Merge branch 'address-masking'
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15 #include <linux/sort.h>
16
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_helper.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27
28 struct vc4_ctm_state {
29         struct drm_private_state base;
30         struct drm_color_ctm *ctm;
31         int fifo;
32 };
33
34 #define to_vc4_ctm_state(_state)                                \
35         container_of_const(_state, struct vc4_ctm_state, base)
36
37 struct vc4_load_tracker_state {
38         struct drm_private_state base;
39         u64 hvs_load;
40         u64 membus_load;
41 };
42
43 #define to_vc4_load_tracker_state(_state)                               \
44         container_of_const(_state, struct vc4_load_tracker_state, base)
45
46 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
47                                                struct drm_private_obj *manager)
48 {
49         struct drm_device *dev = state->dev;
50         struct vc4_dev *vc4 = to_vc4_dev(dev);
51         struct drm_private_state *priv_state;
52         int ret;
53
54         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
55         if (ret)
56                 return ERR_PTR(ret);
57
58         priv_state = drm_atomic_get_private_obj_state(state, manager);
59         if (IS_ERR(priv_state))
60                 return ERR_CAST(priv_state);
61
62         return to_vc4_ctm_state(priv_state);
63 }
64
65 static struct drm_private_state *
66 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
67 {
68         struct vc4_ctm_state *state;
69
70         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
71         if (!state)
72                 return NULL;
73
74         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
75
76         return &state->base;
77 }
78
79 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
80                                   struct drm_private_state *state)
81 {
82         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
83
84         kfree(ctm_state);
85 }
86
87 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
88         .atomic_duplicate_state = vc4_ctm_duplicate_state,
89         .atomic_destroy_state = vc4_ctm_destroy_state,
90 };
91
92 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
93 {
94         struct vc4_dev *vc4 = to_vc4_dev(dev);
95
96         drm_atomic_private_obj_fini(&vc4->ctm_manager);
97 }
98
99 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
100 {
101         struct vc4_ctm_state *ctm_state;
102
103         drm_modeset_lock_init(&vc4->ctm_state_lock);
104
105         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
106         if (!ctm_state)
107                 return -ENOMEM;
108
109         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
110                                     &vc4_ctm_state_funcs);
111
112         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
113 }
114
115 /* Converts a DRM S31.32 value to the HW S0.9 format. */
116 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
117 {
118         u16 r;
119
120         /* Sign bit. */
121         r = in & BIT_ULL(63) ? BIT(9) : 0;
122
123         if ((in & GENMASK_ULL(62, 32)) > 0) {
124                 /* We have zero integer bits so we can only saturate here. */
125                 r |= GENMASK(8, 0);
126         } else {
127                 /* Otherwise take the 9 most important fractional bits. */
128                 r |= (in >> 23) & GENMASK(8, 0);
129         }
130
131         return r;
132 }
133
134 static void
135 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
136 {
137         struct vc4_hvs *hvs = vc4->hvs;
138         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
139         struct drm_color_ctm *ctm = ctm_state->ctm;
140
141         if (ctm_state->fifo) {
142                 HVS_WRITE(SCALER_OLEDCOEF2,
143                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
144                                         SCALER_OLEDCOEF2_R_TO_R) |
145                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
146                                         SCALER_OLEDCOEF2_R_TO_G) |
147                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
148                                         SCALER_OLEDCOEF2_R_TO_B));
149                 HVS_WRITE(SCALER_OLEDCOEF1,
150                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
151                                         SCALER_OLEDCOEF1_G_TO_R) |
152                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
153                                         SCALER_OLEDCOEF1_G_TO_G) |
154                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
155                                         SCALER_OLEDCOEF1_G_TO_B));
156                 HVS_WRITE(SCALER_OLEDCOEF0,
157                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
158                                         SCALER_OLEDCOEF0_B_TO_R) |
159                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
160                                         SCALER_OLEDCOEF0_B_TO_G) |
161                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
162                                         SCALER_OLEDCOEF0_B_TO_B));
163         }
164
165         HVS_WRITE(SCALER_OLEDOFFS,
166                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
167 }
168
169 struct vc4_hvs_state *
170 vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
171 {
172         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
173         struct drm_private_state *priv_state;
174
175         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
176         if (!priv_state)
177                 return ERR_PTR(-EINVAL);
178
179         return to_vc4_hvs_state(priv_state);
180 }
181
182 struct vc4_hvs_state *
183 vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
184 {
185         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
186         struct drm_private_state *priv_state;
187
188         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
189         if (!priv_state)
190                 return ERR_PTR(-EINVAL);
191
192         return to_vc4_hvs_state(priv_state);
193 }
194
195 struct vc4_hvs_state *
196 vc4_hvs_get_global_state(struct drm_atomic_state *state)
197 {
198         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
199         struct drm_private_state *priv_state;
200
201         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
202         if (IS_ERR(priv_state))
203                 return ERR_CAST(priv_state);
204
205         return to_vc4_hvs_state(priv_state);
206 }
207
208 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
209                                      struct drm_atomic_state *state)
210 {
211         struct vc4_hvs *hvs = vc4->hvs;
212         struct drm_crtc_state *crtc_state;
213         struct drm_crtc *crtc;
214         unsigned int i;
215
216         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
217                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
218                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
219                 u32 dispctrl;
220                 u32 dsp3_mux;
221
222                 if (!crtc_state->active)
223                         continue;
224
225                 if (vc4_state->assigned_channel != 2)
226                         continue;
227
228                 /*
229                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
230                  * FIFO X'.
231                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
232                  *
233                  * DSP3 is connected to FIFO2 unless the transposer is
234                  * enabled. In this case, FIFO 2 is directly accessed by the
235                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
236                  * route.
237                  */
238                 if (vc4_crtc->feeds_txp)
239                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
240                 else
241                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
242
243                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
244                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
245                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
246         }
247 }
248
249 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
250                                      struct drm_atomic_state *state)
251 {
252         struct vc4_hvs *hvs = vc4->hvs;
253         struct drm_crtc_state *crtc_state;
254         struct drm_crtc *crtc;
255         unsigned char mux;
256         unsigned int i;
257         u32 reg;
258
259         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
260                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
261                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
262                 unsigned int channel = vc4_state->assigned_channel;
263
264                 if (!vc4_state->update_muxing)
265                         continue;
266
267                 switch (vc4_crtc->data->hvs_output) {
268                 case 2:
269                         drm_WARN_ON(&vc4->base,
270                                     VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
271                                                   SCALER_DISPCTRL_DSP3_MUX) == channel);
272
273                         mux = (channel == 2) ? 0 : 1;
274                         reg = HVS_READ(SCALER_DISPECTRL);
275                         HVS_WRITE(SCALER_DISPECTRL,
276                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
277                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
278                         break;
279
280                 case 3:
281                         if (channel == VC4_HVS_CHANNEL_DISABLED)
282                                 mux = 3;
283                         else
284                                 mux = channel;
285
286                         reg = HVS_READ(SCALER_DISPCTRL);
287                         HVS_WRITE(SCALER_DISPCTRL,
288                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
289                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
290                         break;
291
292                 case 4:
293                         if (channel == VC4_HVS_CHANNEL_DISABLED)
294                                 mux = 3;
295                         else
296                                 mux = channel;
297
298                         reg = HVS_READ(SCALER_DISPEOLN);
299                         HVS_WRITE(SCALER_DISPEOLN,
300                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
301                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
302
303                         break;
304
305                 case 5:
306                         if (channel == VC4_HVS_CHANNEL_DISABLED)
307                                 mux = 3;
308                         else
309                                 mux = channel;
310
311                         reg = HVS_READ(SCALER_DISPDITHER);
312                         HVS_WRITE(SCALER_DISPDITHER,
313                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
314                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
315                         break;
316
317                 default:
318                         break;
319                 }
320         }
321 }
322
323 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
324 {
325         struct drm_device *dev = state->dev;
326         struct vc4_dev *vc4 = to_vc4_dev(dev);
327         struct vc4_hvs *hvs = vc4->hvs;
328         struct drm_crtc_state *new_crtc_state;
329         struct vc4_hvs_state *new_hvs_state;
330         struct drm_crtc *crtc;
331         struct vc4_hvs_state *old_hvs_state;
332         unsigned int channel;
333         int i;
334
335         old_hvs_state = vc4_hvs_get_old_global_state(state);
336         if (WARN_ON(IS_ERR(old_hvs_state)))
337                 return;
338
339         new_hvs_state = vc4_hvs_get_new_global_state(state);
340         if (WARN_ON(IS_ERR(new_hvs_state)))
341                 return;
342
343         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
344                 struct vc4_crtc_state *vc4_crtc_state;
345
346                 if (!new_crtc_state->commit)
347                         continue;
348
349                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
350                 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
351         }
352
353         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
354                 struct drm_crtc_commit *commit;
355                 int ret;
356
357                 if (!old_hvs_state->fifo_state[channel].in_use)
358                         continue;
359
360                 commit = old_hvs_state->fifo_state[channel].pending_commit;
361                 if (!commit)
362                         continue;
363
364                 ret = drm_crtc_commit_wait(commit);
365                 if (ret)
366                         drm_err(dev, "Timed out waiting for commit\n");
367
368                 drm_crtc_commit_put(commit);
369                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
370         }
371
372         if (vc4->is_vc5) {
373                 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
374                                                new_hvs_state->core_clock_rate);
375                 unsigned long core_rate = clamp_t(unsigned long, state_rate,
376                                                   500000000, hvs->max_core_rate);
377
378                 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
379
380                 /*
381                  * Do a temporary request on the core clock during the
382                  * modeset.
383                  */
384                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
385         }
386
387         drm_atomic_helper_commit_modeset_disables(dev, state);
388
389         vc4_ctm_commit(vc4, state);
390
391         if (vc4->is_vc5)
392                 vc5_hvs_pv_muxing_commit(vc4, state);
393         else
394                 vc4_hvs_pv_muxing_commit(vc4, state);
395
396         drm_atomic_helper_commit_planes(dev, state,
397                                         DRM_PLANE_COMMIT_ACTIVE_ONLY);
398
399         drm_atomic_helper_commit_modeset_enables(dev, state);
400
401         drm_atomic_helper_fake_vblank(state);
402
403         drm_atomic_helper_commit_hw_done(state);
404
405         drm_atomic_helper_wait_for_flip_done(dev, state);
406
407         drm_atomic_helper_cleanup_planes(dev, state);
408
409         if (vc4->is_vc5) {
410                 unsigned long core_rate = min_t(unsigned long,
411                                                 hvs->max_core_rate,
412                                                 new_hvs_state->core_clock_rate);
413
414                 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
415
416                 /*
417                  * Request a clock rate based on the current HVS
418                  * requirements.
419                  */
420                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
421
422                 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
423                         clk_get_rate(hvs->core_clk));
424         }
425 }
426
427 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
428 {
429         struct drm_crtc_state *crtc_state;
430         struct vc4_hvs_state *hvs_state;
431         struct drm_crtc *crtc;
432         unsigned int i;
433
434         hvs_state = vc4_hvs_get_new_global_state(state);
435         if (WARN_ON(IS_ERR(hvs_state)))
436                 return PTR_ERR(hvs_state);
437
438         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
439                 struct vc4_crtc_state *vc4_crtc_state =
440                         to_vc4_crtc_state(crtc_state);
441                 unsigned int channel =
442                         vc4_crtc_state->assigned_channel;
443
444                 if (channel == VC4_HVS_CHANNEL_DISABLED)
445                         continue;
446
447                 if (!hvs_state->fifo_state[channel].in_use)
448                         continue;
449
450                 hvs_state->fifo_state[channel].pending_commit =
451                         drm_crtc_commit_get(crtc_state->commit);
452         }
453
454         return 0;
455 }
456
457 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
458                                              struct drm_file *file_priv,
459                                              const struct drm_mode_fb_cmd2 *mode_cmd)
460 {
461         struct vc4_dev *vc4 = to_vc4_dev(dev);
462         struct drm_mode_fb_cmd2 mode_cmd_local;
463
464         if (WARN_ON_ONCE(vc4->is_vc5))
465                 return ERR_PTR(-ENODEV);
466
467         /* If the user didn't specify a modifier, use the
468          * vc4_set_tiling_ioctl() state for the BO.
469          */
470         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
471                 struct drm_gem_object *gem_obj;
472                 struct vc4_bo *bo;
473
474                 gem_obj = drm_gem_object_lookup(file_priv,
475                                                 mode_cmd->handles[0]);
476                 if (!gem_obj) {
477                         DRM_DEBUG("Failed to look up GEM BO %d\n",
478                                   mode_cmd->handles[0]);
479                         return ERR_PTR(-ENOENT);
480                 }
481                 bo = to_vc4_bo(gem_obj);
482
483                 mode_cmd_local = *mode_cmd;
484
485                 if (bo->t_format) {
486                         mode_cmd_local.modifier[0] =
487                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
488                 } else {
489                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
490                 }
491
492                 drm_gem_object_put(gem_obj);
493
494                 mode_cmd = &mode_cmd_local;
495         }
496
497         return drm_gem_fb_create(dev, file_priv, mode_cmd);
498 }
499
500 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
501  * at a time and the HW only supports S0.9 scalars. To account for the latter,
502  * we don't allow userland to set a CTM that we have no hope of approximating.
503  */
504 static int
505 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
506 {
507         struct vc4_dev *vc4 = to_vc4_dev(dev);
508         struct vc4_ctm_state *ctm_state = NULL;
509         struct drm_crtc *crtc;
510         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
511         struct drm_color_ctm *ctm;
512         int i;
513
514         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
515                 /* CTM is being disabled. */
516                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
517                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
518                         if (IS_ERR(ctm_state))
519                                 return PTR_ERR(ctm_state);
520                         ctm_state->fifo = 0;
521                 }
522         }
523
524         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
525                 if (new_crtc_state->ctm == old_crtc_state->ctm)
526                         continue;
527
528                 if (!ctm_state) {
529                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
530                         if (IS_ERR(ctm_state))
531                                 return PTR_ERR(ctm_state);
532                 }
533
534                 /* CTM is being enabled or the matrix changed. */
535                 if (new_crtc_state->ctm) {
536                         struct vc4_crtc_state *vc4_crtc_state =
537                                 to_vc4_crtc_state(new_crtc_state);
538
539                         /* fifo is 1-based since 0 disables CTM. */
540                         int fifo = vc4_crtc_state->assigned_channel + 1;
541
542                         /* Check userland isn't trying to turn on CTM for more
543                          * than one CRTC at a time.
544                          */
545                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
546                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
547                                 return -EINVAL;
548                         }
549
550                         /* Check we can approximate the specified CTM.
551                          * We disallow scalars |c| > 1.0 since the HW has
552                          * no integer bits.
553                          */
554                         ctm = new_crtc_state->ctm->data;
555                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
556                                 u64 val = ctm->matrix[i];
557
558                                 val &= ~BIT_ULL(63);
559                                 if (val > BIT_ULL(32))
560                                         return -EINVAL;
561                         }
562
563                         ctm_state->fifo = fifo;
564                         ctm_state->ctm = ctm;
565                 }
566         }
567
568         return 0;
569 }
570
571 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
572 {
573         struct drm_plane_state *old_plane_state, *new_plane_state;
574         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
575         struct vc4_load_tracker_state *load_state;
576         struct drm_private_state *priv_state;
577         struct drm_plane *plane;
578         int i;
579
580         priv_state = drm_atomic_get_private_obj_state(state,
581                                                       &vc4->load_tracker);
582         if (IS_ERR(priv_state))
583                 return PTR_ERR(priv_state);
584
585         load_state = to_vc4_load_tracker_state(priv_state);
586         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
587                                        new_plane_state, i) {
588                 struct vc4_plane_state *vc4_plane_state;
589
590                 if (old_plane_state->fb && old_plane_state->crtc) {
591                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
592                         load_state->membus_load -= vc4_plane_state->membus_load;
593                         load_state->hvs_load -= vc4_plane_state->hvs_load;
594                 }
595
596                 if (new_plane_state->fb && new_plane_state->crtc) {
597                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
598                         load_state->membus_load += vc4_plane_state->membus_load;
599                         load_state->hvs_load += vc4_plane_state->hvs_load;
600                 }
601         }
602
603         /* Don't check the load when the tracker is disabled. */
604         if (!vc4->load_tracker_enabled)
605                 return 0;
606
607         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
608          * the system work when other blocks are accessing the memory.
609          */
610         if (load_state->membus_load > SZ_1G + SZ_512M)
611                 return -ENOSPC;
612
613         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
614          * consider the maximum number of cycles is 240M.
615          */
616         if (load_state->hvs_load > 240000000ULL)
617                 return -ENOSPC;
618
619         return 0;
620 }
621
622 static struct drm_private_state *
623 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
624 {
625         struct vc4_load_tracker_state *state;
626
627         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
628         if (!state)
629                 return NULL;
630
631         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
632
633         return &state->base;
634 }
635
636 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
637                                            struct drm_private_state *state)
638 {
639         struct vc4_load_tracker_state *load_state;
640
641         load_state = to_vc4_load_tracker_state(state);
642         kfree(load_state);
643 }
644
645 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
646         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
647         .atomic_destroy_state = vc4_load_tracker_destroy_state,
648 };
649
650 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
651 {
652         struct vc4_dev *vc4 = to_vc4_dev(dev);
653
654         drm_atomic_private_obj_fini(&vc4->load_tracker);
655 }
656
657 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
658 {
659         struct vc4_load_tracker_state *load_state;
660
661         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
662         if (!load_state)
663                 return -ENOMEM;
664
665         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
666                                     &load_state->base,
667                                     &vc4_load_tracker_state_funcs);
668
669         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
670 }
671
672 static struct drm_private_state *
673 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
674 {
675         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
676         struct vc4_hvs_state *state;
677         unsigned int i;
678
679         state = kzalloc(sizeof(*state), GFP_KERNEL);
680         if (!state)
681                 return NULL;
682
683         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
684
685         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
686                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
687                 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
688         }
689
690         state->core_clock_rate = old_state->core_clock_rate;
691
692         return &state->base;
693 }
694
695 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
696                                            struct drm_private_state *state)
697 {
698         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
699         unsigned int i;
700
701         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
702                 if (!hvs_state->fifo_state[i].pending_commit)
703                         continue;
704
705                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
706         }
707
708         kfree(hvs_state);
709 }
710
711 static void vc4_hvs_channels_print_state(struct drm_printer *p,
712                                          const struct drm_private_state *state)
713 {
714         const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
715         unsigned int i;
716
717         drm_printf(p, "HVS State\n");
718         drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
719
720         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
721                 drm_printf(p, "\tChannel %d\n", i);
722                 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
723                 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
724         }
725 }
726
727 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
728         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
729         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
730         .atomic_print_state = vc4_hvs_channels_print_state,
731 };
732
733 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
734 {
735         struct vc4_dev *vc4 = to_vc4_dev(dev);
736
737         drm_atomic_private_obj_fini(&vc4->hvs_channels);
738 }
739
740 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
741 {
742         struct vc4_hvs_state *state;
743
744         state = kzalloc(sizeof(*state), GFP_KERNEL);
745         if (!state)
746                 return -ENOMEM;
747
748         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
749                                     &state->base,
750                                     &vc4_hvs_state_funcs);
751
752         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
753 }
754
755 static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
756 {
757         const struct vc4_crtc *crtc_a =
758                 to_vc4_crtc(*(const struct drm_crtc **)a);
759         const struct vc4_crtc_data *data_a =
760                 vc4_crtc_to_vc4_crtc_data(crtc_a);
761         const struct vc4_crtc *crtc_b =
762                 to_vc4_crtc(*(const struct drm_crtc **)b);
763         const struct vc4_crtc_data *data_b =
764                 vc4_crtc_to_vc4_crtc_data(crtc_b);
765
766         return data_a->hvs_output - data_b->hvs_output;
767 }
768
769 /*
770  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
771  * the TXP (and therefore all the CRTCs found on that platform).
772  *
773  * The naive (and our initial) implementation would just iterate over
774  * all the active CRTCs, try to find a suitable FIFO, and then remove it
775  * from the pool of available FIFOs. However, there are a few corner
776  * cases that need to be considered:
777  *
778  * - When running in a dual-display setup (so with two CRTCs involved),
779  *   we can update the state of a single CRTC (for example by changing
780  *   its mode using xrandr under X11) without affecting the other. In
781  *   this case, the other CRTC wouldn't be in the state at all, so we
782  *   need to consider all the running CRTCs in the DRM device to assign
783  *   a FIFO, not just the one in the state.
784  *
785  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
786  *   enabled CRTCs to pull their CRTC state into the global state, since
787  *   a page flip would start considering their vblank to complete. Since
788  *   we don't have a guarantee that they are actually active, that
789  *   vblank might never happen, and shouldn't even be considered if we
790  *   want to do a page flip on a single CRTC. That can be tested by
791  *   doing a modetest -v first on HDMI1 and then on HDMI0.
792  *
793  * - Since we need the pixelvalve to be disabled and enabled back when
794  *   the FIFO is changed, we should keep the FIFO assigned for as long
795  *   as the CRTC is enabled, only considering it free again once that
796  *   CRTC has been disabled. This can be tested by booting X11 on a
797  *   single display, and changing the resolution down and then back up.
798  */
799 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
800                                       struct drm_atomic_state *state)
801 {
802         struct vc4_hvs_state *hvs_new_state;
803         struct drm_crtc **sorted_crtcs;
804         struct drm_crtc *crtc;
805         unsigned int unassigned_channels = 0;
806         unsigned int i;
807         int ret;
808
809         hvs_new_state = vc4_hvs_get_global_state(state);
810         if (IS_ERR(hvs_new_state))
811                 return PTR_ERR(hvs_new_state);
812
813         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
814                 if (!hvs_new_state->fifo_state[i].in_use)
815                         unassigned_channels |= BIT(i);
816
817         /*
818          * The problem we have to solve here is that we have up to 7
819          * encoders, connected to up to 6 CRTCs.
820          *
821          * Those CRTCs, depending on the instance, can be routed to 1, 2
822          * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
823          * outputs in the HVS accordingly.
824          *
825          * It would be pretty hard to come up with an algorithm that
826          * would generically solve this. However, the current routing
827          * trees we support allow us to simplify a bit the problem.
828          *
829          * Indeed, with the current supported layouts, if we try to
830          * assign in the ascending crtc index order the FIFOs, we can't
831          * fall into the situation where an earlier CRTC that had
832          * multiple routes is assigned one that was the only option for
833          * a later CRTC.
834          *
835          * If the layout changes and doesn't give us that in the future,
836          * we will need to have something smarter, but it works so far.
837          */
838         sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
839         if (!sorted_crtcs)
840                 return -ENOMEM;
841
842         i = 0;
843         drm_for_each_crtc(crtc, dev)
844                 sorted_crtcs[i++] = crtc;
845
846         sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
847
848         for (i = 0; i < dev->num_crtcs; i++) {
849                 struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
850                 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
851                 struct vc4_crtc *vc4_crtc;
852                 unsigned int matching_channels;
853                 unsigned int channel;
854
855                 crtc = sorted_crtcs[i];
856                 if (!crtc)
857                         continue;
858                 vc4_crtc = to_vc4_crtc(crtc);
859
860                 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
861                 if (!old_crtc_state)
862                         continue;
863                 old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
864
865                 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
866                 if (!new_crtc_state)
867                         continue;
868                 new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
869
870                 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
871
872                 /* Nothing to do here, let's skip it */
873                 if (old_crtc_state->enable == new_crtc_state->enable) {
874                         if (new_crtc_state->enable)
875                                 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
876                                         crtc->name, new_vc4_crtc_state->assigned_channel);
877                         else
878                                 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
879
880                         continue;
881                 }
882
883                 /* Muxing will need to be modified, mark it as such */
884                 new_vc4_crtc_state->update_muxing = true;
885
886                 /* If we're disabling our CRTC, we put back our channel */
887                 if (!new_crtc_state->enable) {
888                         channel = old_vc4_crtc_state->assigned_channel;
889
890                         drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
891                                 crtc->name, channel);
892
893                         hvs_new_state->fifo_state[channel].in_use = false;
894                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
895                         continue;
896                 }
897
898                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
899                 if (!matching_channels) {
900                         ret = -EINVAL;
901                         goto err_free_crtc_array;
902                 }
903
904                 channel = ffs(matching_channels) - 1;
905
906                 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
907                 new_vc4_crtc_state->assigned_channel = channel;
908                 unassigned_channels &= ~BIT(channel);
909                 hvs_new_state->fifo_state[channel].in_use = true;
910         }
911
912         kfree(sorted_crtcs);
913         return 0;
914
915 err_free_crtc_array:
916         kfree(sorted_crtcs);
917         return ret;
918 }
919
920 static int
921 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
922 {
923         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
924         struct drm_private_state *priv_state;
925         struct vc4_hvs_state *hvs_new_state;
926         struct vc4_load_tracker_state *load_state;
927         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
928         struct drm_crtc *crtc;
929         unsigned int num_outputs;
930         unsigned long pixel_rate;
931         unsigned long cob_rate;
932         unsigned int i;
933
934         priv_state = drm_atomic_get_private_obj_state(state,
935                                                       &vc4->load_tracker);
936         if (IS_ERR(priv_state))
937                 return PTR_ERR(priv_state);
938
939         load_state = to_vc4_load_tracker_state(priv_state);
940
941         hvs_new_state = vc4_hvs_get_global_state(state);
942         if (IS_ERR(hvs_new_state))
943                 return PTR_ERR(hvs_new_state);
944
945         for_each_oldnew_crtc_in_state(state, crtc,
946                                       old_crtc_state,
947                                       new_crtc_state,
948                                       i) {
949                 if (old_crtc_state->active) {
950                         struct vc4_crtc_state *old_vc4_state =
951                                 to_vc4_crtc_state(old_crtc_state);
952                         unsigned int channel = old_vc4_state->assigned_channel;
953
954                         hvs_new_state->fifo_state[channel].fifo_load = 0;
955                 }
956
957                 if (new_crtc_state->active) {
958                         struct vc4_crtc_state *new_vc4_state =
959                                 to_vc4_crtc_state(new_crtc_state);
960                         unsigned int channel = new_vc4_state->assigned_channel;
961
962                         hvs_new_state->fifo_state[channel].fifo_load =
963                                 new_vc4_state->hvs_load;
964                 }
965         }
966
967         cob_rate = 0;
968         num_outputs = 0;
969         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
970                 if (!hvs_new_state->fifo_state[i].in_use)
971                         continue;
972
973                 num_outputs++;
974                 cob_rate = max_t(unsigned long,
975                                  hvs_new_state->fifo_state[i].fifo_load,
976                                  cob_rate);
977         }
978
979         pixel_rate = load_state->hvs_load;
980         if (num_outputs > 1) {
981                 pixel_rate = (pixel_rate * 40) / 100;
982         } else {
983                 pixel_rate = (pixel_rate * 60) / 100;
984         }
985
986         hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
987
988         return 0;
989 }
990
991
992 static int
993 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
994 {
995         int ret;
996
997         ret = vc4_pv_muxing_atomic_check(dev, state);
998         if (ret)
999                 return ret;
1000
1001         ret = vc4_ctm_atomic_check(dev, state);
1002         if (ret < 0)
1003                 return ret;
1004
1005         ret = drm_atomic_helper_check(dev, state);
1006         if (ret)
1007                 return ret;
1008
1009         ret = vc4_load_tracker_atomic_check(state);
1010         if (ret)
1011                 return ret;
1012
1013         return vc4_core_clock_atomic_check(state);
1014 }
1015
1016 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
1017         .atomic_commit_setup    = vc4_atomic_commit_setup,
1018         .atomic_commit_tail     = vc4_atomic_commit_tail,
1019 };
1020
1021 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1022         .atomic_check = vc4_atomic_check,
1023         .atomic_commit = drm_atomic_helper_commit,
1024         .fb_create = vc4_fb_create,
1025 };
1026
1027 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1028         .atomic_check = vc4_atomic_check,
1029         .atomic_commit = drm_atomic_helper_commit,
1030         .fb_create = drm_gem_fb_create,
1031 };
1032
1033 int vc4_kms_load(struct drm_device *dev)
1034 {
1035         struct vc4_dev *vc4 = to_vc4_dev(dev);
1036         int ret;
1037
1038         /*
1039          * The limits enforced by the load tracker aren't relevant for
1040          * the BCM2711, but the load tracker computations are used for
1041          * the core clock rate calculation.
1042          */
1043         if (!vc4->is_vc5) {
1044                 /* Start with the load tracker enabled. Can be
1045                  * disabled through the debugfs load_tracker file.
1046                  */
1047                 vc4->load_tracker_enabled = true;
1048         }
1049
1050         /* Set support for vblank irq fast disable, before drm_vblank_init() */
1051         dev->vblank_disable_immediate = true;
1052
1053         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1054         if (ret < 0) {
1055                 dev_err(dev->dev, "failed to initialize vblank\n");
1056                 return ret;
1057         }
1058
1059         if (vc4->is_vc5) {
1060                 dev->mode_config.max_width = 7680;
1061                 dev->mode_config.max_height = 7680;
1062         } else {
1063                 dev->mode_config.max_width = 2048;
1064                 dev->mode_config.max_height = 2048;
1065         }
1066
1067         dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1068         dev->mode_config.helper_private = &vc4_mode_config_helpers;
1069         dev->mode_config.preferred_depth = 24;
1070         dev->mode_config.async_page_flip = true;
1071         dev->mode_config.normalize_zpos = true;
1072
1073         ret = vc4_ctm_obj_init(vc4);
1074         if (ret)
1075                 return ret;
1076
1077         ret = vc4_load_tracker_obj_init(vc4);
1078         if (ret)
1079                 return ret;
1080
1081         ret = vc4_hvs_channels_obj_init(vc4);
1082         if (ret)
1083                 return ret;
1084
1085         drm_mode_config_reset(dev);
1086
1087         drm_kms_helper_poll_init(dev);
1088
1089         return 0;
1090 }