s390/vdso: drop unnecessary cc-ldoption
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_probe_helper.h>
39 #include <linux/clk.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <linux/component.h>
42 #include <linux/of_device.h>
43 #include "vc4_drv.h"
44 #include "vc4_regs.h"
45
46 struct vc4_crtc_state {
47         struct drm_crtc_state base;
48         /* Dlist area for this CRTC configuration. */
49         struct drm_mm_node mm;
50         bool feed_txp;
51         bool txp_armed;
52
53         struct {
54                 unsigned int left;
55                 unsigned int right;
56                 unsigned int top;
57                 unsigned int bottom;
58         } margins;
59 };
60
61 static inline struct vc4_crtc_state *
62 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
63 {
64         return (struct vc4_crtc_state *)crtc_state;
65 }
66
67 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
68 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
69
70 #define CRTC_REG(reg) { reg, #reg }
71 static const struct {
72         u32 reg;
73         const char *name;
74 } crtc_regs[] = {
75         CRTC_REG(PV_CONTROL),
76         CRTC_REG(PV_V_CONTROL),
77         CRTC_REG(PV_VSYNCD_EVEN),
78         CRTC_REG(PV_HORZA),
79         CRTC_REG(PV_HORZB),
80         CRTC_REG(PV_VERTA),
81         CRTC_REG(PV_VERTB),
82         CRTC_REG(PV_VERTA_EVEN),
83         CRTC_REG(PV_VERTB_EVEN),
84         CRTC_REG(PV_INTEN),
85         CRTC_REG(PV_INTSTAT),
86         CRTC_REG(PV_STAT),
87         CRTC_REG(PV_HACT_ACT),
88 };
89
90 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
91 {
92         int i;
93
94         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
95                 DRM_INFO("0x%04x (%s): 0x%08x\n",
96                          crtc_regs[i].reg, crtc_regs[i].name,
97                          CRTC_READ(crtc_regs[i].reg));
98         }
99 }
100
101 #ifdef CONFIG_DEBUG_FS
102 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
103 {
104         struct drm_info_node *node = (struct drm_info_node *)m->private;
105         struct drm_device *dev = node->minor->dev;
106         int crtc_index = (uintptr_t)node->info_ent->data;
107         struct drm_crtc *crtc;
108         struct vc4_crtc *vc4_crtc;
109         int i;
110
111         i = 0;
112         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
113                 if (i == crtc_index)
114                         break;
115                 i++;
116         }
117         if (!crtc)
118                 return 0;
119         vc4_crtc = to_vc4_crtc(crtc);
120
121         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
122                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
123                            crtc_regs[i].name, crtc_regs[i].reg,
124                            CRTC_READ(crtc_regs[i].reg));
125         }
126
127         return 0;
128 }
129 #endif
130
131 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
132                              bool in_vblank_irq, int *vpos, int *hpos,
133                              ktime_t *stime, ktime_t *etime,
134                              const struct drm_display_mode *mode)
135 {
136         struct vc4_dev *vc4 = to_vc4_dev(dev);
137         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
138         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
139         u32 val;
140         int fifo_lines;
141         int vblank_lines;
142         bool ret = false;
143
144         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
145
146         /* Get optional system timestamp before query. */
147         if (stime)
148                 *stime = ktime_get();
149
150         /*
151          * Read vertical scanline which is currently composed for our
152          * pixelvalve by the HVS, and also the scaler status.
153          */
154         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
155
156         /* Get optional system timestamp after query. */
157         if (etime)
158                 *etime = ktime_get();
159
160         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
161
162         /* Vertical position of hvs composed scanline. */
163         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
164         *hpos = 0;
165
166         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
167                 *vpos /= 2;
168
169                 /* Use hpos to correct for field offset in interlaced mode. */
170                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
171                         *hpos += mode->crtc_htotal / 2;
172         }
173
174         /* This is the offset we need for translating hvs -> pv scanout pos. */
175         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
176
177         if (fifo_lines > 0)
178                 ret = true;
179
180         /* HVS more than fifo_lines into frame for compositing? */
181         if (*vpos > fifo_lines) {
182                 /*
183                  * We are in active scanout and can get some meaningful results
184                  * from HVS. The actual PV scanout can not trail behind more
185                  * than fifo_lines as that is the fifo's capacity. Assume that
186                  * in active scanout the HVS and PV work in lockstep wrt. HVS
187                  * refilling the fifo and PV consuming from the fifo, ie.
188                  * whenever the PV consumes and frees up a scanline in the
189                  * fifo, the HVS will immediately refill it, therefore
190                  * incrementing vpos. Therefore we choose HVS read position -
191                  * fifo size in scanlines as a estimate of the real scanout
192                  * position of the PV.
193                  */
194                 *vpos -= fifo_lines + 1;
195
196                 return ret;
197         }
198
199         /*
200          * Less: This happens when we are in vblank and the HVS, after getting
201          * the VSTART restart signal from the PV, just started refilling its
202          * fifo with new lines from the top-most lines of the new framebuffers.
203          * The PV does not scan out in vblank, so does not remove lines from
204          * the fifo, so the fifo will be full quickly and the HVS has to pause.
205          * We can't get meaningful readings wrt. scanline position of the PV
206          * and need to make things up in a approximative but consistent way.
207          */
208         vblank_lines = mode->vtotal - mode->vdisplay;
209
210         if (in_vblank_irq) {
211                 /*
212                  * Assume the irq handler got called close to first
213                  * line of vblank, so PV has about a full vblank
214                  * scanlines to go, and as a base timestamp use the
215                  * one taken at entry into vblank irq handler, so it
216                  * is not affected by random delays due to lock
217                  * contention on event_lock or vblank_time lock in
218                  * the core.
219                  */
220                 *vpos = -vblank_lines;
221
222                 if (stime)
223                         *stime = vc4_crtc->t_vblank;
224                 if (etime)
225                         *etime = vc4_crtc->t_vblank;
226
227                 /*
228                  * If the HVS fifo is not yet full then we know for certain
229                  * we are at the very beginning of vblank, as the hvs just
230                  * started refilling, and the stime and etime timestamps
231                  * truly correspond to start of vblank.
232                  *
233                  * Unfortunately there's no way to report this to upper levels
234                  * and make it more useful.
235                  */
236         } else {
237                 /*
238                  * No clue where we are inside vblank. Return a vpos of zero,
239                  * which will cause calling code to just return the etime
240                  * timestamp uncorrected. At least this is no worse than the
241                  * standard fallback.
242                  */
243                 *vpos = 0;
244         }
245
246         return ret;
247 }
248
249 static void vc4_crtc_destroy(struct drm_crtc *crtc)
250 {
251         drm_crtc_cleanup(crtc);
252 }
253
254 static void
255 vc4_crtc_lut_load(struct drm_crtc *crtc)
256 {
257         struct drm_device *dev = crtc->dev;
258         struct vc4_dev *vc4 = to_vc4_dev(dev);
259         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
260         u32 i;
261
262         /* The LUT memory is laid out with each HVS channel in order,
263          * each of which takes 256 writes for R, 256 for G, then 256
264          * for B.
265          */
266         HVS_WRITE(SCALER_GAMADDR,
267                   SCALER_GAMADDR_AUTOINC |
268                   (vc4_crtc->channel * 3 * crtc->gamma_size));
269
270         for (i = 0; i < crtc->gamma_size; i++)
271                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
272         for (i = 0; i < crtc->gamma_size; i++)
273                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
274         for (i = 0; i < crtc->gamma_size; i++)
275                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
276 }
277
278 static void
279 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
280 {
281         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
282         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
283         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
284         u32 i;
285
286         for (i = 0; i < length; i++) {
287                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
288                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
289                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
290         }
291
292         vc4_crtc_lut_load(crtc);
293 }
294
295 static u32 vc4_get_fifo_full_level(u32 format)
296 {
297         static const u32 fifo_len_bytes = 64;
298         static const u32 hvs_latency_pix = 6;
299
300         switch (format) {
301         case PV_CONTROL_FORMAT_DSIV_16:
302         case PV_CONTROL_FORMAT_DSIC_16:
303                 return fifo_len_bytes - 2 * hvs_latency_pix;
304         case PV_CONTROL_FORMAT_DSIV_18:
305                 return fifo_len_bytes - 14;
306         case PV_CONTROL_FORMAT_24:
307         case PV_CONTROL_FORMAT_DSIV_24:
308         default:
309                 return fifo_len_bytes - 3 * hvs_latency_pix;
310         }
311 }
312
313 /*
314  * Returns the encoder attached to the CRTC.
315  *
316  * VC4 can only scan out to one encoder at a time, while the DRM core
317  * allows drivers to push pixels to more than one encoder from the
318  * same CRTC.
319  */
320 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
321 {
322         struct drm_connector *connector;
323         struct drm_connector_list_iter conn_iter;
324
325         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
326         drm_for_each_connector_iter(connector, &conn_iter) {
327                 if (connector->state->crtc == crtc) {
328                         drm_connector_list_iter_end(&conn_iter);
329                         return connector->encoder;
330                 }
331         }
332         drm_connector_list_iter_end(&conn_iter);
333
334         return NULL;
335 }
336
337 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
338 {
339         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
340         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
341         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
342         struct drm_crtc_state *state = crtc->state;
343         struct drm_display_mode *mode = &state->adjusted_mode;
344         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
345         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
346         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
347                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
348         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
349
350         /* Reset the PV fifo. */
351         CRTC_WRITE(PV_CONTROL, 0);
352         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
353         CRTC_WRITE(PV_CONTROL, 0);
354
355         CRTC_WRITE(PV_HORZA,
356                    VC4_SET_FIELD((mode->htotal -
357                                   mode->hsync_end) * pixel_rep,
358                                  PV_HORZA_HBP) |
359                    VC4_SET_FIELD((mode->hsync_end -
360                                   mode->hsync_start) * pixel_rep,
361                                  PV_HORZA_HSYNC));
362         CRTC_WRITE(PV_HORZB,
363                    VC4_SET_FIELD((mode->hsync_start -
364                                   mode->hdisplay) * pixel_rep,
365                                  PV_HORZB_HFP) |
366                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
367
368         CRTC_WRITE(PV_VERTA,
369                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
370                                  PV_VERTA_VBP) |
371                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
372                                  PV_VERTA_VSYNC));
373         CRTC_WRITE(PV_VERTB,
374                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
375                                  PV_VERTB_VFP) |
376                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
377
378         if (interlace) {
379                 CRTC_WRITE(PV_VERTA_EVEN,
380                            VC4_SET_FIELD(mode->crtc_vtotal -
381                                          mode->crtc_vsync_end - 1,
382                                          PV_VERTA_VBP) |
383                            VC4_SET_FIELD(mode->crtc_vsync_end -
384                                          mode->crtc_vsync_start,
385                                          PV_VERTA_VSYNC));
386                 CRTC_WRITE(PV_VERTB_EVEN,
387                            VC4_SET_FIELD(mode->crtc_vsync_start -
388                                          mode->crtc_vdisplay,
389                                          PV_VERTB_VFP) |
390                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
391
392                 /* We set up first field even mode for HDMI.  VEC's
393                  * NTSC mode would want first field odd instead, once
394                  * we support it (to do so, set ODD_FIRST and put the
395                  * delay in VSYNCD_EVEN instead).
396                  */
397                 CRTC_WRITE(PV_V_CONTROL,
398                            PV_VCONTROL_CONTINUOUS |
399                            (is_dsi ? PV_VCONTROL_DSI : 0) |
400                            PV_VCONTROL_INTERLACE |
401                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
402                                          PV_VCONTROL_ODD_DELAY));
403                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
404         } else {
405                 CRTC_WRITE(PV_V_CONTROL,
406                            PV_VCONTROL_CONTINUOUS |
407                            (is_dsi ? PV_VCONTROL_DSI : 0));
408         }
409
410         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
411
412         CRTC_WRITE(PV_CONTROL,
413                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
414                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
415                                  PV_CONTROL_FIFO_LEVEL) |
416                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
417                    PV_CONTROL_CLR_AT_START |
418                    PV_CONTROL_TRIGGER_UNDERFLOW |
419                    PV_CONTROL_WAIT_HSTART |
420                    VC4_SET_FIELD(vc4_encoder->clock_select,
421                                  PV_CONTROL_CLK_SELECT) |
422                    PV_CONTROL_FIFO_CLR |
423                    PV_CONTROL_EN);
424 }
425
426 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
427 {
428         struct drm_device *dev = crtc->dev;
429         struct vc4_dev *vc4 = to_vc4_dev(dev);
430         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
432         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
433         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
434         bool debug_dump_regs = false;
435
436         if (debug_dump_regs) {
437                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
438                 vc4_crtc_dump_regs(vc4_crtc);
439         }
440
441         if (vc4_crtc->channel == 2) {
442                 u32 dispctrl;
443                 u32 dsp3_mux;
444
445                 /*
446                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
447                  * FIFO X'.
448                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
449                  *
450                  * DSP3 is connected to FIFO2 unless the transposer is
451                  * enabled. In this case, FIFO 2 is directly accessed by the
452                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
453                  * route.
454                  */
455                 if (vc4_state->feed_txp)
456                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
457                 else
458                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
459
460                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
461                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
462                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
463         }
464
465         if (!vc4_state->feed_txp)
466                 vc4_crtc_config_pv(crtc);
467
468         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
469                   SCALER_DISPBKGND_AUTOHS |
470                   SCALER_DISPBKGND_GAMMA |
471                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
472
473         /* Reload the LUT, since the SRAMs would have been disabled if
474          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
475          */
476         vc4_crtc_lut_load(crtc);
477
478         if (debug_dump_regs) {
479                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
480                 vc4_crtc_dump_regs(vc4_crtc);
481         }
482 }
483
484 static void require_hvs_enabled(struct drm_device *dev)
485 {
486         struct vc4_dev *vc4 = to_vc4_dev(dev);
487
488         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
489                      SCALER_DISPCTRL_ENABLE);
490 }
491
492 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
493                                     struct drm_crtc_state *old_state)
494 {
495         struct drm_device *dev = crtc->dev;
496         struct vc4_dev *vc4 = to_vc4_dev(dev);
497         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
498         u32 chan = vc4_crtc->channel;
499         int ret;
500         require_hvs_enabled(dev);
501
502         /* Disable vblank irq handling before crtc is disabled. */
503         drm_crtc_vblank_off(crtc);
504
505         CRTC_WRITE(PV_V_CONTROL,
506                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
507         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
508         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
509
510         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
511             SCALER_DISPCTRLX_ENABLE) {
512                 HVS_WRITE(SCALER_DISPCTRLX(chan),
513                           SCALER_DISPCTRLX_RESET);
514
515                 /* While the docs say that reset is self-clearing, it
516                  * seems it doesn't actually.
517                  */
518                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
519         }
520
521         /* Once we leave, the scaler should be disabled and its fifo empty. */
522
523         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
524
525         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
526                                    SCALER_DISPSTATX_MODE) !=
527                      SCALER_DISPSTATX_MODE_DISABLED);
528
529         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
530                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
531                      SCALER_DISPSTATX_EMPTY);
532
533         /*
534          * Make sure we issue a vblank event after disabling the CRTC if
535          * someone was waiting it.
536          */
537         if (crtc->state->event) {
538                 unsigned long flags;
539
540                 spin_lock_irqsave(&dev->event_lock, flags);
541                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
542                 crtc->state->event = NULL;
543                 spin_unlock_irqrestore(&dev->event_lock, flags);
544         }
545 }
546
547 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
548 {
549         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
550
551         vc4_state->txp_armed = true;
552 }
553
554 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
555 {
556         struct drm_device *dev = crtc->dev;
557         struct vc4_dev *vc4 = to_vc4_dev(dev);
558         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
559         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
560
561         if (crtc->state->event) {
562                 unsigned long flags;
563
564                 crtc->state->event->pipe = drm_crtc_index(crtc);
565
566                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
567
568                 spin_lock_irqsave(&dev->event_lock, flags);
569
570                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
571                         vc4_crtc->event = crtc->state->event;
572                         crtc->state->event = NULL;
573                 }
574
575                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
576                           vc4_state->mm.start);
577
578                 spin_unlock_irqrestore(&dev->event_lock, flags);
579         } else {
580                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
581                           vc4_state->mm.start);
582         }
583 }
584
585 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
586                                    struct drm_crtc_state *old_state)
587 {
588         struct drm_device *dev = crtc->dev;
589         struct vc4_dev *vc4 = to_vc4_dev(dev);
590         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
591         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
592         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
593
594         require_hvs_enabled(dev);
595
596         /* Enable vblank irq handling before crtc is started otherwise
597          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
598          */
599         drm_crtc_vblank_on(crtc);
600         vc4_crtc_update_dlist(crtc);
601
602         /* Turn on the scaler, which will wait for vstart to start
603          * compositing.
604          * When feeding the transposer, we should operate in oneshot
605          * mode.
606          */
607         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
608                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
609                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
610                   SCALER_DISPCTRLX_ENABLE |
611                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
612
613         /* When feeding the transposer block the pixelvalve is unneeded and
614          * should not be enabled.
615          */
616         if (!vc4_state->feed_txp)
617                 CRTC_WRITE(PV_V_CONTROL,
618                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
619 }
620
621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
622                                                 const struct drm_display_mode *mode)
623 {
624         /* Do not allow doublescan modes from user space */
625         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
626                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
627                               crtc->base.id);
628                 return MODE_NO_DBLESCAN;
629         }
630
631         return MODE_OK;
632 }
633
634 void vc4_crtc_get_margins(struct drm_crtc_state *state,
635                           unsigned int *left, unsigned int *right,
636                           unsigned int *top, unsigned int *bottom)
637 {
638         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
639         struct drm_connector_state *conn_state;
640         struct drm_connector *conn;
641         int i;
642
643         *left = vc4_state->margins.left;
644         *right = vc4_state->margins.right;
645         *top = vc4_state->margins.top;
646         *bottom = vc4_state->margins.bottom;
647
648         /* We have to interate over all new connector states because
649          * vc4_crtc_get_margins() might be called before
650          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
651          * might be outdated.
652          */
653         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
654                 if (conn_state->crtc != state->crtc)
655                         continue;
656
657                 *left = conn_state->tv.margins.left;
658                 *right = conn_state->tv.margins.right;
659                 *top = conn_state->tv.margins.top;
660                 *bottom = conn_state->tv.margins.bottom;
661                 break;
662         }
663 }
664
665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
666                                  struct drm_crtc_state *state)
667 {
668         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
669         struct drm_device *dev = crtc->dev;
670         struct vc4_dev *vc4 = to_vc4_dev(dev);
671         struct drm_plane *plane;
672         unsigned long flags;
673         const struct drm_plane_state *plane_state;
674         struct drm_connector *conn;
675         struct drm_connector_state *conn_state;
676         u32 dlist_count = 0;
677         int ret, i;
678
679         /* The pixelvalve can only feed one encoder (and encoders are
680          * 1:1 with connectors.)
681          */
682         if (hweight32(state->connector_mask) > 1)
683                 return -EINVAL;
684
685         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
686                 dlist_count += vc4_plane_dlist_size(plane_state);
687
688         dlist_count++; /* Account for SCALER_CTL0_END. */
689
690         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
691         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
692                                  dlist_count);
693         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
694         if (ret)
695                 return ret;
696
697         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
698                 if (conn_state->crtc != crtc)
699                         continue;
700
701                 /* The writeback connector is implemented using the transposer
702                  * block which is directly taking its data from the HVS FIFO.
703                  */
704                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
705                         state->no_vblank = true;
706                         vc4_state->feed_txp = true;
707                 } else {
708                         state->no_vblank = false;
709                         vc4_state->feed_txp = false;
710                 }
711
712                 vc4_state->margins.left = conn_state->tv.margins.left;
713                 vc4_state->margins.right = conn_state->tv.margins.right;
714                 vc4_state->margins.top = conn_state->tv.margins.top;
715                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
716                 break;
717         }
718
719         return 0;
720 }
721
722 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
723                                   struct drm_crtc_state *old_state)
724 {
725         struct drm_device *dev = crtc->dev;
726         struct vc4_dev *vc4 = to_vc4_dev(dev);
727         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
728         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
729         struct drm_plane *plane;
730         struct vc4_plane_state *vc4_plane_state;
731         bool debug_dump_regs = false;
732         bool enable_bg_fill = false;
733         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
734         u32 __iomem *dlist_next = dlist_start;
735
736         if (debug_dump_regs) {
737                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
738                 vc4_hvs_dump_state(dev);
739         }
740
741         /* Copy all the active planes' dlist contents to the hardware dlist. */
742         drm_atomic_crtc_for_each_plane(plane, crtc) {
743                 /* Is this the first active plane? */
744                 if (dlist_next == dlist_start) {
745                         /* We need to enable background fill when a plane
746                          * could be alpha blending from the background, i.e.
747                          * where no other plane is underneath. It suffices to
748                          * consider the first active plane here since we set
749                          * needs_bg_fill such that either the first plane
750                          * already needs it or all planes on top blend from
751                          * the first or a lower plane.
752                          */
753                         vc4_plane_state = to_vc4_plane_state(plane->state);
754                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
755                 }
756
757                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
758         }
759
760         writel(SCALER_CTL0_END, dlist_next);
761         dlist_next++;
762
763         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
764
765         if (enable_bg_fill)
766                 /* This sets a black background color fill, as is the case
767                  * with other DRM drivers.
768                  */
769                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
770                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
771                           SCALER_DISPBKGND_FILL);
772
773         /* Only update DISPLIST if the CRTC was already running and is not
774          * being disabled.
775          * vc4_crtc_enable() takes care of updating the dlist just after
776          * re-enabling VBLANK interrupts and before enabling the engine.
777          * If the CRTC is being disabled, there's no point in updating this
778          * information.
779          */
780         if (crtc->state->active && old_state->active)
781                 vc4_crtc_update_dlist(crtc);
782
783         if (crtc->state->color_mgmt_changed) {
784                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
785
786                 if (crtc->state->gamma_lut) {
787                         vc4_crtc_update_gamma_lut(crtc);
788                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
789                 } else {
790                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
791                          * in hardware, which is the same as a linear lut that
792                          * DRM expects us to use in absence of a user lut.
793                          */
794                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
795                 }
796                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
797         }
798
799         if (debug_dump_regs) {
800                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
801                 vc4_hvs_dump_state(dev);
802         }
803 }
804
805 static int vc4_enable_vblank(struct drm_crtc *crtc)
806 {
807         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
808
809         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
810
811         return 0;
812 }
813
814 static void vc4_disable_vblank(struct drm_crtc *crtc)
815 {
816         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
817
818         CRTC_WRITE(PV_INTEN, 0);
819 }
820
821 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
822 {
823         struct drm_crtc *crtc = &vc4_crtc->base;
824         struct drm_device *dev = crtc->dev;
825         struct vc4_dev *vc4 = to_vc4_dev(dev);
826         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
827         u32 chan = vc4_crtc->channel;
828         unsigned long flags;
829
830         spin_lock_irqsave(&dev->event_lock, flags);
831         if (vc4_crtc->event &&
832             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
833              vc4_state->feed_txp)) {
834                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
835                 vc4_crtc->event = NULL;
836                 drm_crtc_vblank_put(crtc);
837         }
838         spin_unlock_irqrestore(&dev->event_lock, flags);
839 }
840
841 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
842 {
843         crtc->t_vblank = ktime_get();
844         drm_crtc_handle_vblank(&crtc->base);
845         vc4_crtc_handle_page_flip(crtc);
846 }
847
848 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
849 {
850         struct vc4_crtc *vc4_crtc = data;
851         u32 stat = CRTC_READ(PV_INTSTAT);
852         irqreturn_t ret = IRQ_NONE;
853
854         if (stat & PV_INT_VFP_START) {
855                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
856                 vc4_crtc_handle_vblank(vc4_crtc);
857                 ret = IRQ_HANDLED;
858         }
859
860         return ret;
861 }
862
863 struct vc4_async_flip_state {
864         struct drm_crtc *crtc;
865         struct drm_framebuffer *fb;
866         struct drm_framebuffer *old_fb;
867         struct drm_pending_vblank_event *event;
868
869         struct vc4_seqno_cb cb;
870 };
871
872 /* Called when the V3D execution for the BO being flipped to is done, so that
873  * we can actually update the plane's address to point to it.
874  */
875 static void
876 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
877 {
878         struct vc4_async_flip_state *flip_state =
879                 container_of(cb, struct vc4_async_flip_state, cb);
880         struct drm_crtc *crtc = flip_state->crtc;
881         struct drm_device *dev = crtc->dev;
882         struct vc4_dev *vc4 = to_vc4_dev(dev);
883         struct drm_plane *plane = crtc->primary;
884
885         vc4_plane_async_set_fb(plane, flip_state->fb);
886         if (flip_state->event) {
887                 unsigned long flags;
888
889                 spin_lock_irqsave(&dev->event_lock, flags);
890                 drm_crtc_send_vblank_event(crtc, flip_state->event);
891                 spin_unlock_irqrestore(&dev->event_lock, flags);
892         }
893
894         drm_crtc_vblank_put(crtc);
895         drm_framebuffer_put(flip_state->fb);
896
897         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
898          * when the planes are updated through the async update path.
899          * FIXME: we should move to generic async-page-flip when it's
900          * available, so that we can get rid of this hand-made cleanup_fb()
901          * logic.
902          */
903         if (flip_state->old_fb) {
904                 struct drm_gem_cma_object *cma_bo;
905                 struct vc4_bo *bo;
906
907                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
908                 bo = to_vc4_bo(&cma_bo->base);
909                 vc4_bo_dec_usecnt(bo);
910                 drm_framebuffer_put(flip_state->old_fb);
911         }
912
913         kfree(flip_state);
914
915         up(&vc4->async_modeset);
916 }
917
918 /* Implements async (non-vblank-synced) page flips.
919  *
920  * The page flip ioctl needs to return immediately, so we grab the
921  * modeset semaphore on the pipe, and queue the address update for
922  * when V3D is done with the BO being flipped to.
923  */
924 static int vc4_async_page_flip(struct drm_crtc *crtc,
925                                struct drm_framebuffer *fb,
926                                struct drm_pending_vblank_event *event,
927                                uint32_t flags)
928 {
929         struct drm_device *dev = crtc->dev;
930         struct vc4_dev *vc4 = to_vc4_dev(dev);
931         struct drm_plane *plane = crtc->primary;
932         int ret = 0;
933         struct vc4_async_flip_state *flip_state;
934         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
935         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
936
937         /* Increment the BO usecnt here, so that we never end up with an
938          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
939          * plane is later updated through the non-async path.
940          * FIXME: we should move to generic async-page-flip when it's
941          * available, so that we can get rid of this hand-made prepare_fb()
942          * logic.
943          */
944         ret = vc4_bo_inc_usecnt(bo);
945         if (ret)
946                 return ret;
947
948         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
949         if (!flip_state) {
950                 vc4_bo_dec_usecnt(bo);
951                 return -ENOMEM;
952         }
953
954         drm_framebuffer_get(fb);
955         flip_state->fb = fb;
956         flip_state->crtc = crtc;
957         flip_state->event = event;
958
959         /* Make sure all other async modesetes have landed. */
960         ret = down_interruptible(&vc4->async_modeset);
961         if (ret) {
962                 drm_framebuffer_put(fb);
963                 vc4_bo_dec_usecnt(bo);
964                 kfree(flip_state);
965                 return ret;
966         }
967
968         /* Save the current FB before it's replaced by the new one in
969          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
970          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
971          * it consistent.
972          * FIXME: we should move to generic async-page-flip when it's
973          * available, so that we can get rid of this hand-made cleanup_fb()
974          * logic.
975          */
976         flip_state->old_fb = plane->state->fb;
977         if (flip_state->old_fb)
978                 drm_framebuffer_get(flip_state->old_fb);
979
980         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
981
982         /* Immediately update the plane's legacy fb pointer, so that later
983          * modeset prep sees the state that will be present when the semaphore
984          * is released.
985          */
986         drm_atomic_set_fb_for_plane(plane->state, fb);
987
988         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
989                            vc4_async_page_flip_complete);
990
991         /* Driver takes ownership of state on successful async commit. */
992         return 0;
993 }
994
995 static int vc4_page_flip(struct drm_crtc *crtc,
996                          struct drm_framebuffer *fb,
997                          struct drm_pending_vblank_event *event,
998                          uint32_t flags,
999                          struct drm_modeset_acquire_ctx *ctx)
1000 {
1001         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
1002                 return vc4_async_page_flip(crtc, fb, event, flags);
1003         else
1004                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1005 }
1006
1007 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1008 {
1009         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1010
1011         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1012         if (!vc4_state)
1013                 return NULL;
1014
1015         old_vc4_state = to_vc4_crtc_state(crtc->state);
1016         vc4_state->feed_txp = old_vc4_state->feed_txp;
1017         vc4_state->margins = old_vc4_state->margins;
1018
1019         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1020         return &vc4_state->base;
1021 }
1022
1023 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1024                                    struct drm_crtc_state *state)
1025 {
1026         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1027         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1028
1029         if (vc4_state->mm.allocated) {
1030                 unsigned long flags;
1031
1032                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1033                 drm_mm_remove_node(&vc4_state->mm);
1034                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1035
1036         }
1037
1038         drm_atomic_helper_crtc_destroy_state(crtc, state);
1039 }
1040
1041 static void
1042 vc4_crtc_reset(struct drm_crtc *crtc)
1043 {
1044         if (crtc->state)
1045                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1046
1047         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1048         if (crtc->state)
1049                 crtc->state->crtc = crtc;
1050 }
1051
1052 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1053         .set_config = drm_atomic_helper_set_config,
1054         .destroy = vc4_crtc_destroy,
1055         .page_flip = vc4_page_flip,
1056         .set_property = NULL,
1057         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1058         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1059         .reset = vc4_crtc_reset,
1060         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1061         .atomic_destroy_state = vc4_crtc_destroy_state,
1062         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1063         .enable_vblank = vc4_enable_vblank,
1064         .disable_vblank = vc4_disable_vblank,
1065 };
1066
1067 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1068         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1069         .mode_valid = vc4_crtc_mode_valid,
1070         .atomic_check = vc4_crtc_atomic_check,
1071         .atomic_flush = vc4_crtc_atomic_flush,
1072         .atomic_enable = vc4_crtc_atomic_enable,
1073         .atomic_disable = vc4_crtc_atomic_disable,
1074 };
1075
1076 static const struct vc4_crtc_data pv0_data = {
1077         .hvs_channel = 0,
1078         .encoder_types = {
1079                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1080                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1081         },
1082 };
1083
1084 static const struct vc4_crtc_data pv1_data = {
1085         .hvs_channel = 2,
1086         .encoder_types = {
1087                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1088                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1089         },
1090 };
1091
1092 static const struct vc4_crtc_data pv2_data = {
1093         .hvs_channel = 1,
1094         .encoder_types = {
1095                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1096                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1097         },
1098 };
1099
1100 static const struct of_device_id vc4_crtc_dt_match[] = {
1101         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1102         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1103         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1104         {}
1105 };
1106
1107 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1108                                         struct drm_crtc *crtc)
1109 {
1110         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1111         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1112         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1113         struct drm_encoder *encoder;
1114
1115         drm_for_each_encoder(encoder, drm) {
1116                 struct vc4_encoder *vc4_encoder;
1117                 int i;
1118
1119                 /* HVS FIFO2 can feed the TXP IP. */
1120                 if (crtc_data->hvs_channel == 2 &&
1121                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1122                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1123                         continue;
1124                 }
1125
1126                 vc4_encoder = to_vc4_encoder(encoder);
1127                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1128                         if (vc4_encoder->type == encoder_types[i]) {
1129                                 vc4_encoder->clock_select = i;
1130                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1131                                 break;
1132                         }
1133                 }
1134         }
1135 }
1136
1137 static void
1138 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1139 {
1140         struct drm_device *drm = vc4_crtc->base.dev;
1141         struct vc4_dev *vc4 = to_vc4_dev(drm);
1142         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1143         /* Top/base are supposed to be 4-pixel aligned, but the
1144          * Raspberry Pi firmware fills the low bits (which are
1145          * presumably ignored).
1146          */
1147         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1148         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1149
1150         vc4_crtc->cob_size = top - base + 4;
1151 }
1152
1153 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1154 {
1155         struct platform_device *pdev = to_platform_device(dev);
1156         struct drm_device *drm = dev_get_drvdata(master);
1157         struct vc4_crtc *vc4_crtc;
1158         struct drm_crtc *crtc;
1159         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1160         const struct of_device_id *match;
1161         int ret, i;
1162
1163         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1164         if (!vc4_crtc)
1165                 return -ENOMEM;
1166         crtc = &vc4_crtc->base;
1167
1168         match = of_match_device(vc4_crtc_dt_match, dev);
1169         if (!match)
1170                 return -ENODEV;
1171         vc4_crtc->data = match->data;
1172
1173         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1174         if (IS_ERR(vc4_crtc->regs))
1175                 return PTR_ERR(vc4_crtc->regs);
1176
1177         /* For now, we create just the primary and the legacy cursor
1178          * planes.  We should be able to stack more planes on easily,
1179          * but to do that we would need to compute the bandwidth
1180          * requirement of the plane configuration, and reject ones
1181          * that will take too much.
1182          */
1183         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1184         if (IS_ERR(primary_plane)) {
1185                 dev_err(dev, "failed to construct primary plane\n");
1186                 ret = PTR_ERR(primary_plane);
1187                 goto err;
1188         }
1189
1190         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1191                                   &vc4_crtc_funcs, NULL);
1192         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1193         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1194         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1195         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1196
1197         /* We support CTM, but only for one CRTC at a time. It's therefore
1198          * implemented as private driver state in vc4_kms, not here.
1199          */
1200         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1201
1202         /* Set up some arbitrary number of planes.  We're not limited
1203          * by a set number of physical registers, just the space in
1204          * the HVS (16k) and how small an plane can be (28 bytes).
1205          * However, each plane we set up takes up some memory, and
1206          * increases the cost of looping over planes, which atomic
1207          * modesetting does quite a bit.  As a result, we pick a
1208          * modest number of planes to expose, that should hopefully
1209          * still cover any sane usecase.
1210          */
1211         for (i = 0; i < 8; i++) {
1212                 struct drm_plane *plane =
1213                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1214
1215                 if (IS_ERR(plane))
1216                         continue;
1217
1218                 plane->possible_crtcs = drm_crtc_mask(crtc);
1219         }
1220
1221         /* Set up the legacy cursor after overlay initialization,
1222          * since we overlay planes on the CRTC in the order they were
1223          * initialized.
1224          */
1225         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1226         if (!IS_ERR(cursor_plane)) {
1227                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1228                 crtc->cursor = cursor_plane;
1229         }
1230
1231         vc4_crtc_get_cob_allocation(vc4_crtc);
1232
1233         CRTC_WRITE(PV_INTEN, 0);
1234         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1235         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1236                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1237         if (ret)
1238                 goto err_destroy_planes;
1239
1240         vc4_set_crtc_possible_masks(drm, crtc);
1241
1242         for (i = 0; i < crtc->gamma_size; i++) {
1243                 vc4_crtc->lut_r[i] = i;
1244                 vc4_crtc->lut_g[i] = i;
1245                 vc4_crtc->lut_b[i] = i;
1246         }
1247
1248         platform_set_drvdata(pdev, vc4_crtc);
1249
1250         return 0;
1251
1252 err_destroy_planes:
1253         list_for_each_entry_safe(destroy_plane, temp,
1254                                  &drm->mode_config.plane_list, head) {
1255                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1256                     destroy_plane->funcs->destroy(destroy_plane);
1257         }
1258 err:
1259         return ret;
1260 }
1261
1262 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1263                             void *data)
1264 {
1265         struct platform_device *pdev = to_platform_device(dev);
1266         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1267
1268         vc4_crtc_destroy(&vc4_crtc->base);
1269
1270         CRTC_WRITE(PV_INTEN, 0);
1271
1272         platform_set_drvdata(pdev, NULL);
1273 }
1274
1275 static const struct component_ops vc4_crtc_ops = {
1276         .bind   = vc4_crtc_bind,
1277         .unbind = vc4_crtc_unbind,
1278 };
1279
1280 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1281 {
1282         return component_add(&pdev->dev, &vc4_crtc_ops);
1283 }
1284
1285 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1286 {
1287         component_del(&pdev->dev, &vc4_crtc_ops);
1288         return 0;
1289 }
1290
1291 struct platform_driver vc4_crtc_driver = {
1292         .probe = vc4_crtc_dev_probe,
1293         .remove = vc4_crtc_dev_remove,
1294         .driver = {
1295                 .name = "vc4_crtc",
1296                 .of_match_table = vc4_crtc_dt_match,
1297         },
1298 };