Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_atomic_uapi.h>
41 #include <drm/drm_fb_dma_helper.h>
42 #include <drm/drm_framebuffer.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47
48 #include "vc4_drv.h"
49 #include "vc4_hdmi.h"
50 #include "vc4_regs.h"
51
52 #define HVS_FIFO_LATENCY_PIX    6
53
54 #define CRTC_WRITE(offset, val)                                                         \
55         do {                                                                            \
56                 kunit_fail_current_test("Accessing a register in a unit test!\n");      \
57                 writel(val, vc4_crtc->regs + (offset));                                 \
58         } while (0)
59
60 #define CRTC_READ(offset)                                                               \
61         ({                                                                              \
62                 kunit_fail_current_test("Accessing a register in a unit test!\n");      \
63                 readl(vc4_crtc->regs + (offset));                                       \
64         })
65
66 static const struct debugfs_reg32 crtc_regs[] = {
67         VC4_REG32(PV_CONTROL),
68         VC4_REG32(PV_V_CONTROL),
69         VC4_REG32(PV_VSYNCD_EVEN),
70         VC4_REG32(PV_HORZA),
71         VC4_REG32(PV_HORZB),
72         VC4_REG32(PV_VERTA),
73         VC4_REG32(PV_VERTB),
74         VC4_REG32(PV_VERTA_EVEN),
75         VC4_REG32(PV_VERTB_EVEN),
76         VC4_REG32(PV_INTEN),
77         VC4_REG32(PV_INTSTAT),
78         VC4_REG32(PV_STAT),
79         VC4_REG32(PV_HACT_ACT),
80 };
81
82 static unsigned int
83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84 {
85         struct vc4_hvs *hvs = vc4->hvs;
86         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87         /* Top/base are supposed to be 4-pixel aligned, but the
88          * Raspberry Pi firmware fills the low bits (which are
89          * presumably ignored).
90          */
91         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
93
94         return top - base + 4;
95 }
96
97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
98                                           bool in_vblank_irq,
99                                           int *vpos, int *hpos,
100                                           ktime_t *stime, ktime_t *etime,
101                                           const struct drm_display_mode *mode)
102 {
103         struct drm_device *dev = crtc->dev;
104         struct vc4_dev *vc4 = to_vc4_dev(dev);
105         struct vc4_hvs *hvs = vc4->hvs;
106         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108         unsigned int cob_size;
109         u32 val;
110         int fifo_lines;
111         int vblank_lines;
112         bool ret = false;
113
114         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
115
116         /* Get optional system timestamp before query. */
117         if (stime)
118                 *stime = ktime_get();
119
120         /*
121          * Read vertical scanline which is currently composed for our
122          * pixelvalve by the HVS, and also the scaler status.
123          */
124         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
125
126         /* Get optional system timestamp after query. */
127         if (etime)
128                 *etime = ktime_get();
129
130         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
131
132         /* Vertical position of hvs composed scanline. */
133         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
134         *hpos = 0;
135
136         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
137                 *vpos /= 2;
138
139                 /* Use hpos to correct for field offset in interlaced mode. */
140                 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
141                         *hpos += mode->crtc_htotal / 2;
142         }
143
144         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
145         /* This is the offset we need for translating hvs -> pv scanout pos. */
146         fifo_lines = cob_size / mode->crtc_hdisplay;
147
148         if (fifo_lines > 0)
149                 ret = true;
150
151         /* HVS more than fifo_lines into frame for compositing? */
152         if (*vpos > fifo_lines) {
153                 /*
154                  * We are in active scanout and can get some meaningful results
155                  * from HVS. The actual PV scanout can not trail behind more
156                  * than fifo_lines as that is the fifo's capacity. Assume that
157                  * in active scanout the HVS and PV work in lockstep wrt. HVS
158                  * refilling the fifo and PV consuming from the fifo, ie.
159                  * whenever the PV consumes and frees up a scanline in the
160                  * fifo, the HVS will immediately refill it, therefore
161                  * incrementing vpos. Therefore we choose HVS read position -
162                  * fifo size in scanlines as a estimate of the real scanout
163                  * position of the PV.
164                  */
165                 *vpos -= fifo_lines + 1;
166
167                 return ret;
168         }
169
170         /*
171          * Less: This happens when we are in vblank and the HVS, after getting
172          * the VSTART restart signal from the PV, just started refilling its
173          * fifo with new lines from the top-most lines of the new framebuffers.
174          * The PV does not scan out in vblank, so does not remove lines from
175          * the fifo, so the fifo will be full quickly and the HVS has to pause.
176          * We can't get meaningful readings wrt. scanline position of the PV
177          * and need to make things up in a approximative but consistent way.
178          */
179         vblank_lines = mode->vtotal - mode->vdisplay;
180
181         if (in_vblank_irq) {
182                 /*
183                  * Assume the irq handler got called close to first
184                  * line of vblank, so PV has about a full vblank
185                  * scanlines to go, and as a base timestamp use the
186                  * one taken at entry into vblank irq handler, so it
187                  * is not affected by random delays due to lock
188                  * contention on event_lock or vblank_time lock in
189                  * the core.
190                  */
191                 *vpos = -vblank_lines;
192
193                 if (stime)
194                         *stime = vc4_crtc->t_vblank;
195                 if (etime)
196                         *etime = vc4_crtc->t_vblank;
197
198                 /*
199                  * If the HVS fifo is not yet full then we know for certain
200                  * we are at the very beginning of vblank, as the hvs just
201                  * started refilling, and the stime and etime timestamps
202                  * truly correspond to start of vblank.
203                  *
204                  * Unfortunately there's no way to report this to upper levels
205                  * and make it more useful.
206                  */
207         } else {
208                 /*
209                  * No clue where we are inside vblank. Return a vpos of zero,
210                  * which will cause calling code to just return the etime
211                  * timestamp uncorrected. At least this is no worse than the
212                  * standard fallback.
213                  */
214                 *vpos = 0;
215         }
216
217         return ret;
218 }
219
220 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
221 {
222         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
223         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
224         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
225         u32 fifo_len_bytes = pv_data->fifo_depth;
226
227         /*
228          * Pixels are pulled from the HVS if the number of bytes is
229          * lower than the FIFO full level.
230          *
231          * The latency of the pixel fetch mechanism is 6 pixels, so we
232          * need to convert those 6 pixels in bytes, depending on the
233          * format, and then subtract that from the length of the FIFO
234          * to make sure we never end up in a situation where the FIFO
235          * is full.
236          */
237         switch (format) {
238         case PV_CONTROL_FORMAT_DSIV_16:
239         case PV_CONTROL_FORMAT_DSIC_16:
240                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
241         case PV_CONTROL_FORMAT_DSIV_18:
242                 return fifo_len_bytes - 14;
243         case PV_CONTROL_FORMAT_24:
244         case PV_CONTROL_FORMAT_DSIV_24:
245         default:
246                 /*
247                  * For some reason, the pixelvalve4 doesn't work with
248                  * the usual formula and will only work with 32.
249                  */
250                 if (crtc_data->hvs_output == 5)
251                         return 32;
252
253                 /*
254                  * It looks like in some situations, we will overflow
255                  * the PixelValve FIFO (with the bit 10 of PV stat being
256                  * set) and stall the HVS / PV, eventually resulting in
257                  * a page flip timeout.
258                  *
259                  * Displaying the video overlay during a playback with
260                  * Kodi on an RPi3 seems to be a great solution with a
261                  * failure rate around 50%.
262                  *
263                  * Removing 1 from the FIFO full level however
264                  * seems to completely remove that issue.
265                  */
266                 if (!vc4->is_vc5)
267                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
268
269                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
270         }
271 }
272
273 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
274                                              u32 format)
275 {
276         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
277         u32 ret = 0;
278
279         ret |= VC4_SET_FIELD((level >> 6),
280                              PV5_CONTROL_FIFO_LEVEL_HIGH);
281
282         return ret | VC4_SET_FIELD(level & 0x3f,
283                                    PV_CONTROL_FIFO_LEVEL);
284 }
285
286 /*
287  * Returns the encoder attached to the CRTC.
288  *
289  * VC4 can only scan out to one encoder at a time, while the DRM core
290  * allows drivers to push pixels to more than one encoder from the
291  * same CRTC.
292  */
293 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
294                                          struct drm_crtc_state *state)
295 {
296         struct drm_encoder *encoder;
297
298         WARN_ON(hweight32(state->encoder_mask) > 1);
299
300         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
301                 return encoder;
302
303         return NULL;
304 }
305
306 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
307 {
308         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
309         struct drm_device *dev = crtc->dev;
310         int idx;
311
312         if (!drm_dev_enter(dev, &idx))
313                 return;
314
315         /* The PV needs to be disabled before it can be flushed */
316         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
317         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
318
319         drm_dev_exit(idx);
320 }
321
322 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
323                                struct drm_atomic_state *state)
324 {
325         struct drm_device *dev = crtc->dev;
326         struct vc4_dev *vc4 = to_vc4_dev(dev);
327         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
328         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
329         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
330         struct drm_crtc_state *crtc_state = crtc->state;
331         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
332         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
333         bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
334                        vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
335         u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
336         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
337                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
338         bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
339         bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
340         u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341         u8 ppc = pv_data->pixels_per_clock;
342
343         u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
344         u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
345         u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
346
347         bool debug_dump_regs = false;
348         int idx;
349
350         if (!drm_dev_enter(dev, &idx))
351                 return;
352
353         if (debug_dump_regs) {
354                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
355                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
356                          drm_crtc_index(crtc));
357                 drm_print_regset32(&p, &vc4_crtc->regset);
358         }
359
360         vc4_crtc_pixelvalve_reset(crtc);
361
362         CRTC_WRITE(PV_HORZA,
363                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
364                                  PV_HORZA_HBP) |
365                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
366                                  PV_HORZA_HSYNC));
367
368         CRTC_WRITE(PV_HORZB,
369                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
370                                  PV_HORZB_HFP) |
371                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
372                                  PV_HORZB_HACTIVE));
373
374         if (interlace) {
375                 bool odd_field_first = false;
376                 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
377                 u16 vert_bp_even = vert_bp;
378                 u16 vert_fp_even = vert_fp;
379
380                 if (is_vec) {
381                         /* VEC (composite output) */
382                         ++field_delay;
383                         if (mode->htotal == 858) {
384                                 /* 525-line mode (NTSC or PAL-M) */
385                                 odd_field_first = true;
386                         }
387                 }
388
389                 if (odd_field_first)
390                         ++vert_fp_even;
391                 else
392                         ++vert_bp;
393
394                 CRTC_WRITE(PV_VERTA_EVEN,
395                            VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
396                            VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
397                 CRTC_WRITE(PV_VERTB_EVEN,
398                            VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
399                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
400
401                 /* We set up first field even mode for HDMI and VEC's PAL.
402                  * For NTSC, we need first field odd.
403                  */
404                 CRTC_WRITE(PV_V_CONTROL,
405                            PV_VCONTROL_CONTINUOUS |
406                            (is_dsi ? PV_VCONTROL_DSI : 0) |
407                            PV_VCONTROL_INTERLACE |
408                            (odd_field_first
409                                    ? PV_VCONTROL_ODD_FIRST
410                                    : VC4_SET_FIELD(field_delay,
411                                                    PV_VCONTROL_ODD_DELAY)));
412                 CRTC_WRITE(PV_VSYNCD_EVEN,
413                            (odd_field_first ? field_delay : 0));
414         } else {
415                 CRTC_WRITE(PV_V_CONTROL,
416                            PV_VCONTROL_CONTINUOUS |
417                            (is_dsi ? PV_VCONTROL_DSI : 0));
418                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
419         }
420
421         CRTC_WRITE(PV_VERTA,
422                    VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
423                    VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
424         CRTC_WRITE(PV_VERTB,
425                    VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
426                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
427
428         if (is_dsi)
429                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
430
431         if (vc4->is_vc5)
432                 CRTC_WRITE(PV_MUX_CFG,
433                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
434                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
435
436         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
437                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
438                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
439                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
440                    PV_CONTROL_CLR_AT_START |
441                    PV_CONTROL_TRIGGER_UNDERFLOW |
442                    PV_CONTROL_WAIT_HSTART |
443                    VC4_SET_FIELD(vc4_encoder->clock_select,
444                                  PV_CONTROL_CLK_SELECT));
445
446         if (debug_dump_regs) {
447                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
448                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
449                          drm_crtc_index(crtc));
450                 drm_print_regset32(&p, &vc4_crtc->regset);
451         }
452
453         drm_dev_exit(idx);
454 }
455
456 static void require_hvs_enabled(struct drm_device *dev)
457 {
458         struct vc4_dev *vc4 = to_vc4_dev(dev);
459         struct vc4_hvs *hvs = vc4->hvs;
460
461         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
462                      SCALER_DISPCTRL_ENABLE);
463 }
464
465 static int vc4_crtc_disable(struct drm_crtc *crtc,
466                             struct drm_encoder *encoder,
467                             struct drm_atomic_state *state,
468                             unsigned int channel)
469 {
470         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
471         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472         struct drm_device *dev = crtc->dev;
473         struct vc4_dev *vc4 = to_vc4_dev(dev);
474         int idx, ret;
475
476         if (!drm_dev_enter(dev, &idx))
477                 return -ENODEV;
478
479         CRTC_WRITE(PV_V_CONTROL,
480                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
481         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
482         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
483
484         /*
485          * This delay is needed to avoid to get a pixel stuck in an
486          * unflushable FIFO between the pixelvalve and the HDMI
487          * controllers on the BCM2711.
488          *
489          * Timing is fairly sensitive here, so mdelay is the safest
490          * approach.
491          *
492          * If it was to be reworked, the stuck pixel happens on a
493          * BCM2711 when changing mode with a good probability, so a
494          * script that changes mode on a regular basis should trigger
495          * the bug after less than 10 attempts. It manifests itself with
496          * every pixels being shifted by one to the right, and thus the
497          * last pixel of a line actually being displayed as the first
498          * pixel on the next line.
499          */
500         mdelay(20);
501
502         if (vc4_encoder && vc4_encoder->post_crtc_disable)
503                 vc4_encoder->post_crtc_disable(encoder, state);
504
505         vc4_crtc_pixelvalve_reset(crtc);
506         vc4_hvs_stop_channel(vc4->hvs, channel);
507
508         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
509                 vc4_encoder->post_crtc_powerdown(encoder, state);
510
511         drm_dev_exit(idx);
512
513         return 0;
514 }
515
516 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
517 {
518         struct drm_device *drm = crtc->dev;
519         struct vc4_dev *vc4 = to_vc4_dev(drm);
520         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
521         enum vc4_encoder_type encoder_type;
522         const struct vc4_pv_data *pv_data;
523         struct drm_encoder *encoder;
524         struct vc4_hdmi *vc4_hdmi;
525         unsigned encoder_sel;
526         int channel;
527         int ret;
528
529         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
530                                       "brcm,bcm2711-pixelvalve2") ||
531               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
532                                       "brcm,bcm2711-pixelvalve4")))
533                 return 0;
534
535         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
536                 return 0;
537
538         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
539                 return 0;
540
541         channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
542         if (channel < 0)
543                 return 0;
544
545         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
546         if (WARN_ON(encoder_sel != 0))
547                 return 0;
548
549         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
550         encoder_type = pv_data->encoder_types[encoder_sel];
551         encoder = vc4_find_encoder_by_type(drm, encoder_type);
552         if (WARN_ON(!encoder))
553                 return 0;
554
555         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
556         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
557         if (ret)
558                 return ret;
559
560         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
561         if (ret)
562                 return ret;
563
564         /*
565          * post_crtc_powerdown will have called pm_runtime_put, so we
566          * don't need it here otherwise we'll get the reference counting
567          * wrong.
568          */
569
570         return 0;
571 }
572
573 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
574 {
575         struct drm_device *dev = crtc->dev;
576         unsigned long flags;
577
578         if (!crtc->state || !crtc->state->event)
579                 return;
580
581         spin_lock_irqsave(&dev->event_lock, flags);
582         drm_crtc_send_vblank_event(crtc, crtc->state->event);
583         crtc->state->event = NULL;
584         spin_unlock_irqrestore(&dev->event_lock, flags);
585 }
586
587 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
588                                     struct drm_atomic_state *state)
589 {
590         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
591                                                                          crtc);
592         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
593         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
594         struct drm_device *dev = crtc->dev;
595
596         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
597                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
598
599         require_hvs_enabled(dev);
600
601         /* Disable vblank irq handling before crtc is disabled. */
602         drm_crtc_vblank_off(crtc);
603
604         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
605
606         /*
607          * Make sure we issue a vblank event after disabling the CRTC if
608          * someone was waiting it.
609          */
610         vc4_crtc_send_vblank(crtc);
611 }
612
613 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
614                                    struct drm_atomic_state *state)
615 {
616         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
617                                                                          crtc);
618         struct drm_device *dev = crtc->dev;
619         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
620         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
621         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
622         int idx;
623
624         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
625                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
626
627         if (!drm_dev_enter(dev, &idx))
628                 return;
629
630         require_hvs_enabled(dev);
631
632         /* Enable vblank irq handling before crtc is started otherwise
633          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
634          */
635         drm_crtc_vblank_on(crtc);
636
637         vc4_hvs_atomic_enable(crtc, state);
638
639         if (vc4_encoder->pre_crtc_configure)
640                 vc4_encoder->pre_crtc_configure(encoder, state);
641
642         vc4_crtc_config_pv(crtc, encoder, state);
643
644         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
645
646         if (vc4_encoder->pre_crtc_enable)
647                 vc4_encoder->pre_crtc_enable(encoder, state);
648
649         /* When feeding the transposer block the pixelvalve is unneeded and
650          * should not be enabled.
651          */
652         CRTC_WRITE(PV_V_CONTROL,
653                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
654
655         if (vc4_encoder->post_crtc_enable)
656                 vc4_encoder->post_crtc_enable(encoder, state);
657
658         drm_dev_exit(idx);
659 }
660
661 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
662                                                 const struct drm_display_mode *mode)
663 {
664         /* Do not allow doublescan modes from user space */
665         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
666                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
667                               crtc->base.id);
668                 return MODE_NO_DBLESCAN;
669         }
670
671         return MODE_OK;
672 }
673
674 void vc4_crtc_get_margins(struct drm_crtc_state *state,
675                           unsigned int *left, unsigned int *right,
676                           unsigned int *top, unsigned int *bottom)
677 {
678         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
679         struct drm_connector_state *conn_state;
680         struct drm_connector *conn;
681         int i;
682
683         *left = vc4_state->margins.left;
684         *right = vc4_state->margins.right;
685         *top = vc4_state->margins.top;
686         *bottom = vc4_state->margins.bottom;
687
688         /* We have to interate over all new connector states because
689          * vc4_crtc_get_margins() might be called before
690          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
691          * might be outdated.
692          */
693         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
694                 if (conn_state->crtc != state->crtc)
695                         continue;
696
697                 *left = conn_state->tv.margins.left;
698                 *right = conn_state->tv.margins.right;
699                 *top = conn_state->tv.margins.top;
700                 *bottom = conn_state->tv.margins.bottom;
701                 break;
702         }
703 }
704
705 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
706                           struct drm_atomic_state *state)
707 {
708         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
709                                                                           crtc);
710         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
711         struct drm_connector *conn;
712         struct drm_connector_state *conn_state;
713         struct drm_encoder *encoder;
714         int ret, i;
715
716         ret = vc4_hvs_atomic_check(crtc, state);
717         if (ret)
718                 return ret;
719
720         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
721         if (encoder) {
722                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
723                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
724
725                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
726                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
727                                                   mode->clock * 9 / 10) * 1000;
728                 } else {
729                         vc4_state->hvs_load = mode->clock * 1000;
730                 }
731         }
732
733         for_each_new_connector_in_state(state, conn, conn_state,
734                                         i) {
735                 if (conn_state->crtc != crtc)
736                         continue;
737
738                 vc4_state->margins.left = conn_state->tv.margins.left;
739                 vc4_state->margins.right = conn_state->tv.margins.right;
740                 vc4_state->margins.top = conn_state->tv.margins.top;
741                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
742                 break;
743         }
744
745         return 0;
746 }
747
748 static int vc4_enable_vblank(struct drm_crtc *crtc)
749 {
750         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
751         struct drm_device *dev = crtc->dev;
752         int idx;
753
754         if (!drm_dev_enter(dev, &idx))
755                 return -ENODEV;
756
757         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
758
759         drm_dev_exit(idx);
760
761         return 0;
762 }
763
764 static void vc4_disable_vblank(struct drm_crtc *crtc)
765 {
766         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
767         struct drm_device *dev = crtc->dev;
768         int idx;
769
770         if (!drm_dev_enter(dev, &idx))
771                 return;
772
773         CRTC_WRITE(PV_INTEN, 0);
774
775         drm_dev_exit(idx);
776 }
777
778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
779 {
780         struct drm_crtc *crtc = &vc4_crtc->base;
781         struct drm_device *dev = crtc->dev;
782         struct vc4_dev *vc4 = to_vc4_dev(dev);
783         struct vc4_hvs *hvs = vc4->hvs;
784         u32 chan = vc4_crtc->current_hvs_channel;
785         unsigned long flags;
786
787         spin_lock_irqsave(&dev->event_lock, flags);
788         spin_lock(&vc4_crtc->irq_lock);
789         if (vc4_crtc->event &&
790             (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
791              vc4_crtc->feeds_txp)) {
792                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
793                 vc4_crtc->event = NULL;
794                 drm_crtc_vblank_put(crtc);
795
796                 /* Wait for the page flip to unmask the underrun to ensure that
797                  * the display list was updated by the hardware. Before that
798                  * happens, the HVS will be using the previous display list with
799                  * the CRTC and encoder already reconfigured, leading to
800                  * underruns. This can be seen when reconfiguring the CRTC.
801                  */
802                 vc4_hvs_unmask_underrun(hvs, chan);
803         }
804         spin_unlock(&vc4_crtc->irq_lock);
805         spin_unlock_irqrestore(&dev->event_lock, flags);
806 }
807
808 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
809 {
810         crtc->t_vblank = ktime_get();
811         drm_crtc_handle_vblank(&crtc->base);
812         vc4_crtc_handle_page_flip(crtc);
813 }
814
815 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
816 {
817         struct vc4_crtc *vc4_crtc = data;
818         u32 stat = CRTC_READ(PV_INTSTAT);
819         irqreturn_t ret = IRQ_NONE;
820
821         if (stat & PV_INT_VFP_START) {
822                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
823                 vc4_crtc_handle_vblank(vc4_crtc);
824                 ret = IRQ_HANDLED;
825         }
826
827         return ret;
828 }
829
830 struct vc4_async_flip_state {
831         struct drm_crtc *crtc;
832         struct drm_framebuffer *fb;
833         struct drm_framebuffer *old_fb;
834         struct drm_pending_vblank_event *event;
835
836         union {
837                 struct dma_fence_cb fence;
838                 struct vc4_seqno_cb seqno;
839         } cb;
840 };
841
842 /* Called when the V3D execution for the BO being flipped to is done, so that
843  * we can actually update the plane's address to point to it.
844  */
845 static void
846 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
847 {
848         struct drm_crtc *crtc = flip_state->crtc;
849         struct drm_device *dev = crtc->dev;
850         struct drm_plane *plane = crtc->primary;
851
852         vc4_plane_async_set_fb(plane, flip_state->fb);
853         if (flip_state->event) {
854                 unsigned long flags;
855
856                 spin_lock_irqsave(&dev->event_lock, flags);
857                 drm_crtc_send_vblank_event(crtc, flip_state->event);
858                 spin_unlock_irqrestore(&dev->event_lock, flags);
859         }
860
861         drm_crtc_vblank_put(crtc);
862         drm_framebuffer_put(flip_state->fb);
863
864         if (flip_state->old_fb)
865                 drm_framebuffer_put(flip_state->old_fb);
866
867         kfree(flip_state);
868 }
869
870 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
871 {
872         struct vc4_async_flip_state *flip_state =
873                 container_of(cb, struct vc4_async_flip_state, cb.seqno);
874         struct vc4_bo *bo = NULL;
875
876         if (flip_state->old_fb) {
877                 struct drm_gem_dma_object *dma_bo =
878                         drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
879                 bo = to_vc4_bo(&dma_bo->base);
880         }
881
882         vc4_async_page_flip_complete(flip_state);
883
884         /*
885          * Decrement the BO usecnt in order to keep the inc/dec
886          * calls balanced when the planes are updated through
887          * the async update path.
888          *
889          * FIXME: we should move to generic async-page-flip when
890          * it's available, so that we can get rid of this
891          * hand-made cleanup_fb() logic.
892          */
893         if (bo)
894                 vc4_bo_dec_usecnt(bo);
895 }
896
897 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
898                                                struct dma_fence_cb *cb)
899 {
900         struct vc4_async_flip_state *flip_state =
901                 container_of(cb, struct vc4_async_flip_state, cb.fence);
902
903         vc4_async_page_flip_complete(flip_state);
904         dma_fence_put(fence);
905 }
906
907 static int vc4_async_set_fence_cb(struct drm_device *dev,
908                                   struct vc4_async_flip_state *flip_state)
909 {
910         struct drm_framebuffer *fb = flip_state->fb;
911         struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
912         struct vc4_dev *vc4 = to_vc4_dev(dev);
913         struct dma_fence *fence;
914         int ret;
915
916         if (!vc4->is_vc5) {
917                 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
918
919                 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
920                                           vc4_async_page_flip_seqno_complete);
921         }
922
923         ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
924         if (ret)
925                 return ret;
926
927         /* If there's no fence, complete the page flip immediately */
928         if (!fence) {
929                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
930                 return 0;
931         }
932
933         /* If the fence has already been completed, complete the page flip */
934         if (dma_fence_add_callback(fence, &flip_state->cb.fence,
935                                    vc4_async_page_flip_fence_complete))
936                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
937
938         return 0;
939 }
940
941 static int
942 vc4_async_page_flip_common(struct drm_crtc *crtc,
943                            struct drm_framebuffer *fb,
944                            struct drm_pending_vblank_event *event,
945                            uint32_t flags)
946 {
947         struct drm_device *dev = crtc->dev;
948         struct drm_plane *plane = crtc->primary;
949         struct vc4_async_flip_state *flip_state;
950
951         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
952         if (!flip_state)
953                 return -ENOMEM;
954
955         drm_framebuffer_get(fb);
956         flip_state->fb = fb;
957         flip_state->crtc = crtc;
958         flip_state->event = event;
959
960         /* Save the current FB before it's replaced by the new one in
961          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
962          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
963          * it consistent.
964          * FIXME: we should move to generic async-page-flip when it's
965          * available, so that we can get rid of this hand-made cleanup_fb()
966          * logic.
967          */
968         flip_state->old_fb = plane->state->fb;
969         if (flip_state->old_fb)
970                 drm_framebuffer_get(flip_state->old_fb);
971
972         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
973
974         /* Immediately update the plane's legacy fb pointer, so that later
975          * modeset prep sees the state that will be present when the semaphore
976          * is released.
977          */
978         drm_atomic_set_fb_for_plane(plane->state, fb);
979
980         vc4_async_set_fence_cb(dev, flip_state);
981
982         /* Driver takes ownership of state on successful async commit. */
983         return 0;
984 }
985
986 /* Implements async (non-vblank-synced) page flips.
987  *
988  * The page flip ioctl needs to return immediately, so we grab the
989  * modeset semaphore on the pipe, and queue the address update for
990  * when V3D is done with the BO being flipped to.
991  */
992 static int vc4_async_page_flip(struct drm_crtc *crtc,
993                                struct drm_framebuffer *fb,
994                                struct drm_pending_vblank_event *event,
995                                uint32_t flags)
996 {
997         struct drm_device *dev = crtc->dev;
998         struct vc4_dev *vc4 = to_vc4_dev(dev);
999         struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1000         struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1001         int ret;
1002
1003         if (WARN_ON_ONCE(vc4->is_vc5))
1004                 return -ENODEV;
1005
1006         /*
1007          * Increment the BO usecnt here, so that we never end up with an
1008          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1009          * plane is later updated through the non-async path.
1010          *
1011          * FIXME: we should move to generic async-page-flip when
1012          * it's available, so that we can get rid of this
1013          * hand-made prepare_fb() logic.
1014          */
1015         ret = vc4_bo_inc_usecnt(bo);
1016         if (ret)
1017                 return ret;
1018
1019         ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1020         if (ret) {
1021                 vc4_bo_dec_usecnt(bo);
1022                 return ret;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static int vc5_async_page_flip(struct drm_crtc *crtc,
1029                                struct drm_framebuffer *fb,
1030                                struct drm_pending_vblank_event *event,
1031                                uint32_t flags)
1032 {
1033         return vc4_async_page_flip_common(crtc, fb, event, flags);
1034 }
1035
1036 int vc4_page_flip(struct drm_crtc *crtc,
1037                   struct drm_framebuffer *fb,
1038                   struct drm_pending_vblank_event *event,
1039                   uint32_t flags,
1040                   struct drm_modeset_acquire_ctx *ctx)
1041 {
1042         if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1043                 struct drm_device *dev = crtc->dev;
1044                 struct vc4_dev *vc4 = to_vc4_dev(dev);
1045
1046                 if (vc4->is_vc5)
1047                         return vc5_async_page_flip(crtc, fb, event, flags);
1048                 else
1049                         return vc4_async_page_flip(crtc, fb, event, flags);
1050         } else {
1051                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1052         }
1053 }
1054
1055 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1056 {
1057         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1058
1059         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1060         if (!vc4_state)
1061                 return NULL;
1062
1063         old_vc4_state = to_vc4_crtc_state(crtc->state);
1064         vc4_state->margins = old_vc4_state->margins;
1065         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1066
1067         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1068         return &vc4_state->base;
1069 }
1070
1071 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1072                             struct drm_crtc_state *state)
1073 {
1074         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1075         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1076
1077         if (drm_mm_node_allocated(&vc4_state->mm)) {
1078                 unsigned long flags;
1079
1080                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1081                 drm_mm_remove_node(&vc4_state->mm);
1082                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1083
1084         }
1085
1086         drm_atomic_helper_crtc_destroy_state(crtc, state);
1087 }
1088
1089 void vc4_crtc_reset(struct drm_crtc *crtc)
1090 {
1091         struct vc4_crtc_state *vc4_crtc_state;
1092
1093         if (crtc->state)
1094                 vc4_crtc_destroy_state(crtc, crtc->state);
1095
1096         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1097         if (!vc4_crtc_state) {
1098                 crtc->state = NULL;
1099                 return;
1100         }
1101
1102         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1103         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1104 }
1105
1106 int vc4_crtc_late_register(struct drm_crtc *crtc)
1107 {
1108         struct drm_device *drm = crtc->dev;
1109         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1110         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1111
1112         vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1113                                  &vc4_crtc->regset);
1114
1115         return 0;
1116 }
1117
1118 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1119         .set_config = drm_atomic_helper_set_config,
1120         .page_flip = vc4_page_flip,
1121         .set_property = NULL,
1122         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1123         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1124         .reset = vc4_crtc_reset,
1125         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1126         .atomic_destroy_state = vc4_crtc_destroy_state,
1127         .enable_vblank = vc4_enable_vblank,
1128         .disable_vblank = vc4_disable_vblank,
1129         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1130         .late_register = vc4_crtc_late_register,
1131 };
1132
1133 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1134         .mode_valid = vc4_crtc_mode_valid,
1135         .atomic_check = vc4_crtc_atomic_check,
1136         .atomic_begin = vc4_hvs_atomic_begin,
1137         .atomic_flush = vc4_hvs_atomic_flush,
1138         .atomic_enable = vc4_crtc_atomic_enable,
1139         .atomic_disable = vc4_crtc_atomic_disable,
1140         .get_scanout_position = vc4_crtc_get_scanout_position,
1141 };
1142
1143 const struct vc4_pv_data bcm2835_pv0_data = {
1144         .base = {
1145                 .name = "pixelvalve-0",
1146                 .debugfs_name = "crtc0_regs",
1147                 .hvs_available_channels = BIT(0),
1148                 .hvs_output = 0,
1149         },
1150         .fifo_depth = 64,
1151         .pixels_per_clock = 1,
1152         .encoder_types = {
1153                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1154                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1155         },
1156 };
1157
1158 const struct vc4_pv_data bcm2835_pv1_data = {
1159         .base = {
1160                 .name = "pixelvalve-1",
1161                 .debugfs_name = "crtc1_regs",
1162                 .hvs_available_channels = BIT(2),
1163                 .hvs_output = 2,
1164         },
1165         .fifo_depth = 64,
1166         .pixels_per_clock = 1,
1167         .encoder_types = {
1168                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1169                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1170         },
1171 };
1172
1173 const struct vc4_pv_data bcm2835_pv2_data = {
1174         .base = {
1175                 .name = "pixelvalve-2",
1176                 .debugfs_name = "crtc2_regs",
1177                 .hvs_available_channels = BIT(1),
1178                 .hvs_output = 1,
1179         },
1180         .fifo_depth = 64,
1181         .pixels_per_clock = 1,
1182         .encoder_types = {
1183                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1184                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1185         },
1186 };
1187
1188 const struct vc4_pv_data bcm2711_pv0_data = {
1189         .base = {
1190                 .name = "pixelvalve-0",
1191                 .debugfs_name = "crtc0_regs",
1192                 .hvs_available_channels = BIT(0),
1193                 .hvs_output = 0,
1194         },
1195         .fifo_depth = 64,
1196         .pixels_per_clock = 1,
1197         .encoder_types = {
1198                 [0] = VC4_ENCODER_TYPE_DSI0,
1199                 [1] = VC4_ENCODER_TYPE_DPI,
1200         },
1201 };
1202
1203 const struct vc4_pv_data bcm2711_pv1_data = {
1204         .base = {
1205                 .name = "pixelvalve-1",
1206                 .debugfs_name = "crtc1_regs",
1207                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208                 .hvs_output = 3,
1209         },
1210         .fifo_depth = 64,
1211         .pixels_per_clock = 1,
1212         .encoder_types = {
1213                 [0] = VC4_ENCODER_TYPE_DSI1,
1214                 [1] = VC4_ENCODER_TYPE_SMI,
1215         },
1216 };
1217
1218 const struct vc4_pv_data bcm2711_pv2_data = {
1219         .base = {
1220                 .name = "pixelvalve-2",
1221                 .debugfs_name = "crtc2_regs",
1222                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1223                 .hvs_output = 4,
1224         },
1225         .fifo_depth = 256,
1226         .pixels_per_clock = 2,
1227         .encoder_types = {
1228                 [0] = VC4_ENCODER_TYPE_HDMI0,
1229         },
1230 };
1231
1232 const struct vc4_pv_data bcm2711_pv3_data = {
1233         .base = {
1234                 .name = "pixelvalve-3",
1235                 .debugfs_name = "crtc3_regs",
1236                 .hvs_available_channels = BIT(1),
1237                 .hvs_output = 1,
1238         },
1239         .fifo_depth = 64,
1240         .pixels_per_clock = 1,
1241         .encoder_types = {
1242                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1243         },
1244 };
1245
1246 const struct vc4_pv_data bcm2711_pv4_data = {
1247         .base = {
1248                 .name = "pixelvalve-4",
1249                 .debugfs_name = "crtc4_regs",
1250                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1251                 .hvs_output = 5,
1252         },
1253         .fifo_depth = 64,
1254         .pixels_per_clock = 2,
1255         .encoder_types = {
1256                 [0] = VC4_ENCODER_TYPE_HDMI1,
1257         },
1258 };
1259
1260 static const struct of_device_id vc4_crtc_dt_match[] = {
1261         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1262         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1263         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1264         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1265         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1266         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1267         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1268         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1269         {}
1270 };
1271
1272 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1273                                         struct drm_crtc *crtc)
1274 {
1275         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1276         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1277         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1278         struct drm_encoder *encoder;
1279
1280         drm_for_each_encoder(encoder, drm) {
1281                 struct vc4_encoder *vc4_encoder;
1282                 int i;
1283
1284                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1285                         continue;
1286
1287                 vc4_encoder = to_vc4_encoder(encoder);
1288                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1289                         if (vc4_encoder->type == encoder_types[i]) {
1290                                 vc4_encoder->clock_select = i;
1291                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1292                                 break;
1293                         }
1294                 }
1295         }
1296 }
1297
1298 /**
1299  * __vc4_crtc_init - Initializes a CRTC
1300  * @drm: DRM Device
1301  * @pdev: CRTC Platform Device
1302  * @vc4_crtc: CRTC Object to Initialize
1303  * @data: Configuration data associated with this CRTC
1304  * @primary_plane: Primary plane for CRTC
1305  * @crtc_funcs: Callbacks for the new CRTC
1306  * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1307  * @feeds_txp: Is this CRTC connected to the TXP?
1308  *
1309  * Initializes our private CRTC structure. This function is mostly
1310  * relevant for KUnit testing, all other users should use
1311  * vc4_crtc_init() instead.
1312  *
1313  * Returns:
1314  * 0 on success, a negative error code on failure.
1315  */
1316 int __vc4_crtc_init(struct drm_device *drm,
1317                     struct platform_device *pdev,
1318                     struct vc4_crtc *vc4_crtc,
1319                     const struct vc4_crtc_data *data,
1320                     struct drm_plane *primary_plane,
1321                     const struct drm_crtc_funcs *crtc_funcs,
1322                     const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1323                     bool feeds_txp)
1324 {
1325         struct vc4_dev *vc4 = to_vc4_dev(drm);
1326         struct drm_crtc *crtc = &vc4_crtc->base;
1327         unsigned int i;
1328         int ret;
1329
1330         vc4_crtc->data = data;
1331         vc4_crtc->pdev = pdev;
1332         vc4_crtc->feeds_txp = feeds_txp;
1333         spin_lock_init(&vc4_crtc->irq_lock);
1334         ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1335                                          crtc_funcs, data->name);
1336         if (ret)
1337                 return ret;
1338
1339         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1340
1341         if (!vc4->is_vc5) {
1342                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1343
1344                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1345
1346                 /* We support CTM, but only for one CRTC at a time. It's therefore
1347                  * implemented as private driver state in vc4_kms, not here.
1348                  */
1349                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1350         }
1351
1352         for (i = 0; i < crtc->gamma_size; i++) {
1353                 vc4_crtc->lut_r[i] = i;
1354                 vc4_crtc->lut_g[i] = i;
1355                 vc4_crtc->lut_b[i] = i;
1356         }
1357
1358         return 0;
1359 }
1360
1361 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1362                   struct vc4_crtc *vc4_crtc,
1363                   const struct vc4_crtc_data *data,
1364                   const struct drm_crtc_funcs *crtc_funcs,
1365                   const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1366                   bool feeds_txp)
1367 {
1368         struct drm_plane *primary_plane;
1369
1370         /* For now, we create just the primary and the legacy cursor
1371          * planes.  We should be able to stack more planes on easily,
1372          * but to do that we would need to compute the bandwidth
1373          * requirement of the plane configuration, and reject ones
1374          * that will take too much.
1375          */
1376         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1377         if (IS_ERR(primary_plane)) {
1378                 dev_err(drm->dev, "failed to construct primary plane\n");
1379                 return PTR_ERR(primary_plane);
1380         }
1381
1382         return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1383                                crtc_funcs, crtc_helper_funcs, feeds_txp);
1384 }
1385
1386 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1387 {
1388         struct platform_device *pdev = to_platform_device(dev);
1389         struct drm_device *drm = dev_get_drvdata(master);
1390         const struct vc4_pv_data *pv_data;
1391         struct vc4_crtc *vc4_crtc;
1392         struct drm_crtc *crtc;
1393         int ret;
1394
1395         vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1396         if (!vc4_crtc)
1397                 return -ENOMEM;
1398         crtc = &vc4_crtc->base;
1399
1400         pv_data = of_device_get_match_data(dev);
1401         if (!pv_data)
1402                 return -ENODEV;
1403
1404         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1405         if (IS_ERR(vc4_crtc->regs))
1406                 return PTR_ERR(vc4_crtc->regs);
1407
1408         vc4_crtc->regset.base = vc4_crtc->regs;
1409         vc4_crtc->regset.regs = crtc_regs;
1410         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1411
1412         ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1413                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1414                             false);
1415         if (ret)
1416                 return ret;
1417         vc4_set_crtc_possible_masks(drm, crtc);
1418
1419         CRTC_WRITE(PV_INTEN, 0);
1420         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1421         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1422                                vc4_crtc_irq_handler,
1423                                IRQF_SHARED,
1424                                "vc4 crtc", vc4_crtc);
1425         if (ret)
1426                 return ret;
1427
1428         platform_set_drvdata(pdev, vc4_crtc);
1429
1430         return 0;
1431 }
1432
1433 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1434                             void *data)
1435 {
1436         struct platform_device *pdev = to_platform_device(dev);
1437         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1438
1439         CRTC_WRITE(PV_INTEN, 0);
1440
1441         platform_set_drvdata(pdev, NULL);
1442 }
1443
1444 static const struct component_ops vc4_crtc_ops = {
1445         .bind   = vc4_crtc_bind,
1446         .unbind = vc4_crtc_unbind,
1447 };
1448
1449 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1450 {
1451         return component_add(&pdev->dev, &vc4_crtc_ops);
1452 }
1453
1454 static void vc4_crtc_dev_remove(struct platform_device *pdev)
1455 {
1456         component_del(&pdev->dev, &vc4_crtc_ops);
1457 }
1458
1459 struct platform_driver vc4_crtc_driver = {
1460         .probe = vc4_crtc_dev_probe,
1461         .remove_new = vc4_crtc_dev_remove,
1462         .driver = {
1463                 .name = "vc4_crtc",
1464                 .of_match_table = vc4_crtc_dt_match,
1465         },
1466 };