18f5009ce90e3bc6e910f11f508c4d3032dadaea
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 #define HVS_FIFO_LATENCY_PIX    6
48
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52 static const struct debugfs_reg32 crtc_regs[] = {
53         VC4_REG32(PV_CONTROL),
54         VC4_REG32(PV_V_CONTROL),
55         VC4_REG32(PV_VSYNCD_EVEN),
56         VC4_REG32(PV_HORZA),
57         VC4_REG32(PV_HORZB),
58         VC4_REG32(PV_VERTA),
59         VC4_REG32(PV_VERTB),
60         VC4_REG32(PV_VERTA_EVEN),
61         VC4_REG32(PV_VERTB_EVEN),
62         VC4_REG32(PV_INTEN),
63         VC4_REG32(PV_INTSTAT),
64         VC4_REG32(PV_STAT),
65         VC4_REG32(PV_HACT_ACT),
66 };
67
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72         /* Top/base are supposed to be 4-pixel aligned, but the
73          * Raspberry Pi firmware fills the low bits (which are
74          * presumably ignored).
75          */
76         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79         return top - base + 4;
80 }
81
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83                                           bool in_vblank_irq,
84                                           int *vpos, int *hpos,
85                                           ktime_t *stime, ktime_t *etime,
86                                           const struct drm_display_mode *mode)
87 {
88         struct drm_device *dev = crtc->dev;
89         struct vc4_dev *vc4 = to_vc4_dev(dev);
90         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92         unsigned int cob_size;
93         u32 val;
94         int fifo_lines;
95         int vblank_lines;
96         bool ret = false;
97
98         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100         /* Get optional system timestamp before query. */
101         if (stime)
102                 *stime = ktime_get();
103
104         /*
105          * Read vertical scanline which is currently composed for our
106          * pixelvalve by the HVS, and also the scaler status.
107          */
108         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110         /* Get optional system timestamp after query. */
111         if (etime)
112                 *etime = ktime_get();
113
114         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116         /* Vertical position of hvs composed scanline. */
117         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118         *hpos = 0;
119
120         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121                 *vpos /= 2;
122
123                 /* Use hpos to correct for field offset in interlaced mode. */
124                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125                         *hpos += mode->crtc_htotal / 2;
126         }
127
128         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129         /* This is the offset we need for translating hvs -> pv scanout pos. */
130         fifo_lines = cob_size / mode->crtc_hdisplay;
131
132         if (fifo_lines > 0)
133                 ret = true;
134
135         /* HVS more than fifo_lines into frame for compositing? */
136         if (*vpos > fifo_lines) {
137                 /*
138                  * We are in active scanout and can get some meaningful results
139                  * from HVS. The actual PV scanout can not trail behind more
140                  * than fifo_lines as that is the fifo's capacity. Assume that
141                  * in active scanout the HVS and PV work in lockstep wrt. HVS
142                  * refilling the fifo and PV consuming from the fifo, ie.
143                  * whenever the PV consumes and frees up a scanline in the
144                  * fifo, the HVS will immediately refill it, therefore
145                  * incrementing vpos. Therefore we choose HVS read position -
146                  * fifo size in scanlines as a estimate of the real scanout
147                  * position of the PV.
148                  */
149                 *vpos -= fifo_lines + 1;
150
151                 return ret;
152         }
153
154         /*
155          * Less: This happens when we are in vblank and the HVS, after getting
156          * the VSTART restart signal from the PV, just started refilling its
157          * fifo with new lines from the top-most lines of the new framebuffers.
158          * The PV does not scan out in vblank, so does not remove lines from
159          * the fifo, so the fifo will be full quickly and the HVS has to pause.
160          * We can't get meaningful readings wrt. scanline position of the PV
161          * and need to make things up in a approximative but consistent way.
162          */
163         vblank_lines = mode->vtotal - mode->vdisplay;
164
165         if (in_vblank_irq) {
166                 /*
167                  * Assume the irq handler got called close to first
168                  * line of vblank, so PV has about a full vblank
169                  * scanlines to go, and as a base timestamp use the
170                  * one taken at entry into vblank irq handler, so it
171                  * is not affected by random delays due to lock
172                  * contention on event_lock or vblank_time lock in
173                  * the core.
174                  */
175                 *vpos = -vblank_lines;
176
177                 if (stime)
178                         *stime = vc4_crtc->t_vblank;
179                 if (etime)
180                         *etime = vc4_crtc->t_vblank;
181
182                 /*
183                  * If the HVS fifo is not yet full then we know for certain
184                  * we are at the very beginning of vblank, as the hvs just
185                  * started refilling, and the stime and etime timestamps
186                  * truly correspond to start of vblank.
187                  *
188                  * Unfortunately there's no way to report this to upper levels
189                  * and make it more useful.
190                  */
191         } else {
192                 /*
193                  * No clue where we are inside vblank. Return a vpos of zero,
194                  * which will cause calling code to just return the etime
195                  * timestamp uncorrected. At least this is no worse than the
196                  * standard fallback.
197                  */
198                 *vpos = 0;
199         }
200
201         return ret;
202 }
203
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206         drm_crtc_cleanup(crtc);
207 }
208
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214         u32 fifo_len_bytes = pv_data->fifo_depth;
215
216         /*
217          * Pixels are pulled from the HVS if the number of bytes is
218          * lower than the FIFO full level.
219          *
220          * The latency of the pixel fetch mechanism is 6 pixels, so we
221          * need to convert those 6 pixels in bytes, depending on the
222          * format, and then subtract that from the length of the FIFO
223          * to make sure we never end up in a situation where the FIFO
224          * is full.
225          */
226         switch (format) {
227         case PV_CONTROL_FORMAT_DSIV_16:
228         case PV_CONTROL_FORMAT_DSIC_16:
229                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230         case PV_CONTROL_FORMAT_DSIV_18:
231                 return fifo_len_bytes - 14;
232         case PV_CONTROL_FORMAT_24:
233         case PV_CONTROL_FORMAT_DSIV_24:
234         default:
235                 /*
236                  * For some reason, the pixelvalve4 doesn't work with
237                  * the usual formula and will only work with 32.
238                  */
239                 if (crtc_data->hvs_output == 5)
240                         return 32;
241
242                 /*
243                  * It looks like in some situations, we will overflow
244                  * the PixelValve FIFO (with the bit 10 of PV stat being
245                  * set) and stall the HVS / PV, eventually resulting in
246                  * a page flip timeout.
247                  *
248                  * Displaying the video overlay during a playback with
249                  * Kodi on an RPi3 seems to be a great solution with a
250                  * failure rate around 50%.
251                  *
252                  * Removing 1 from the FIFO full level however
253                  * seems to completely remove that issue.
254                  */
255                 if (!vc4->hvs->hvs5)
256                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257
258                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259         }
260 }
261
262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263                                              u32 format)
264 {
265         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266         u32 ret = 0;
267
268         ret |= VC4_SET_FIELD((level >> 6),
269                              PV5_CONTROL_FIFO_LEVEL_HIGH);
270
271         return ret | VC4_SET_FIELD(level & 0x3f,
272                                    PV_CONTROL_FIFO_LEVEL);
273 }
274
275 /*
276  * Returns the encoder attached to the CRTC.
277  *
278  * VC4 can only scan out to one encoder at a time, while the DRM core
279  * allows drivers to push pixels to more than one encoder from the
280  * same CRTC.
281  */
282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
283                                                 struct drm_atomic_state *state,
284                                                 struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
285                                                                                          struct drm_connector *connector))
286 {
287         struct drm_connector *connector;
288         struct drm_connector_list_iter conn_iter;
289
290         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
291         drm_for_each_connector_iter(connector, &conn_iter) {
292                 struct drm_connector_state *conn_state = get_state(state, connector);
293
294                 if (!conn_state)
295                         continue;
296
297                 if (conn_state->crtc == crtc) {
298                         drm_connector_list_iter_end(&conn_iter);
299                         return connector->encoder;
300                 }
301         }
302         drm_connector_list_iter_end(&conn_iter);
303
304         return NULL;
305 }
306
307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
308 {
309         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310
311         /* The PV needs to be disabled before it can be flushed */
312         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
313         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
314 }
315
316 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
317 {
318         struct drm_device *dev = crtc->dev;
319         struct vc4_dev *vc4 = to_vc4_dev(dev);
320         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
321                                                            drm_atomic_get_new_connector_state);
322         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
323         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
324         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
325         struct drm_crtc_state *crtc_state = crtc->state;
326         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
327         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
328         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
329         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
330                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
331         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
332         u8 ppc = pv_data->pixels_per_clock;
333         bool debug_dump_regs = false;
334
335         if (debug_dump_regs) {
336                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
337                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
338                          drm_crtc_index(crtc));
339                 drm_print_regset32(&p, &vc4_crtc->regset);
340         }
341
342         vc4_crtc_pixelvalve_reset(crtc);
343
344         CRTC_WRITE(PV_HORZA,
345                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
346                                  PV_HORZA_HBP) |
347                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
348                                  PV_HORZA_HSYNC));
349
350         CRTC_WRITE(PV_HORZB,
351                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
352                                  PV_HORZB_HFP) |
353                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
354                                  PV_HORZB_HACTIVE));
355
356         CRTC_WRITE(PV_VERTA,
357                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
358                                  PV_VERTA_VBP) |
359                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
360                                  PV_VERTA_VSYNC));
361         CRTC_WRITE(PV_VERTB,
362                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
363                                  PV_VERTB_VFP) |
364                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
365
366         if (interlace) {
367                 CRTC_WRITE(PV_VERTA_EVEN,
368                            VC4_SET_FIELD(mode->crtc_vtotal -
369                                          mode->crtc_vsync_end - 1,
370                                          PV_VERTA_VBP) |
371                            VC4_SET_FIELD(mode->crtc_vsync_end -
372                                          mode->crtc_vsync_start,
373                                          PV_VERTA_VSYNC));
374                 CRTC_WRITE(PV_VERTB_EVEN,
375                            VC4_SET_FIELD(mode->crtc_vsync_start -
376                                          mode->crtc_vdisplay,
377                                          PV_VERTB_VFP) |
378                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
379
380                 /* We set up first field even mode for HDMI.  VEC's
381                  * NTSC mode would want first field odd instead, once
382                  * we support it (to do so, set ODD_FIRST and put the
383                  * delay in VSYNCD_EVEN instead).
384                  */
385                 CRTC_WRITE(PV_V_CONTROL,
386                            PV_VCONTROL_CONTINUOUS |
387                            (is_dsi ? PV_VCONTROL_DSI : 0) |
388                            PV_VCONTROL_INTERLACE |
389                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
390                                          PV_VCONTROL_ODD_DELAY));
391                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
392         } else {
393                 CRTC_WRITE(PV_V_CONTROL,
394                            PV_VCONTROL_CONTINUOUS |
395                            (is_dsi ? PV_VCONTROL_DSI : 0));
396         }
397
398         if (is_dsi)
399                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
400
401         if (vc4->hvs->hvs5)
402                 CRTC_WRITE(PV_MUX_CFG,
403                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
404                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
405
406         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
407                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
408                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
409                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
410                    PV_CONTROL_CLR_AT_START |
411                    PV_CONTROL_TRIGGER_UNDERFLOW |
412                    PV_CONTROL_WAIT_HSTART |
413                    VC4_SET_FIELD(vc4_encoder->clock_select,
414                                  PV_CONTROL_CLK_SELECT));
415
416         if (debug_dump_regs) {
417                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
418                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
419                          drm_crtc_index(crtc));
420                 drm_print_regset32(&p, &vc4_crtc->regset);
421         }
422 }
423
424 static void require_hvs_enabled(struct drm_device *dev)
425 {
426         struct vc4_dev *vc4 = to_vc4_dev(dev);
427
428         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
429                      SCALER_DISPCTRL_ENABLE);
430 }
431
432 static int vc4_crtc_disable(struct drm_crtc *crtc,
433                             struct drm_encoder *encoder,
434                             struct drm_atomic_state *state,
435                             unsigned int channel)
436 {
437         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
438         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
439         struct drm_device *dev = crtc->dev;
440         int ret;
441
442         CRTC_WRITE(PV_V_CONTROL,
443                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
444         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
445         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
446
447         /*
448          * This delay is needed to avoid to get a pixel stuck in an
449          * unflushable FIFO between the pixelvalve and the HDMI
450          * controllers on the BCM2711.
451          *
452          * Timing is fairly sensitive here, so mdelay is the safest
453          * approach.
454          *
455          * If it was to be reworked, the stuck pixel happens on a
456          * BCM2711 when changing mode with a good probability, so a
457          * script that changes mode on a regular basis should trigger
458          * the bug after less than 10 attempts. It manifests itself with
459          * every pixels being shifted by one to the right, and thus the
460          * last pixel of a line actually being displayed as the first
461          * pixel on the next line.
462          */
463         mdelay(20);
464
465         if (vc4_encoder && vc4_encoder->post_crtc_disable)
466                 vc4_encoder->post_crtc_disable(encoder, state);
467
468         vc4_crtc_pixelvalve_reset(crtc);
469         vc4_hvs_stop_channel(dev, channel);
470
471         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
472                 vc4_encoder->post_crtc_powerdown(encoder, state);
473
474         return 0;
475 }
476
477 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
478                                                         enum vc4_encoder_type type)
479 {
480         struct drm_encoder *encoder;
481
482         drm_for_each_encoder(encoder, crtc->dev) {
483                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
484
485                 if (vc4_encoder->type == type)
486                         return encoder;
487         }
488
489         return NULL;
490 }
491
492 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
493 {
494         struct drm_device *drm = crtc->dev;
495         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
496         enum vc4_encoder_type encoder_type;
497         const struct vc4_pv_data *pv_data;
498         struct drm_encoder *encoder;
499         unsigned encoder_sel;
500         int channel;
501
502         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
503                                       "brcm,bcm2711-pixelvalve2") ||
504               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
505                                       "brcm,bcm2711-pixelvalve4")))
506                 return 0;
507
508         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
509                 return 0;
510
511         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
512                 return 0;
513
514         channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
515         if (channel < 0)
516                 return 0;
517
518         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
519         if (WARN_ON(encoder_sel != 0))
520                 return 0;
521
522         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
523         encoder_type = pv_data->encoder_types[encoder_sel];
524         encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
525         if (WARN_ON(!encoder))
526                 return 0;
527
528         return vc4_crtc_disable(crtc, encoder, NULL, channel);
529 }
530
531 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
532                                     struct drm_atomic_state *state)
533 {
534         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
535                                                                          crtc);
536         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
537         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
538                                                            drm_atomic_get_old_connector_state);
539         struct drm_device *dev = crtc->dev;
540
541         require_hvs_enabled(dev);
542
543         /* Disable vblank irq handling before crtc is disabled. */
544         drm_crtc_vblank_off(crtc);
545
546         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
547
548         /*
549          * Make sure we issue a vblank event after disabling the CRTC if
550          * someone was waiting it.
551          */
552         if (crtc->state->event) {
553                 unsigned long flags;
554
555                 spin_lock_irqsave(&dev->event_lock, flags);
556                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
557                 crtc->state->event = NULL;
558                 spin_unlock_irqrestore(&dev->event_lock, flags);
559         }
560 }
561
562 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
563                                    struct drm_atomic_state *state)
564 {
565         struct drm_device *dev = crtc->dev;
566         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
567         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
568                                                            drm_atomic_get_new_connector_state);
569         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
570
571         require_hvs_enabled(dev);
572
573         /* Enable vblank irq handling before crtc is started otherwise
574          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
575          */
576         drm_crtc_vblank_on(crtc);
577
578         vc4_hvs_atomic_enable(crtc, state);
579
580         if (vc4_encoder->pre_crtc_configure)
581                 vc4_encoder->pre_crtc_configure(encoder, state);
582
583         vc4_crtc_config_pv(crtc, state);
584
585         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
586
587         if (vc4_encoder->pre_crtc_enable)
588                 vc4_encoder->pre_crtc_enable(encoder, state);
589
590         /* When feeding the transposer block the pixelvalve is unneeded and
591          * should not be enabled.
592          */
593         CRTC_WRITE(PV_V_CONTROL,
594                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
595
596         if (vc4_encoder->post_crtc_enable)
597                 vc4_encoder->post_crtc_enable(encoder, state);
598 }
599
600 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
601                                                 const struct drm_display_mode *mode)
602 {
603         /* Do not allow doublescan modes from user space */
604         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
605                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
606                               crtc->base.id);
607                 return MODE_NO_DBLESCAN;
608         }
609
610         return MODE_OK;
611 }
612
613 void vc4_crtc_get_margins(struct drm_crtc_state *state,
614                           unsigned int *left, unsigned int *right,
615                           unsigned int *top, unsigned int *bottom)
616 {
617         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
618         struct drm_connector_state *conn_state;
619         struct drm_connector *conn;
620         int i;
621
622         *left = vc4_state->margins.left;
623         *right = vc4_state->margins.right;
624         *top = vc4_state->margins.top;
625         *bottom = vc4_state->margins.bottom;
626
627         /* We have to interate over all new connector states because
628          * vc4_crtc_get_margins() might be called before
629          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
630          * might be outdated.
631          */
632         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
633                 if (conn_state->crtc != state->crtc)
634                         continue;
635
636                 *left = conn_state->tv.margins.left;
637                 *right = conn_state->tv.margins.right;
638                 *top = conn_state->tv.margins.top;
639                 *bottom = conn_state->tv.margins.bottom;
640                 break;
641         }
642 }
643
644 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
645                                  struct drm_atomic_state *state)
646 {
647         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
648                                                                           crtc);
649         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
650         struct drm_connector *conn;
651         struct drm_connector_state *conn_state;
652         int ret, i;
653
654         ret = vc4_hvs_atomic_check(crtc, state);
655         if (ret)
656                 return ret;
657
658         for_each_new_connector_in_state(state, conn, conn_state,
659                                         i) {
660                 if (conn_state->crtc != crtc)
661                         continue;
662
663                 vc4_state->margins.left = conn_state->tv.margins.left;
664                 vc4_state->margins.right = conn_state->tv.margins.right;
665                 vc4_state->margins.top = conn_state->tv.margins.top;
666                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
667                 break;
668         }
669
670         return 0;
671 }
672
673 static int vc4_enable_vblank(struct drm_crtc *crtc)
674 {
675         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
676
677         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
678
679         return 0;
680 }
681
682 static void vc4_disable_vblank(struct drm_crtc *crtc)
683 {
684         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
685
686         CRTC_WRITE(PV_INTEN, 0);
687 }
688
689 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
690 {
691         struct drm_crtc *crtc = &vc4_crtc->base;
692         struct drm_device *dev = crtc->dev;
693         struct vc4_dev *vc4 = to_vc4_dev(dev);
694         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
695         u32 chan = vc4_state->assigned_channel;
696         unsigned long flags;
697
698         spin_lock_irqsave(&dev->event_lock, flags);
699         if (vc4_crtc->event &&
700             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
701              vc4_state->feed_txp)) {
702                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
703                 vc4_crtc->event = NULL;
704                 drm_crtc_vblank_put(crtc);
705
706                 /* Wait for the page flip to unmask the underrun to ensure that
707                  * the display list was updated by the hardware. Before that
708                  * happens, the HVS will be using the previous display list with
709                  * the CRTC and encoder already reconfigured, leading to
710                  * underruns. This can be seen when reconfiguring the CRTC.
711                  */
712                 vc4_hvs_unmask_underrun(dev, chan);
713         }
714         spin_unlock_irqrestore(&dev->event_lock, flags);
715 }
716
717 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
718 {
719         crtc->t_vblank = ktime_get();
720         drm_crtc_handle_vblank(&crtc->base);
721         vc4_crtc_handle_page_flip(crtc);
722 }
723
724 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
725 {
726         struct vc4_crtc *vc4_crtc = data;
727         u32 stat = CRTC_READ(PV_INTSTAT);
728         irqreturn_t ret = IRQ_NONE;
729
730         if (stat & PV_INT_VFP_START) {
731                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
732                 vc4_crtc_handle_vblank(vc4_crtc);
733                 ret = IRQ_HANDLED;
734         }
735
736         return ret;
737 }
738
739 struct vc4_async_flip_state {
740         struct drm_crtc *crtc;
741         struct drm_framebuffer *fb;
742         struct drm_framebuffer *old_fb;
743         struct drm_pending_vblank_event *event;
744
745         struct vc4_seqno_cb cb;
746 };
747
748 /* Called when the V3D execution for the BO being flipped to is done, so that
749  * we can actually update the plane's address to point to it.
750  */
751 static void
752 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
753 {
754         struct vc4_async_flip_state *flip_state =
755                 container_of(cb, struct vc4_async_flip_state, cb);
756         struct drm_crtc *crtc = flip_state->crtc;
757         struct drm_device *dev = crtc->dev;
758         struct drm_plane *plane = crtc->primary;
759
760         vc4_plane_async_set_fb(plane, flip_state->fb);
761         if (flip_state->event) {
762                 unsigned long flags;
763
764                 spin_lock_irqsave(&dev->event_lock, flags);
765                 drm_crtc_send_vblank_event(crtc, flip_state->event);
766                 spin_unlock_irqrestore(&dev->event_lock, flags);
767         }
768
769         drm_crtc_vblank_put(crtc);
770         drm_framebuffer_put(flip_state->fb);
771
772         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
773          * when the planes are updated through the async update path.
774          * FIXME: we should move to generic async-page-flip when it's
775          * available, so that we can get rid of this hand-made cleanup_fb()
776          * logic.
777          */
778         if (flip_state->old_fb) {
779                 struct drm_gem_cma_object *cma_bo;
780                 struct vc4_bo *bo;
781
782                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
783                 bo = to_vc4_bo(&cma_bo->base);
784                 vc4_bo_dec_usecnt(bo);
785                 drm_framebuffer_put(flip_state->old_fb);
786         }
787
788         kfree(flip_state);
789 }
790
791 /* Implements async (non-vblank-synced) page flips.
792  *
793  * The page flip ioctl needs to return immediately, so we grab the
794  * modeset semaphore on the pipe, and queue the address update for
795  * when V3D is done with the BO being flipped to.
796  */
797 static int vc4_async_page_flip(struct drm_crtc *crtc,
798                                struct drm_framebuffer *fb,
799                                struct drm_pending_vblank_event *event,
800                                uint32_t flags)
801 {
802         struct drm_device *dev = crtc->dev;
803         struct drm_plane *plane = crtc->primary;
804         int ret = 0;
805         struct vc4_async_flip_state *flip_state;
806         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
807         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
808
809         /* Increment the BO usecnt here, so that we never end up with an
810          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
811          * plane is later updated through the non-async path.
812          * FIXME: we should move to generic async-page-flip when it's
813          * available, so that we can get rid of this hand-made prepare_fb()
814          * logic.
815          */
816         ret = vc4_bo_inc_usecnt(bo);
817         if (ret)
818                 return ret;
819
820         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
821         if (!flip_state) {
822                 vc4_bo_dec_usecnt(bo);
823                 return -ENOMEM;
824         }
825
826         drm_framebuffer_get(fb);
827         flip_state->fb = fb;
828         flip_state->crtc = crtc;
829         flip_state->event = event;
830
831         /* Save the current FB before it's replaced by the new one in
832          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
833          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
834          * it consistent.
835          * FIXME: we should move to generic async-page-flip when it's
836          * available, so that we can get rid of this hand-made cleanup_fb()
837          * logic.
838          */
839         flip_state->old_fb = plane->state->fb;
840         if (flip_state->old_fb)
841                 drm_framebuffer_get(flip_state->old_fb);
842
843         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
844
845         /* Immediately update the plane's legacy fb pointer, so that later
846          * modeset prep sees the state that will be present when the semaphore
847          * is released.
848          */
849         drm_atomic_set_fb_for_plane(plane->state, fb);
850
851         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
852                            vc4_async_page_flip_complete);
853
854         /* Driver takes ownership of state on successful async commit. */
855         return 0;
856 }
857
858 int vc4_page_flip(struct drm_crtc *crtc,
859                   struct drm_framebuffer *fb,
860                   struct drm_pending_vblank_event *event,
861                   uint32_t flags,
862                   struct drm_modeset_acquire_ctx *ctx)
863 {
864         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
865                 return vc4_async_page_flip(crtc, fb, event, flags);
866         else
867                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
868 }
869
870 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
871 {
872         struct vc4_crtc_state *vc4_state, *old_vc4_state;
873
874         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
875         if (!vc4_state)
876                 return NULL;
877
878         old_vc4_state = to_vc4_crtc_state(crtc->state);
879         vc4_state->feed_txp = old_vc4_state->feed_txp;
880         vc4_state->margins = old_vc4_state->margins;
881         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
882
883         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
884         return &vc4_state->base;
885 }
886
887 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
888                             struct drm_crtc_state *state)
889 {
890         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
891         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
892
893         if (drm_mm_node_allocated(&vc4_state->mm)) {
894                 unsigned long flags;
895
896                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
897                 drm_mm_remove_node(&vc4_state->mm);
898                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
899
900         }
901
902         drm_atomic_helper_crtc_destroy_state(crtc, state);
903 }
904
905 void vc4_crtc_reset(struct drm_crtc *crtc)
906 {
907         struct vc4_crtc_state *vc4_crtc_state;
908
909         if (crtc->state)
910                 vc4_crtc_destroy_state(crtc, crtc->state);
911
912         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
913         if (!vc4_crtc_state) {
914                 crtc->state = NULL;
915                 return;
916         }
917
918         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
919         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
920 }
921
922 static const struct drm_crtc_funcs vc4_crtc_funcs = {
923         .set_config = drm_atomic_helper_set_config,
924         .destroy = vc4_crtc_destroy,
925         .page_flip = vc4_page_flip,
926         .set_property = NULL,
927         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
928         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
929         .reset = vc4_crtc_reset,
930         .atomic_duplicate_state = vc4_crtc_duplicate_state,
931         .atomic_destroy_state = vc4_crtc_destroy_state,
932         .enable_vblank = vc4_enable_vblank,
933         .disable_vblank = vc4_disable_vblank,
934         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
935 };
936
937 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
938         .mode_valid = vc4_crtc_mode_valid,
939         .atomic_check = vc4_crtc_atomic_check,
940         .atomic_flush = vc4_hvs_atomic_flush,
941         .atomic_enable = vc4_crtc_atomic_enable,
942         .atomic_disable = vc4_crtc_atomic_disable,
943         .get_scanout_position = vc4_crtc_get_scanout_position,
944 };
945
946 static const struct vc4_pv_data bcm2835_pv0_data = {
947         .base = {
948                 .hvs_available_channels = BIT(0),
949                 .hvs_output = 0,
950         },
951         .debugfs_name = "crtc0_regs",
952         .fifo_depth = 64,
953         .pixels_per_clock = 1,
954         .encoder_types = {
955                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
956                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
957         },
958 };
959
960 static const struct vc4_pv_data bcm2835_pv1_data = {
961         .base = {
962                 .hvs_available_channels = BIT(2),
963                 .hvs_output = 2,
964         },
965         .debugfs_name = "crtc1_regs",
966         .fifo_depth = 64,
967         .pixels_per_clock = 1,
968         .encoder_types = {
969                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
970                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
971         },
972 };
973
974 static const struct vc4_pv_data bcm2835_pv2_data = {
975         .base = {
976                 .hvs_available_channels = BIT(1),
977                 .hvs_output = 1,
978         },
979         .debugfs_name = "crtc2_regs",
980         .fifo_depth = 64,
981         .pixels_per_clock = 1,
982         .encoder_types = {
983                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
984                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
985         },
986 };
987
988 static const struct vc4_pv_data bcm2711_pv0_data = {
989         .base = {
990                 .hvs_available_channels = BIT(0),
991                 .hvs_output = 0,
992         },
993         .debugfs_name = "crtc0_regs",
994         .fifo_depth = 64,
995         .pixels_per_clock = 1,
996         .encoder_types = {
997                 [0] = VC4_ENCODER_TYPE_DSI0,
998                 [1] = VC4_ENCODER_TYPE_DPI,
999         },
1000 };
1001
1002 static const struct vc4_pv_data bcm2711_pv1_data = {
1003         .base = {
1004                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1005                 .hvs_output = 3,
1006         },
1007         .debugfs_name = "crtc1_regs",
1008         .fifo_depth = 64,
1009         .pixels_per_clock = 1,
1010         .encoder_types = {
1011                 [0] = VC4_ENCODER_TYPE_DSI1,
1012                 [1] = VC4_ENCODER_TYPE_SMI,
1013         },
1014 };
1015
1016 static const struct vc4_pv_data bcm2711_pv2_data = {
1017         .base = {
1018                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1019                 .hvs_output = 4,
1020         },
1021         .debugfs_name = "crtc2_regs",
1022         .fifo_depth = 256,
1023         .pixels_per_clock = 2,
1024         .encoder_types = {
1025                 [0] = VC4_ENCODER_TYPE_HDMI0,
1026         },
1027 };
1028
1029 static const struct vc4_pv_data bcm2711_pv3_data = {
1030         .base = {
1031                 .hvs_available_channels = BIT(1),
1032                 .hvs_output = 1,
1033         },
1034         .debugfs_name = "crtc3_regs",
1035         .fifo_depth = 64,
1036         .pixels_per_clock = 1,
1037         .encoder_types = {
1038                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1039         },
1040 };
1041
1042 static const struct vc4_pv_data bcm2711_pv4_data = {
1043         .base = {
1044                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045                 .hvs_output = 5,
1046         },
1047         .debugfs_name = "crtc4_regs",
1048         .fifo_depth = 64,
1049         .pixels_per_clock = 2,
1050         .encoder_types = {
1051                 [0] = VC4_ENCODER_TYPE_HDMI1,
1052         },
1053 };
1054
1055 static const struct of_device_id vc4_crtc_dt_match[] = {
1056         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1057         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1058         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1059         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1060         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1061         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1062         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1063         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1064         {}
1065 };
1066
1067 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1068                                         struct drm_crtc *crtc)
1069 {
1070         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1071         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1072         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1073         struct drm_encoder *encoder;
1074
1075         drm_for_each_encoder(encoder, drm) {
1076                 struct vc4_encoder *vc4_encoder;
1077                 int i;
1078
1079                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1080                         continue;
1081
1082                 vc4_encoder = to_vc4_encoder(encoder);
1083                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1084                         if (vc4_encoder->type == encoder_types[i]) {
1085                                 vc4_encoder->clock_select = i;
1086                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087                                 break;
1088                         }
1089                 }
1090         }
1091 }
1092
1093 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1094                   const struct drm_crtc_funcs *crtc_funcs,
1095                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1096 {
1097         struct vc4_dev *vc4 = to_vc4_dev(drm);
1098         struct drm_crtc *crtc = &vc4_crtc->base;
1099         struct drm_plane *primary_plane;
1100         unsigned int i;
1101
1102         /* For now, we create just the primary and the legacy cursor
1103          * planes.  We should be able to stack more planes on easily,
1104          * but to do that we would need to compute the bandwidth
1105          * requirement of the plane configuration, and reject ones
1106          * that will take too much.
1107          */
1108         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1109         if (IS_ERR(primary_plane)) {
1110                 dev_err(drm->dev, "failed to construct primary plane\n");
1111                 return PTR_ERR(primary_plane);
1112         }
1113
1114         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1115                                   crtc_funcs, NULL);
1116         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1117
1118         if (!vc4->hvs->hvs5) {
1119                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1120
1121                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1122
1123                 /* We support CTM, but only for one CRTC at a time. It's therefore
1124                  * implemented as private driver state in vc4_kms, not here.
1125                  */
1126                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1127         }
1128
1129         for (i = 0; i < crtc->gamma_size; i++) {
1130                 vc4_crtc->lut_r[i] = i;
1131                 vc4_crtc->lut_g[i] = i;
1132                 vc4_crtc->lut_b[i] = i;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1139 {
1140         struct platform_device *pdev = to_platform_device(dev);
1141         struct drm_device *drm = dev_get_drvdata(master);
1142         const struct vc4_pv_data *pv_data;
1143         struct vc4_crtc *vc4_crtc;
1144         struct drm_crtc *crtc;
1145         struct drm_plane *destroy_plane, *temp;
1146         int ret;
1147
1148         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1149         if (!vc4_crtc)
1150                 return -ENOMEM;
1151         crtc = &vc4_crtc->base;
1152
1153         pv_data = of_device_get_match_data(dev);
1154         if (!pv_data)
1155                 return -ENODEV;
1156         vc4_crtc->data = &pv_data->base;
1157         vc4_crtc->pdev = pdev;
1158
1159         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1160         if (IS_ERR(vc4_crtc->regs))
1161                 return PTR_ERR(vc4_crtc->regs);
1162
1163         vc4_crtc->regset.base = vc4_crtc->regs;
1164         vc4_crtc->regset.regs = crtc_regs;
1165         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1166
1167         ret = vc4_crtc_init(drm, vc4_crtc,
1168                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1169         if (ret)
1170                 return ret;
1171         vc4_set_crtc_possible_masks(drm, crtc);
1172
1173         CRTC_WRITE(PV_INTEN, 0);
1174         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1175         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1176                                vc4_crtc_irq_handler,
1177                                IRQF_SHARED,
1178                                "vc4 crtc", vc4_crtc);
1179         if (ret)
1180                 goto err_destroy_planes;
1181
1182         platform_set_drvdata(pdev, vc4_crtc);
1183
1184         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1185                                  &vc4_crtc->regset);
1186
1187         return 0;
1188
1189 err_destroy_planes:
1190         list_for_each_entry_safe(destroy_plane, temp,
1191                                  &drm->mode_config.plane_list, head) {
1192                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1193                     destroy_plane->funcs->destroy(destroy_plane);
1194         }
1195
1196         return ret;
1197 }
1198
1199 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1200                             void *data)
1201 {
1202         struct platform_device *pdev = to_platform_device(dev);
1203         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1204
1205         vc4_crtc_destroy(&vc4_crtc->base);
1206
1207         CRTC_WRITE(PV_INTEN, 0);
1208
1209         platform_set_drvdata(pdev, NULL);
1210 }
1211
1212 static const struct component_ops vc4_crtc_ops = {
1213         .bind   = vc4_crtc_bind,
1214         .unbind = vc4_crtc_unbind,
1215 };
1216
1217 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1218 {
1219         return component_add(&pdev->dev, &vc4_crtc_ops);
1220 }
1221
1222 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1223 {
1224         component_del(&pdev->dev, &vc4_crtc_ops);
1225         return 0;
1226 }
1227
1228 struct platform_driver vc4_crtc_driver = {
1229         .probe = vc4_crtc_dev_probe,
1230         .remove = vc4_crtc_dev_remove,
1231         .driver = {
1232                 .name = "vc4_crtc",
1233                 .of_match_table = vc4_crtc_dt_match,
1234         },
1235 };