Merge tag 'kvm-ppc-next-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulu...
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/component.h>
23 #include <linux/platform_device.h>
24
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_vblank.h>
27
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
30
31 static const struct debugfs_reg32 hvs_regs[] = {
32         VC4_REG32(SCALER_DISPCTRL),
33         VC4_REG32(SCALER_DISPSTAT),
34         VC4_REG32(SCALER_DISPID),
35         VC4_REG32(SCALER_DISPECTRL),
36         VC4_REG32(SCALER_DISPPROF),
37         VC4_REG32(SCALER_DISPDITHER),
38         VC4_REG32(SCALER_DISPEOLN),
39         VC4_REG32(SCALER_DISPLIST0),
40         VC4_REG32(SCALER_DISPLIST1),
41         VC4_REG32(SCALER_DISPLIST2),
42         VC4_REG32(SCALER_DISPLSTAT),
43         VC4_REG32(SCALER_DISPLACT0),
44         VC4_REG32(SCALER_DISPLACT1),
45         VC4_REG32(SCALER_DISPLACT2),
46         VC4_REG32(SCALER_DISPCTRL0),
47         VC4_REG32(SCALER_DISPBKGND0),
48         VC4_REG32(SCALER_DISPSTAT0),
49         VC4_REG32(SCALER_DISPBASE0),
50         VC4_REG32(SCALER_DISPCTRL1),
51         VC4_REG32(SCALER_DISPBKGND1),
52         VC4_REG32(SCALER_DISPSTAT1),
53         VC4_REG32(SCALER_DISPBASE1),
54         VC4_REG32(SCALER_DISPCTRL2),
55         VC4_REG32(SCALER_DISPBKGND2),
56         VC4_REG32(SCALER_DISPSTAT2),
57         VC4_REG32(SCALER_DISPBASE2),
58         VC4_REG32(SCALER_DISPALPHA2),
59         VC4_REG32(SCALER_OLEDOFFS),
60         VC4_REG32(SCALER_OLEDCOEF0),
61         VC4_REG32(SCALER_OLEDCOEF1),
62         VC4_REG32(SCALER_OLEDCOEF2),
63 };
64
65 void vc4_hvs_dump_state(struct drm_device *dev)
66 {
67         struct vc4_dev *vc4 = to_vc4_dev(dev);
68         struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
69         int i;
70
71         drm_print_regset32(&p, &vc4->hvs->regset);
72
73         DRM_INFO("HVS ctx:\n");
74         for (i = 0; i < 64; i += 4) {
75                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
76                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
77                          readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
78                          readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
79                          readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
80                          readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
81         }
82 }
83
84 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
85 {
86         struct drm_info_node *node = m->private;
87         struct drm_device *dev = node->minor->dev;
88         struct vc4_dev *vc4 = to_vc4_dev(dev);
89         struct drm_printer p = drm_seq_file_printer(m);
90
91         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
92
93         return 0;
94 }
95
96 /* The filter kernel is composed of dwords each containing 3 9-bit
97  * signed integers packed next to each other.
98  */
99 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
100 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
101         ((((c0) & 0x1ff) << 0) |                                \
102          (((c1) & 0x1ff) << 9) |                                \
103          (((c2) & 0x1ff) << 18))
104
105 /* The whole filter kernel is arranged as the coefficients 0-16 going
106  * up, then a pad, then 17-31 going down and reversed within the
107  * dwords.  This means that a linear phase kernel (where it's
108  * symmetrical at the boundary between 15 and 16) has the last 5
109  * dwords matching the first 5, but reversed.
110  */
111 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
112                                 c9, c10, c11, c12, c13, c14, c15)       \
113         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
114          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
115          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
116          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
117          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
118          VC4_PPF_FILTER_WORD(c15, c15, 0)}
119
120 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
121 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
122
123 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
124  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
125  */
126 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
127         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
128                                 50, 82, 119, 155, 187, 213, 227);
129
130 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
131                                         struct drm_mm_node *space,
132                                         const u32 *kernel)
133 {
134         int ret, i;
135         u32 __iomem *dst_kernel;
136
137         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
138         if (ret) {
139                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
140                           ret);
141                 return ret;
142         }
143
144         dst_kernel = hvs->dlist + space->start;
145
146         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
147                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
148                         writel(kernel[i], &dst_kernel[i]);
149                 else {
150                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
151                                &dst_kernel[i]);
152                 }
153         }
154
155         return 0;
156 }
157
158 static void vc4_hvs_lut_load(struct drm_crtc *crtc)
159 {
160         struct drm_device *dev = crtc->dev;
161         struct vc4_dev *vc4 = to_vc4_dev(dev);
162         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
163         u32 i;
164
165         /* The LUT memory is laid out with each HVS channel in order,
166          * each of which takes 256 writes for R, 256 for G, then 256
167          * for B.
168          */
169         HVS_WRITE(SCALER_GAMADDR,
170                   SCALER_GAMADDR_AUTOINC |
171                   (vc4_crtc->channel * 3 * crtc->gamma_size));
172
173         for (i = 0; i < crtc->gamma_size; i++)
174                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
175         for (i = 0; i < crtc->gamma_size; i++)
176                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
177         for (i = 0; i < crtc->gamma_size; i++)
178                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
179 }
180
181 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
182 {
183         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
184         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
185         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
186         u32 i;
187
188         for (i = 0; i < length; i++) {
189                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
190                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
191                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
192         }
193
194         vc4_hvs_lut_load(crtc);
195 }
196
197 int vc4_hvs_atomic_check(struct drm_crtc *crtc,
198                          struct drm_crtc_state *state)
199 {
200         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
201         struct drm_device *dev = crtc->dev;
202         struct vc4_dev *vc4 = to_vc4_dev(dev);
203         struct drm_plane *plane;
204         unsigned long flags;
205         const struct drm_plane_state *plane_state;
206         u32 dlist_count = 0;
207         int ret;
208
209         /* The pixelvalve can only feed one encoder (and encoders are
210          * 1:1 with connectors.)
211          */
212         if (hweight32(state->connector_mask) > 1)
213                 return -EINVAL;
214
215         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
216                 dlist_count += vc4_plane_dlist_size(plane_state);
217
218         dlist_count++; /* Account for SCALER_CTL0_END. */
219
220         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
221         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
222                                  dlist_count);
223         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
224         if (ret)
225                 return ret;
226
227         return 0;
228 }
229
230 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
231 {
232         struct drm_device *dev = crtc->dev;
233         struct vc4_dev *vc4 = to_vc4_dev(dev);
234         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
235         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
236
237         if (crtc->state->event) {
238                 unsigned long flags;
239
240                 crtc->state->event->pipe = drm_crtc_index(crtc);
241
242                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
243
244                 spin_lock_irqsave(&dev->event_lock, flags);
245
246                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
247                         vc4_crtc->event = crtc->state->event;
248                         crtc->state->event = NULL;
249                 }
250
251                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
252                           vc4_state->mm.start);
253
254                 spin_unlock_irqrestore(&dev->event_lock, flags);
255         } else {
256                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
257                           vc4_state->mm.start);
258         }
259 }
260
261 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
262                            struct drm_crtc_state *old_state)
263 {
264         struct drm_device *dev = crtc->dev;
265         struct vc4_dev *vc4 = to_vc4_dev(dev);
266         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
267         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
268         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
269         bool oneshot = vc4_state->feed_txp;
270         u32 dispctrl;
271
272         vc4_hvs_update_dlist(crtc);
273
274         /* Turn on the scaler, which will wait for vstart to start
275          * compositing.
276          * When feeding the transposer, we should operate in oneshot
277          * mode.
278          */
279         dispctrl = SCALER_DISPCTRLX_ENABLE;
280         dispctrl |= VC4_SET_FIELD(mode->hdisplay,
281                                   SCALER_DISPCTRLX_WIDTH) |
282                     VC4_SET_FIELD(mode->vdisplay,
283                                   SCALER_DISPCTRLX_HEIGHT) |
284                     (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
285
286         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), dispctrl);
287 }
288
289 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
290                             struct drm_crtc_state *old_state)
291 {
292         struct drm_device *dev = crtc->dev;
293         struct vc4_dev *vc4 = to_vc4_dev(dev);
294         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
295         u32 chan = vc4_crtc->channel;
296
297         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
298             SCALER_DISPCTRLX_ENABLE) {
299                 HVS_WRITE(SCALER_DISPCTRLX(chan),
300                           SCALER_DISPCTRLX_RESET);
301
302                 /* While the docs say that reset is self-clearing, it
303                  * seems it doesn't actually.
304                  */
305                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
306         }
307
308         /* Once we leave, the scaler should be disabled and its fifo empty. */
309
310         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
311
312         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
313                                    SCALER_DISPSTATX_MODE) !=
314                      SCALER_DISPSTATX_MODE_DISABLED);
315
316         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
317                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
318                      SCALER_DISPSTATX_EMPTY);
319 }
320
321 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
322                           struct drm_crtc_state *old_state)
323 {
324         struct drm_device *dev = crtc->dev;
325         struct vc4_dev *vc4 = to_vc4_dev(dev);
326         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
327         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
328         struct drm_plane *plane;
329         struct vc4_plane_state *vc4_plane_state;
330         bool debug_dump_regs = false;
331         bool enable_bg_fill = false;
332         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
333         u32 __iomem *dlist_next = dlist_start;
334
335         if (debug_dump_regs) {
336                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
337                 vc4_hvs_dump_state(dev);
338         }
339
340         /* Copy all the active planes' dlist contents to the hardware dlist. */
341         drm_atomic_crtc_for_each_plane(plane, crtc) {
342                 /* Is this the first active plane? */
343                 if (dlist_next == dlist_start) {
344                         /* We need to enable background fill when a plane
345                          * could be alpha blending from the background, i.e.
346                          * where no other plane is underneath. It suffices to
347                          * consider the first active plane here since we set
348                          * needs_bg_fill such that either the first plane
349                          * already needs it or all planes on top blend from
350                          * the first or a lower plane.
351                          */
352                         vc4_plane_state = to_vc4_plane_state(plane->state);
353                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
354                 }
355
356                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
357         }
358
359         writel(SCALER_CTL0_END, dlist_next);
360         dlist_next++;
361
362         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
363
364         if (enable_bg_fill)
365                 /* This sets a black background color fill, as is the case
366                  * with other DRM drivers.
367                  */
368                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
369                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
370                           SCALER_DISPBKGND_FILL);
371
372         /* Only update DISPLIST if the CRTC was already running and is not
373          * being disabled.
374          * vc4_crtc_enable() takes care of updating the dlist just after
375          * re-enabling VBLANK interrupts and before enabling the engine.
376          * If the CRTC is being disabled, there's no point in updating this
377          * information.
378          */
379         if (crtc->state->active && old_state->active)
380                 vc4_hvs_update_dlist(crtc);
381
382         if (crtc->state->color_mgmt_changed) {
383                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
384
385                 if (crtc->state->gamma_lut) {
386                         vc4_hvs_update_gamma_lut(crtc);
387                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
388                 } else {
389                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
390                          * in hardware, which is the same as a linear lut that
391                          * DRM expects us to use in absence of a user lut.
392                          */
393                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
394                 }
395                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
396         }
397
398         if (debug_dump_regs) {
399                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
400                 vc4_hvs_dump_state(dev);
401         }
402 }
403
404 void vc4_hvs_mode_set_nofb(struct drm_crtc *crtc)
405 {
406         struct drm_device *dev = crtc->dev;
407         struct vc4_dev *vc4 = to_vc4_dev(dev);
408         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
409         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
410         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
411         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
412
413         if (vc4_crtc->data->hvs_channel == 2) {
414                 u32 dispctrl;
415                 u32 dsp3_mux;
416
417                 /*
418                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
419                  * FIFO X'.
420                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
421                  *
422                  * DSP3 is connected to FIFO2 unless the transposer is
423                  * enabled. In this case, FIFO 2 is directly accessed by the
424                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
425                  * route.
426                  */
427                 if (vc4_state->feed_txp)
428                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
429                 else
430                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
431
432                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
433                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
434                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
435         }
436
437         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
438                   SCALER_DISPBKGND_AUTOHS |
439                   SCALER_DISPBKGND_GAMMA |
440                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
441
442         /* Reload the LUT, since the SRAMs would have been disabled if
443          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
444          */
445         vc4_hvs_lut_load(crtc);
446 }
447
448 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
449 {
450         struct vc4_dev *vc4 = to_vc4_dev(dev);
451         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
452
453         dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
454
455         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
456 }
457
458 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
459 {
460         struct vc4_dev *vc4 = to_vc4_dev(dev);
461         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
462
463         dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
464
465         HVS_WRITE(SCALER_DISPSTAT,
466                   SCALER_DISPSTAT_EUFLOW(channel));
467         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
468 }
469
470 static void vc4_hvs_report_underrun(struct drm_device *dev)
471 {
472         struct vc4_dev *vc4 = to_vc4_dev(dev);
473
474         atomic_inc(&vc4->underrun);
475         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
476 }
477
478 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
479 {
480         struct drm_device *dev = data;
481         struct vc4_dev *vc4 = to_vc4_dev(dev);
482         irqreturn_t irqret = IRQ_NONE;
483         int channel;
484         u32 control;
485         u32 status;
486
487         status = HVS_READ(SCALER_DISPSTAT);
488         control = HVS_READ(SCALER_DISPCTRL);
489
490         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
491                 /* Interrupt masking is not always honored, so check it here. */
492                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
493                     control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
494                         vc4_hvs_mask_underrun(dev, channel);
495                         vc4_hvs_report_underrun(dev);
496
497                         irqret = IRQ_HANDLED;
498                 }
499         }
500
501         /* Clear every per-channel interrupt flag. */
502         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
503                                    SCALER_DISPSTAT_IRQMASK(1) |
504                                    SCALER_DISPSTAT_IRQMASK(2));
505
506         return irqret;
507 }
508
509 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
510 {
511         struct platform_device *pdev = to_platform_device(dev);
512         struct drm_device *drm = dev_get_drvdata(master);
513         struct vc4_dev *vc4 = drm->dev_private;
514         struct vc4_hvs *hvs = NULL;
515         int ret;
516         u32 dispctrl;
517
518         hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
519         if (!hvs)
520                 return -ENOMEM;
521
522         hvs->pdev = pdev;
523
524         hvs->regs = vc4_ioremap_regs(pdev, 0);
525         if (IS_ERR(hvs->regs))
526                 return PTR_ERR(hvs->regs);
527
528         hvs->regset.base = hvs->regs;
529         hvs->regset.regs = hvs_regs;
530         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
531
532         hvs->dlist = hvs->regs + SCALER_DLIST_START;
533
534         spin_lock_init(&hvs->mm_lock);
535
536         /* Set up the HVS display list memory manager.  We never
537          * overwrite the setup from the bootloader (just 128b out of
538          * our 16K), since we don't want to scramble the screen when
539          * transitioning from the firmware's boot setup to runtime.
540          */
541         drm_mm_init(&hvs->dlist_mm,
542                     HVS_BOOTLOADER_DLIST_END,
543                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
544
545         /* Set up the HVS LBM memory manager.  We could have some more
546          * complicated data structure that allowed reuse of LBM areas
547          * between planes when they don't overlap on the screen, but
548          * for now we just allocate globally.
549          */
550         drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
551
552         /* Upload filter kernels.  We only have the one for now, so we
553          * keep it around for the lifetime of the driver.
554          */
555         ret = vc4_hvs_upload_linear_kernel(hvs,
556                                            &hvs->mitchell_netravali_filter,
557                                            mitchell_netravali_1_3_1_3_kernel);
558         if (ret)
559                 return ret;
560
561         vc4->hvs = hvs;
562
563         dispctrl = HVS_READ(SCALER_DISPCTRL);
564
565         dispctrl |= SCALER_DISPCTRL_ENABLE;
566         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
567                     SCALER_DISPCTRL_DISPEIRQ(1) |
568                     SCALER_DISPCTRL_DISPEIRQ(2);
569
570         /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
571          * be unused.
572          */
573         dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
574         dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
575                       SCALER_DISPCTRL_SLVWREIRQ |
576                       SCALER_DISPCTRL_SLVRDEIRQ |
577                       SCALER_DISPCTRL_DSPEIEOF(0) |
578                       SCALER_DISPCTRL_DSPEIEOF(1) |
579                       SCALER_DISPCTRL_DSPEIEOF(2) |
580                       SCALER_DISPCTRL_DSPEIEOLN(0) |
581                       SCALER_DISPCTRL_DSPEIEOLN(1) |
582                       SCALER_DISPCTRL_DSPEIEOLN(2) |
583                       SCALER_DISPCTRL_DSPEISLUR(0) |
584                       SCALER_DISPCTRL_DSPEISLUR(1) |
585                       SCALER_DISPCTRL_DSPEISLUR(2) |
586                       SCALER_DISPCTRL_SCLEIRQ);
587         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
588
589         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
590
591         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
592                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
593         if (ret)
594                 return ret;
595
596         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
597         vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
598                              NULL);
599
600         return 0;
601 }
602
603 static void vc4_hvs_unbind(struct device *dev, struct device *master,
604                            void *data)
605 {
606         struct drm_device *drm = dev_get_drvdata(master);
607         struct vc4_dev *vc4 = drm->dev_private;
608
609         if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
610                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
611
612         drm_mm_takedown(&vc4->hvs->dlist_mm);
613         drm_mm_takedown(&vc4->hvs->lbm_mm);
614
615         vc4->hvs = NULL;
616 }
617
618 static const struct component_ops vc4_hvs_ops = {
619         .bind   = vc4_hvs_bind,
620         .unbind = vc4_hvs_unbind,
621 };
622
623 static int vc4_hvs_dev_probe(struct platform_device *pdev)
624 {
625         return component_add(&pdev->dev, &vc4_hvs_ops);
626 }
627
628 static int vc4_hvs_dev_remove(struct platform_device *pdev)
629 {
630         component_del(&pdev->dev, &vc4_hvs_ops);
631         return 0;
632 }
633
634 static const struct of_device_id vc4_hvs_dt_match[] = {
635         { .compatible = "brcm,bcm2835-hvs" },
636         {}
637 };
638
639 struct platform_driver vc4_hvs_driver = {
640         .probe = vc4_hvs_dev_probe,
641         .remove = vc4_hvs_dev_remove,
642         .driver = {
643                 .name = "vc4_hvs",
644                 .of_match_table = vc4_hvs_dt_match,
645         },
646 };