Merge tag 'printk-for-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX    6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53         VC4_REG32(PV_CONTROL),
54         VC4_REG32(PV_V_CONTROL),
55         VC4_REG32(PV_VSYNCD_EVEN),
56         VC4_REG32(PV_HORZA),
57         VC4_REG32(PV_HORZB),
58         VC4_REG32(PV_VERTA),
59         VC4_REG32(PV_VERTB),
60         VC4_REG32(PV_VERTA_EVEN),
61         VC4_REG32(PV_VERTB_EVEN),
62         VC4_REG32(PV_INTEN),
63         VC4_REG32(PV_INTSTAT),
64         VC4_REG32(PV_STAT),
65         VC4_REG32(PV_HACT_ACT),
66 };
67
68 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
69                                           bool in_vblank_irq,
70                                           int *vpos, int *hpos,
71                                           ktime_t *stime, ktime_t *etime,
72                                           const struct drm_display_mode *mode)
73 {
74         struct drm_device *dev = crtc->dev;
75         struct vc4_dev *vc4 = to_vc4_dev(dev);
76         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
77         u32 val;
78         int fifo_lines;
79         int vblank_lines;
80         bool ret = false;
81
82         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
83
84         /* Get optional system timestamp before query. */
85         if (stime)
86                 *stime = ktime_get();
87
88         /*
89          * Read vertical scanline which is currently composed for our
90          * pixelvalve by the HVS, and also the scaler status.
91          */
92         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
93
94         /* Get optional system timestamp after query. */
95         if (etime)
96                 *etime = ktime_get();
97
98         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
99
100         /* Vertical position of hvs composed scanline. */
101         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
102         *hpos = 0;
103
104         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
105                 *vpos /= 2;
106
107                 /* Use hpos to correct for field offset in interlaced mode. */
108                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
109                         *hpos += mode->crtc_htotal / 2;
110         }
111
112         /* This is the offset we need for translating hvs -> pv scanout pos. */
113         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
114
115         if (fifo_lines > 0)
116                 ret = true;
117
118         /* HVS more than fifo_lines into frame for compositing? */
119         if (*vpos > fifo_lines) {
120                 /*
121                  * We are in active scanout and can get some meaningful results
122                  * from HVS. The actual PV scanout can not trail behind more
123                  * than fifo_lines as that is the fifo's capacity. Assume that
124                  * in active scanout the HVS and PV work in lockstep wrt. HVS
125                  * refilling the fifo and PV consuming from the fifo, ie.
126                  * whenever the PV consumes and frees up a scanline in the
127                  * fifo, the HVS will immediately refill it, therefore
128                  * incrementing vpos. Therefore we choose HVS read position -
129                  * fifo size in scanlines as a estimate of the real scanout
130                  * position of the PV.
131                  */
132                 *vpos -= fifo_lines + 1;
133
134                 return ret;
135         }
136
137         /*
138          * Less: This happens when we are in vblank and the HVS, after getting
139          * the VSTART restart signal from the PV, just started refilling its
140          * fifo with new lines from the top-most lines of the new framebuffers.
141          * The PV does not scan out in vblank, so does not remove lines from
142          * the fifo, so the fifo will be full quickly and the HVS has to pause.
143          * We can't get meaningful readings wrt. scanline position of the PV
144          * and need to make things up in a approximative but consistent way.
145          */
146         vblank_lines = mode->vtotal - mode->vdisplay;
147
148         if (in_vblank_irq) {
149                 /*
150                  * Assume the irq handler got called close to first
151                  * line of vblank, so PV has about a full vblank
152                  * scanlines to go, and as a base timestamp use the
153                  * one taken at entry into vblank irq handler, so it
154                  * is not affected by random delays due to lock
155                  * contention on event_lock or vblank_time lock in
156                  * the core.
157                  */
158                 *vpos = -vblank_lines;
159
160                 if (stime)
161                         *stime = vc4_crtc->t_vblank;
162                 if (etime)
163                         *etime = vc4_crtc->t_vblank;
164
165                 /*
166                  * If the HVS fifo is not yet full then we know for certain
167                  * we are at the very beginning of vblank, as the hvs just
168                  * started refilling, and the stime and etime timestamps
169                  * truly correspond to start of vblank.
170                  *
171                  * Unfortunately there's no way to report this to upper levels
172                  * and make it more useful.
173                  */
174         } else {
175                 /*
176                  * No clue where we are inside vblank. Return a vpos of zero,
177                  * which will cause calling code to just return the etime
178                  * timestamp uncorrected. At least this is no worse than the
179                  * standard fallback.
180                  */
181                 *vpos = 0;
182         }
183
184         return ret;
185 }
186
187 void vc4_crtc_destroy(struct drm_crtc *crtc)
188 {
189         drm_crtc_cleanup(crtc);
190 }
191
192 static u32 vc4_get_fifo_full_level(u32 format)
193 {
194         static const u32 fifo_len_bytes = 64;
195
196         switch (format) {
197         case PV_CONTROL_FORMAT_DSIV_16:
198         case PV_CONTROL_FORMAT_DSIC_16:
199                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
200         case PV_CONTROL_FORMAT_DSIV_18:
201                 return fifo_len_bytes - 14;
202         case PV_CONTROL_FORMAT_24:
203         case PV_CONTROL_FORMAT_DSIV_24:
204         default:
205                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
206         }
207 }
208
209 /*
210  * Returns the encoder attached to the CRTC.
211  *
212  * VC4 can only scan out to one encoder at a time, while the DRM core
213  * allows drivers to push pixels to more than one encoder from the
214  * same CRTC.
215  */
216 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
217 {
218         struct drm_connector *connector;
219         struct drm_connector_list_iter conn_iter;
220
221         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
222         drm_for_each_connector_iter(connector, &conn_iter) {
223                 if (connector->state->crtc == crtc) {
224                         drm_connector_list_iter_end(&conn_iter);
225                         return connector->encoder;
226                 }
227         }
228         drm_connector_list_iter_end(&conn_iter);
229
230         return NULL;
231 }
232
233 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
234 {
235         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
236         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
237         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238         struct drm_crtc_state *state = crtc->state;
239         struct drm_display_mode *mode = &state->adjusted_mode;
240         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
242         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
243                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
244         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
245
246         /* Reset the PV fifo. */
247         CRTC_WRITE(PV_CONTROL, 0);
248         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
249         CRTC_WRITE(PV_CONTROL, 0);
250
251         CRTC_WRITE(PV_HORZA,
252                    VC4_SET_FIELD((mode->htotal -
253                                   mode->hsync_end) * pixel_rep,
254                                  PV_HORZA_HBP) |
255                    VC4_SET_FIELD((mode->hsync_end -
256                                   mode->hsync_start) * pixel_rep,
257                                  PV_HORZA_HSYNC));
258         CRTC_WRITE(PV_HORZB,
259                    VC4_SET_FIELD((mode->hsync_start -
260                                   mode->hdisplay) * pixel_rep,
261                                  PV_HORZB_HFP) |
262                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
263
264         CRTC_WRITE(PV_VERTA,
265                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
266                                  PV_VERTA_VBP) |
267                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
268                                  PV_VERTA_VSYNC));
269         CRTC_WRITE(PV_VERTB,
270                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
271                                  PV_VERTB_VFP) |
272                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
273
274         if (interlace) {
275                 CRTC_WRITE(PV_VERTA_EVEN,
276                            VC4_SET_FIELD(mode->crtc_vtotal -
277                                          mode->crtc_vsync_end - 1,
278                                          PV_VERTA_VBP) |
279                            VC4_SET_FIELD(mode->crtc_vsync_end -
280                                          mode->crtc_vsync_start,
281                                          PV_VERTA_VSYNC));
282                 CRTC_WRITE(PV_VERTB_EVEN,
283                            VC4_SET_FIELD(mode->crtc_vsync_start -
284                                          mode->crtc_vdisplay,
285                                          PV_VERTB_VFP) |
286                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
287
288                 /* We set up first field even mode for HDMI.  VEC's
289                  * NTSC mode would want first field odd instead, once
290                  * we support it (to do so, set ODD_FIRST and put the
291                  * delay in VSYNCD_EVEN instead).
292                  */
293                 CRTC_WRITE(PV_V_CONTROL,
294                            PV_VCONTROL_CONTINUOUS |
295                            (is_dsi ? PV_VCONTROL_DSI : 0) |
296                            PV_VCONTROL_INTERLACE |
297                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
298                                          PV_VCONTROL_ODD_DELAY));
299                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
300         } else {
301                 CRTC_WRITE(PV_V_CONTROL,
302                            PV_VCONTROL_CONTINUOUS |
303                            (is_dsi ? PV_VCONTROL_DSI : 0));
304         }
305
306         if (is_dsi)
307                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
308
309         CRTC_WRITE(PV_CONTROL,
310                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
311                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
312                                  PV_CONTROL_FIFO_LEVEL) |
313                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
314                    PV_CONTROL_CLR_AT_START |
315                    PV_CONTROL_TRIGGER_UNDERFLOW |
316                    PV_CONTROL_WAIT_HSTART |
317                    VC4_SET_FIELD(vc4_encoder->clock_select,
318                                  PV_CONTROL_CLK_SELECT) |
319                    PV_CONTROL_FIFO_CLR |
320                    PV_CONTROL_EN);
321 }
322
323 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
324 {
325         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326         bool debug_dump_regs = false;
327
328         if (debug_dump_regs) {
329                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
330                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
331                          drm_crtc_index(crtc));
332                 drm_print_regset32(&p, &vc4_crtc->regset);
333         }
334
335         vc4_crtc_config_pv(crtc);
336
337         vc4_hvs_mode_set_nofb(crtc);
338
339         if (debug_dump_regs) {
340                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
341                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
342                          drm_crtc_index(crtc));
343                 drm_print_regset32(&p, &vc4_crtc->regset);
344         }
345 }
346
347 static void require_hvs_enabled(struct drm_device *dev)
348 {
349         struct vc4_dev *vc4 = to_vc4_dev(dev);
350
351         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
352                      SCALER_DISPCTRL_ENABLE);
353 }
354
355 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
356                                     struct drm_crtc_state *old_state)
357 {
358         struct drm_device *dev = crtc->dev;
359         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
360         int ret;
361
362         require_hvs_enabled(dev);
363
364         /* Disable vblank irq handling before crtc is disabled. */
365         drm_crtc_vblank_off(crtc);
366
367         CRTC_WRITE(PV_V_CONTROL,
368                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
369         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
370         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
371
372         vc4_hvs_atomic_disable(crtc, old_state);
373
374         /*
375          * Make sure we issue a vblank event after disabling the CRTC if
376          * someone was waiting it.
377          */
378         if (crtc->state->event) {
379                 unsigned long flags;
380
381                 spin_lock_irqsave(&dev->event_lock, flags);
382                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
383                 crtc->state->event = NULL;
384                 spin_unlock_irqrestore(&dev->event_lock, flags);
385         }
386 }
387
388 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
389                                    struct drm_crtc_state *old_state)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
393
394         require_hvs_enabled(dev);
395
396         /* Enable vblank irq handling before crtc is started otherwise
397          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
398          */
399         drm_crtc_vblank_on(crtc);
400
401         vc4_hvs_atomic_enable(crtc, old_state);
402
403         /* When feeding the transposer block the pixelvalve is unneeded and
404          * should not be enabled.
405          */
406         CRTC_WRITE(PV_V_CONTROL,
407                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
408 }
409
410 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
411                                                 const struct drm_display_mode *mode)
412 {
413         /* Do not allow doublescan modes from user space */
414         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
415                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
416                               crtc->base.id);
417                 return MODE_NO_DBLESCAN;
418         }
419
420         return MODE_OK;
421 }
422
423 void vc4_crtc_get_margins(struct drm_crtc_state *state,
424                           unsigned int *left, unsigned int *right,
425                           unsigned int *top, unsigned int *bottom)
426 {
427         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
428         struct drm_connector_state *conn_state;
429         struct drm_connector *conn;
430         int i;
431
432         *left = vc4_state->margins.left;
433         *right = vc4_state->margins.right;
434         *top = vc4_state->margins.top;
435         *bottom = vc4_state->margins.bottom;
436
437         /* We have to interate over all new connector states because
438          * vc4_crtc_get_margins() might be called before
439          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
440          * might be outdated.
441          */
442         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
443                 if (conn_state->crtc != state->crtc)
444                         continue;
445
446                 *left = conn_state->tv.margins.left;
447                 *right = conn_state->tv.margins.right;
448                 *top = conn_state->tv.margins.top;
449                 *bottom = conn_state->tv.margins.bottom;
450                 break;
451         }
452 }
453
454 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
455                                  struct drm_crtc_state *state)
456 {
457         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
458         struct drm_connector *conn;
459         struct drm_connector_state *conn_state;
460         int ret, i;
461
462         ret = vc4_hvs_atomic_check(crtc, state);
463         if (ret)
464                 return ret;
465
466         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
467                 if (conn_state->crtc != crtc)
468                         continue;
469
470                 vc4_state->margins.left = conn_state->tv.margins.left;
471                 vc4_state->margins.right = conn_state->tv.margins.right;
472                 vc4_state->margins.top = conn_state->tv.margins.top;
473                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
474                 break;
475         }
476
477         return 0;
478 }
479
480 static int vc4_enable_vblank(struct drm_crtc *crtc)
481 {
482         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
483
484         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
485
486         return 0;
487 }
488
489 static void vc4_disable_vblank(struct drm_crtc *crtc)
490 {
491         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492
493         CRTC_WRITE(PV_INTEN, 0);
494 }
495
496 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
497 {
498         struct drm_crtc *crtc = &vc4_crtc->base;
499         struct drm_device *dev = crtc->dev;
500         struct vc4_dev *vc4 = to_vc4_dev(dev);
501         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502         u32 chan = vc4_crtc->channel;
503         unsigned long flags;
504
505         spin_lock_irqsave(&dev->event_lock, flags);
506         if (vc4_crtc->event &&
507             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
508              vc4_state->feed_txp)) {
509                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
510                 vc4_crtc->event = NULL;
511                 drm_crtc_vblank_put(crtc);
512
513                 /* Wait for the page flip to unmask the underrun to ensure that
514                  * the display list was updated by the hardware. Before that
515                  * happens, the HVS will be using the previous display list with
516                  * the CRTC and encoder already reconfigured, leading to
517                  * underruns. This can be seen when reconfiguring the CRTC.
518                  */
519                 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
520         }
521         spin_unlock_irqrestore(&dev->event_lock, flags);
522 }
523
524 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
525 {
526         crtc->t_vblank = ktime_get();
527         drm_crtc_handle_vblank(&crtc->base);
528         vc4_crtc_handle_page_flip(crtc);
529 }
530
531 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
532 {
533         struct vc4_crtc *vc4_crtc = data;
534         u32 stat = CRTC_READ(PV_INTSTAT);
535         irqreturn_t ret = IRQ_NONE;
536
537         if (stat & PV_INT_VFP_START) {
538                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
539                 vc4_crtc_handle_vblank(vc4_crtc);
540                 ret = IRQ_HANDLED;
541         }
542
543         return ret;
544 }
545
546 struct vc4_async_flip_state {
547         struct drm_crtc *crtc;
548         struct drm_framebuffer *fb;
549         struct drm_framebuffer *old_fb;
550         struct drm_pending_vblank_event *event;
551
552         struct vc4_seqno_cb cb;
553 };
554
555 /* Called when the V3D execution for the BO being flipped to is done, so that
556  * we can actually update the plane's address to point to it.
557  */
558 static void
559 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
560 {
561         struct vc4_async_flip_state *flip_state =
562                 container_of(cb, struct vc4_async_flip_state, cb);
563         struct drm_crtc *crtc = flip_state->crtc;
564         struct drm_device *dev = crtc->dev;
565         struct vc4_dev *vc4 = to_vc4_dev(dev);
566         struct drm_plane *plane = crtc->primary;
567
568         vc4_plane_async_set_fb(plane, flip_state->fb);
569         if (flip_state->event) {
570                 unsigned long flags;
571
572                 spin_lock_irqsave(&dev->event_lock, flags);
573                 drm_crtc_send_vblank_event(crtc, flip_state->event);
574                 spin_unlock_irqrestore(&dev->event_lock, flags);
575         }
576
577         drm_crtc_vblank_put(crtc);
578         drm_framebuffer_put(flip_state->fb);
579
580         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
581          * when the planes are updated through the async update path.
582          * FIXME: we should move to generic async-page-flip when it's
583          * available, so that we can get rid of this hand-made cleanup_fb()
584          * logic.
585          */
586         if (flip_state->old_fb) {
587                 struct drm_gem_cma_object *cma_bo;
588                 struct vc4_bo *bo;
589
590                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
591                 bo = to_vc4_bo(&cma_bo->base);
592                 vc4_bo_dec_usecnt(bo);
593                 drm_framebuffer_put(flip_state->old_fb);
594         }
595
596         kfree(flip_state);
597
598         up(&vc4->async_modeset);
599 }
600
601 /* Implements async (non-vblank-synced) page flips.
602  *
603  * The page flip ioctl needs to return immediately, so we grab the
604  * modeset semaphore on the pipe, and queue the address update for
605  * when V3D is done with the BO being flipped to.
606  */
607 static int vc4_async_page_flip(struct drm_crtc *crtc,
608                                struct drm_framebuffer *fb,
609                                struct drm_pending_vblank_event *event,
610                                uint32_t flags)
611 {
612         struct drm_device *dev = crtc->dev;
613         struct vc4_dev *vc4 = to_vc4_dev(dev);
614         struct drm_plane *plane = crtc->primary;
615         int ret = 0;
616         struct vc4_async_flip_state *flip_state;
617         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
618         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
619
620         /* Increment the BO usecnt here, so that we never end up with an
621          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
622          * plane is later updated through the non-async path.
623          * FIXME: we should move to generic async-page-flip when it's
624          * available, so that we can get rid of this hand-made prepare_fb()
625          * logic.
626          */
627         ret = vc4_bo_inc_usecnt(bo);
628         if (ret)
629                 return ret;
630
631         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
632         if (!flip_state) {
633                 vc4_bo_dec_usecnt(bo);
634                 return -ENOMEM;
635         }
636
637         drm_framebuffer_get(fb);
638         flip_state->fb = fb;
639         flip_state->crtc = crtc;
640         flip_state->event = event;
641
642         /* Make sure all other async modesetes have landed. */
643         ret = down_interruptible(&vc4->async_modeset);
644         if (ret) {
645                 drm_framebuffer_put(fb);
646                 vc4_bo_dec_usecnt(bo);
647                 kfree(flip_state);
648                 return ret;
649         }
650
651         /* Save the current FB before it's replaced by the new one in
652          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
653          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
654          * it consistent.
655          * FIXME: we should move to generic async-page-flip when it's
656          * available, so that we can get rid of this hand-made cleanup_fb()
657          * logic.
658          */
659         flip_state->old_fb = plane->state->fb;
660         if (flip_state->old_fb)
661                 drm_framebuffer_get(flip_state->old_fb);
662
663         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
664
665         /* Immediately update the plane's legacy fb pointer, so that later
666          * modeset prep sees the state that will be present when the semaphore
667          * is released.
668          */
669         drm_atomic_set_fb_for_plane(plane->state, fb);
670
671         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
672                            vc4_async_page_flip_complete);
673
674         /* Driver takes ownership of state on successful async commit. */
675         return 0;
676 }
677
678 int vc4_page_flip(struct drm_crtc *crtc,
679                   struct drm_framebuffer *fb,
680                   struct drm_pending_vblank_event *event,
681                   uint32_t flags,
682                   struct drm_modeset_acquire_ctx *ctx)
683 {
684         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
685                 return vc4_async_page_flip(crtc, fb, event, flags);
686         else
687                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
688 }
689
690 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
691 {
692         struct vc4_crtc_state *vc4_state, *old_vc4_state;
693
694         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
695         if (!vc4_state)
696                 return NULL;
697
698         old_vc4_state = to_vc4_crtc_state(crtc->state);
699         vc4_state->feed_txp = old_vc4_state->feed_txp;
700         vc4_state->margins = old_vc4_state->margins;
701
702         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
703         return &vc4_state->base;
704 }
705
706 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
707                             struct drm_crtc_state *state)
708 {
709         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
710         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
711
712         if (drm_mm_node_allocated(&vc4_state->mm)) {
713                 unsigned long flags;
714
715                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
716                 drm_mm_remove_node(&vc4_state->mm);
717                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
718
719         }
720
721         drm_atomic_helper_crtc_destroy_state(crtc, state);
722 }
723
724 void vc4_crtc_reset(struct drm_crtc *crtc)
725 {
726         if (crtc->state)
727                 vc4_crtc_destroy_state(crtc, crtc->state);
728         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
729         if (crtc->state)
730                 __drm_atomic_helper_crtc_reset(crtc, crtc->state);
731 }
732
733 static const struct drm_crtc_funcs vc4_crtc_funcs = {
734         .set_config = drm_atomic_helper_set_config,
735         .destroy = vc4_crtc_destroy,
736         .page_flip = vc4_page_flip,
737         .set_property = NULL,
738         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
739         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
740         .reset = vc4_crtc_reset,
741         .atomic_duplicate_state = vc4_crtc_duplicate_state,
742         .atomic_destroy_state = vc4_crtc_destroy_state,
743         .gamma_set = drm_atomic_helper_legacy_gamma_set,
744         .enable_vblank = vc4_enable_vblank,
745         .disable_vblank = vc4_disable_vblank,
746         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
747 };
748
749 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
750         .mode_set_nofb = vc4_crtc_mode_set_nofb,
751         .mode_valid = vc4_crtc_mode_valid,
752         .atomic_check = vc4_crtc_atomic_check,
753         .atomic_flush = vc4_hvs_atomic_flush,
754         .atomic_enable = vc4_crtc_atomic_enable,
755         .atomic_disable = vc4_crtc_atomic_disable,
756         .get_scanout_position = vc4_crtc_get_scanout_position,
757 };
758
759 static const struct vc4_pv_data bcm2835_pv0_data = {
760         .base = {
761                 .hvs_channel = 0,
762         },
763         .debugfs_name = "crtc0_regs",
764         .encoder_types = {
765                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
766                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
767         },
768 };
769
770 static const struct vc4_pv_data bcm2835_pv1_data = {
771         .base = {
772                 .hvs_channel = 2,
773         },
774         .debugfs_name = "crtc1_regs",
775         .encoder_types = {
776                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
777                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
778         },
779 };
780
781 static const struct vc4_pv_data bcm2835_pv2_data = {
782         .base = {
783                 .hvs_channel = 1,
784         },
785         .debugfs_name = "crtc2_regs",
786         .encoder_types = {
787                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
788                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
789         },
790 };
791
792 static const struct of_device_id vc4_crtc_dt_match[] = {
793         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
794         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
795         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
796         {}
797 };
798
799 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
800                                         struct drm_crtc *crtc)
801 {
802         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
803         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
804         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
805         struct drm_encoder *encoder;
806
807         drm_for_each_encoder(encoder, drm) {
808                 struct vc4_encoder *vc4_encoder;
809                 int i;
810
811                 vc4_encoder = to_vc4_encoder(encoder);
812                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
813                         if (vc4_encoder->type == encoder_types[i]) {
814                                 vc4_encoder->clock_select = i;
815                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
816                                 break;
817                         }
818                 }
819         }
820 }
821
822 static void
823 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
824 {
825         struct drm_device *drm = vc4_crtc->base.dev;
826         struct vc4_dev *vc4 = to_vc4_dev(drm);
827         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
828         /* Top/base are supposed to be 4-pixel aligned, but the
829          * Raspberry Pi firmware fills the low bits (which are
830          * presumably ignored).
831          */
832         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
833         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
834
835         vc4_crtc->cob_size = top - base + 4;
836 }
837
838 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
839                   const struct drm_crtc_funcs *crtc_funcs,
840                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
841 {
842         struct drm_crtc *crtc = &vc4_crtc->base;
843         struct drm_plane *primary_plane;
844         unsigned int i;
845
846         /* For now, we create just the primary and the legacy cursor
847          * planes.  We should be able to stack more planes on easily,
848          * but to do that we would need to compute the bandwidth
849          * requirement of the plane configuration, and reject ones
850          * that will take too much.
851          */
852         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
853         if (IS_ERR(primary_plane)) {
854                 dev_err(drm->dev, "failed to construct primary plane\n");
855                 return PTR_ERR(primary_plane);
856         }
857
858         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
859                                   crtc_funcs, NULL);
860         drm_crtc_helper_add(crtc, crtc_helper_funcs);
861         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
862         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
863         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
864
865         /* We support CTM, but only for one CRTC at a time. It's therefore
866          * implemented as private driver state in vc4_kms, not here.
867          */
868         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
869         vc4_crtc_get_cob_allocation(vc4_crtc);
870
871         for (i = 0; i < crtc->gamma_size; i++) {
872                 vc4_crtc->lut_r[i] = i;
873                 vc4_crtc->lut_g[i] = i;
874                 vc4_crtc->lut_b[i] = i;
875         }
876
877         return 0;
878 }
879
880 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
881 {
882         struct platform_device *pdev = to_platform_device(dev);
883         struct drm_device *drm = dev_get_drvdata(master);
884         const struct vc4_pv_data *pv_data;
885         struct vc4_crtc *vc4_crtc;
886         struct drm_crtc *crtc;
887         struct drm_plane *destroy_plane, *temp;
888         int ret;
889
890         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
891         if (!vc4_crtc)
892                 return -ENOMEM;
893         crtc = &vc4_crtc->base;
894
895         pv_data = of_device_get_match_data(dev);
896         if (!pv_data)
897                 return -ENODEV;
898         vc4_crtc->data = &pv_data->base;
899         vc4_crtc->pdev = pdev;
900
901         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
902         if (IS_ERR(vc4_crtc->regs))
903                 return PTR_ERR(vc4_crtc->regs);
904
905         vc4_crtc->regset.base = vc4_crtc->regs;
906         vc4_crtc->regset.regs = crtc_regs;
907         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
908
909         ret = vc4_crtc_init(drm, vc4_crtc,
910                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
911         if (ret)
912                 return ret;
913         vc4_set_crtc_possible_masks(drm, crtc);
914
915         CRTC_WRITE(PV_INTEN, 0);
916         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
917         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
918                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
919         if (ret)
920                 goto err_destroy_planes;
921
922         platform_set_drvdata(pdev, vc4_crtc);
923
924         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
925                                  &vc4_crtc->regset);
926
927         return 0;
928
929 err_destroy_planes:
930         list_for_each_entry_safe(destroy_plane, temp,
931                                  &drm->mode_config.plane_list, head) {
932                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
933                     destroy_plane->funcs->destroy(destroy_plane);
934         }
935
936         return ret;
937 }
938
939 static void vc4_crtc_unbind(struct device *dev, struct device *master,
940                             void *data)
941 {
942         struct platform_device *pdev = to_platform_device(dev);
943         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
944
945         vc4_crtc_destroy(&vc4_crtc->base);
946
947         CRTC_WRITE(PV_INTEN, 0);
948
949         platform_set_drvdata(pdev, NULL);
950 }
951
952 static const struct component_ops vc4_crtc_ops = {
953         .bind   = vc4_crtc_bind,
954         .unbind = vc4_crtc_unbind,
955 };
956
957 static int vc4_crtc_dev_probe(struct platform_device *pdev)
958 {
959         return component_add(&pdev->dev, &vc4_crtc_ops);
960 }
961
962 static int vc4_crtc_dev_remove(struct platform_device *pdev)
963 {
964         component_del(&pdev->dev, &vc4_crtc_ops);
965         return 0;
966 }
967
968 struct platform_driver vc4_crtc_driver = {
969         .probe = vc4_crtc_dev_probe,
970         .remove = vc4_crtc_dev_remove,
971         .driver = {
972                 .name = "vc4_crtc",
973                 .of_match_table = vc4_crtc_dt_match,
974         },
975 };