Merge tag 'rpmsg-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX    6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53         VC4_REG32(PV_CONTROL),
54         VC4_REG32(PV_V_CONTROL),
55         VC4_REG32(PV_VSYNCD_EVEN),
56         VC4_REG32(PV_HORZA),
57         VC4_REG32(PV_HORZB),
58         VC4_REG32(PV_VERTA),
59         VC4_REG32(PV_VERTB),
60         VC4_REG32(PV_VERTA_EVEN),
61         VC4_REG32(PV_VERTB_EVEN),
62         VC4_REG32(PV_INTEN),
63         VC4_REG32(PV_INTSTAT),
64         VC4_REG32(PV_STAT),
65         VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72         /* Top/base are supposed to be 4-pixel aligned, but the
73          * Raspberry Pi firmware fills the low bits (which are
74          * presumably ignored).
75          */
76         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79         return top - base + 4;
80 }
81
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83                                           bool in_vblank_irq,
84                                           int *vpos, int *hpos,
85                                           ktime_t *stime, ktime_t *etime,
86                                           const struct drm_display_mode *mode)
87 {
88         struct drm_device *dev = crtc->dev;
89         struct vc4_dev *vc4 = to_vc4_dev(dev);
90         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92         unsigned int cob_size;
93         u32 val;
94         int fifo_lines;
95         int vblank_lines;
96         bool ret = false;
97
98         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100         /* Get optional system timestamp before query. */
101         if (stime)
102                 *stime = ktime_get();
103
104         /*
105          * Read vertical scanline which is currently composed for our
106          * pixelvalve by the HVS, and also the scaler status.
107          */
108         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110         /* Get optional system timestamp after query. */
111         if (etime)
112                 *etime = ktime_get();
113
114         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116         /* Vertical position of hvs composed scanline. */
117         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118         *hpos = 0;
119
120         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121                 *vpos /= 2;
122
123                 /* Use hpos to correct for field offset in interlaced mode. */
124                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125                         *hpos += mode->crtc_htotal / 2;
126         }
127
128         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129         /* This is the offset we need for translating hvs -> pv scanout pos. */
130         fifo_lines = cob_size / mode->crtc_hdisplay;
131
132         if (fifo_lines > 0)
133                 ret = true;
134
135         /* HVS more than fifo_lines into frame for compositing? */
136         if (*vpos > fifo_lines) {
137                 /*
138                  * We are in active scanout and can get some meaningful results
139                  * from HVS. The actual PV scanout can not trail behind more
140                  * than fifo_lines as that is the fifo's capacity. Assume that
141                  * in active scanout the HVS and PV work in lockstep wrt. HVS
142                  * refilling the fifo and PV consuming from the fifo, ie.
143                  * whenever the PV consumes and frees up a scanline in the
144                  * fifo, the HVS will immediately refill it, therefore
145                  * incrementing vpos. Therefore we choose HVS read position -
146                  * fifo size in scanlines as a estimate of the real scanout
147                  * position of the PV.
148                  */
149                 *vpos -= fifo_lines + 1;
150
151                 return ret;
152         }
153
154         /*
155          * Less: This happens when we are in vblank and the HVS, after getting
156          * the VSTART restart signal from the PV, just started refilling its
157          * fifo with new lines from the top-most lines of the new framebuffers.
158          * The PV does not scan out in vblank, so does not remove lines from
159          * the fifo, so the fifo will be full quickly and the HVS has to pause.
160          * We can't get meaningful readings wrt. scanline position of the PV
161          * and need to make things up in a approximative but consistent way.
162          */
163         vblank_lines = mode->vtotal - mode->vdisplay;
164
165         if (in_vblank_irq) {
166                 /*
167                  * Assume the irq handler got called close to first
168                  * line of vblank, so PV has about a full vblank
169                  * scanlines to go, and as a base timestamp use the
170                  * one taken at entry into vblank irq handler, so it
171                  * is not affected by random delays due to lock
172                  * contention on event_lock or vblank_time lock in
173                  * the core.
174                  */
175                 *vpos = -vblank_lines;
176
177                 if (stime)
178                         *stime = vc4_crtc->t_vblank;
179                 if (etime)
180                         *etime = vc4_crtc->t_vblank;
181
182                 /*
183                  * If the HVS fifo is not yet full then we know for certain
184                  * we are at the very beginning of vblank, as the hvs just
185                  * started refilling, and the stime and etime timestamps
186                  * truly correspond to start of vblank.
187                  *
188                  * Unfortunately there's no way to report this to upper levels
189                  * and make it more useful.
190                  */
191         } else {
192                 /*
193                  * No clue where we are inside vblank. Return a vpos of zero,
194                  * which will cause calling code to just return the etime
195                  * timestamp uncorrected. At least this is no worse than the
196                  * standard fallback.
197                  */
198                 *vpos = 0;
199         }
200
201         return ret;
202 }
203
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206         drm_crtc_cleanup(crtc);
207 }
208
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214         u32 fifo_len_bytes = pv_data->fifo_depth;
215
216         /*
217          * Pixels are pulled from the HVS if the number of bytes is
218          * lower than the FIFO full level.
219          *
220          * The latency of the pixel fetch mechanism is 6 pixels, so we
221          * need to convert those 6 pixels in bytes, depending on the
222          * format, and then subtract that from the length of the FIFO
223          * to make sure we never end up in a situation where the FIFO
224          * is full.
225          */
226         switch (format) {
227         case PV_CONTROL_FORMAT_DSIV_16:
228         case PV_CONTROL_FORMAT_DSIC_16:
229                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230         case PV_CONTROL_FORMAT_DSIV_18:
231                 return fifo_len_bytes - 14;
232         case PV_CONTROL_FORMAT_24:
233         case PV_CONTROL_FORMAT_DSIV_24:
234         default:
235                 /*
236                  * For some reason, the pixelvalve4 doesn't work with
237                  * the usual formula and will only work with 32.
238                  */
239                 if (crtc_data->hvs_output == 5)
240                         return 32;
241
242                 /*
243                  * It looks like in some situations, we will overflow
244                  * the PixelValve FIFO (with the bit 10 of PV stat being
245                  * set) and stall the HVS / PV, eventually resulting in
246                  * a page flip timeout.
247                  *
248                  * Displaying the video overlay during a playback with
249                  * Kodi on an RPi3 seems to be a great solution with a
250                  * failure rate around 50%.
251                  *
252                  * Removing 1 from the FIFO full level however
253                  * seems to completely remove that issue.
254                  */
255                 if (!vc4->hvs->hvs5)
256                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257
258                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259         }
260 }
261
262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263                                              u32 format)
264 {
265         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266         u32 ret = 0;
267
268         ret |= VC4_SET_FIELD((level >> 6),
269                              PV5_CONTROL_FIFO_LEVEL_HIGH);
270
271         return ret | VC4_SET_FIELD(level & 0x3f,
272                                    PV_CONTROL_FIFO_LEVEL);
273 }
274
275 /*
276  * Returns the encoder attached to the CRTC.
277  *
278  * VC4 can only scan out to one encoder at a time, while the DRM core
279  * allows drivers to push pixels to more than one encoder from the
280  * same CRTC.
281  */
282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
283 {
284         struct drm_connector *connector;
285         struct drm_connector_list_iter conn_iter;
286
287         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
288         drm_for_each_connector_iter(connector, &conn_iter) {
289                 if (connector->state->crtc == crtc) {
290                         drm_connector_list_iter_end(&conn_iter);
291                         return connector->encoder;
292                 }
293         }
294         drm_connector_list_iter_end(&conn_iter);
295
296         return NULL;
297 }
298
299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302
303         /* The PV needs to be disabled before it can be flushed */
304         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307
308 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
309 {
310         struct drm_device *dev = crtc->dev;
311         struct vc4_dev *vc4 = to_vc4_dev(dev);
312         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
313         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316         struct drm_crtc_state *state = crtc->state;
317         struct drm_display_mode *mode = &state->adjusted_mode;
318         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
323         u8 ppc = pv_data->pixels_per_clock;
324         bool debug_dump_regs = false;
325
326         if (debug_dump_regs) {
327                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
328                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
329                          drm_crtc_index(crtc));
330                 drm_print_regset32(&p, &vc4_crtc->regset);
331         }
332
333         vc4_crtc_pixelvalve_reset(crtc);
334
335         CRTC_WRITE(PV_HORZA,
336                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
337                                  PV_HORZA_HBP) |
338                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
339                                  PV_HORZA_HSYNC));
340
341         CRTC_WRITE(PV_HORZB,
342                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
343                                  PV_HORZB_HFP) |
344                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
345                                  PV_HORZB_HACTIVE));
346
347         CRTC_WRITE(PV_VERTA,
348                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
349                                  PV_VERTA_VBP) |
350                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
351                                  PV_VERTA_VSYNC));
352         CRTC_WRITE(PV_VERTB,
353                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
354                                  PV_VERTB_VFP) |
355                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
356
357         if (interlace) {
358                 CRTC_WRITE(PV_VERTA_EVEN,
359                            VC4_SET_FIELD(mode->crtc_vtotal -
360                                          mode->crtc_vsync_end - 1,
361                                          PV_VERTA_VBP) |
362                            VC4_SET_FIELD(mode->crtc_vsync_end -
363                                          mode->crtc_vsync_start,
364                                          PV_VERTA_VSYNC));
365                 CRTC_WRITE(PV_VERTB_EVEN,
366                            VC4_SET_FIELD(mode->crtc_vsync_start -
367                                          mode->crtc_vdisplay,
368                                          PV_VERTB_VFP) |
369                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370
371                 /* We set up first field even mode for HDMI.  VEC's
372                  * NTSC mode would want first field odd instead, once
373                  * we support it (to do so, set ODD_FIRST and put the
374                  * delay in VSYNCD_EVEN instead).
375                  */
376                 CRTC_WRITE(PV_V_CONTROL,
377                            PV_VCONTROL_CONTINUOUS |
378                            (is_dsi ? PV_VCONTROL_DSI : 0) |
379                            PV_VCONTROL_INTERLACE |
380                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
381                                          PV_VCONTROL_ODD_DELAY));
382                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
383         } else {
384                 CRTC_WRITE(PV_V_CONTROL,
385                            PV_VCONTROL_CONTINUOUS |
386                            (is_dsi ? PV_VCONTROL_DSI : 0));
387         }
388
389         if (is_dsi)
390                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
391
392         if (vc4->hvs->hvs5)
393                 CRTC_WRITE(PV_MUX_CFG,
394                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
395                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
396
397         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
398                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
399                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
400                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
401                    PV_CONTROL_CLR_AT_START |
402                    PV_CONTROL_TRIGGER_UNDERFLOW |
403                    PV_CONTROL_WAIT_HSTART |
404                    VC4_SET_FIELD(vc4_encoder->clock_select,
405                                  PV_CONTROL_CLK_SELECT));
406
407         if (debug_dump_regs) {
408                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
409                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
410                          drm_crtc_index(crtc));
411                 drm_print_regset32(&p, &vc4_crtc->regset);
412         }
413 }
414
415 static void require_hvs_enabled(struct drm_device *dev)
416 {
417         struct vc4_dev *vc4 = to_vc4_dev(dev);
418
419         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
420                      SCALER_DISPCTRL_ENABLE);
421 }
422
423 static int vc4_crtc_disable(struct drm_crtc *crtc,
424                             struct drm_atomic_state *state,
425                             unsigned int channel)
426 {
427         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
428         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
429         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
430         struct drm_device *dev = crtc->dev;
431         int ret;
432
433         CRTC_WRITE(PV_V_CONTROL,
434                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
435         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
436         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
437
438         /*
439          * This delay is needed to avoid to get a pixel stuck in an
440          * unflushable FIFO between the pixelvalve and the HDMI
441          * controllers on the BCM2711.
442          *
443          * Timing is fairly sensitive here, so mdelay is the safest
444          * approach.
445          *
446          * If it was to be reworked, the stuck pixel happens on a
447          * BCM2711 when changing mode with a good probability, so a
448          * script that changes mode on a regular basis should trigger
449          * the bug after less than 10 attempts. It manifests itself with
450          * every pixels being shifted by one to the right, and thus the
451          * last pixel of a line actually being displayed as the first
452          * pixel on the next line.
453          */
454         mdelay(20);
455
456         if (vc4_encoder && vc4_encoder->post_crtc_disable)
457                 vc4_encoder->post_crtc_disable(encoder, state);
458
459         vc4_crtc_pixelvalve_reset(crtc);
460         vc4_hvs_stop_channel(dev, channel);
461
462         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
463                 vc4_encoder->post_crtc_powerdown(encoder, state);
464
465         return 0;
466 }
467
468 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
469 {
470         struct drm_device *drm = crtc->dev;
471         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472         int channel;
473
474         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
475                                       "brcm,bcm2711-pixelvalve2") ||
476               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
477                                       "brcm,bcm2711-pixelvalve4")))
478                 return 0;
479
480         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
481                 return 0;
482
483         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
484                 return 0;
485
486         channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
487         if (channel < 0)
488                 return 0;
489
490         return vc4_crtc_disable(crtc, NULL, channel);
491 }
492
493 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
494                                     struct drm_atomic_state *state)
495 {
496         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
497                                                                          crtc);
498         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
499         struct drm_device *dev = crtc->dev;
500
501         require_hvs_enabled(dev);
502
503         /* Disable vblank irq handling before crtc is disabled. */
504         drm_crtc_vblank_off(crtc);
505
506         vc4_crtc_disable(crtc, state, old_vc4_state->assigned_channel);
507
508         /*
509          * Make sure we issue a vblank event after disabling the CRTC if
510          * someone was waiting it.
511          */
512         if (crtc->state->event) {
513                 unsigned long flags;
514
515                 spin_lock_irqsave(&dev->event_lock, flags);
516                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
517                 crtc->state->event = NULL;
518                 spin_unlock_irqrestore(&dev->event_lock, flags);
519         }
520 }
521
522 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
523                                    struct drm_atomic_state *state)
524 {
525         struct drm_device *dev = crtc->dev;
526         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
527         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
528         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
529
530         require_hvs_enabled(dev);
531
532         /* Enable vblank irq handling before crtc is started otherwise
533          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
534          */
535         drm_crtc_vblank_on(crtc);
536
537         vc4_hvs_atomic_enable(crtc, state);
538
539         if (vc4_encoder->pre_crtc_configure)
540                 vc4_encoder->pre_crtc_configure(encoder, state);
541
542         vc4_crtc_config_pv(crtc);
543
544         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
545
546         if (vc4_encoder->pre_crtc_enable)
547                 vc4_encoder->pre_crtc_enable(encoder, state);
548
549         /* When feeding the transposer block the pixelvalve is unneeded and
550          * should not be enabled.
551          */
552         CRTC_WRITE(PV_V_CONTROL,
553                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
554
555         if (vc4_encoder->post_crtc_enable)
556                 vc4_encoder->post_crtc_enable(encoder, state);
557 }
558
559 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
560                                                 const struct drm_display_mode *mode)
561 {
562         /* Do not allow doublescan modes from user space */
563         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
564                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
565                               crtc->base.id);
566                 return MODE_NO_DBLESCAN;
567         }
568
569         return MODE_OK;
570 }
571
572 void vc4_crtc_get_margins(struct drm_crtc_state *state,
573                           unsigned int *left, unsigned int *right,
574                           unsigned int *top, unsigned int *bottom)
575 {
576         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577         struct drm_connector_state *conn_state;
578         struct drm_connector *conn;
579         int i;
580
581         *left = vc4_state->margins.left;
582         *right = vc4_state->margins.right;
583         *top = vc4_state->margins.top;
584         *bottom = vc4_state->margins.bottom;
585
586         /* We have to interate over all new connector states because
587          * vc4_crtc_get_margins() might be called before
588          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
589          * might be outdated.
590          */
591         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
592                 if (conn_state->crtc != state->crtc)
593                         continue;
594
595                 *left = conn_state->tv.margins.left;
596                 *right = conn_state->tv.margins.right;
597                 *top = conn_state->tv.margins.top;
598                 *bottom = conn_state->tv.margins.bottom;
599                 break;
600         }
601 }
602
603 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
604                                  struct drm_atomic_state *state)
605 {
606         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
607                                                                           crtc);
608         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
609         struct drm_connector *conn;
610         struct drm_connector_state *conn_state;
611         int ret, i;
612
613         ret = vc4_hvs_atomic_check(crtc, state);
614         if (ret)
615                 return ret;
616
617         for_each_new_connector_in_state(state, conn, conn_state,
618                                         i) {
619                 if (conn_state->crtc != crtc)
620                         continue;
621
622                 vc4_state->margins.left = conn_state->tv.margins.left;
623                 vc4_state->margins.right = conn_state->tv.margins.right;
624                 vc4_state->margins.top = conn_state->tv.margins.top;
625                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
626                 break;
627         }
628
629         return 0;
630 }
631
632 static int vc4_enable_vblank(struct drm_crtc *crtc)
633 {
634         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
635
636         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
637
638         return 0;
639 }
640
641 static void vc4_disable_vblank(struct drm_crtc *crtc)
642 {
643         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
644
645         CRTC_WRITE(PV_INTEN, 0);
646 }
647
648 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
649 {
650         struct drm_crtc *crtc = &vc4_crtc->base;
651         struct drm_device *dev = crtc->dev;
652         struct vc4_dev *vc4 = to_vc4_dev(dev);
653         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
654         u32 chan = vc4_state->assigned_channel;
655         unsigned long flags;
656
657         spin_lock_irqsave(&dev->event_lock, flags);
658         if (vc4_crtc->event &&
659             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
660              vc4_state->feed_txp)) {
661                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
662                 vc4_crtc->event = NULL;
663                 drm_crtc_vblank_put(crtc);
664
665                 /* Wait for the page flip to unmask the underrun to ensure that
666                  * the display list was updated by the hardware. Before that
667                  * happens, the HVS will be using the previous display list with
668                  * the CRTC and encoder already reconfigured, leading to
669                  * underruns. This can be seen when reconfiguring the CRTC.
670                  */
671                 vc4_hvs_unmask_underrun(dev, chan);
672         }
673         spin_unlock_irqrestore(&dev->event_lock, flags);
674 }
675
676 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
677 {
678         crtc->t_vblank = ktime_get();
679         drm_crtc_handle_vblank(&crtc->base);
680         vc4_crtc_handle_page_flip(crtc);
681 }
682
683 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
684 {
685         struct vc4_crtc *vc4_crtc = data;
686         u32 stat = CRTC_READ(PV_INTSTAT);
687         irqreturn_t ret = IRQ_NONE;
688
689         if (stat & PV_INT_VFP_START) {
690                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
691                 vc4_crtc_handle_vblank(vc4_crtc);
692                 ret = IRQ_HANDLED;
693         }
694
695         return ret;
696 }
697
698 struct vc4_async_flip_state {
699         struct drm_crtc *crtc;
700         struct drm_framebuffer *fb;
701         struct drm_framebuffer *old_fb;
702         struct drm_pending_vblank_event *event;
703
704         struct vc4_seqno_cb cb;
705 };
706
707 /* Called when the V3D execution for the BO being flipped to is done, so that
708  * we can actually update the plane's address to point to it.
709  */
710 static void
711 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
712 {
713         struct vc4_async_flip_state *flip_state =
714                 container_of(cb, struct vc4_async_flip_state, cb);
715         struct drm_crtc *crtc = flip_state->crtc;
716         struct drm_device *dev = crtc->dev;
717         struct drm_plane *plane = crtc->primary;
718
719         vc4_plane_async_set_fb(plane, flip_state->fb);
720         if (flip_state->event) {
721                 unsigned long flags;
722
723                 spin_lock_irqsave(&dev->event_lock, flags);
724                 drm_crtc_send_vblank_event(crtc, flip_state->event);
725                 spin_unlock_irqrestore(&dev->event_lock, flags);
726         }
727
728         drm_crtc_vblank_put(crtc);
729         drm_framebuffer_put(flip_state->fb);
730
731         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
732          * when the planes are updated through the async update path.
733          * FIXME: we should move to generic async-page-flip when it's
734          * available, so that we can get rid of this hand-made cleanup_fb()
735          * logic.
736          */
737         if (flip_state->old_fb) {
738                 struct drm_gem_cma_object *cma_bo;
739                 struct vc4_bo *bo;
740
741                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
742                 bo = to_vc4_bo(&cma_bo->base);
743                 vc4_bo_dec_usecnt(bo);
744                 drm_framebuffer_put(flip_state->old_fb);
745         }
746
747         kfree(flip_state);
748 }
749
750 /* Implements async (non-vblank-synced) page flips.
751  *
752  * The page flip ioctl needs to return immediately, so we grab the
753  * modeset semaphore on the pipe, and queue the address update for
754  * when V3D is done with the BO being flipped to.
755  */
756 static int vc4_async_page_flip(struct drm_crtc *crtc,
757                                struct drm_framebuffer *fb,
758                                struct drm_pending_vblank_event *event,
759                                uint32_t flags)
760 {
761         struct drm_device *dev = crtc->dev;
762         struct drm_plane *plane = crtc->primary;
763         int ret = 0;
764         struct vc4_async_flip_state *flip_state;
765         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
766         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
767
768         /* Increment the BO usecnt here, so that we never end up with an
769          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
770          * plane is later updated through the non-async path.
771          * FIXME: we should move to generic async-page-flip when it's
772          * available, so that we can get rid of this hand-made prepare_fb()
773          * logic.
774          */
775         ret = vc4_bo_inc_usecnt(bo);
776         if (ret)
777                 return ret;
778
779         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
780         if (!flip_state) {
781                 vc4_bo_dec_usecnt(bo);
782                 return -ENOMEM;
783         }
784
785         drm_framebuffer_get(fb);
786         flip_state->fb = fb;
787         flip_state->crtc = crtc;
788         flip_state->event = event;
789
790         /* Save the current FB before it's replaced by the new one in
791          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
792          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
793          * it consistent.
794          * FIXME: we should move to generic async-page-flip when it's
795          * available, so that we can get rid of this hand-made cleanup_fb()
796          * logic.
797          */
798         flip_state->old_fb = plane->state->fb;
799         if (flip_state->old_fb)
800                 drm_framebuffer_get(flip_state->old_fb);
801
802         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
803
804         /* Immediately update the plane's legacy fb pointer, so that later
805          * modeset prep sees the state that will be present when the semaphore
806          * is released.
807          */
808         drm_atomic_set_fb_for_plane(plane->state, fb);
809
810         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
811                            vc4_async_page_flip_complete);
812
813         /* Driver takes ownership of state on successful async commit. */
814         return 0;
815 }
816
817 int vc4_page_flip(struct drm_crtc *crtc,
818                   struct drm_framebuffer *fb,
819                   struct drm_pending_vblank_event *event,
820                   uint32_t flags,
821                   struct drm_modeset_acquire_ctx *ctx)
822 {
823         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
824                 return vc4_async_page_flip(crtc, fb, event, flags);
825         else
826                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
827 }
828
829 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
830 {
831         struct vc4_crtc_state *vc4_state, *old_vc4_state;
832
833         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
834         if (!vc4_state)
835                 return NULL;
836
837         old_vc4_state = to_vc4_crtc_state(crtc->state);
838         vc4_state->feed_txp = old_vc4_state->feed_txp;
839         vc4_state->margins = old_vc4_state->margins;
840         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
841
842         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
843         return &vc4_state->base;
844 }
845
846 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
847                             struct drm_crtc_state *state)
848 {
849         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
850         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
851
852         if (drm_mm_node_allocated(&vc4_state->mm)) {
853                 unsigned long flags;
854
855                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
856                 drm_mm_remove_node(&vc4_state->mm);
857                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
858
859         }
860
861         drm_atomic_helper_crtc_destroy_state(crtc, state);
862 }
863
864 void vc4_crtc_reset(struct drm_crtc *crtc)
865 {
866         struct vc4_crtc_state *vc4_crtc_state;
867
868         if (crtc->state)
869                 vc4_crtc_destroy_state(crtc, crtc->state);
870
871         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
872         if (!vc4_crtc_state) {
873                 crtc->state = NULL;
874                 return;
875         }
876
877         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
878         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
879 }
880
881 static const struct drm_crtc_funcs vc4_crtc_funcs = {
882         .set_config = drm_atomic_helper_set_config,
883         .destroy = vc4_crtc_destroy,
884         .page_flip = vc4_page_flip,
885         .set_property = NULL,
886         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
887         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
888         .reset = vc4_crtc_reset,
889         .atomic_duplicate_state = vc4_crtc_duplicate_state,
890         .atomic_destroy_state = vc4_crtc_destroy_state,
891         .enable_vblank = vc4_enable_vblank,
892         .disable_vblank = vc4_disable_vblank,
893         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
894 };
895
896 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
897         .mode_valid = vc4_crtc_mode_valid,
898         .atomic_check = vc4_crtc_atomic_check,
899         .atomic_flush = vc4_hvs_atomic_flush,
900         .atomic_enable = vc4_crtc_atomic_enable,
901         .atomic_disable = vc4_crtc_atomic_disable,
902         .get_scanout_position = vc4_crtc_get_scanout_position,
903 };
904
905 static const struct vc4_pv_data bcm2835_pv0_data = {
906         .base = {
907                 .hvs_available_channels = BIT(0),
908                 .hvs_output = 0,
909         },
910         .debugfs_name = "crtc0_regs",
911         .fifo_depth = 64,
912         .pixels_per_clock = 1,
913         .encoder_types = {
914                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
915                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
916         },
917 };
918
919 static const struct vc4_pv_data bcm2835_pv1_data = {
920         .base = {
921                 .hvs_available_channels = BIT(2),
922                 .hvs_output = 2,
923         },
924         .debugfs_name = "crtc1_regs",
925         .fifo_depth = 64,
926         .pixels_per_clock = 1,
927         .encoder_types = {
928                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
929                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
930         },
931 };
932
933 static const struct vc4_pv_data bcm2835_pv2_data = {
934         .base = {
935                 .hvs_available_channels = BIT(1),
936                 .hvs_output = 1,
937         },
938         .debugfs_name = "crtc2_regs",
939         .fifo_depth = 64,
940         .pixels_per_clock = 1,
941         .encoder_types = {
942                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
943                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
944         },
945 };
946
947 static const struct vc4_pv_data bcm2711_pv0_data = {
948         .base = {
949                 .hvs_available_channels = BIT(0),
950                 .hvs_output = 0,
951         },
952         .debugfs_name = "crtc0_regs",
953         .fifo_depth = 64,
954         .pixels_per_clock = 1,
955         .encoder_types = {
956                 [0] = VC4_ENCODER_TYPE_DSI0,
957                 [1] = VC4_ENCODER_TYPE_DPI,
958         },
959 };
960
961 static const struct vc4_pv_data bcm2711_pv1_data = {
962         .base = {
963                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
964                 .hvs_output = 3,
965         },
966         .debugfs_name = "crtc1_regs",
967         .fifo_depth = 64,
968         .pixels_per_clock = 1,
969         .encoder_types = {
970                 [0] = VC4_ENCODER_TYPE_DSI1,
971                 [1] = VC4_ENCODER_TYPE_SMI,
972         },
973 };
974
975 static const struct vc4_pv_data bcm2711_pv2_data = {
976         .base = {
977                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
978                 .hvs_output = 4,
979         },
980         .debugfs_name = "crtc2_regs",
981         .fifo_depth = 256,
982         .pixels_per_clock = 2,
983         .encoder_types = {
984                 [0] = VC4_ENCODER_TYPE_HDMI0,
985         },
986 };
987
988 static const struct vc4_pv_data bcm2711_pv3_data = {
989         .base = {
990                 .hvs_available_channels = BIT(1),
991                 .hvs_output = 1,
992         },
993         .debugfs_name = "crtc3_regs",
994         .fifo_depth = 64,
995         .pixels_per_clock = 1,
996         .encoder_types = {
997                 [0] = VC4_ENCODER_TYPE_VEC,
998         },
999 };
1000
1001 static const struct vc4_pv_data bcm2711_pv4_data = {
1002         .base = {
1003                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1004                 .hvs_output = 5,
1005         },
1006         .debugfs_name = "crtc4_regs",
1007         .fifo_depth = 64,
1008         .pixels_per_clock = 2,
1009         .encoder_types = {
1010                 [0] = VC4_ENCODER_TYPE_HDMI1,
1011         },
1012 };
1013
1014 static const struct of_device_id vc4_crtc_dt_match[] = {
1015         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1016         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1017         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1018         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1019         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1020         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1021         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1022         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1023         {}
1024 };
1025
1026 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1027                                         struct drm_crtc *crtc)
1028 {
1029         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1030         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1031         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1032         struct drm_encoder *encoder;
1033
1034         drm_for_each_encoder(encoder, drm) {
1035                 struct vc4_encoder *vc4_encoder;
1036                 int i;
1037
1038                 vc4_encoder = to_vc4_encoder(encoder);
1039                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1040                         if (vc4_encoder->type == encoder_types[i]) {
1041                                 vc4_encoder->clock_select = i;
1042                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1043                                 break;
1044                         }
1045                 }
1046         }
1047 }
1048
1049 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1050                   const struct drm_crtc_funcs *crtc_funcs,
1051                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1052 {
1053         struct vc4_dev *vc4 = to_vc4_dev(drm);
1054         struct drm_crtc *crtc = &vc4_crtc->base;
1055         struct drm_plane *primary_plane;
1056         unsigned int i;
1057
1058         /* For now, we create just the primary and the legacy cursor
1059          * planes.  We should be able to stack more planes on easily,
1060          * but to do that we would need to compute the bandwidth
1061          * requirement of the plane configuration, and reject ones
1062          * that will take too much.
1063          */
1064         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1065         if (IS_ERR(primary_plane)) {
1066                 dev_err(drm->dev, "failed to construct primary plane\n");
1067                 return PTR_ERR(primary_plane);
1068         }
1069
1070         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1071                                   crtc_funcs, NULL);
1072         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1073
1074         if (!vc4->hvs->hvs5) {
1075                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1076
1077                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1078
1079                 /* We support CTM, but only for one CRTC at a time. It's therefore
1080                  * implemented as private driver state in vc4_kms, not here.
1081                  */
1082                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1083         }
1084
1085         for (i = 0; i < crtc->gamma_size; i++) {
1086                 vc4_crtc->lut_r[i] = i;
1087                 vc4_crtc->lut_g[i] = i;
1088                 vc4_crtc->lut_b[i] = i;
1089         }
1090
1091         return 0;
1092 }
1093
1094 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1095 {
1096         struct platform_device *pdev = to_platform_device(dev);
1097         struct drm_device *drm = dev_get_drvdata(master);
1098         const struct vc4_pv_data *pv_data;
1099         struct vc4_crtc *vc4_crtc;
1100         struct drm_crtc *crtc;
1101         struct drm_plane *destroy_plane, *temp;
1102         int ret;
1103
1104         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1105         if (!vc4_crtc)
1106                 return -ENOMEM;
1107         crtc = &vc4_crtc->base;
1108
1109         pv_data = of_device_get_match_data(dev);
1110         if (!pv_data)
1111                 return -ENODEV;
1112         vc4_crtc->data = &pv_data->base;
1113         vc4_crtc->pdev = pdev;
1114
1115         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1116         if (IS_ERR(vc4_crtc->regs))
1117                 return PTR_ERR(vc4_crtc->regs);
1118
1119         vc4_crtc->regset.base = vc4_crtc->regs;
1120         vc4_crtc->regset.regs = crtc_regs;
1121         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1122
1123         ret = vc4_crtc_init(drm, vc4_crtc,
1124                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1125         if (ret)
1126                 return ret;
1127         vc4_set_crtc_possible_masks(drm, crtc);
1128
1129         CRTC_WRITE(PV_INTEN, 0);
1130         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1131         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1132                                vc4_crtc_irq_handler,
1133                                IRQF_SHARED,
1134                                "vc4 crtc", vc4_crtc);
1135         if (ret)
1136                 goto err_destroy_planes;
1137
1138         platform_set_drvdata(pdev, vc4_crtc);
1139
1140         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1141                                  &vc4_crtc->regset);
1142
1143         return 0;
1144
1145 err_destroy_planes:
1146         list_for_each_entry_safe(destroy_plane, temp,
1147                                  &drm->mode_config.plane_list, head) {
1148                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1149                     destroy_plane->funcs->destroy(destroy_plane);
1150         }
1151
1152         return ret;
1153 }
1154
1155 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1156                             void *data)
1157 {
1158         struct platform_device *pdev = to_platform_device(dev);
1159         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1160
1161         vc4_crtc_destroy(&vc4_crtc->base);
1162
1163         CRTC_WRITE(PV_INTEN, 0);
1164
1165         platform_set_drvdata(pdev, NULL);
1166 }
1167
1168 static const struct component_ops vc4_crtc_ops = {
1169         .bind   = vc4_crtc_bind,
1170         .unbind = vc4_crtc_unbind,
1171 };
1172
1173 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1174 {
1175         return component_add(&pdev->dev, &vc4_crtc_ops);
1176 }
1177
1178 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1179 {
1180         component_del(&pdev->dev, &vc4_crtc_ops);
1181         return 0;
1182 }
1183
1184 struct platform_driver vc4_crtc_driver = {
1185         .probe = vc4_crtc_dev_probe,
1186         .remove = vc4_crtc_dev_remove,
1187         .driver = {
1188                 .name = "vc4_crtc",
1189                 .of_match_table = vc4_crtc_dt_match,
1190         },
1191 };