3c99fb8b54e2df54ab26f8b6b15b4fd30d41183f
[linux-2.6-microblaze.git] / drivers / gpu / drm / vkms / vkms_composer.c
1 // SPDX-License-Identifier: GPL-2.0+
2
3 #include <linux/crc32.h>
4
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_fourcc.h>
9 #include <drm/drm_fixed.h>
10 #include <drm/drm_gem_framebuffer_helper.h>
11 #include <drm/drm_vblank.h>
12 #include <linux/minmax.h>
13
14 #include "vkms_drv.h"
15
16 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
17 {
18         u32 new_color;
19
20         new_color = (src * 0xffff + dst * (0xffff - alpha));
21
22         return DIV_ROUND_CLOSEST(new_color, 0xffff);
23 }
24
25 /**
26  * pre_mul_alpha_blend - alpha blending equation
27  * @frame_info: Source framebuffer's metadata
28  * @stage_buffer: The line with the pixels from src_plane
29  * @output_buffer: A line buffer that receives all the blends output
30  *
31  * Using the information from the `frame_info`, this blends only the
32  * necessary pixels from the `stage_buffer` to the `output_buffer`
33  * using premultiplied blend formula.
34  *
35  * The current DRM assumption is that pixel color values have been already
36  * pre-multiplied with the alpha channel values. See more
37  * drm_plane_create_blend_mode_property(). Also, this formula assumes a
38  * completely opaque background.
39  */
40 static void pre_mul_alpha_blend(struct vkms_frame_info *frame_info,
41                                 struct line_buffer *stage_buffer,
42                                 struct line_buffer *output_buffer)
43 {
44         int x_dst = frame_info->dst.x1;
45         struct pixel_argb_u16 *out = output_buffer->pixels + x_dst;
46         struct pixel_argb_u16 *in = stage_buffer->pixels;
47         int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst),
48                             stage_buffer->n_pixels);
49
50         for (int x = 0; x < x_limit; x++) {
51                 out[x].a = (u16)0xffff;
52                 out[x].r = pre_mul_blend_channel(in[x].r, out[x].r, in[x].a);
53                 out[x].g = pre_mul_blend_channel(in[x].g, out[x].g, in[x].a);
54                 out[x].b = pre_mul_blend_channel(in[x].b, out[x].b, in[x].a);
55         }
56 }
57
58 static int get_y_pos(struct vkms_frame_info *frame_info, int y)
59 {
60         if (frame_info->rotation & DRM_MODE_REFLECT_Y)
61                 return drm_rect_height(&frame_info->rotated) - y - 1;
62
63         switch (frame_info->rotation & DRM_MODE_ROTATE_MASK) {
64         case DRM_MODE_ROTATE_90:
65                 return frame_info->rotated.x2 - y - 1;
66         case DRM_MODE_ROTATE_270:
67                 return y + frame_info->rotated.x1;
68         default:
69                 return y;
70         }
71 }
72
73 static bool check_limit(struct vkms_frame_info *frame_info, int pos)
74 {
75         if (drm_rotation_90_or_270(frame_info->rotation)) {
76                 if (pos >= 0 && pos < drm_rect_width(&frame_info->rotated))
77                         return true;
78         } else {
79                 if (pos >= frame_info->rotated.y1 && pos < frame_info->rotated.y2)
80                         return true;
81         }
82
83         return false;
84 }
85
86 static void fill_background(const struct pixel_argb_u16 *background_color,
87                             struct line_buffer *output_buffer)
88 {
89         for (size_t i = 0; i < output_buffer->n_pixels; i++)
90                 output_buffer->pixels[i] = *background_color;
91 }
92
93 // lerp(a, b, t) = a + (b - a) * t
94 static u16 lerp_u16(u16 a, u16 b, s64 t)
95 {
96         s64 a_fp = drm_int2fixp(a);
97         s64 b_fp = drm_int2fixp(b);
98
99         s64 delta = drm_fixp_mul(b_fp - a_fp,  t);
100
101         return drm_fixp2int(a_fp + delta);
102 }
103
104 static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
105 {
106         s64 color_channel_fp = drm_int2fixp(channel_value);
107
108         return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
109 }
110
111 /*
112  * This enum is related to the positions of the variables inside
113  * `struct drm_color_lut`, so the order of both needs to be the same.
114  */
115 enum lut_channel {
116         LUT_RED = 0,
117         LUT_GREEN,
118         LUT_BLUE,
119         LUT_RESERVED
120 };
121
122 static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
123                                       enum lut_channel channel)
124 {
125         s64 lut_index = get_lut_index(lut, channel_value);
126
127         /*
128          * This checks if `struct drm_color_lut` has any gap added by the compiler
129          * between the struct fields.
130          */
131         static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
132
133         u16 *floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
134         u16 *ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
135
136         u16 floor_channel_value = floor_lut_value[channel];
137         u16 ceil_channel_value = ceil_lut_value[channel];
138
139         return lerp_u16(floor_channel_value, ceil_channel_value,
140                         lut_index & DRM_FIXED_DECIMAL_MASK);
141 }
142
143 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
144 {
145         if (!crtc_state->gamma_lut.base)
146                 return;
147
148         if (!crtc_state->gamma_lut.lut_length)
149                 return;
150
151         for (size_t x = 0; x < output_buffer->n_pixels; x++) {
152                 struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
153
154                 pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
155                 pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
156                 pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
157         }
158 }
159
160 /**
161  * blend - blend the pixels from all planes and compute crc
162  * @wb: The writeback frame buffer metadata
163  * @crtc_state: The crtc state
164  * @crc32: The crc output of the final frame
165  * @output_buffer: A buffer of a row that will receive the result of the blend(s)
166  * @stage_buffer: The line with the pixels from plane being blend to the output
167  * @row_size: The size, in bytes, of a single row
168  *
169  * This function blends the pixels (Using the `pre_mul_alpha_blend`)
170  * from all planes, calculates the crc32 of the output from the former step,
171  * and, if necessary, convert and store the output to the writeback buffer.
172  */
173 static void blend(struct vkms_writeback_job *wb,
174                   struct vkms_crtc_state *crtc_state,
175                   u32 *crc32, struct line_buffer *stage_buffer,
176                   struct line_buffer *output_buffer, size_t row_size)
177 {
178         struct vkms_plane_state **plane = crtc_state->active_planes;
179         u32 n_active_planes = crtc_state->num_active_planes;
180         int y_pos;
181
182         const struct pixel_argb_u16 background_color = { .a = 0xffff };
183
184         size_t crtc_y_limit = crtc_state->base.crtc->mode.vdisplay;
185
186         for (size_t y = 0; y < crtc_y_limit; y++) {
187                 fill_background(&background_color, output_buffer);
188
189                 /* The active planes are composed associatively in z-order. */
190                 for (size_t i = 0; i < n_active_planes; i++) {
191                         y_pos = get_y_pos(plane[i]->frame_info, y);
192
193                         if (!check_limit(plane[i]->frame_info, y_pos))
194                                 continue;
195
196                         vkms_compose_row(stage_buffer, plane[i], y_pos);
197                         pre_mul_alpha_blend(plane[i]->frame_info, stage_buffer,
198                                             output_buffer);
199                 }
200
201                 apply_lut(crtc_state, output_buffer);
202
203                 *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
204
205                 if (wb)
206                         vkms_writeback_row(wb, output_buffer, y_pos);
207         }
208 }
209
210 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
211                               struct vkms_writeback_job *active_wb)
212 {
213         struct vkms_plane_state **planes = crtc_state->active_planes;
214         u32 n_active_planes = crtc_state->num_active_planes;
215
216         for (size_t i = 0; i < n_active_planes; i++)
217                 if (!planes[i]->pixel_read)
218                         return -1;
219
220         if (active_wb && !active_wb->pixel_write)
221                 return -1;
222
223         return 0;
224 }
225
226 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
227 {
228         struct vkms_plane_state **plane_state = crtc_state->active_planes;
229         u32 n_active_planes = crtc_state->num_active_planes;
230
231         for (size_t i = 0; i < n_active_planes; i++)
232                 if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
233                         return -1;
234
235         return 0;
236 }
237
238 static int compose_active_planes(struct vkms_writeback_job *active_wb,
239                                  struct vkms_crtc_state *crtc_state,
240                                  u32 *crc32)
241 {
242         size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
243         struct line_buffer output_buffer, stage_buffer;
244         int ret = 0;
245
246         /*
247          * This check exists so we can call `crc32_le` for the entire line
248          * instead doing it for each channel of each pixel in case
249          * `struct `pixel_argb_u16` had any gap added by the compiler
250          * between the struct fields.
251          */
252         static_assert(sizeof(struct pixel_argb_u16) == 8);
253
254         if (WARN_ON(check_iosys_map(crtc_state)))
255                 return -EINVAL;
256
257         if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
258                 return -EINVAL;
259
260         line_width = crtc_state->base.crtc->mode.hdisplay;
261         stage_buffer.n_pixels = line_width;
262         output_buffer.n_pixels = line_width;
263
264         stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
265         if (!stage_buffer.pixels) {
266                 DRM_ERROR("Cannot allocate memory for the output line buffer");
267                 return -ENOMEM;
268         }
269
270         output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
271         if (!output_buffer.pixels) {
272                 DRM_ERROR("Cannot allocate memory for intermediate line buffer");
273                 ret = -ENOMEM;
274                 goto free_stage_buffer;
275         }
276
277         blend(active_wb, crtc_state, crc32, &stage_buffer,
278               &output_buffer, line_width * pixel_size);
279
280         kvfree(output_buffer.pixels);
281 free_stage_buffer:
282         kvfree(stage_buffer.pixels);
283
284         return ret;
285 }
286
287 /**
288  * vkms_composer_worker - ordered work_struct to compute CRC
289  *
290  * @work: work_struct
291  *
292  * Work handler for composing and computing CRCs. work_struct scheduled in
293  * an ordered workqueue that's periodically scheduled to run by
294  * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
295  */
296 void vkms_composer_worker(struct work_struct *work)
297 {
298         struct vkms_crtc_state *crtc_state = container_of(work,
299                                                 struct vkms_crtc_state,
300                                                 composer_work);
301         struct drm_crtc *crtc = crtc_state->base.crtc;
302         struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
303         struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
304         bool crc_pending, wb_pending;
305         u64 frame_start, frame_end;
306         u32 crc32 = 0;
307         int ret;
308
309         spin_lock_irq(&out->composer_lock);
310         frame_start = crtc_state->frame_start;
311         frame_end = crtc_state->frame_end;
312         crc_pending = crtc_state->crc_pending;
313         wb_pending = crtc_state->wb_pending;
314         crtc_state->frame_start = 0;
315         crtc_state->frame_end = 0;
316         crtc_state->crc_pending = false;
317
318         if (crtc->state->gamma_lut) {
319                 s64 max_lut_index_fp;
320                 s64 u16_max_fp = drm_int2fixp(0xffff);
321
322                 crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
323                 crtc_state->gamma_lut.lut_length =
324                         crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
325                 max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length  - 1);
326                 crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
327                                                                                u16_max_fp);
328
329         } else {
330                 crtc_state->gamma_lut.base = NULL;
331         }
332
333         spin_unlock_irq(&out->composer_lock);
334
335         /*
336          * We raced with the vblank hrtimer and previous work already computed
337          * the crc, nothing to do.
338          */
339         if (!crc_pending)
340                 return;
341
342         if (wb_pending)
343                 ret = compose_active_planes(active_wb, crtc_state, &crc32);
344         else
345                 ret = compose_active_planes(NULL, crtc_state, &crc32);
346
347         if (ret)
348                 return;
349
350         if (wb_pending) {
351                 drm_writeback_signal_completion(&out->wb_connector, 0);
352                 spin_lock_irq(&out->composer_lock);
353                 crtc_state->wb_pending = false;
354                 spin_unlock_irq(&out->composer_lock);
355         }
356
357         /*
358          * The worker can fall behind the vblank hrtimer, make sure we catch up.
359          */
360         while (frame_start <= frame_end)
361                 drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
362 }
363
364 static const char * const pipe_crc_sources[] = {"auto"};
365
366 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
367                                         size_t *count)
368 {
369         *count = ARRAY_SIZE(pipe_crc_sources);
370         return pipe_crc_sources;
371 }
372
373 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
374 {
375         int ret = 0;
376
377         if (!src_name) {
378                 *enabled = false;
379         } else if (strcmp(src_name, "auto") == 0) {
380                 *enabled = true;
381         } else {
382                 *enabled = false;
383                 ret = -EINVAL;
384         }
385
386         return ret;
387 }
388
389 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
390                            size_t *values_cnt)
391 {
392         bool enabled;
393
394         if (vkms_crc_parse_source(src_name, &enabled) < 0) {
395                 DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
396                 return -EINVAL;
397         }
398
399         *values_cnt = 1;
400
401         return 0;
402 }
403
404 void vkms_set_composer(struct vkms_output *out, bool enabled)
405 {
406         bool old_enabled;
407
408         if (enabled)
409                 drm_crtc_vblank_get(&out->crtc);
410
411         spin_lock_irq(&out->lock);
412         old_enabled = out->composer_enabled;
413         out->composer_enabled = enabled;
414         spin_unlock_irq(&out->lock);
415
416         if (old_enabled)
417                 drm_crtc_vblank_put(&out->crtc);
418 }
419
420 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
421 {
422         struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
423         bool enabled = false;
424         int ret = 0;
425
426         ret = vkms_crc_parse_source(src_name, &enabled);
427
428         vkms_set_composer(out, enabled);
429
430         return ret;
431 }