91                                     u32 width, u32 height,
92                                     u32 hotspotX, u32 hotspotY)
93 {
94         struct ttm_bo_kmap_obj map;
95         unsigned long kmap_offset;
96         unsigned long kmap_num;
97         void *virtual;
98         bool dummy;
99         int ret;
100
101         kmap_offset = 0;
102         kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104         ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105         if (unlikely(ret != 0)) {
106                 DRM_ERROR("reserve failed\n");
107                 return -EINVAL;
108         }
109
110         ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111         if (unlikely(ret != 0))
112                 goto err_unreserve;
113
114         virtual = ttm_kmap_obj_virtual(&map, &dummy);
115         ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116                                       hotspotX, hotspotY);
117
118         ttm_bo_kunmap(&map);
119 err_unreserve:
120         ttm_bo_unreserve(&dmabuf->base);
121
122         return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127                                        bool show, int x, int y)
128 {
129         u32 *fifo_mem = dev_priv->mmio_virt;
130         uint32_t count;
131
132         spin_lock(&dev_priv->cursor_lock);
133         vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134         vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135         vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136         count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137         vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138         spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143                           struct ttm_object_file *tfile,
144                           struct ttm_buffer_object *bo,
145                           SVGA3dCmdHeader *header)
146 {
147         struct ttm_bo_kmap_obj map;
148         unsigned long kmap_offset;
149         unsigned long kmap_num;
150         SVGA3dCopyBox *box;
151         unsigned box_count;
152         void *virtual;
153         bool dummy;
154         struct vmw_dma_cmd {
155                 SVGA3dCmdHeader header;
156                 SVGA3dCmdSurfaceDMA dma;
157         } *cmd;
158         int i, ret;
159
160         cmd = container_of(header, struct vmw_dma_cmd, header);
161
162         /* No snooper installed */
163         if (!srf->snooper.image)
164                 return;
165
166         if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167                 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168                 return;
169         }
170
171         if (cmd->header.size < 64) {
172                 DRM_ERROR("at least one full copy box must be given\n");
173                 return;
174         }
175
176         box = (SVGA3dCopyBox *)&cmd[1];
177         box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178                         sizeof(SVGA3dCopyBox);
179
180         if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181             box->x != 0    || box->y != 0    || box->z != 0    ||
182             box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183             box->d != 1    || box_count != 1) {
184                 /* TODO handle none page aligned offsets */
185                 /* TODO handle more dst & src != 0 */
186                 /* TODO handle more then one copy */
187                 DRM_ERROR("Cant snoop dma request for cursor!\n");
188                 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189                           box->srcx, box->srcy, box->srcz,
190                           box->x, box->y, box->z,
191                           box->w, box->h, box->d, box_count,
192                           cmd->dma.guest.ptr.offset);
193                 return;
194         }
195
196         kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197         kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199         ret = ttm_bo_reserve(bo, true, false, NULL);
200         if (unlikely(ret != 0)) {
201                 DRM_ERROR("reserve failed\n");
202                 return;
203         }
204
205         ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206         if (unlikely(ret != 0))
207                 goto err_unreserve;
208
209         virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211         if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212                 memcpy(srf->snooper.image, virtual, 64*64*4);
213         } else {
214                 /* Image is unsigned pointer. */
215                 for (i = 0; i < box->h; i++)
216                         memcpy(srf->snooper.image + i * 64,
217                                virtual + i * cmd->dma.guest.pitch,
218                                box->w * 4);
219         }
220
221         srf->snooper.age++;
222
223         ttm_bo_kunmap(&map);
224 err_unreserve:
225         ttm_bo_unreserve(bo);
226 }
227
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237         struct drm_device *dev = dev_priv->dev;
238         struct vmw_display_unit *du;
239         struct drm_crtc *crtc;
240
241         drm_modeset_lock_all(dev);
242         drm_for_each_crtc(crtc, dev) {
243                 du = vmw_crtc_to_du(crtc);
244
245                 du->hotspot_x = 0;
246                 du->hotspot_y = 0;
247         }
248         drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253         struct drm_device *dev = dev_priv->dev;
254         struct vmw_display_unit *du;
255         struct drm_crtc *crtc;
256
257         mutex_lock(&dev->mode_config.mutex);
258
259         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260                 du = vmw_crtc_to_du(crtc);
261                 if (!du->cursor_surface ||
262                     du->cursor_age == du->cursor_surface->snooper.age)
263                         continue;
264
265                 du->cursor_age = du->cursor_surface->snooper.age;
266                 vmw_cursor_update_image(dev_priv,
267                                         du->cursor_surface->snooper.image,
268                                         64, 64,
269                                         du->hotspot_x + du->core_hotspot_x,
270                                         du->hotspot_y + du->core_hotspot_y);
271         }
272
273         mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279         vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280
281         drm_plane_cleanup(plane);
282 }
283
284
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287         drm_plane_cleanup(plane);
288
289         /* Planes are static in our case so we don't free it */
290 }
291
292
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300                              bool unreference)
301 {
302         if (vps->surf) {
303                 if (vps->pinned) {
304                         vmw_resource_unpin(&vps->surf->res);
305                         vps->pinned--;
306                 }
307
308                 if (unreference) {
309                         if (vps->pinned)
310                                 DRM_ERROR("Surface still pinned\n");
311                         vmw_surface_unreference(&vps->surf);
312                 }
313         }
314 }
315
316
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329                         struct drm_plane_state *old_state)
330 {
331         struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332
333         vmw_du_plane_unpin_surf(vps, false);
334 }
335
336
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347                                struct drm_plane_state *new_state)
348 {
349         struct drm_framebuffer *fb = new_state->fb;
350         struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351
352
353         if (vps->surf)
354                 vmw_surface_unreference(&vps->surf);
355
356         if (vps->dmabuf)
357                 vmw_dmabuf_unreference(&vps->dmabuf);
358
359         if (fb) {
360                 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361                         vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362                         vmw_dmabuf_reference(vps->dmabuf);
363                 } else {
364                         vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365                         vmw_surface_reference(vps->surf);
366                 }
367         }
368
369         return 0;
370 }
371
372
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375                                   struct drm_plane_state *old_state)
376 {
377         struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380         struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381         s32 hotspot_x, hotspot_y;
382         int ret = 0;
383
384
385         hotspot_x = du->hotspot_x;
386         hotspot_y = du->hotspot_y;
387         du->cursor_surface = vps->surf;
388         du->cursor_dmabuf = vps->dmabuf;
389
390         /* setup new image */
391         if (vps->surf) {
392                 du->cursor_age = du->cursor_surface->snooper.age;
393
394                 ret = vmw_cursor_update_image(dev_priv,
395                                               vps->surf->snooper.image,
396                                               64, 64, hotspot_x, hotspot_y);
397         } else if (vps->dmabuf) {
398                 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
399                                                plane->state->crtc_w,
400                                                plane->state->crtc_h,
401                                                hotspot_x, hotspot_y);
402         } else {
403                 vmw_cursor_update_position(dev_priv, false, 0, 0);
404                 return;
405         }
406
407         if (!ret) {
408                 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
409                 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
410
411                 vmw_cursor_update_position(dev_priv, true,
412                                            du->cursor_x + hotspot_x,
413                                            du->cursor_y + hotspot_y);
414         } else {
415                 DRM_ERROR("Failed to update cursor image\n");
416         }
417 }
418
419
420 /**
421  * vmw_du_primary_plane_atomic_check - check if the new state is okay
422  *
423  * @plane: display plane
424  * @state: info on the new plane state, including the FB
425  *
426  * Check if the new state is settable given the current state.  Other
427  * than what the atomic helper checks, we care about crtc fitting
428  * the FB and maintaining one active framebuffer.
429  *
430  * Returns 0 on success
431  */
432 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
433                                       struct drm_plane_state *state)
434 {
435         struct drm_framebuffer *new_fb = state->fb;
436         bool visible;
437
438         struct drm_rect src = {
439                 .x1 = state->src_x,
440                 .y1 = state->src_y,
441                 .x2 = state->src_x + state->src_w,
442                 .y2 = state->src_y + state->src_h,
443         };
444         struct drm_rect dest = {
445                 .x1 = state->crtc_x,
446                 .y1 = state->crtc_y,
447                 .x2 = state->crtc_x + state->crtc_w,
448                 .y2 = state->crtc_y + state->crtc_h,
449         };
450         struct drm_rect clip = dest;
451         int ret;
452
453         ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
454                                             &src, &dest, &clip,
455                                             DRM_MODE_ROTATE_0,
456                                             DRM_PLANE_HELPER_NO_SCALING,
457                                             DRM_PLANE_HELPER_NO_SCALING,
458                                             false, true, &visible);
459
460
461         if (!ret && new_fb) {
462                 struct drm_crtc *crtc = state->crtc;
463                 struct vmw_connector_state *vcs;
464                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
465                 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
466                 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
467
468                 vcs = vmw_connector_state_to_vcs(du->connector.state);
469
470                 if ((dest.x2 > new_fb->width ||
471                      dest.y2 > new_fb->height)) {
472                         DRM_ERROR("CRTC area outside of framebuffer\n");
473                         return -EINVAL;
474                 }
475
476                 /* Only one active implicit framebuffer at a time. */
477                 mutex_lock(&dev_priv->global_kms_state_mutex);
478                 if (vcs->is_implicit && dev_priv->implicit_fb &&
479                     !(dev_priv->num_implicit == 1 && du->active_implicit)
480                     && dev_priv->implicit_fb != vfb) {
481                         DRM_ERROR("Multiple implicit framebuffers "
482                                   "not supported.\n");
483                         ret = -EINVAL;
484                 }
485                 mutex_unlock(&dev_priv->global_kms_state_mutex);
486         }
487
488
489         return ret;
490 }
491
492
493 /**
494  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
495  *
496  * @plane: cursor plane
497  * @state: info on the new plane state
498  *
499  * This is a chance to fail if the new cursor state does not fit
500  * our requirements.
501  *
502  * Returns 0 on success
503  */
504 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
505                                      struct drm_plane_state *new_state)
506 {
507         int ret = 0;
508         struct vmw_surface *surface = NULL;
509         struct drm_framebuffer *fb = new_state->fb;
510
511
512         /* Turning off */
513         if (!fb)
514                 return ret;
515
516         /* A lot of the code assumes this */
517         if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
518                 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
519                           new_state->crtc_w, new_state->crtc_h);
520                 ret = -EINVAL;
521         }
522
523         if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
524                 surface = vmw_framebuffer_to_vfbs(fb)->surface;
525
526         if (surface && !surface->snooper.image) {
527                 DRM_ERROR("surface not suitable for cursor\n");
528                 ret = -EINVAL;
529         }
530
531         return ret;
532 }
533
534
535 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
536                              struct drm_crtc_state *new_state)
537 {
538         struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
539         int connector_mask = 1 << drm_connector_index(&du->connector);
540         bool has_primary = new_state->plane_mask &
541                            BIT(drm_plane_index(crtc->primary));
542
543         /* We always want to have an active plane with an active CRTC */
544         if (has_primary != new_state->enable)
545                 return -EINVAL;
546
547
548         if (new_state->connector_mask != connector_mask &&
549             new_state->connector_mask != 0) {
550                 DRM_ERROR("Invalid connectors configuration\n");
551                 return -EINVAL;
552         }
553
554         /*
555          * Our virtual device does not have a dot clock, so use the logical
556          * clock value as the dot clock.
557          */
558         if (new_state->mode.crtc_clock == 0)
559                 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
560
561         return 0;
562 }
563
564
565 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
566                               struct drm_crtc_state *old_crtc_state)
567 {
568 }
569
570
571 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
572                               struct drm_crtc_state *old_crtc_state)
573 {
574         struct drm_pending_vblank_event *event = crtc->state->event;
575
576         if (event) {
577                 crtc->state->event = NULL;
578
579                 spin_lock_irq(&crtc->dev->event_lock);
580                 if (drm_crtc_vblank_get(crtc) == 0)
581                         drm_crtc_arm_vblank_event(crtc, event);
582                 else
583                         drm_crtc_send_vblank_event(crtc, event);
584                 spin_unlock_irq(&crtc->dev->event_lock);
585         }
586
587 }
588
589
590 /**
591  * vmw_du_crtc_duplicate_state - duplicate crtc state
592  * @crtc: DRM crtc
593  *
594  * Allocates and returns a copy of the crtc state (both common and
595  * vmw-specific) for the specified crtc.
596  *
597  * Returns: The newly allocated crtc state, or NULL on failure.
598  */
599 struct drm_crtc_state *
600 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
601 {
602         struct drm_crtc_state *state;
603         struct vmw_crtc_state *vcs;
604
605         if (WARN_ON(!crtc->state))
606                 return NULL;
607
608         vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
609
610         if (!vcs)
611                 return NULL;
612
613         state = &vcs->base;
614
615         __drm_atomic_helper_crtc_duplicate_state(crtc, state);
616
617         return state;
618 }
619
620
621 /**
622  * vmw_du_crtc_reset - creates a blank vmw crtc state
623  * @crtc: DRM crtc
624  *
625  * Resets the atomic state for @crtc by freeing the state pointer (which
626  * might be NULL, e.g. at driver load time) and allocating a new empty state
627  * object.
628  */
629 void vmw_du_crtc_reset(struct drm_crtc *crtc)
630 {
631         struct vmw_crtc_state *vcs;
632
633
634         if (crtc->state) {
635                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
636
637                 kfree(vmw_crtc_state_to_vcs(crtc->state));
638         }
639
640         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
641
642         if (!vcs) {
643                 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
644                 return;
645         }
646
647         crtc->state = &vcs->base;
648         crtc->state->crtc = crtc;
649 }
650
651
652 /**
653  * vmw_du_crtc_destroy_state - destroy crtc state
654  * @crtc: DRM crtc
655  * @state: state object to destroy
656  *
657  * Destroys the crtc state (both common and vmw-specific) for the
658  * specified plane.
659  */
660 void
661 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
662                           struct drm_crtc_state *state)
663 {
664         drm_atomic_helper_crtc_destroy_state(crtc, state);
665 }
666
667
668 /**
669  * vmw_du_plane_duplicate_state - duplicate plane state
670  * @plane: drm plane
671  *
672  * Allocates and returns a copy of the plane state (both common and
673  * vmw-specific) for the specified plane.
674  *
675  * Returns: The newly allocated plane state, or NULL on failure.
676  */
677 struct drm_plane_state *
678 vmw_du_plane_duplicate_state(struct drm_plane *plane)
679 {
680         struct drm_plane_state *state;
681         struct vmw_plane_state *vps;
682
683         vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
684
685         if (!vps)
686                 return NULL;
687
688         vps->pinned = 0;
689
690         /* Mapping is managed by prepare_fb/cleanup_fb */
691         memset(&vps->guest_map, 0, sizeof(vps->guest_map));
692         memset(&vps->host_map, 0, sizeof(vps->host_map));
693         vps->cpp = 0;
694
695         /* Each ref counted resource needs to be acquired again */
696         if (vps->surf)
697                 (void) vmw_surface_reference(vps->surf);
698
699         if (vps->dmabuf)
700                 (void) vmw_dmabuf_reference(vps->dmabuf);
701
702         state = &vps->base;
703
704         __drm_atomic_helper_plane_duplicate_state(plane, state);
705
706         return state;
707 }
708
709
710 /**
711  * vmw_du_plane_reset - creates a blank vmw plane state
712  * @plane: drm plane
713  *
714  * Resets the atomic state for @plane by freeing the state pointer (which might
715  * be NULL, e.g. at driver load time) and allocating a new empty state object.
716  */
717 void vmw_du_plane_reset(struct drm_plane *plane)
718 {
719         struct vmw_plane_state *vps;
720
721
722         if (plane->state)
723                 vmw_du_plane_destroy_state(plane, plane->state);
724
725         vps = kzalloc(sizeof(*vps), GFP_KERNEL);
726
727         if (!vps) {
728                 DRM_ERROR("Cannot allocate vmw_plane_state\n");
729                 return;
730         }
731
732         plane->state = &vps->base;
733         plane->state->plane = plane;
734         plane->state->rotation = DRM_MODE_ROTATE_0;
735 }
736
737
738 /**
739  * vmw_du_plane_destroy_state - destroy plane state
740  * @plane: DRM plane
741  * @state: state object to destroy
742  *
743  * Destroys the plane state (both common and vmw-specific) for the
744  * specified plane.
745  */
746 void
747 vmw_du_plane_destroy_state(struct drm_plane *plane,
748                            struct drm_plane_state *state)
749 {
750         struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
751
752
753         /* Should have been freed by cleanup_fb */
754         if (vps->guest_map.virtual) {
755                 DRM_ERROR("Guest mapping not freed\n");
756                 ttm_bo_kunmap(&vps->guest_map);
757         }
758
759         if (vps->host_map.virtual) {
760                 DRM_ERROR("Host mapping not freed\n");
761                 ttm_bo_kunmap(&vps->host_map);
762         }
763
764         if (vps->surf)
765                 vmw_surface_unreference(&vps->surf);
766
767         if (vps->dmabuf)
768                 vmw_dmabuf_unreference(&vps->dmabuf);
769
770         drm_atomic_helper_plane_destroy_state(plane, state);
771 }
772
773
774 /**
775  * vmw_du_connector_duplicate_state - duplicate connector state
776  * @connector: DRM connector
777  *
778  * Allocates and returns a copy of the connector state (both common and
779  * vmw-specific) for the specified connector.
780  *
781  * Returns: The newly allocated connector state, or NULL on failure.
782  */
783 struct drm_connector_state *
784 vmw_du_connector_duplicate_state(struct drm_connector *connector)
785 {
786         struct drm_connector_state *state;
787         struct vmw_connector_state *vcs;
788
789         if (WARN_ON(!connector->state))
790                 return NULL;
791
792         vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
793
794         if (!vcs)
795                 return NULL;
796
797         state = &vcs->base;
798
799         __drm_atomic_helper_connector_duplicate_state(connector, state);
800
801         return state;
802 }
803
804
805 /**
806  * vmw_du_connector_reset - creates a blank vmw connector state
807  * @connector: DRM connector
808  *
809  * Resets the atomic state for @connector by freeing the state pointer (which
810  * might be NULL, e.g. at driver load time) and allocating a new empty state
811  * object.
812  */
813 void vmw_du_connector_reset(struct drm_connector *connector)
814 {
815         struct vmw_connector_state *vcs;
816
817
818         if (connector->state) {
819                 __drm_atomic_helper_connector_destroy_state(connector->state);
820
821                 kfree(vmw_connector_state_to_vcs(connector->state));
822         }
823
824         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
825
826         if (!vcs) {
827                 DRM_ERROR("Cannot allocate vmw_connector_state\n");
828                 return;
829         }
830
831         __drm_atomic_helper_connector_reset(connector, &vcs->base);
832 }
833
834
835 /**
836  * vmw_du_connector_destroy_state - destroy connector state
837  * @connector: DRM connector
838  * @state: state object to destroy
839  *
840  * Destroys the connector state (both common and vmw-specific) for the
841  * specified plane.
842  */
843 void
844 vmw_du_connector_destroy_state(struct drm_connector *connector,
845                           struct drm_connector_state *state)
846 {
847         drm_atomic_helper_connector_destroy_state(connector, state);
848 }
849 /*
850  * Generic framebuffer code
851  */
852
853 /*
854  * Surface framebuffer code
855  */
856
857 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
858 {
859         struct vmw_framebuffer_surface *vfbs =
860                 vmw_framebuffer_to_vfbs(framebuffer);
861
862         drm_framebuffer_cleanup(framebuffer);
863         vmw_surface_unreference(&vfbs->surface);
864         if (vfbs->base.user_obj)
865                 ttm_base_object_unref(&vfbs->base.user_obj);
866
867         kfree(vfbs);
868 }
869
870 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
871                                   struct drm_file *file_priv,
872                                   unsigned flags, unsigned color,
873                                   struct drm_clip_rect *clips,
874                                   unsigned num_clips)
875 {
876         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
877         struct vmw_framebuffer_surface *vfbs =
878                 vmw_framebuffer_to_vfbs(framebuffer);
879         struct drm_clip_rect norect;
880         int ret, inc = 1;
881
882         /* Legacy Display Unit does not support 3D */
883         if (dev_priv->active_display_unit == vmw_du_legacy)
884                 return -EINVAL;
885
886         drm_modeset_lock_all(dev_priv->dev);
887
888         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
889         if (unlikely(ret != 0)) {
890                 drm_modeset_unlock_all(dev_priv->dev);
891                 return ret;
892         }
893
894         if (!num_clips) {
895                 num_clips = 1;
896                 clips = &norect;
897                 norect.x1 = norect.y1 = 0;
898                 norect.x2 = framebuffer->width;
899                 norect.y2 = framebuffer->height;
900         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
901                 num_clips /= 2;
902                 inc = 2; /* skip source rects */
903         }
904
905         if (dev_priv->active_display_unit == vmw_du_screen_object)
906                 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
907                                                    clips, NULL, NULL, 0, 0,
908                                                    num_clips, inc, NULL);
909         else
910                 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
911                                                  clips, NULL, NULL, 0, 0,
912                                                  num_clips, inc, NULL);
913
914         vmw_fifo_flush(dev_priv, false);
915         ttm_read_unlock(&dev_priv->reservation_sem);
916
917         drm_modeset_unlock_all(dev_priv->dev);
918
919         return 0;
920 }
921
922 /**
923  * vmw_kms_readback - Perform a readback from the screen system to
924  * a dma-buffer backed framebuffer.
925  *
926  * @dev_priv: Pointer to the device private structure.
927  * @file_priv: Pointer to a struct drm_file identifying the caller.
928  * Must be set to NULL if @user_fence_rep is NULL.
929  * @vfb: Pointer to the dma-buffer backed framebuffer.
930  * @user_fence_rep: User-space provided structure for fence information.
931  * Must be set to non-NULL if @file_priv is non-NULL.
932  * @vclips: Array of clip rects.
933  * @num_clips: Number of clip rects in @vclips.
934  *
935  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
936  * interrupted.
937  */
938 int vmw_kms_readback(struct vmw_private *dev_priv,
939                      struct drm_file *file_priv,
940                      struct vmw_framebuffer *vfb,
941                      struct drm_vmw_fence_rep __user *user_fence_rep,
942                      struct drm_vmw_rect *vclips,
943                      uint32_t num_clips)
944 {
945         switch (dev_priv->active_display_unit) {
946         case vmw_du_screen_object:
947                 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
948                                             user_fence_rep, vclips, num_clips);
949         case vmw_du_screen_target:
950                 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
951                                         user_fence_rep, NULL, vclips, num_clips,
952                                         1, false, true);
953         default:
954                 WARN_ONCE(true,
955                           "Readback called with invalid display system.\n");
956 }
957
958         return -ENOSYS;
959 }
960
961
962 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
963         .destroy = vmw_framebuffer_surface_destroy,
964         .dirty = vmw_framebuffer_surface_dirty,
965 };
966
967 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
968                                            struct vmw_surface *surface,
969                                            struct vmw_framebuffer **out,
970                                            const struct drm_mode_fb_cmd2
971                                            *mode_cmd,
972                                            bool is_dmabuf_proxy)
973
974 {
975         struct drm_device *dev = dev_priv->dev;
976         struct vmw_framebuffer_surface *vfbs;
977         enum SVGA3dSurfaceFormat format;
978         int ret;
979         struct drm_format_name_buf format_name;
980
981         /* 3D is only supported on HWv8 and newer hosts */
982         if (dev_priv->active_display_unit == vmw_du_legacy)
983                 return -ENOSYS;
984
985         /*
986          * Sanity checks.
987          */
988
989         /* Surface must be marked as a scanout. */
990         if (unlikely(!surface->scanout))
991                 return -EINVAL;
992
993         if (unlikely(surface->mip_levels[0] != 1 ||
994                      surface->num_sizes != 1 ||
995                      surface->base_size.width < mode_cmd->width ||
996                      surface->base_size.height < mode_cmd->height ||
997                      surface->base_size.depth != 1)) {
998                 DRM_ERROR("Incompatible surface dimensions "
999                           "for requested mode.\n");
1000                 return -EINVAL;
1001         }
1002
1003         switch (mode_cmd->pixel_format) {
1004         case DRM_FORMAT_ARGB8888:
1005                 format = SVGA3D_A8R8G8B8;
1006                 break;
1007         case DRM_FORMAT_XRGB8888:
1008                 format = SVGA3D_X8R8G8B8;
1009                 break;
1010         case DRM_FORMAT_RGB565:
1011                 format = SVGA3D_R5G6B5;
1012                 break;
1013         case DRM_FORMAT_XRGB1555:
1014                 format = SVGA3D_A1R5G5B5;
1015                 break;
1016         default:
1017                 DRM_ERROR("Invalid pixel format: %s\n",
1018                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1019                 return -EINVAL;
1020         }
1021
1022         /*
1023          * For DX, surface format validation is done when surface->scanout
1024          * is set.
1025          */
1026         if (!dev_priv->has_dx && format != surface->format) {
1027                 DRM_ERROR("Invalid surface format for requested mode.\n");
1028                 return -EINVAL;
1029         }
1030
1031         vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1032         if (!vfbs) {
1033                 ret = -ENOMEM;
1034                 goto out_err1;
1035         }
1036
1037         drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1038         vfbs->surface = vmw_surface_reference(surface);
1039         vfbs->base.user_handle = mode_cmd->handles[0];
1040         vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1041
1042         *out = &vfbs->base;
1043
1044         ret = drm_framebuffer_init(dev, &vfbs->base.base,
1045                                    &vmw_framebuffer_surface_funcs);
1046         if (ret)
1047                 goto out_err2;
1048
1049         return 0;
1050
1051 out_err2:
1052         vmw_surface_unreference(&surface);
1053         kfree(vfbs);
1054 out_err1:
1055         return ret;
1056 }
1057
1058 /*
1059  * Dmabuf framebuffer code
1060  */
1061
1062 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1063 {
1064         struct vmw_framebuffer_dmabuf *vfbd =
1065                 vmw_framebuffer_to_vfbd(framebuffer);
1066
1067         drm_framebuffer_cleanup(framebuffer);
1068         vmw_dmabuf_unreference(&vfbd->buffer);
1069         if (vfbd->base.user_obj)
1070                 ttm_base_object_unref(&vfbd->base.user_obj);
1071
1072         kfree(vfbd);
1073 }
1074
1075 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1076                                  struct drm_file *file_priv,
1077                                  unsigned flags, unsigned color,
1078                                  struct drm_clip_rect *clips,
1079                                  unsigned num_clips)
1080 {
1081         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1082         struct vmw_framebuffer_dmabuf *vfbd =
1083                 vmw_framebuffer_to_vfbd(framebuffer);
1084         struct drm_clip_rect norect;
1085         int ret, increment = 1;
1086
1087         drm_modeset_lock_all(dev_priv->dev);
1088
1089         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1090         if (unlikely(ret != 0)) {
1091                 drm_modeset_unlock_all(dev_priv->dev);
1092                 return ret;
1093         }
1094
1095         if (!num_clips) {
1096                 num_clips = 1;
1097                 clips = &norect;
1098                 norect.x1 = norect.y1 = 0;
1099                 norect.x2 = framebuffer->width;
1100                 norect.y2 = framebuffer->height;
1101         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1102                 num_clips /= 2;
1103                 increment = 2;
1104         }
1105
1106         switch (dev_priv->active_display_unit) {
1107         case vmw_du_screen_target:
1108                 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1109                                        clips, NULL, num_clips, increment,
1110                                        true, true);
1111                 break;
1112         case vmw_du_screen_object:
1113                 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1114                                                   clips, NULL, num_clips,
1115                                                   increment, true, NULL);
1116                 break;
1117         case vmw_du_legacy:
1118                 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1119                                                   clips, num_clips, increment);
1120                 break;
1121         default:
1122                 ret = -EINVAL;
1123                 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1124                 break;
1125         }
1126
1127         vmw_fifo_flush(dev_priv, false);
1128         ttm_read_unlock(&dev_priv->reservation_sem);
1129
1130         drm_modeset_unlock_all(dev_priv->dev);
1131
1132         return ret;
1133 }
1134
1135 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1136         .destroy = vmw_framebuffer_dmabuf_destroy,
1137         .dirty = vmw_framebuffer_dmabuf_dirty,
1138 };
1139
1140 /**
1141  * Pin the dmabuffer to the start of vram.
1142  */
1143 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1144 {
1145         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1146         struct vmw_dma_buffer *buf;
1147         int ret;
1148
1149         buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1150                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1151
1152         if (!buf)
1153                 return 0;
1154
1155         switch (dev_priv->active_display_unit) {
1156         case vmw_du_legacy:
1157                 vmw_overlay_pause_all(dev_priv);
1158                 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1159                 vmw_overlay_resume_all(dev_priv);
1160                 break;
1161         case vmw_du_screen_object:
1162         case vmw_du_screen_target:
1163                 if (vfb->dmabuf)
1164                         return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1165                                                              false);
1166
1167                 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1168                                                    &vmw_mob_placement, false);
1169         default:
1170                 return -EINVAL;
1171         }
1172
1173         return ret;
1174 }
1175
1176 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1177 {
1178         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1179         struct vmw_dma_buffer *buf;
1180
1181         buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1182                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1183
1184         if (WARN_ON(!buf))
1185                 return 0;
1186
1187         return vmw_dmabuf_unpin(dev_priv, buf, false);
1188 }
1189
1190 /**
1191  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1192  *
1193  * @dev: DRM device
1194  * @mode_cmd: parameters for the new surface
1195  * @dmabuf_mob: MOB backing the DMA buf
1196  * @srf_out: newly created surface
1197  *
1198  * When the content FB is a DMA buf, we create a surface as a proxy to the
1199  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1200  * This is a more efficient approach
1201  *
1202  * RETURNS:
1203  * 0 on success, error code otherwise
1204  */
1205 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1206                                    const struct drm_mode_fb_cmd2 *mode_cmd,
1207                                    struct vmw_dma_buffer *dmabuf_mob,
1208                                    struct vmw_surface **srf_out)
1209 {
1210         uint32_t format;
1211         struct drm_vmw_size content_base_size = {0};
1212         struct vmw_resource *res;
1213         unsigned int bytes_pp;
1214         struct drm_format_name_buf format_name;
1215         int ret;
1216
1217         switch (mode_cmd->pixel_format) {
1218         case DRM_FORMAT_ARGB8888:
1219         case DRM_FORMAT_XRGB8888:
1220                 format = SVGA3D_X8R8G8B8;
1221                 bytes_pp = 4;
1222                 break;
1223
1224         case DRM_FORMAT_RGB565:
1225         case DRM_FORMAT_XRGB1555:
1226                 format = SVGA3D_R5G6B5;
1227                 bytes_pp = 2;
1228                 break;
1229
1230         case 8:
1231                 format = SVGA3D_P8;
1232                 bytes_pp = 1;
1233                 break;
1234
1235         default:
1236                 DRM_ERROR("Invalid framebuffer format %s\n",
1237                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1238                 return -EINVAL;
1239         }
1240
1241         content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1242         content_base_size.height = mode_cmd->height;
1243         content_base_size.depth  = 1;
1244
1245         ret = vmw_surface_gb_priv_define(dev,
1246                         0, /* kernel visible only */
1247                         0, /* flags */
1248                         format,
1249                         true, /* can be a scanout buffer */
1250                         1, /* num of mip levels */
1251                         0,
1252                         0,
1253                         content_base_size,
1254                         srf_out);
1255         if (ret) {
1256                 DRM_ERROR("Failed to allocate proxy content buffer\n");
1257                 return ret;
1258         }
1259
1260         res = &(*srf_out)->res;
1261
1262         /* Reserve and switch the backing mob. */
1263         mutex_lock(&res->dev_priv->cmdbuf_mutex);
1264         (void) vmw_resource_reserve(res, false, true);
1265         vmw_dmabuf_unreference(&res->backup);
1266         res->backup = vmw_dmabuf_reference(dmabuf_mob);
1267         res->backup_offset = 0;
1268         vmw_resource_unreserve(res, false, NULL, 0);
1269         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1270
1271         return 0;
1272 }
1273
1274
1275
1276 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1277                                           struct vmw_dma_buffer *dmabuf,
1278                                           struct vmw_framebuffer **out,
1279                                           const struct drm_mode_fb_cmd2
1280                                           *mode_cmd)
1281
1282 {
1283         struct drm_device *dev = dev_priv->dev;
1284         struct vmw_framebuffer_dmabuf *vfbd;
1285         unsigned int requested_size;
1286         struct drm_format_name_buf format_name;
1287         int ret;
1288
1289         requested_size = mode_cmd->height * mode_cmd->pitches[0];
1290         if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1291                 DRM_ERROR("Screen buffer object size is too small "
1292                           "for requested mode.\n");
1293                 return -EINVAL;
1294         }
1295
1296         /* Limited framebuffer color depth support for screen objects */
1297         if (dev_priv->active_display_unit == vmw_du_screen_object) {
1298                 switch (mode_cmd->pixel_format) {
1299                 case DRM_FORMAT_XRGB8888:
1300                 case DRM_FORMAT_ARGB8888:
1301                         break;
1302                 case DRM_FORMAT_XRGB1555:
1303                 case DRM_FORMAT_RGB565:
1304                         break;
1305                 default:
1306                         DRM_ERROR("Invalid pixel format: %s\n",
1307                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
1308                         return -EINVAL;
1309                 }
1310         }
1311
1312         vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1313         if (!vfbd) {
1314                 ret = -ENOMEM;
1315                 goto out_err1;
1316         }
1317
1318         drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1319         vfbd->base.dmabuf = true;
1320         vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1321         vfbd->base.user_handle = mode_cmd->handles[0];
1322         *out = &vfbd->base;
1323
1324         ret = drm_framebuffer_init(dev, &vfbd->base.base,
1325                                    &vmw_framebuffer_dmabuf_funcs);
1326         if (ret)
1327                 goto out_err2;
1328
1329         return 0;
1330
1331 out_err2:
1332         vmw_dmabuf_unreference(&dmabuf);
1333         kfree(vfbd);
1334 out_err1:
1335         return ret;
1336 }
1337
1338
1339 /**
1340  * vmw_kms_srf_ok - check if a surface can be created
1341  *
1342  * @width: requested width
1343  * @height: requested height
1344  *
1345  * Surfaces need to be less than texture size
1346  */
1347 static bool
1348 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1349 {
1350         if (width  > dev_priv->texture_max_width ||
1351             height > dev_priv->texture_max_height)
1352                 return false;
1353
1354         return true;
1355 }
1356
1357 /**
1358  * vmw_kms_new_framebuffer - Create a new framebuffer.
1359  *
1360  * @dev_priv: Pointer to device private struct.
1361  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1362  * Either @dmabuf or @surface must be NULL.
1363  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1364  * Either @dmabuf or @surface must be NULL.
1365  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1366  * Helps the code to do some important optimizations.
1367  * @mode_cmd: Frame-buffer metadata.
1368  */
1369 struct vmw_framebuffer *
1370 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1371                         struct vmw_dma_buffer *dmabuf,
1372                         struct vmw_surface *surface,
1373                         bool only_2d,
1374                         const struct drm_mode_fb_cmd2 *mode_cmd)
1375 {
1376         struct vmw_framebuffer *vfb = NULL;
1377         bool is_dmabuf_proxy = false;
1378         int ret;
1379
1380         /*
1381          * We cannot use the SurfaceDMA command in an non-accelerated VM,
1382          * therefore, wrap the DMA buf in a surface so we can use the
1383          * SurfaceCopy command.
1384          */
1385         if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1386             dmabuf && only_2d &&
1387             mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1388             dev_priv->active_display_unit == vmw_du_screen_target) {
1389                 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1390                                               dmabuf, &surface);
1391                 if (ret)
1392                         return ERR_PTR(ret);
1393
1394                 is_dmabuf_proxy = true;
1395         }
1396
1397         /* Create the new framebuffer depending one what we have */
1398         if (surface) {
1399                 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1400                                                       mode_cmd,
1401                                                       is_dmabuf_proxy);
1402
1403                 /*
1404                  * vmw_create_dmabuf_proxy() adds a reference that is no longer
1405                  * needed
1406                  */
1407                 if (is_dmabuf_proxy)
1408                         vmw_surface_unreference(&surface);
1409         } else if (dmabuf) {
1410                 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1411                                                      mode_cmd);
1412         } else {
1413                 BUG();
1414         }
1415
1416         if (ret)
1417                 return ERR_PTR(ret);
1418
1419         vfb->pin = vmw_framebuffer_pin;
1420         vfb->unpin = vmw_framebuffer_unpin;
1421
1422         return vfb;
1423 }
1424
1425 /*
1426  * Generic Kernel modesetting functions
1427  */
1428
1429 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1430                                                  struct drm_file *file_priv,
1431                                                  const struct drm_mode_fb_cmd2 *mode_cmd)
1432 {
1433         struct vmw_private *dev_priv = vmw_priv(dev);
1434         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1435         struct vmw_framebuffer *vfb = NULL;
1436         struct vmw_surface *surface = NULL;
1437         struct vmw_dma_buffer *bo = NULL;
1438         struct ttm_base_object *user_obj;
1439         int ret;
1440
1441         /**
1442          * This code should be conditioned on Screen Objects not being used.
1443          * If screen objects are used, we can allocate a GMR to hold the
1444          * requested framebuffer.
1445          */
1446
1447         if (!vmw_kms_validate_mode_vram(dev_priv,
1448                                         mode_cmd->pitches[0],
1449                                         mode_cmd->height)) {
1450                 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1451                 return ERR_PTR(-ENOMEM);
1452         }
1453
1454         /*
1455          * Take a reference on the user object of the resource
1456          * backing the kms fb. This ensures that user-space handle
1457          * lookups on that resource will always work as long as
1458          * it's registered with a kms framebuffer. This is important,
1459          * since vmw_execbuf_process identifies resources in the
1460          * command stream using user-space handles.
1461          */
1462
1463         user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1464         if (unlikely(user_obj == NULL)) {
1465                 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1466                 return ERR_PTR(-ENOENT);
1467         }
1468
1469         /**
1470          * End conditioned code.
1471          */
1472
1473         /* returns either a dmabuf or surface */
1474         ret = vmw_user_lookup_handle(dev_priv, tfile,
1475                                      mode_cmd->handles[0],
1476                                      &surface, &bo);
1477         if (ret)
1478                 goto err_out;
1479
1480
1481         if (!bo &&
1482             !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1483                 DRM_ERROR("Surface size cannot exceed %dx%d",
1484                         dev_priv->texture_max_width,
1485                         dev_priv->texture_max_height);
1486                 goto err_out;
1487         }
1488
1489
1490         vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1491                                       !(dev_priv->capabilities & SVGA_CAP_3D),
1492                                       mode_cmd);
1493         if (IS_ERR(vfb)) {
1494                 ret = PTR_ERR(vfb);
1495                 goto err_out;
1496         }
1497
1498 err_out:
1499         /* vmw_user_lookup_handle takes one ref so does new_fb */
1500         if (bo)
1501                 vmw_dmabuf_unreference(&bo);
1502         if (surface)
1503                 vmw_surface_unreference(&surface);
1504
1505         if (ret) {
1506                 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1507                 ttm_base_object_unref(&user_obj);
1508                 return ERR_PTR(ret);
1509         } else
1510                 vfb->user_obj = user_obj;
1511
1512         return &vfb->base;
1513 }
1514
1515
1516
1517 /**
1518  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1519  *
1520  * @dev: DRM device
1521  * @state: the driver state object
1522  *
1523  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1524  * us to assign a value to mode->crtc_clock so that
1525  * drm_calc_timestamping_constants() won't throw an error message
1526  *
1527  * RETURNS
1528  * Zero for success or -errno
1529  */
1530 static int
1531 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1532                              struct drm_atomic_state *state)
1533 {
1534         struct drm_crtc_state *crtc_state;
1535         struct drm_crtc *crtc;
1536         struct vmw_private *dev_priv = vmw_priv(dev);
1537         int i;
1538
1539         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1540                 unsigned long requested_bb_mem = 0;
1541
1542                 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1543                         if (crtc->primary->fb) {
1544                                 int cpp = crtc->primary->fb->pitches[0] /
1545                                           crtc->primary->fb->width;
1546
1547                                 requested_bb_mem += crtc->mode.hdisplay * cpp *
1548                                                     crtc->mode.vdisplay;
1549                         }
1550
1551                         if (requested_bb_mem > dev_priv->prim_bb_mem)
1552                                 return -EINVAL;
1553                 }
1554         }
1555
1556         return drm_atomic_helper_check(dev, state);
1557 }
1558
1559
1560 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1561         .fb_create = vmw_kms_fb_create,
1562         .atomic_check = vmw_kms_atomic_check_modeset,
1563         .atomic_commit = drm_atomic_helper_commit,
1564 };
1565
1566 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1567                                    struct drm_file *file_priv,
1568                                    struct vmw_framebuffer *vfb,
1569                                    struct vmw_surface *surface,
1570                                    uint32_t sid,
1571                                    int32_t destX, int32_t destY,
1572                                    struct drm_vmw_rect *clips,
1573                                    uint32_t num_clips)
1574 {
1575         return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1576                                             &surface->res, destX, destY,
1577                                             num_clips, 1, NULL);
1578 }
1579
1580
1581 int vmw_kms_present(struct vmw_private *dev_priv,
1582                     struct drm_file *file_priv,
1583                     struct vmw_framebuffer *vfb,
1584                     struct vmw_surface *surface,
1585                     uint32_t sid,
1586                     int32_t destX, int32_t destY,
1587                     struct drm_vmw_rect *clips,
1588                     uint32_t num_clips)
1589 {
1590         int ret;
1591
1592         switch (dev_priv->active_display_unit) {
1593         case vmw_du_screen_target:
1594                 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1595                                                  &surface->res, destX, destY,
1596                                                  num_clips, 1, NULL);
1597                 break;
1598         case vmw_du_screen_object:
1599                 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1600                                               sid, destX, destY, clips,
1601                                               num_clips);
1602                 break;
1603         default:
1604                 WARN_ONCE(true,
1605                           "Present called with invalid display system.\n");
1606                 ret = -ENOSYS;
1607                 break;
1608         }
1609         if (ret)
1610                 return ret;
1611
1612         vmw_fifo_flush(dev_priv, false);
1613
1614         return 0;
1615 }
1616
1617 static void
1618 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1619 {
1620         if (dev_priv->hotplug_mode_update_property)
1621                 return;
1622
1623         dev_priv->hotplug_mode_update_property =
1624                 drm_property_create_range(dev_priv->dev,
1625                                           DRM_MODE_PROP_IMMUTABLE,
1626                                           "hotplug_mode_update", 0, 1);
1627
1628         if (!dev_priv->hotplug_mode_update_property)
1629                 return;
1630
1631 }
1632
1633 int vmw_kms_init(struct vmw_private *dev_priv)
1634 {
1635         struct drm_device *dev = dev_priv->dev;
1636         int ret;
1637
1638         drm_mode_config_init(dev);
1639         dev->mode_config.funcs = &vmw_kms_funcs;
1640         dev->mode_config.min_width = 1;
1641         dev->mode_config.min_height = 1;
1642         dev->mode_config.max_width = dev_priv->texture_max_width;
1643         dev->mode_config.max_height = dev_priv->texture_max_height;
1644
1645         drm_mode_create_suggested_offset_properties(dev);
1646         vmw_kms_create_hotplug_mode_update_property(dev_priv);
1647
1648         ret = vmw_kms_stdu_init_display(dev_priv);
1649         if (ret) {
1650                 ret = vmw_kms_sou_init_display(dev_priv);
1651                 if (ret) /* Fallback */
1652                         ret = vmw_kms_ldu_init_display(dev_priv);
1653         }
1654
1655         return ret;
1656 }
1657
1658 int vmw_kms_close(struct vmw_private *dev_priv)
1659 {
1660         int ret = 0;
1661
1662         /*
1663          * Docs says we should take the lock before calling this function
1664          * but since it destroys encoders and our destructor calls
1665          * drm_encoder_cleanup which takes the lock we deadlock.
1666          */
1667         drm_mode_config_cleanup(dev_priv->dev);
1668         if (dev_priv->active_display_unit == vmw_du_legacy)
1669                 ret = vmw_kms_ldu_close_display(dev_priv);
1670
1671         return ret;
1672 }
1673
1674 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1675                                 struct drm_file *file_priv)
1676 {
1677         struct drm_vmw_cursor_bypass_arg *arg = data;
1678         struct vmw_display_unit *du;
1679         struct drm_crtc *crtc;
1680         int ret = 0;
1681
1682
1683         mutex_lock(&dev->mode_config.mutex);
1684         if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1685
1686                 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1687                         du = vmw_crtc_to_du(crtc);
1688                         du->hotspot_x = arg->xhot;
1689                         du->hotspot_y = arg->yhot;
1690                 }
1691
1692                 mutex_unlock(&dev->mode_config.mutex);
1693                 return 0;
1694         }
1695
1696         crtc = drm_crtc_find(dev, arg->crtc_id);
1697         if (!crtc) {
1698                 ret = -ENOENT;
1699                 goto out;
1700         }
1701
1702         du = vmw_crtc_to_du(crtc);
1703
1704         du->hotspot_x = arg->xhot;
1705         du->hotspot_y = arg->yhot;
1706
1707 out:
1708         mutex_unlock(&dev->mode_config.mutex);
1709
1710         return ret;
1711 }
1712
1713 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1714                         unsigned width, unsigned height, unsigned pitch,
1715                         unsigned bpp, unsigned depth)
1716 {
1717         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1718                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1719         else if (vmw_fifo_have_pitchlock(vmw_priv))
1720                 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1721                                SVGA_FIFO_PITCHLOCK);
1722         vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1723         vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1724         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1725
1726         if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1727                 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1728                           depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1729                 return -EINVAL;
1730         }
1731
1732         return 0;
1733 }
1734
1735 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1736 {
1737         struct vmw_vga_topology_state *save;
1738         uint32_t i;
1739
1740         vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1741         vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1742         vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1743         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1744                 vmw_priv->vga_pitchlock =
1745                   vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1746         else if (vmw_fifo_have_pitchlock(vmw_priv))
1747                 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1748                                                         SVGA_FIFO_PITCHLOCK);
1749
1750         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1751                 return 0;
1752
1753         vmw_priv->num_displays = vmw_read(vmw_priv,
1754                                           SVGA_REG_NUM_GUEST_DISPLAYS);
1755
1756         if (vmw_priv->num_displays == 0)
1757                 vmw_priv->num_displays = 1;
1758
1759         for (i = 0; i < vmw_priv->num_displays; ++i) {
1760                 save = &vmw_priv->vga_save[i];
1761                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1762                 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1763                 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1764                 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1765                 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1766                 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1767                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1768                 if (i == 0 && vmw_priv->num_displays == 1 &&
1769                     save->width == 0 && save->height == 0) {
1770
1771                         /*
1772                          * It should be fairly safe to assume that these
1773                          * values are uninitialized.
1774                          */
1775
1776                         save->width = vmw_priv->vga_width - save->pos_x;
1777                         save->height = vmw_priv->vga_height - save->pos_y;
1778                 }
1779         }
1780
1781         return 0;
1782 }
1783
1784 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1785 {
1786         struct vmw_vga_topology_state *save;
1787         uint32_t i;
1788
1789         vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1790         vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1791         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1792         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1793                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1794                           vmw_priv->vga_pitchlock);
1795         else if (vmw_fifo_have_pitchlock(vmw_priv))
1796                 vmw_mmio_write(vmw_priv->vga_pitchlock,
1797                                vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1798
1799         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1800                 return 0;
1801
1802         for (i = 0; i < vmw_priv->num_displays; ++i) {
1803                 save = &vmw_priv->vga_save[i];
1804                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1805                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1806                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1807                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1808                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1809                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1810                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1811         }
1812
1813         return 0;
1814 }
1815
1816 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1817                                 uint32_t pitch,
1818                                 uint32_t height)
1819 {
1820         return ((u64) pitch * (u64) height) < (u64)
1821                 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1822                  dev_priv->prim_bb_mem : dev_priv->vram_size);
1823 }
1824
1825
1826 /**
1827  * Function called by DRM code called with vbl_lock held.
1828  */
1829 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1830 {
1831         return 0;
1832 }
1833
1834 /**
1835  * Function called by DRM code called with vbl_lock held.
1836  */
1837 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1838 {
1839         return -ENOSYS;
1840 }
1841
1842 /**
1843  * Function called by DRM code called with vbl_lock held.
1844  */
1845 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1846 {
1847 }
1848
1849
1850 /*
1851  * Small shared kms functions.
1852  */
1853
1854 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1855                          struct drm_vmw_rect *rects)
1856 {
1857         struct drm_device *dev = dev_priv->dev;
1858         struct vmw_display_unit *du;
1859         struct drm_connector *con;
1860
1861         mutex_lock(&dev->mode_config.mutex);
1862
1863 #if 0
1864         {
1865                 unsigned int i;
1866
1867                 DRM_INFO("%s: new layout ", __func__);
1868                 for (i = 0; i < num; i++)
1869                         DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1870                                  rects[i].w, rects[i].h);
1871                 DRM_INFO("\n");
1872         }
1873 #endif
1874
1875         list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1876                 du = vmw_connector_to_du(con);
1877                 if (num > du->unit) {
1878                         du->pref_width = rects[du->unit].w;
1879                         du->pref_height = rects[du->unit].h;
1880                         du->pref_active = true;
1881                         du->gui_x = rects[du->unit].x;
1882                         du->gui_y = rects[du->unit].y;
1883                         drm_object_property_set_value
1884                           (&con->base, dev->mode_config.suggested_x_property,
1885                            du->gui_x);
1886                         drm_object_property_set_value
1887                           (&con->base, dev->mode_config.suggested_y_property,
1888                            du->gui_y);
1889                 } else {
1890                         du->pref_width = 800;
1891                         du->pref_height = 600;
1892                         du->pref_active = false;
1893                         drm_object_property_set_value
1894                           (&con->base, dev->mode_config.suggested_x_property,
1895                            0);
1896                         drm_object_property_set_value
1897                           (&con->base, dev->mode_config.suggested_y_property,
1898                            0);
1899                 }
1900                 con->status = vmw_du_connector_detect(con, true);
1901         }
1902
1903         mutex_unlock(&dev->mode_config.mutex);
1904         drm_sysfs_hotplug_event(dev);
1905
1906         return 0;
1907 }
1908
1909 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1910                           u16 *r, u16 *g, u16 *b,
1911                           uint32_t size,
1912                           struct drm_modeset_acquire_ctx *ctx)
1913 {
1914         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1915         int i;
1916
1917         for (i = 0; i < size; i++) {
1918                 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1919                           r[i], g[i], b[i]);
1920                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1921                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1922                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1923         }
1924
1925         return 0;
1926 }
1927
1928 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1929 {
1930         return 0;
1931 }
1932
1933 enum drm_connector_status
1934 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1935 {
1936         uint32_t num_displays;
1937         struct drm_device *dev = connector->dev;
1938         struct vmw_private *dev_priv = vmw_priv(dev);
1939         struct vmw_display_unit *du = vmw_connector_to_du(connector);
1940
1941         num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1942
1943         return ((vmw_connector_to_du(connector)->unit < num_displays &&
1944                  du->pref_active) ?
1945                 connector_status_connected : connector_status_disconnected);
1946 }
1947
1948 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1949         /* 640x480@60Hz */
1950         { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1951                    752, 800, 0, 480, 489, 492, 525, 0,
1952                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1953         /* 800x600@60Hz */
1954         { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1955                    968, 1056, 0, 600, 601, 605, 628, 0,
1956                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1957         /* 1024x768@60Hz */
1958         { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1959                    1184, 1344, 0, 768, 771, 777, 806, 0,
1960                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1961         /* 1152x864@75Hz */
1962         { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1963                    1344, 1600, 0, 864, 865, 868, 900, 0,
1964                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1965         /* 1280x768@60Hz */
1966         { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1967                    1472, 1664, 0, 768, 771, 778, 798, 0,
1968                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1969         /* 1280x800@60Hz */
1970         { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1971                    1480, 1680, 0, 800, 803, 809, 831, 0,
1972                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1973         /* 1280x960@60Hz */
1974         { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1975                    1488, 1800, 0, 960, 961, 964, 1000, 0,
1976                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1977         /* 1280x1024@60Hz */
1978         { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1979                    1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1980                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1981         /* 1360x768@60Hz */
1982         { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1983                    1536, 1792, 0, 768, 771, 777, 795, 0,
1984                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1985         /* 1440x1050@60Hz */
1986         { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1987                    1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
1988                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1989         /* 1440x900@60Hz */
1990         { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1991                    1672, 1904, 0, 900, 903, 909, 934, 0,
1992                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1993         /* 1600x1200@60Hz */
1994         { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1995                    1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
1996                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1997         /* 1680x1050@60Hz */
1998         { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1999                    1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2000                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2001         /* 1792x1344@60Hz */
2002         { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2003                    2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2004                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2005         /* 1853x1392@60Hz */
2006         { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2007                    2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2008                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2009         /* 1920x1200@60Hz */
2010         { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2011                    2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2012                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2013         /* 1920x1440@60Hz */
2014         { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2015                    2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2016                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2017         /* 2560x1600@60Hz */
2018         { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2019                    3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2020                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2021         /* Terminate */
2022         { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2023 };
2024
2025 /**
2026  * vmw_guess_mode_timing - Provide fake timings for a
2027  * 60Hz vrefresh mode.
2028  *
2029  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2030  * members filled in.
2031  */
2032 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2033 {
2034         mode->hsync_start = mode->hdisplay + 50;
2035         mode->hsync_end = mode->hsync_start + 50;
2036         mode->htotal = mode->hsync_end + 50;
2037
2038         mode->vsync_start = mode->vdisplay + 50;
2039         mode->vsync_end = mode->vsync_start + 50;
2040         mode->vtotal = mode->vsync_end + 50;
2041
2042         mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2043         mode->vrefresh = drm_mode_vrefresh(mode);
2044 }
2045
2046
2047 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2048                                 uint32_t max_width, uint32_t max_height)
2049 {
2050         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2051         struct drm_device *dev = connector->dev;
2052         struct vmw_private *dev_priv = vmw_priv(dev);
2053         struct drm_display_mode *mode = NULL;
2054         struct drm_display_mode *bmode;
2055         struct drm_display_mode prefmode = { DRM_MODE("preferred",
2056                 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2057                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2058                 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2059         };
2060         int i;
2061         u32 assumed_bpp = 4;
2062
2063         if (dev_priv->assume_16bpp)
2064                 assumed_bpp = 2;
2065
2066         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2067                 max_width  = min(max_width,  dev_priv->stdu_max_width);
2068                 max_width  = min(max_width,  dev_priv->texture_max_width);
2069
2070                 max_height = min(max_height, dev_priv->stdu_max_height);
2071                 max_height = min(max_height, dev_priv->texture_max_height);
2072         }
2073
2074         /* Add preferred mode */
2075         mode = drm_mode_duplicate(dev, &prefmode);
2076         if (!mode)
2077                 return 0;
2078         mode->hdisplay = du->pref_width;
2079         mode->vdisplay = du->pref_height;
2080         vmw_guess_mode_timing(mode);
2081
2082         if (vmw_kms_validate_mode_vram(dev_priv,
2083                                         mode->hdisplay * assumed_bpp,
2084                                         mode->vdisplay)) {
2085                 drm_mode_probed_add(connector, mode);
2086         } else {
2087                 drm_mode_destroy(dev, mode);
2088                 mode = NULL;
2089         }
2090
2091         if (du->pref_mode) {
2092                 list_del_init(&du->pref_mode->head);
2093                 drm_mode_destroy(dev, du->pref_mode);
2094         }
2095
2096         /* mode might be null here, this is intended */
2097         du->pref_mode = mode;
2098
2099         for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2100                 bmode = &vmw_kms_connector_builtin[i];
2101                 if (bmode->hdisplay > max_width ||
2102                     bmode->vdisplay > max_height)
2103                         continue;
2104
2105                 if (!vmw_kms_validate_mode_vram(dev_priv,
2106                                                 bmode->hdisplay * assumed_bpp,
2107                                                 bmode->vdisplay))
2108                         continue;
2109
2110                 mode = drm_mode_duplicate(dev, bmode);
2111                 if (!mode)
2112                         return 0;
2113                 mode->vrefresh = drm_mode_vrefresh(mode);
2114
2115                 drm_mode_probed_add(connector, mode);
2116         }
2117
2118         drm_mode_connector_list_update(connector);
2119         /* Move the prefered mode first, help apps pick the right mode. */
2120         drm_mode_sort(&connector->modes);
2121
2122         return 1;
2123 }
2124
2125 int vmw_du_connector_set_property(struct drm_connector *connector,
2126                                   struct drm_property *property,
2127                                   uint64_t val)
2128 {
2129         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2130         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2131
2132         if (property == dev_priv->implicit_placement_property)
2133                 du->is_implicit = val;
2134
2135         return 0;
2136 }
2137
2138
2139
2140 /**
2141  * vmw_du_connector_atomic_set_property - Atomic version of get property
2142  *
2143  * @crtc - crtc the property is associated with
2144  *
2145  * Returns:
2146  * Zero on success, negative errno on failure.
2147  */
2148 int
2149 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2150                                      struct drm_connector_state *state,
2151                                      struct drm_property *property,
2152                                      uint64_t val)
2153 {
2154         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2155         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2156         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2157
2158
2159         if (property == dev_priv->implicit_placement_property) {
2160                 vcs->is_implicit = val;
2161
2162                 /*
2163                  * We should really be doing a drm_atomic_commit() to
2164                  * commit the new state, but since this doesn't cause
2165                  * an immedate state change, this is probably ok
2166                  */
2167                 du->is_implicit = vcs->is_implicit;
2168         } else {
2169                 return -EINVAL;
2170         }
2171
2172         return 0;
2173 }
2174
2175
2176 /**
2177  * vmw_du_connector_atomic_get_property - Atomic version of get property
2178  *
2179  * @connector - connector the property is associated with
2180  *
2181  * Returns:
2182  * Zero on success, negative errno on failure.
2183  */
2184 int
2185 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2186                                      const struct drm_connector_state *state,
2187                                      struct drm_property *property,
2188                                      uint64_t *val)
2189 {
2190         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2191         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2192
2193         if (property == dev_priv->implicit_placement_property)
2194                 *val = vcs->is_implicit;
2195         else {
2196                 DRM_ERROR("Invalid Property %s\n", property->name);
2197                 return -EINVAL;
2198         }
2199
2200         return 0;
2201 }
2202
2203
2204 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2205                                 struct drm_file *file_priv)
2206 {
2207         struct vmw_private *dev_priv = vmw_priv(dev);
2208         struct drm_vmw_update_layout_arg *arg =
2209                 (struct drm_vmw_update_layout_arg *)data;
2210         void __user *user_rects;
2211         struct drm_vmw_rect *rects;
2212         unsigned rects_size;
2213         int ret;
2214         int i;
2215         u64 total_pixels = 0;
2216         struct drm_mode_config *mode_config = &dev->mode_config;
2217         struct drm_vmw_rect bounding_box = {0};
2218
2219         if (!arg->num_outputs) {
2220                 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2221                 vmw_du_update_layout(dev_priv, 1, &def_rect);
2222                 return 0;
2223         }
2224
2225         rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2226         rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2227                         GFP_KERNEL);
2228         if (unlikely(!rects))
2229                 return -ENOMEM;
2230
2231         user_rects = (void __user *)(unsigned long)arg->rects;
2232         ret = copy_from_user(rects, user_rects, rects_size);
2233         if (unlikely(ret != 0)) {
2234                 DRM_ERROR("Failed to get rects.\n");
2235                 ret = -EFAULT;
2236                 goto out_free;
2237         }
2238
2239         for (i = 0; i < arg->num_outputs; ++i) {
2240                 if (rects[i].x < 0 ||
2241                     rects[i].y < 0 ||
2242                     rects[i].x + rects[i].w > mode_config->max_width ||
2243                     rects[i].y + rects[i].h > mode_config->max_height) {
2244                         DRM_ERROR("Invalid GUI layout.\n");
2245                         ret = -EINVAL;
2246                         goto out_free;
2247                 }
2248
2249                 /*
2250                  * bounding_box.w and bunding_box.h are used as
2251                  * lower-right coordinates
2252                  */
2253                 if (rects[i].x + rects[i].w > bounding_box.w)
2254                         bounding_box.w = rects[i].x + rects[i].w;
2255
2256                 if (rects[i].y + rects[i].h > bounding_box.h)
2257                         bounding_box.h = rects[i].y + rects[i].h;
2258
2259                 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2260         }
2261
2262         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2263                 /*
2264                  * For Screen Targets, the limits for a toplogy are:
2265                  *      1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2266                  *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2267                  */
2268                 u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2269                 u64 pixel_mem = total_pixels * 4;
2270
2271                 if (bb_mem > dev_priv->prim_bb_mem) {
2272                         DRM_ERROR("Topology is beyond supported limits.\n");
2273                         ret = -EINVAL;
2274                         goto out_free;
2275                 }
2276
2277                 if (pixel_mem > dev_priv->prim_bb_mem) {
2278                         DRM_ERROR("Combined output size too large\n");
2279                         ret = -EINVAL;
2280                         goto out_free;
2281                 }
2282         }
2283
2284         vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2285
2286 out_free:
2287         kfree(rects);
2288         return ret;
2289 }
2290
2291 /**
2292  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2293  * on a set of cliprects and a set of display units.
2294  *
2295  * @dev_priv: Pointer to a device private structure.
2296  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2297  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2298  * Cliprects are given in framebuffer coordinates.
2299  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2300  * be NULL. Cliprects are given in source coordinates.
2301  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2302  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2303  * @num_clips: Number of cliprects in the @clips or @vclips array.
2304  * @increment: Integer with which to increment the clip counter when looping.
2305  * Used to skip a predetermined number of clip rects.
2306  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2307  */
2308 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2309                          struct vmw_framebuffer *framebuffer,
2310                          const struct drm_clip_rect *clips,
2311                          const struct drm_vmw_rect *vclips,
2312                          s32 dest_x, s32 dest_y,
2313                          int num_clips,
2314                          int increment,
2315                          struct vmw_kms_dirty *dirty)
2316 {
2317         struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2318         struct drm_crtc *crtc;
2319         u32 num_units = 0;
2320         u32 i, k;
2321
2322         dirty->dev_priv = dev_priv;
2323
2324         list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2325                 if (crtc->primary->fb != &framebuffer->base)
2326                         continue;
2327                 units[num_units++] = vmw_crtc_to_du(crtc);
2328         }
2329
2330         for (k = 0; k < num_units; k++) {
2331                 struct vmw_display_unit *unit = units[k];
2332                 s32 crtc_x = unit->crtc.x;
2333                 s32 crtc_y = unit->crtc.y;
2334                 s32 crtc_width = unit->crtc.mode.hdisplay;
2335                 s32 crtc_height = unit->crtc.mode.vdisplay;
2336                 const struct drm_clip_rect *clips_ptr = clips;
2337                 const struct drm_vmw_rect *vclips_ptr = vclips;
2338
2339                 dirty->unit = unit;
2340                 if (dirty->fifo_reserve_size > 0) {
2341                         dirty->cmd = vmw_fifo_reserve(dev_priv,
2342                                                       dirty->fifo_reserve_size);
2343                         if (!dirty->cmd) {
2344                                 DRM_ERROR("Couldn't reserve fifo space "
2345                                           "for dirty blits.\n");
2346                                 return -ENOMEM;
2347                         }
2348                         memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2349                 }
2350                 dirty->num_hits = 0;
2351                 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2352                        vclips_ptr += increment) {
2353                         s32 clip_left;
2354                         s32 clip_top;
2355
2356                         /*
2357                          * Select clip array type. Note that integer type
2358                          * in @clips is unsigned short, whereas in @vclips
2359                          * it's 32-bit.
2360                          */
2361                         if (clips) {
2362                                 dirty->fb_x = (s32) clips_ptr->x1;
2363                                 dirty->fb_y = (s32) clips_ptr->y1;
2364                                 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2365                                         crtc_x;
2366                                 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2367                                         crtc_y;
2368                         } else {
2369                                 dirty->fb_x = vclips_ptr->x;
2370                                 dirty->fb_y = vclips_ptr->y;
2371                                 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2372                                         dest_x - crtc_x;
2373                                 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2374                                         dest_y - crtc_y;
2375                         }
2376
2377                         dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2378                         dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2379
2380                         /* Skip this clip if it's outside the crtc region */
2381                         if (dirty->unit_x1 >= crtc_width ||
2382                             dirty->unit_y1 >= crtc_height ||
2383                             dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2384                                 continue;
2385
2386                         /* Clip right and bottom to crtc limits */
2387                         dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2388                                                crtc_width);
2389                         dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2390                                                crtc_height);
2391
2392                         /* Clip left and top to crtc limits */
2393                         clip_left = min_t(s32, dirty->unit_x1, 0);
2394                         clip_top = min_t(s32, dirty->unit_y1, 0);
2395                         dirty->unit_x1 -= clip_left;
2396                         dirty->unit_y1 -= clip_top;
2397                         dirty->fb_x -= clip_left;
2398                         dirty->fb_y -= clip_top;
2399
2400                         dirty->clip(dirty);
2401                 }
2402
2403                 dirty->fifo_commit(dirty);
2404         }
2405
2406         return 0;
2407 }
2408
2409 /**
2410  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2411  * command submission.
2412  *
2413  * @dev_priv. Pointer to a device private structure.
2414  * @buf: The buffer object
2415  * @interruptible: Whether to perform waits as interruptible.
2416  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2417  * The buffer will be validated as a GMR. Already pinned buffers will not be
2418  * validated.
2419  *
2420  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2421  * interrupted by a signal.
2422  */
2423 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2424                                   struct vmw_dma_buffer *buf,
2425                                   bool interruptible,
2426                                   bool validate_as_mob)
2427 {
2428         struct ttm_buffer_object *bo = &buf->base;
2429         int ret;
2430
2431         ttm_bo_reserve(bo, false, false, NULL);
2432         ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2433                                          validate_as_mob);
2434         if (ret)
2435                 ttm_bo_unreserve(bo);
2436
2437         return ret;
2438 }
2439
2440 /**
2441  * vmw_kms_helper_buffer_revert - Undo the actions of
2442  * vmw_kms_helper_buffer_prepare.
2443  *
2444  * @res: Pointer to the buffer object.
2445  *
2446  * Helper to be used if an error forces the caller to undo the actions of
2447  * vmw_kms_helper_buffer_prepare.
2448  */
2449 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2450 {
2451         if (buf)
2452                 ttm_bo_unreserve(&buf->base);
2453 }
2454
2455 /**
2456  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2457  * kms command submission.
2458  *
2459  * @dev_priv: Pointer to a device private structure.
2460  * @file_priv: Pointer to a struct drm_file representing the caller's
2461  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2462  * if non-NULL, @user_fence_rep must be non-NULL.
2463  * @buf: The buffer object.
2464  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2465  * ref-counted fence pointer is returned here.
2466  * @user_fence_rep: Optional pointer to a user-space provided struct
2467  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2468  * function copies fence data to user-space in a fail-safe manner.
2469  */
2470 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2471                                   struct drm_file *file_priv,
2472                                   struct vmw_dma_buffer *buf,
2473                                   struct vmw_fence_obj **out_fence,
2474                                   struct drm_vmw_fence_rep __user *
2475                                   user_fence_rep)
2476 {
2477         struct vmw_fence_obj *fence;
2478         uint32_t handle;
2479         int ret;
2480
2481         ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2482                                          file_priv ? &handle : NULL);
2483         if (buf)
2484                 vmw_fence_single_bo(&buf->base, fence);
2485         if (file_priv)
2486                 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2487                                             ret, user_fence_rep, fence,
2488                                             handle);
2489         if (out_fence)
2490                 *out_fence = fence;
2491         else
2492                 vmw_fence_obj_unreference(&fence);
2493
2494         vmw_kms_helper_buffer_revert(buf);
2495 }
2496
2497
2498 /**
2499  * vmw_kms_helper_resource_revert - Undo the actions of
2500  * vmw_kms_helper_resource_prepare.
2501  *
2502  * @res: Pointer to the resource. Typically a surface.
2503  *
2504  * Helper to be used if an error forces the caller to undo the actions of
2505  * vmw_kms_helper_resource_prepare.
2506  */
2507 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2508 {
2509         vmw_kms_helper_buffer_revert(res->backup);
2510         vmw_resource_unreserve(res, false, NULL, 0);
2511         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2512 }
2513
2514 /**
2515  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2516  * command submission.
2517  *
2518  * @res: Pointer to the resource. Typically a surface.
2519  * @interruptible: Whether to perform waits as interruptible.
2520  *
2521  * Reserves and validates also the backup buffer if a guest-backed resource.
2522  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2523  * interrupted by a signal.
2524  */
2525 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2526                                     bool interruptible)
2527 {
2528         int ret = 0;
2529
2530         if (interruptible)
2531                 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2532         else
2533                 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2534
2535         if (unlikely(ret != 0))
2536                 return -ERESTARTSYS;
2537
2538         ret = vmw_resource_reserve(res, interruptible, false);
2539         if (ret)
2540                 goto out_unlock;
2541
2542         if (res->backup) {
2543                 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2544                                                     interruptible,
2545                                                     res->dev_priv->has_mob);
2546                 if (ret)
2547                         goto out_unreserve;
2548         }
2549         ret = vmw_resource_validate(res);
2550         if (ret)
2551                 goto out_revert;
2552         return 0;
2553
2554 out_revert:
2555         vmw_kms_helper_buffer_revert(res->backup);
2556 out_unreserve:
2557         vmw_resource_unreserve(res, false, NULL, 0);
2558 out_unlock:
2559         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2560         return ret;
2561 }
2562
2563 /**
2564  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2565  * kms command submission.
2566  *
2567  * @res: Pointer to the resource. Typically a surface.
2568  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2569  * ref-counted fence pointer is returned here.
2570  */
2571 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2572                              struct vmw_fence_obj **out_fence)
2573 {
2574         if (res->backup || out_fence)
2575                 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2576                                              out_fence, NULL);
2577
2578         vmw_resource_unreserve(res, false, NULL, 0);
2579         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2580 }
2581
2582 /**
2583  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2584  * its backing MOB.
2585  *
2586  * @res: Pointer to the surface resource
2587  * @clips: Clip rects in framebuffer (surface) space.
2588  * @num_clips: Number of clips in @clips.
2589  * @increment: Integer with which to increment the clip counter when looping.
2590  * Used to skip a predetermined number of clip rects.
2591  *
2592  * This function makes sure the proxy surface is updated from its backing MOB
2593  * using the region given by @clips. The surface resource @res and its backing
2594  * MOB needs to be reserved and validated on call.
2595  */
2596 int vmw_kms_update_proxy(struct vmw_resource *res,
2597                          const struct drm_clip_rect *clips,
2598                          unsigned num_clips,
2599                          int increment)
2600 {
2601         struct vmw_private *dev_priv = res->dev_priv;
2602         struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2603         struct {
2604                 SVGA3dCmdHeader header;
2605                 SVGA3dCmdUpdateGBImage body;
2606         } *cmd;
2607         SVGA3dBox *box;
2608         size_t copy_size = 0;
2609         int i;
2610
2611         if (!clips)
2612                 return 0;
2613
2614         cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2615         if (!cmd) {
2616                 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2617                           "update.\n");
2618                 return -ENOMEM;
2619         }
2620
2621         for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2622                 box = &cmd->body.box;
2623
2624                 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2625                 cmd->header.size = sizeof(cmd->body);
2626                 cmd->body.image.sid = res->id;
2627                 cmd->body.image.face = 0;
2628                 cmd->body.image.mipmap = 0;
2629
2630                 if (clips->x1 > size->width || clips->x2 > size->width ||
2631                     clips->y1 > size->height || clips->y2 > size->height) {
2632                         DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2633                         return -EINVAL;
2634                 }
2635
2636                 box->x = clips->x1;
2637                 box->y = clips->y1;
2638                 box->z = 0;
2639                 box->w = clips->x2 - clips->x1;
2640                 box->h = clips->y2 - clips->y1;
2641                 box->d = 1;
2642
2643                 copy_size += sizeof(*cmd);
2644         }
2645
2646         vmw_fifo_commit(dev_priv, copy_size);
2647
2648         return 0;
2649 }
2650
2651 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2652                             unsigned unit,
2653                             u32 max_width,
2654                             u32 max_height,
2655                             struct drm_connector **p_con,
2656                             struct drm_crtc **p_crtc,
2657                             struct drm_display_mode **p_mode)
2658 {
2659         struct drm_connector *con;
2660         struct vmw_display_unit *du;
2661         struct drm_display_mode *mode;
2662         int i = 0;
2663
2664         list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2665                             head) {
2666                 if (i == unit)
2667                         break;
2668
2669                 ++i;
2670         }
2671
2672         if (i != unit) {
2673                 DRM_ERROR("Could not find initial display unit.\n");
2674                 return -EINVAL;
2675         }
2676
2677         if (list_empty(&con->modes))
2678                 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2679
2680         if (list_empty(&con->modes)) {
2681                 DRM_ERROR("Could not find initial display mode.\n");
2682                 return -EINVAL;
2683         }
2684
2685         du = vmw_connector_to_du(con);
2686         *p_con = con;
2687         *p_crtc = &du->crtc;
2688
2689         list_for_each_entry(mode, &con->modes, head) {
2690                 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2691                         break;
2692         }
2693
2694         if (mode->type & DRM_MODE_TYPE_PREFERRED)
2695                 *p_mode = mode;
2696         else {
2697                 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2698                 *p_mode = list_first_entry(&con->modes,
2699                                            struct drm_display_mode,
2700                                            head);
2701         }
2702
2703         return 0;
2704 }
2705
2706 /**
2707  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2708  *
2709  * @dev_priv: Pointer to a device private struct.
2710  * @du: The display unit of the crtc.
2711  */
2712 void vmw_kms_del_active(struct vmw_private *dev_priv,
2713                         struct vmw_display_unit *du)
2714 {
2715         mutex_lock(&dev_priv->global_kms_state_mutex);
2716         if (du->active_implicit) {
2717                 if (--(dev_priv->num_implicit) == 0)
2718                         dev_priv->implicit_fb = NULL;
2719                 du->active_implicit = false;
2720         }
2721         mutex_unlock(&dev_priv->global_kms_state_mutex);
2722 }
2723
2724 /**
2725  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2726  *
2727  * @vmw_priv: Pointer to a device private struct.
2728  * @du: The display unit of the crtc.
2729  * @vfb: The implicit framebuffer
2730  *
2731  * Registers a binding to an implicit framebuffer.
2732  */
2733 void vmw_kms_add_active(struct vmw_private *dev_priv,
2734                         struct vmw_display_unit *du,
2735                         struct vmw_framebuffer *vfb)
2736 {
2737         mutex_lock(&dev_priv->global_kms_state_mutex);
2738         WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2739
2740         if (!du->active_implicit && du->is_implicit) {
2741                 dev_priv->implicit_fb = vfb;
2742                 du->active_implicit = true;
2743                 dev_priv->num_implicit++;
2744         }
2745         mutex_unlock(&dev_priv->global_kms_state_mutex);
2746 }
2747
2748 /**
2749  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2750  *
2751  * @dev_priv: Pointer to device-private struct.
2752  * @crtc: The crtc we want to flip.
2753  *
2754  * Returns true or false depending whether it's OK to flip this crtc
2755  * based on the criterion that we must not have more than one implicit
2756  * frame-buffer at any one time.
2757  */
2758 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2759                             struct drm_crtc *crtc)
2760 {
2761         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2762         bool ret;
2763
2764         mutex_lock(&dev_priv->global_kms_state_mutex);
2765         ret = !du->is_implicit || dev_priv->num_implicit == 1;
2766         mutex_unlock(&dev_priv->global_kms_state_mutex);
2767
2768         return ret;
2769 }
2770
2771 /**
2772  * vmw_kms_update_implicit_fb - Update the implicit fb.
2773  *
2774  * @dev_priv: Pointer to device-private struct.
2775  * @crtc: The crtc the new implicit frame-buffer is bound to.
2776  */
2777 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2778                                 struct drm_crtc *crtc)
2779 {
2780         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2781         struct vmw_framebuffer *vfb;
2782
2783         mutex_lock(&dev_priv->global_kms_state_mutex);
2784
2785         if (!du->is_implicit)
2786                 goto out_unlock;
2787
2788         vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2789         WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2790                      dev_priv->implicit_fb != vfb);
2791
2792         dev_priv->implicit_fb = vfb;
2793 out_unlock:
2794         mutex_unlock(&dev_priv->global_kms_state_mutex);
2795 }
2796
2797 /**
2798  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2799  * property.
2800  *
2801  * @dev_priv: Pointer to a device private struct.
2802  * @immutable: Whether the property is immutable.
2803  *
2804  * Sets up the implicit placement property unless it's already set up.
2805  */
2806 void
2807 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2808                                            bool immutable)
2809 {
2810         if (dev_priv->implicit_placement_property)
2811                 return;
2812
2813         dev_priv->implicit_placement_property =
2814                 drm_property_create_range(dev_priv->dev,
2815                                           immutable ?
2816                                           DRM_MODE_PROP_IMMUTABLE : 0,
2817                                           "implicit_placement", 0, 1);
2818
2819 }
2820
2821
2822 /**
2823  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2824  *
2825  * @set: The configuration to set.
2826  *
2827  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2828  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2829  * causes it to return incorrect crtc dimensions causing severe problems in
2830  * the vmwgfx modesetting. So explicitly clear that member before calling
2831  * into drm_atomic_helper_set_config.
2832  */
2833 int vmw_kms_set_config(struct drm_mode_set *set,
2834                        struct drm_modeset_acquire_ctx *ctx)
2835 {
2836         if (set && set->mode)
2837                 set->mode->type = 0;
2838
2839         return drm_atomic_helper_set_config(set, ctx);
2840 }