2 * Copyright © 2014 Broadcom
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
32 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_trace.h"
38 vc4_queue_hangcheck(struct drm_device *dev)
40 struct vc4_dev *vc4 = to_vc4_dev(dev);
42 mod_timer(&vc4->hangcheck.timer,
43 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 struct vc4_hang_state {
47 struct drm_vc4_get_hang_state user_state;
50 struct drm_gem_object **bo;
54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
58 for (i = 0; i < state->user_state.bo_count; i++)
59 drm_gem_object_put_unlocked(state->bo[i]);
65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
66 struct drm_file *file_priv)
68 struct drm_vc4_get_hang_state *get_state = data;
69 struct drm_vc4_get_hang_state_bo *bo_state;
70 struct vc4_hang_state *kernel_state;
71 struct drm_vc4_get_hang_state *state;
72 struct vc4_dev *vc4 = to_vc4_dev(dev);
73 unsigned long irqflags;
77 spin_lock_irqsave(&vc4->job_lock, irqflags);
78 kernel_state = vc4->hang_state;
80 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
83 state = &kernel_state->user_state;
85 /* If the user's array isn't big enough, just return the
86 * required array size.
88 if (get_state->bo_count < state->bo_count) {
89 get_state->bo_count = state->bo_count;
90 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
94 vc4->hang_state = NULL;
95 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
97 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
98 state->bo = get_state->bo;
99 memcpy(get_state, state, sizeof(*state));
101 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
107 for (i = 0; i < state->bo_count; i++) {
108 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
111 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
116 goto err_delete_handle;
118 bo_state[i].handle = handle;
119 bo_state[i].paddr = vc4_bo->base.paddr;
120 bo_state[i].size = vc4_bo->base.base.size;
123 if (copy_to_user(u64_to_user_ptr(get_state->bo),
125 state->bo_count * sizeof(*bo_state)))
130 for (i = 0; i < state->bo_count; i++)
131 drm_gem_handle_delete(file_priv, bo_state[i].handle);
135 vc4_free_hang_state(dev, kernel_state);
142 vc4_save_hang_state(struct drm_device *dev)
144 struct vc4_dev *vc4 = to_vc4_dev(dev);
145 struct drm_vc4_get_hang_state *state;
146 struct vc4_hang_state *kernel_state;
147 struct vc4_exec_info *exec[2];
149 unsigned long irqflags;
150 unsigned int i, j, k, unref_list_count;
152 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
156 state = &kernel_state->user_state;
158 spin_lock_irqsave(&vc4->job_lock, irqflags);
159 exec[0] = vc4_first_bin_job(vc4);
160 exec[1] = vc4_first_render_job(vc4);
161 if (!exec[0] && !exec[1]) {
162 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
166 /* Get the bos from both binner and renderer into hang state. */
168 for (i = 0; i < 2; i++) {
172 unref_list_count = 0;
173 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
175 state->bo_count += exec[i]->bo_count + unref_list_count;
178 kernel_state->bo = kcalloc(state->bo_count,
179 sizeof(*kernel_state->bo), GFP_ATOMIC);
181 if (!kernel_state->bo) {
182 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
187 for (i = 0; i < 2; i++) {
191 for (j = 0; j < exec[i]->bo_count; j++) {
192 bo = to_vc4_bo(&exec[i]->bo[j]->base);
194 /* Retain BOs just in case they were marked purgeable.
195 * This prevents the BO from being purged before
196 * someone had a chance to dump the hang state.
198 WARN_ON(!refcount_read(&bo->usecnt));
199 refcount_inc(&bo->usecnt);
200 drm_gem_object_get(&exec[i]->bo[j]->base);
201 kernel_state->bo[k++] = &exec[i]->bo[j]->base;
204 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
205 /* No need to retain BOs coming from the ->unref_list
206 * because they are naturally unpurgeable.
208 drm_gem_object_get(&bo->base.base);
209 kernel_state->bo[k++] = &bo->base.base;
213 WARN_ON_ONCE(k != state->bo_count);
216 state->start_bin = exec[0]->ct0ca;
218 state->start_render = exec[1]->ct1ca;
220 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
222 state->ct0ca = V3D_READ(V3D_CTNCA(0));
223 state->ct0ea = V3D_READ(V3D_CTNEA(0));
225 state->ct1ca = V3D_READ(V3D_CTNCA(1));
226 state->ct1ea = V3D_READ(V3D_CTNEA(1));
228 state->ct0cs = V3D_READ(V3D_CTNCS(0));
229 state->ct1cs = V3D_READ(V3D_CTNCS(1));
231 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
232 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
234 state->bpca = V3D_READ(V3D_BPCA);
235 state->bpcs = V3D_READ(V3D_BPCS);
236 state->bpoa = V3D_READ(V3D_BPOA);
237 state->bpos = V3D_READ(V3D_BPOS);
239 state->vpmbase = V3D_READ(V3D_VPMBASE);
241 state->dbge = V3D_READ(V3D_DBGE);
242 state->fdbgo = V3D_READ(V3D_FDBGO);
243 state->fdbgb = V3D_READ(V3D_FDBGB);
244 state->fdbgr = V3D_READ(V3D_FDBGR);
245 state->fdbgs = V3D_READ(V3D_FDBGS);
246 state->errstat = V3D_READ(V3D_ERRSTAT);
248 /* We need to turn purgeable BOs into unpurgeable ones so that
249 * userspace has a chance to dump the hang state before the kernel
250 * decides to purge those BOs.
251 * Note that BO consistency at dump time cannot be guaranteed. For
252 * example, if the owner of these BOs decides to re-use them or mark
253 * them purgeable again there's nothing we can do to prevent it.
255 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
256 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
258 if (bo->madv == __VC4_MADV_NOTSUPP)
261 mutex_lock(&bo->madv_lock);
262 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
263 bo->madv = VC4_MADV_WILLNEED;
264 refcount_dec(&bo->usecnt);
265 mutex_unlock(&bo->madv_lock);
268 spin_lock_irqsave(&vc4->job_lock, irqflags);
269 if (vc4->hang_state) {
270 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
271 vc4_free_hang_state(dev, kernel_state);
273 vc4->hang_state = kernel_state;
274 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
279 vc4_reset(struct drm_device *dev)
281 struct vc4_dev *vc4 = to_vc4_dev(dev);
283 DRM_INFO("Resetting GPU.\n");
285 mutex_lock(&vc4->power_lock);
286 if (vc4->power_refcount) {
287 /* Power the device off and back on the by dropping the
288 * reference on runtime PM.
290 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
291 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
293 mutex_unlock(&vc4->power_lock);
297 /* Rearm the hangcheck -- another job might have been waiting
298 * for our hung one to get kicked off, and vc4_irq_reset()
299 * would have started it.
301 vc4_queue_hangcheck(dev);
305 vc4_reset_work(struct work_struct *work)
307 struct vc4_dev *vc4 =
308 container_of(work, struct vc4_dev, hangcheck.reset_work);
310 vc4_save_hang_state(vc4->dev);
316 vc4_hangcheck_elapsed(struct timer_list *t)
318 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
319 struct drm_device *dev = vc4->dev;
320 uint32_t ct0ca, ct1ca;
321 unsigned long irqflags;
322 struct vc4_exec_info *bin_exec, *render_exec;
324 spin_lock_irqsave(&vc4->job_lock, irqflags);
326 bin_exec = vc4_first_bin_job(vc4);
327 render_exec = vc4_first_render_job(vc4);
329 /* If idle, we can stop watching for hangs. */
330 if (!bin_exec && !render_exec) {
331 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
335 ct0ca = V3D_READ(V3D_CTNCA(0));
336 ct1ca = V3D_READ(V3D_CTNCA(1));
338 /* If we've made any progress in execution, rearm the timer
341 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
342 (render_exec && ct1ca != render_exec->last_ct1ca)) {
344 bin_exec->last_ct0ca = ct0ca;
346 render_exec->last_ct1ca = ct1ca;
347 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
348 vc4_queue_hangcheck(dev);
352 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
354 /* We've gone too long with no progress, reset. This has to
355 * be done from a work struct, since resetting can sleep and
356 * this timer hook isn't allowed to.
358 schedule_work(&vc4->hangcheck.reset_work);
362 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
364 struct vc4_dev *vc4 = to_vc4_dev(dev);
366 /* Set the current and end address of the control list.
367 * Writing the end register is what starts the job.
369 V3D_WRITE(V3D_CTNCA(thread), start);
370 V3D_WRITE(V3D_CTNEA(thread), end);
374 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
377 struct vc4_dev *vc4 = to_vc4_dev(dev);
379 unsigned long timeout_expire;
382 if (vc4->finished_seqno >= seqno)
388 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
390 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
392 prepare_to_wait(&vc4->job_wait_queue, &wait,
393 interruptible ? TASK_INTERRUPTIBLE :
394 TASK_UNINTERRUPTIBLE);
396 if (interruptible && signal_pending(current)) {
401 if (vc4->finished_seqno >= seqno)
404 if (timeout_ns != ~0ull) {
405 if (time_after_eq(jiffies, timeout_expire)) {
409 schedule_timeout(timeout_expire - jiffies);
415 finish_wait(&vc4->job_wait_queue, &wait);
416 trace_vc4_wait_for_seqno_end(dev, seqno);
422 vc4_flush_caches(struct drm_device *dev)
424 struct vc4_dev *vc4 = to_vc4_dev(dev);
426 /* Flush the GPU L2 caches. These caches sit on top of system
427 * L3 (the 128kb or so shared with the CPU), and are
428 * non-allocating in the L3.
430 V3D_WRITE(V3D_L2CACTL,
433 V3D_WRITE(V3D_SLCACTL,
434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
435 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
436 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
437 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
441 vc4_flush_texture_caches(struct drm_device *dev)
443 struct vc4_dev *vc4 = to_vc4_dev(dev);
445 V3D_WRITE(V3D_L2CACTL,
448 V3D_WRITE(V3D_SLCACTL,
449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
450 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
453 /* Sets the registers for the next job to be actually be executed in
456 * The job_lock should be held during this.
459 vc4_submit_next_bin_job(struct drm_device *dev)
461 struct vc4_dev *vc4 = to_vc4_dev(dev);
462 struct vc4_exec_info *exec;
465 exec = vc4_first_bin_job(vc4);
469 vc4_flush_caches(dev);
471 /* Only start the perfmon if it was not already started by a previous
474 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
475 vc4_perfmon_start(vc4, exec->perfmon);
477 /* Either put the job in the binner if it uses the binner, or
478 * immediately move it to the to-be-rendered queue.
480 if (exec->ct0ca != exec->ct0ea) {
481 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
483 struct vc4_exec_info *next;
485 vc4_move_job_to_render(dev, exec);
486 next = vc4_first_bin_job(vc4);
488 /* We can't start the next bin job if the previous job had a
489 * different perfmon instance attached to it. The same goes
490 * if one of them had a perfmon attached to it and the other
493 if (next && next->perfmon == exec->perfmon)
499 vc4_submit_next_render_job(struct drm_device *dev)
501 struct vc4_dev *vc4 = to_vc4_dev(dev);
502 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
507 /* A previous RCL may have written to one of our textures, and
508 * our full cache flush at bin time may have occurred before
509 * that RCL completed. Flush the texture cache now, but not
510 * the instructions or uniforms (since we don't write those
513 vc4_flush_texture_caches(dev);
515 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
519 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
521 struct vc4_dev *vc4 = to_vc4_dev(dev);
522 bool was_empty = list_empty(&vc4->render_job_list);
524 list_move_tail(&exec->head, &vc4->render_job_list);
526 vc4_submit_next_render_job(dev);
530 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
535 for (i = 0; i < exec->bo_count; i++) {
536 bo = to_vc4_bo(&exec->bo[i]->base);
539 reservation_object_add_shared_fence(bo->resv, exec->fence);
542 list_for_each_entry(bo, &exec->unref_list, unref_head) {
546 for (i = 0; i < exec->rcl_write_bo_count; i++) {
547 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
548 bo->write_seqno = seqno;
550 reservation_object_add_excl_fence(bo->resv, exec->fence);
555 vc4_unlock_bo_reservations(struct drm_device *dev,
556 struct vc4_exec_info *exec,
557 struct ww_acquire_ctx *acquire_ctx)
561 for (i = 0; i < exec->bo_count; i++) {
562 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
564 ww_mutex_unlock(&bo->resv->lock);
567 ww_acquire_fini(acquire_ctx);
570 /* Takes the reservation lock on all the BOs being referenced, so that
571 * at queue submit time we can update the reservations.
573 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
574 * (all of which are on exec->unref_list). They're entirely private
575 * to vc4, so we don't attach dma-buf fences to them.
578 vc4_lock_bo_reservations(struct drm_device *dev,
579 struct vc4_exec_info *exec,
580 struct ww_acquire_ctx *acquire_ctx)
582 int contended_lock = -1;
586 ww_acquire_init(acquire_ctx, &reservation_ww_class);
589 if (contended_lock != -1) {
590 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
591 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
594 ww_acquire_done(acquire_ctx);
599 for (i = 0; i < exec->bo_count; i++) {
600 if (i == contended_lock)
603 bo = to_vc4_bo(&exec->bo[i]->base);
605 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
609 for (j = 0; j < i; j++) {
610 bo = to_vc4_bo(&exec->bo[j]->base);
611 ww_mutex_unlock(&bo->resv->lock);
614 if (contended_lock != -1 && contended_lock >= i) {
615 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
617 ww_mutex_unlock(&bo->resv->lock);
620 if (ret == -EDEADLK) {
625 ww_acquire_done(acquire_ctx);
630 ww_acquire_done(acquire_ctx);
632 /* Reserve space for our shared (read-only) fence references,
633 * before we commit the CL to the hardware.
635 for (i = 0; i < exec->bo_count; i++) {
636 bo = to_vc4_bo(&exec->bo[i]->base);
638 ret = reservation_object_reserve_shared(bo->resv);
640 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
648 /* Queues a struct vc4_exec_info for execution. If no job is
649 * currently executing, then submits it.
651 * Unlike most GPUs, our hardware only handles one command list at a
652 * time. To queue multiple jobs at once, we'd need to edit the
653 * previous command list to have a jump to the new one at the end, and
654 * then bump the end address. That's a change for a later date,
658 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
659 struct ww_acquire_ctx *acquire_ctx,
660 struct drm_syncobj *out_sync)
662 struct vc4_dev *vc4 = to_vc4_dev(dev);
663 struct vc4_exec_info *renderjob;
665 unsigned long irqflags;
666 struct vc4_fence *fence;
668 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
673 spin_lock_irqsave(&vc4->job_lock, irqflags);
675 seqno = ++vc4->emit_seqno;
678 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
679 vc4->dma_fence_context, exec->seqno);
680 fence->seqno = exec->seqno;
681 exec->fence = &fence->base;
684 drm_syncobj_replace_fence(out_sync, exec->fence);
686 vc4_update_bo_seqnos(exec, seqno);
688 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
690 list_add_tail(&exec->head, &vc4->bin_job_list);
692 /* If no bin job was executing and if the render job (if any) has the
693 * same perfmon as our job attached to it (or if both jobs don't have
694 * perfmon activated), then kick ours off. Otherwise, it'll get
695 * started when the previous job's flush/render done interrupt occurs.
697 renderjob = vc4_first_render_job(vc4);
698 if (vc4_first_bin_job(vc4) == exec &&
699 (!renderjob || renderjob->perfmon == exec->perfmon)) {
700 vc4_submit_next_bin_job(dev);
701 vc4_queue_hangcheck(dev);
704 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
710 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
711 * referenced by the job.
713 * @file_priv: DRM file for this fd
714 * @exec: V3D job being set up
716 * The command validator needs to reference BOs by their index within
717 * the submitted job's BO list. This does the validation of the job's
718 * BO list and reference counting for the lifetime of the job.
721 vc4_cl_lookup_bos(struct drm_device *dev,
722 struct drm_file *file_priv,
723 struct vc4_exec_info *exec)
725 struct drm_vc4_submit_cl *args = exec->args;
730 exec->bo_count = args->bo_handle_count;
732 if (!exec->bo_count) {
733 /* See comment on bo_index for why we have to check
736 DRM_DEBUG("Rendering requires BOs to validate\n");
740 exec->bo = kvmalloc_array(exec->bo_count,
741 sizeof(struct drm_gem_cma_object *),
742 GFP_KERNEL | __GFP_ZERO);
744 DRM_ERROR("Failed to allocate validated BO pointers\n");
748 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
751 DRM_ERROR("Failed to allocate incoming GEM handles\n");
755 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
756 exec->bo_count * sizeof(uint32_t))) {
758 DRM_ERROR("Failed to copy in GEM handles\n");
762 spin_lock(&file_priv->table_lock);
763 for (i = 0; i < exec->bo_count; i++) {
764 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
767 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
773 drm_gem_object_get(bo);
774 exec->bo[i] = (struct drm_gem_cma_object *)bo;
776 spin_unlock(&file_priv->table_lock);
781 for (i = 0; i < exec->bo_count; i++) {
782 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
784 goto fail_dec_usecnt;
791 /* Decrease usecnt on acquired objects.
792 * We cannot rely on vc4_complete_exec() to release resources here,
793 * because vc4_complete_exec() has no information about which BO has
794 * had its ->usecnt incremented.
795 * To make things easier we just free everything explicitly and set
796 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
799 for (i-- ; i >= 0; i--)
800 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
803 /* Release any reference to acquired objects. */
804 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
805 drm_gem_object_put_unlocked(&exec->bo[i]->base);
815 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
817 struct drm_vc4_submit_cl *args = exec->args;
821 uint32_t bin_offset = 0;
822 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
824 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
825 uint32_t exec_size = uniforms_offset + args->uniforms_size;
826 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
827 args->shader_rec_count);
830 if (shader_rec_offset < args->bin_cl_size ||
831 uniforms_offset < shader_rec_offset ||
832 exec_size < uniforms_offset ||
833 args->shader_rec_count >= (UINT_MAX /
834 sizeof(struct vc4_shader_state)) ||
835 temp_size < exec_size) {
836 DRM_DEBUG("overflow in exec arguments\n");
841 /* Allocate space where we'll store the copied in user command lists
842 * and shader records.
844 * We don't just copy directly into the BOs because we need to
845 * read the contents back for validation, and I think the
846 * bo->vaddr is uncached access.
848 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
850 DRM_ERROR("Failed to allocate storage for copying "
851 "in bin/render CLs.\n");
855 bin = temp + bin_offset;
856 exec->shader_rec_u = temp + shader_rec_offset;
857 exec->uniforms_u = temp + uniforms_offset;
858 exec->shader_state = temp + exec_size;
859 exec->shader_state_size = args->shader_rec_count;
861 if (copy_from_user(bin,
862 u64_to_user_ptr(args->bin_cl),
863 args->bin_cl_size)) {
868 if (copy_from_user(exec->shader_rec_u,
869 u64_to_user_ptr(args->shader_rec),
870 args->shader_rec_size)) {
875 if (copy_from_user(exec->uniforms_u,
876 u64_to_user_ptr(args->uniforms),
877 args->uniforms_size)) {
882 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
884 DRM_ERROR("Couldn't allocate BO for binning\n");
888 exec->exec_bo = &bo->base;
890 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
893 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
897 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
898 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
899 exec->shader_rec_size = args->shader_rec_size;
901 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
902 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
903 exec->uniforms_size = args->uniforms_size;
905 ret = vc4_validate_bin_cl(dev,
906 exec->exec_bo->vaddr + bin_offset,
912 ret = vc4_validate_shader_recs(dev, exec);
916 /* Block waiting on any previous rendering into the CS's VBO,
917 * IB, or textures, so that pixels are actually written by the
918 * time we try to read them.
920 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
928 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
930 struct vc4_dev *vc4 = to_vc4_dev(dev);
931 unsigned long irqflags;
934 /* If we got force-completed because of GPU reset rather than
935 * through our IRQ handler, signal the fence now.
938 dma_fence_signal(exec->fence);
939 dma_fence_put(exec->fence);
943 for (i = 0; i < exec->bo_count; i++) {
944 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
946 vc4_bo_dec_usecnt(bo);
947 drm_gem_object_put_unlocked(&exec->bo[i]->base);
952 while (!list_empty(&exec->unref_list)) {
953 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
954 struct vc4_bo, unref_head);
955 list_del(&bo->unref_head);
956 drm_gem_object_put_unlocked(&bo->base.base);
959 /* Free up the allocation of any bin slots we used. */
960 spin_lock_irqsave(&vc4->job_lock, irqflags);
961 vc4->bin_alloc_used &= ~exec->bin_slots;
962 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
964 /* Release the reference we had on the perf monitor. */
965 vc4_perfmon_put(exec->perfmon);
967 mutex_lock(&vc4->power_lock);
968 if (--vc4->power_refcount == 0) {
969 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
970 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
972 mutex_unlock(&vc4->power_lock);
978 vc4_job_handle_completed(struct vc4_dev *vc4)
980 unsigned long irqflags;
981 struct vc4_seqno_cb *cb, *cb_temp;
983 spin_lock_irqsave(&vc4->job_lock, irqflags);
984 while (!list_empty(&vc4->job_done_list)) {
985 struct vc4_exec_info *exec =
986 list_first_entry(&vc4->job_done_list,
987 struct vc4_exec_info, head);
988 list_del(&exec->head);
990 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
991 vc4_complete_exec(vc4->dev, exec);
992 spin_lock_irqsave(&vc4->job_lock, irqflags);
995 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
996 if (cb->seqno <= vc4->finished_seqno) {
997 list_del_init(&cb->work.entry);
998 schedule_work(&cb->work);
1002 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1005 static void vc4_seqno_cb_work(struct work_struct *work)
1007 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1012 int vc4_queue_seqno_cb(struct drm_device *dev,
1013 struct vc4_seqno_cb *cb, uint64_t seqno,
1014 void (*func)(struct vc4_seqno_cb *cb))
1016 struct vc4_dev *vc4 = to_vc4_dev(dev);
1018 unsigned long irqflags;
1021 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1023 spin_lock_irqsave(&vc4->job_lock, irqflags);
1024 if (seqno > vc4->finished_seqno) {
1026 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1028 schedule_work(&cb->work);
1030 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1035 /* Scheduled when any job has been completed, this walks the list of
1036 * jobs that had completed and unrefs their BOs and frees their exec
1040 vc4_job_done_work(struct work_struct *work)
1042 struct vc4_dev *vc4 =
1043 container_of(work, struct vc4_dev, job_done_work);
1045 vc4_job_handle_completed(vc4);
1049 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1051 uint64_t *timeout_ns)
1053 unsigned long start = jiffies;
1054 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1056 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1057 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1059 if (*timeout_ns >= delta)
1060 *timeout_ns -= delta;
1067 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1070 struct drm_vc4_wait_seqno *args = data;
1072 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1077 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1081 struct drm_vc4_wait_bo *args = data;
1082 struct drm_gem_object *gem_obj;
1088 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1090 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1093 bo = to_vc4_bo(gem_obj);
1095 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1098 drm_gem_object_put_unlocked(gem_obj);
1103 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1105 * @data: ioctl argument
1106 * @file_priv: DRM file for this fd
1108 * This is the main entrypoint for userspace to submit a 3D frame to
1109 * the GPU. Userspace provides the binner command list (if
1110 * applicable), and the kernel sets up the render command list to draw
1111 * to the framebuffer described in the ioctl, using the command lists
1112 * that the 3D engine's binner will produce.
1115 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1116 struct drm_file *file_priv)
1118 struct vc4_dev *vc4 = to_vc4_dev(dev);
1119 struct vc4_file *vc4file = file_priv->driver_priv;
1120 struct drm_vc4_submit_cl *args = data;
1121 struct drm_syncobj *out_sync = NULL;
1122 struct vc4_exec_info *exec;
1123 struct ww_acquire_ctx acquire_ctx;
1124 struct dma_fence *in_fence;
1127 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1128 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1129 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1130 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1131 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1135 if (args->pad2 != 0) {
1136 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1140 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1142 DRM_ERROR("malloc failure on exec struct\n");
1146 mutex_lock(&vc4->power_lock);
1147 if (vc4->power_refcount++ == 0) {
1148 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1150 mutex_unlock(&vc4->power_lock);
1151 vc4->power_refcount--;
1156 mutex_unlock(&vc4->power_lock);
1159 INIT_LIST_HEAD(&exec->unref_list);
1161 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1165 if (args->perfmonid) {
1166 exec->perfmon = vc4_perfmon_find(vc4file,
1168 if (!exec->perfmon) {
1174 if (args->in_sync) {
1175 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1180 /* When the fence (or fence array) is exclusively from our
1181 * context we can skip the wait since jobs are executed in
1182 * order of their submission through this ioctl and this can
1183 * only have fences from a prior job.
1185 if (!dma_fence_match_context(in_fence,
1186 vc4->dma_fence_context)) {
1187 ret = dma_fence_wait(in_fence, true);
1189 dma_fence_put(in_fence);
1194 dma_fence_put(in_fence);
1197 if (exec->args->bin_cl_size != 0) {
1198 ret = vc4_get_bcl(dev, exec);
1206 ret = vc4_get_rcl(dev, exec);
1210 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1214 if (args->out_sync) {
1215 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1221 /* We replace the fence in out_sync in vc4_queue_submit since
1222 * the render job could execute immediately after that call.
1223 * If it finishes before our ioctl processing resumes the
1224 * render job fence could already have been freed.
1228 /* Clear this out of the struct we'll be putting in the queue,
1229 * since it's part of our stack.
1233 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1235 /* The syncobj isn't part of the exec data and we need to free our
1236 * reference even if job submission failed.
1239 drm_syncobj_put(out_sync);
1244 /* Return the seqno for our job. */
1245 args->seqno = vc4->emit_seqno;
1250 vc4_complete_exec(vc4->dev, exec);
1256 vc4_gem_init(struct drm_device *dev)
1258 struct vc4_dev *vc4 = to_vc4_dev(dev);
1260 vc4->dma_fence_context = dma_fence_context_alloc(1);
1262 INIT_LIST_HEAD(&vc4->bin_job_list);
1263 INIT_LIST_HEAD(&vc4->render_job_list);
1264 INIT_LIST_HEAD(&vc4->job_done_list);
1265 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1266 spin_lock_init(&vc4->job_lock);
1268 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1269 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1271 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1273 mutex_init(&vc4->power_lock);
1275 INIT_LIST_HEAD(&vc4->purgeable.list);
1276 mutex_init(&vc4->purgeable.lock);
1280 vc4_gem_destroy(struct drm_device *dev)
1282 struct vc4_dev *vc4 = to_vc4_dev(dev);
1284 /* Waiting for exec to finish would need to be done before
1285 * unregistering V3D.
1287 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1289 /* V3D should already have disabled its interrupt and cleared
1290 * the overflow allocation registers. Now free the object.
1293 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1297 if (vc4->hang_state)
1298 vc4_free_hang_state(dev, vc4->hang_state);
1301 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1302 struct drm_file *file_priv)
1304 struct drm_vc4_gem_madvise *args = data;
1305 struct drm_gem_object *gem_obj;
1309 switch (args->madv) {
1310 case VC4_MADV_DONTNEED:
1311 case VC4_MADV_WILLNEED:
1320 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1322 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1326 bo = to_vc4_bo(gem_obj);
1328 /* Only BOs exposed to userspace can be purged. */
1329 if (bo->madv == __VC4_MADV_NOTSUPP) {
1330 DRM_DEBUG("madvise not supported on this BO\n");
1335 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1336 * not until proven otherwise.
1338 if (gem_obj->import_attach) {
1339 DRM_DEBUG("madvise not supported on imported BOs\n");
1344 mutex_lock(&bo->madv_lock);
1346 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1347 !refcount_read(&bo->usecnt)) {
1348 /* If the BO is about to be marked as purgeable, is not used
1349 * and is not already purgeable or purged, add it to the
1352 vc4_bo_add_to_purgeable_pool(bo);
1353 } else if (args->madv == VC4_MADV_WILLNEED &&
1354 bo->madv == VC4_MADV_DONTNEED &&
1355 !refcount_read(&bo->usecnt)) {
1356 /* The BO has not been purged yet, just remove it from
1357 * the purgeable list.
1359 vc4_bo_remove_from_purgeable_pool(bo);
1362 /* Save the purged state. */
1363 args->retained = bo->madv != __VC4_MADV_PURGED;
1365 /* Update internal madv state only if the bo was not purged. */
1366 if (bo->madv != __VC4_MADV_PURGED)
1367 bo->madv = args->madv;
1369 mutex_unlock(&bo->madv_lock);
1374 drm_gem_object_put_unlocked(gem_obj);